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Abstract

The transcriptional networks that regulate gene expression and modifications to this network are at the core of the cancer
phenotype. MicroRNAs, a well-studied species of small non-coding RNA molecules, have been shown to have a central role
in regulating gene expression as part of this transcriptional network. Further, microRNA deregulation is associated with
cancer development and with tumor progression. Glioblastoma Multiform (GBM) is the most common, aggressive and
malignant primary tumor of the brain and is associated with one of the worst 5-year survival rates among all human cancers.
To study the transcriptional network and its modifications in GBM, we utilized gene expression, microRNA sequencing,
whole genome sequencing and clinical data from hundreds of patients from different datasets. Using these data and a
novel microRNA-gene association approach we introduce, we have identified unique microRNAs and their associated genes.
This unique behavior is composed of the ability of the quantifiable association of the microRNA and the gene expression
levels, which we show stratify patients into clinical subgroups of high statistical significance. Importantly, this stratification
goes unobserved by other methods and is not affiliated by other subsets or phenotypes within the data. To investigate the
robustness of the introduced approach, we demonstrate, in unrelated datasets, robustness of findings. Among the set of
identified microRNA-gene associations, we closely study the example of MAF and hsa-miR-330-3p, and show how their co-
behavior stratifies patients into prognosis clinical groups and how whole genome sequences tells us more about a specific
genomic variation as a possible basis for patient variances. We argue that these identified associations may indicate
previously unexplored specific disease control mechanisms and may be used as basis for further study and for possible
therapeutic intervention.
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Introduction

Micro RNAs (miRs) are small, endogenous non-coding RNA

molecules that control gene expression by inhibiting translation or

inducing cleavage of target mRNAs. The role of miRs as key

regulators of a wide variety of fundamental cellular processes, such

as proliferation, apoptosis, differentiation, motility, invasiveness

and more, is increasingly recognized in almost all aspects of

biology and biomedicine [1]. MiRs are aberrantly expressed in

cancer tissues and a connection between deregulated miRs and the

inhibition of tumor suppressor genes in cancer is well established

[1,2]. Several studies have shown potential use for miR-based

therapy in cancer [3–5]. An example is the use of anti-miR-21 in

breast cancer, which led to the suppression of both cell growth in

vitro and tumor growth in vivo [6]. The potential of miRs to act

both as therapeutic agents and as disease biomarkers places this

family of molecules at the forefront of biomedical interest [7].

Several thousand human genes are potential targets for

regulation by several hundred miRs encoded in the genome.

The common hypothesis is that miRs down-regulate protein

expression by inhibiting target mRNA translation or by increasing

mRNA degradation [8]. Recent evidence also suggests that they

may up-regulate protein expression by up-regulating transcription

[9]. Both up-regulation and down-regulation of RNA levels by

miRs would result in a quantifiable measurement - the correlation

between the expression levels of the miR and its target mRNA.

Glioblastoma Multiforme (GBM) is the most common, aggres-

sive and malignant primary tumor of the brain and is associated

with one of the worst 5-year survival rates among all human

cancers [10]. Advances in treatment for newly-diagnosed GBM

have led to the current 5-year survival rates of 9.8%. Despite

therapy, once GBM progresses, the outcome is uniformly fatal,

with median overall survival historically less than 30 weeks [11].

One of the most comprehensive efforts at molecular character-

ization of cancer in general and Glioblastoma Multiforme in

particular is The Cancer Genome Atlas (TCGA) [12]. The types

of data provided through TCGA for over 370 GBM patients are:

clinical, expression abundance through microarrays, microRNA

expression levels and whole genome sequencing for a subgroup of

patients.

Here, by studying the entire set of pairs of genes and miRs

across the different platforms and by applying feature-selection

algorithms on miR and gene co-expression, we were able to

classify patients into two groups, one displaying valid association of

the target RNA by the miR, and the other showing no such

association. This association is quantified by measuring the
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correlations between miRs and target RNAs and is tagged ‘valid’

when the correlation is significantly negative. To see if this metric

affiliates with disease outcome, we performed Kaplan-Meier (KM)

survival analysis on these results. Surprisingly, we identified 7,509

pairs in which the pair-based stratification was associated with

survival outcome. To correct for multiple hypotheses, we used

Bonferroni correction to adjust the KM p-values. This procedure

left us with a subset of pairs that presented both a valid and a

prognosis-informative correlation. We then used the miRecord

comparison survey [13] to identify possible binding sites for the

miR through which gene expression could be regulated. Further,

to avoid classification otherwise simply based on either miR or

gene expression levels, we filtered out pairs in which the gene or

miR showed significant lower levels of expression in one group

compared to the other.

The 17 miR-gene pairs identified included four traditional and

13 non-traditional (we use the term ‘non-traditional pair’ for a

miR-gene pair in which the miR binding site does not start on the

second position). The resulting set of miR-gene pairs therefore

combines the following features: a possible binding site for the miR

within the gene, a strong negative correlation in one of the clinical

groups, and a highly significant patient stratification to disease

outcome.

The work presented here demonstrates how association between

miR and mRNA levels provides a biomarker by which patients

can be stratified to disease outcome in a highly significant manner.

This association may provide insight into the mechanism of the

disease. By tagging these associations and by affiliating them with

clinical outcome, the presented method provides an agenda for a

signature based research into tumor cell network mechanisms.

Results

We used machine learning algorithm to affiliate clinical groups

with combinations of the expression levels of roughly 23,000 genes

and 1,510 miRs (see Materials and Methods). Using these

methods, detailed below and further in the Methods section, we

identified a set of miR-gene pairs with a specific behavior of the

expression levels correlations. These correlations were used to

stratify patients into clinical phenotypes. To determine these

stratification-informative correlations, we scanned for correlations

between pairs of miRs and genes. We chose for correlations that

were present only in a subset of patients and were absent from

the complementary set. That is, for a miR-gene pair to be

considered relevant, the correlation between the miR and the

gene must be significant within one patient subgroup but

insignificant within the other (see Figure 1). The assumptions

underlying this stratification method are: (1) miRs control a

genes’ mRNA abundance, (2) specific regulation of a gene by a

miR is prone to changes with accumulated genomic aberrations.

(3) Such an accumulation of genomic aberrations may be

affiliated with patient subgroups.

Computationally, these differences in regulation would lead to

differences in miR-gene associations. These association allow us to

provide two patient subsets, one in which the control mechanism

and hence the computational association and calculated correla-

tion is strong and another in which the control mechanism, the

miR-gene association and the miR-gene correlation are weak.

Where regulation is strong, expression data will show a negative

correlation between the miR and its cognate gene. Where

regulation is weak, there will be no miR control over gene

expression and expression levels of the miR and its cognate gene

will not show the expected correlation.

Kaplan-Meier (KM) survival analysis, a well-established quan-

tifiable metric for stratifying patients according to disease outcome

[14], is often used in clinical and basic research to identify specific

modifiable targets that may associate with survival rates. In GBM

datasets, owing to disease course, other available patient relevant

data are often either absent or uninformative (such as disease

stage, which is often unimodal across patients; pharmaceutical

regimen, which we discussed earlier or environmental parameters,

where no significant association has been determined), and leaves

disease outcome as the only strong phenotype available. We used

this disease outcome information, by performing KM survival

analysis within patient groups and stratified groups through miR-

gene pairing. Then, to screen for unique miR-gene pairs, we

employed feature-selection analysis (described in Methods) and

selected for pairs whose miR-gene correlation metric is also

relevant in stratifying prognosis. Such prognosis groups are groups

in which a miR is associated with its cognate gene in one subset of

patients and not in the complementing set. One group is affiliated

with good prognosis and the other with poor prognosis. These

calculations ultimately lead to a set of p-values over a large cohort

of tested pairs, and thus require adjustment for multiple

hypotheses. We applied Bonferroni correction to the KM p-

values, which led us to include only pairs with p-values under

6.661026 (0.05/7509 pairs). Twenty-six miR-gene pairs main-

tained a significant p-value after this adjustment. Additional

filtering was then implemented to negatively select pairs in which

one of the components (either miR or gene) displayed any

meaningful association with one of the groups. This filtering has

been added to avoid cases in which the gene or the miR displayed

significant lower expression values in one group, which might

render any possible association as useless (assuming no regulation

could be made when one of the participants is absent) Filtering

resulted in a set of seventeen pairs.

Once we had identified the relevant miR-gene pairs, we set out

to identify specific genetic modifications that could explain some of

the (dys)function of these control mechanisms. To identify relevant

genomic regions we used miRecords [13], a set of tools for the

predictions of target sites for each of the miRs on its cognate,

paired, gene. MiRecords summarizes predicted targets from 11

different prediction tools. This extensive filtering procedure left us

with 16 miR-gene pairs (shown in Table 1). Here, we follow one of

the pairs – the gene MAF and the miR hsa-miR-330p as an

example, to demonstrate some of the biological insight mined by

Author Summary

Despite major progress and improved understanding of
Glioblastoma Multiforme, the disease is still associated
with poor prognosis. The identification of genomic
regulatory mechanisms, their affiliation with clinical out-
come and the association between specific modifications
in genome sequence that can explain gain and loss of such
regulatory activity, combine to suggest specific disease
mechanisms and possible means of intervention in the
course of the disease. We report here a method and its
implementation in exposing possible regulatory mecha-
nisms in GBM. At the core of this method is the
employment of associations between micro RNAs and
genes as a quantifiable metric. Identification of these
associations and their affiliation with clinical features,
combined with the availability of whole genome sequenc-
es, brings forward specific micro RNAs and their associated
genes. Affiliation of specific genomic sequences with
clinical outcome thus translates personal genomics into
tumor relevant decision-making.

MiR-Gene Association As a Prognostic Biomarker
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joining in behavior at the miR and gene expression levels with

sequence based information.

Figure 2 provides the case of MAF and hsa-miR-330-3p as an

example for classification into groups. In Group 1, we see a highly

significant correlation between miR-330-3p and MAF (R

score = 20.8219). This group displays poor prognosis. In contrast,

the correlation between the gene and miR expression levels in Group

2 is close to zero, together with significantly better (p-value = 3.3044e-

09) prognosis. This miR-gene correlation, associated with a more

violent form of tumor behavior, may be the result of an acquired

tumor network mechanism, which, as we see below, may be the result

of specific base modifications in the poor prognosis group.

To identify possible genomic modifications, the result of which

could be this acquired association, and which may explain lack and

gain of regulation mechanisms, we examined whole genome

sequence (WGS) data, which is available for 19 of the patients in

this study. We applied the classification detailed above, to affiliate

these 19 patients with Group 1 or 2 described above. That is, patients

were tagged as either Group 1 or Group 2 according to their miR-

gene correlation coefficients described earlier. Of the 19 patients with

an available WGS, eleven were classified as Group 1 and eight were

classified as Group 2. We first set out to identify whether the patients

had any somatic mutations in the coding regions for the gene and/or

for the miR. No mutations were found in these regions, neither for

MAF, nor for hsa-miR-330-3p, for any of the patients. Nevertheless,

in a manner that supports our association hypothesis, the set of 11

patients from Group1 all shared a SNP (rs147260403) G/T in their

miR promoter region. This SNP has been absent from the sequences

of the 8 patients from Group 2. Table S1 contains the patient’s

barcode and genotype association. In a very interesting manner,

display, or lack of display of this allele in the miR promoter region did

not associate with lower expression levels of hsa-miR-330-3p, as

shown in Figure 3.

Often, molecular markers do not reveal novel mechanism but

rather hide sub-clinical states which are displayed as molecular

markers. To avoid such bias in our study, we set out to confirm that

the stratification performed here is indeed based solely on the

presented metric and is not a recapitulation of clinical variables. For

this end, we performed additional analysis on possible links between

the clinical measurements assessed and the groups that emerged. This

analysis revealed that the classification was indeed a consequence of

miR-Gene correlation and not a rearrangement of well-known

clinical features, demographic features or disease history. Figure 4

shows clinical measurement distributions in the two groups.

Over the past few years, robustness proved to be highly

important feature in any computational analysis, and conclusions

are much strengthened when they are supported by additional,

independent datasets. While TCGA is the only dataset today that

provides a combination of gene-expression, microRNA expression,

and clinical data from GBM patients, other datasets do provide

Figure 1. Workflow diagram. Using standard feature selection algorithms (see Materials and Methods), patients are stratified into two groups. One
group is populated by samples with a demonstrated correlation between the miR and the gene. The other group is populated with the samples that
together show absent correlation. The algorithm populates these gene-miR correlation groups iteratively; a patient is added to a group according to
its contribution to the correlation. Once groups are formed, we quantify their clinical relevance through a Kaplan-Meier survival analysis. Bonferroni
correction for multiple hypotheses is performed to choose a significant set of miR-gene pairs. These pairs are then tested in whole genome
sequencing data to determine gene-miR binding sites and to identify tumor related modifications in these genomic sites.
doi:10.1371/journal.pcbi.1003351.g001

MiR-Gene Association As a Prognostic Biomarker
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similar data for breast cancer. Hence, we applied the pipeline

detailed above on two unrelated breast cancer datasets (GSE19783

[15], GSE22220 [16]) that combine gene-expression, microRNA

expression and clinical data. As previously specified, we identified

a set of miR-gene pairs with expression levels correlated in a way

that stratifies patients into clinical phenotypes in the two datasets.

This analysis produced 2,450 pairs in the first dataset and 2,745 in

the second, which were shown to have significant correlation in

only one group, and where these groups stratified prognosis (p-

value,0.05). Bonferroni correction was applied to leave 15 pairs

in the first dataset (GSE19783) and 6 pairs in the second dataset

(GSE22220). Four pairs overlapped in both datasets and are

presented in Table 2. Those four pairs were found to share

consistent behavior across the two datasets. Furthermore, the four

genes and miRs that were found did not stratify prognosis by

themselves as can be seen in Figure S2 and Figure S3. In addition,

we performed a genome wide, single gene and single miR based

survival analysis in order to identify single gene or microRNA that

stratify prognosis in both breast cancer datasets that were tested. In

the single miRNA analysis three microRNA were found to be

significant in both datasets (hsa-miR-105, hsa-miR-190, hsa-miR-

433), however, in the single gene analysis we could not find even

one gene that stratify prognosis robustly in both datasets. We

believe that the pipeline presented here can overcome the

problems of different batches of experiments and can retrieve

robust and consistent results. The most significant pair in these

four samples was Early Growth Gene 1 (EGR1), which was paired

with hsa-miR-377 (Figure 5). The classification we identified

suggests that negative correlation between EGR1 and hsa-miR-

337 may relate with higher survival rates while a positive

correlation relates with poor survival rates. The transcription

factor EGR1, is induced during G0–G1 transition of the cell cycle

in a variety of cell lines upon mitogenic stimulation. Pervious

observations suggested that the EGR genes were involved in

controlling cellular proliferation [17–19]. EGR1 was found to be

up regulated in a variety of cancer including breast cancer. In

addition, it has been linked with transforming growth, multidrug

resistance, proliferation and migration [20]. This behavior may

explain some of the results shown here. Negative correlation

between miR-337 and EGR1 may provide a regulation mecha-

nism to downregulate EGR1 activity, which translates into better

prognosis. In contrast, lack of this association and lack of this

mechanism may lead to lower survival rates.

Discussion

Results presented here join other findings that support a critical

core for miR regulation in cancer in general and in GBM in

particular. The computational procedure we apply here, of using

feature-selection algorithms to select for correlation and non-

correlation of miR levels and gene expression levels, we identify

subgroups with distinct behaviors. This behavior of these clinical

groups is unseen by other computational approaches. The statistically

highly significant affiliation between emerging groups and patient

outcome suggests that these identified associations may indicate

modifications to critical regulatory mechanisms in the disease. Future

therapeutic modifications may lead to improve survival rates.

As shown in the above detailed example, the presence of

association between MAF and hsa-miR-330-3p is linked to a

decrease in overall survival rates. Interestingly, DNA sequence

analyses shows allelic behavior of a specific SNP in the hsa-miR-330-

3p is presented in conjunction with absent miR-gene association and

with overall survival rate increasing dramatically (p-value = 161028).

The association between MAF and hsa-miR-330-3p in only one

subgroup of the patients, in addition to the better prognosis found in

the uncorrelated, genotype-modified group, calls for the gene and the

miR to be studied together as possible novel therapeutic targets.

In addition, validation on two independent breast cancer

datasets strengthened the approach by showing overlap

(i.e. robustness) in results. Taken together, these findings suggest

Table 1. Prediction of miR binding sites using miRecords identified 24 gene-miR pairs with binding sites.

microRNA Gene KM Pval DIANA
Micro
Inspector miRanda

Mir
Target2

mi
Target

NB
miRTar PicTar PITA RNA 22

RNA
hybrid TargetScan

hsa-miR-330-3p MAF 0.000000003 3 3 3 3

hsa-miR-768-5p OCLN 0.0000001 3 3 3

hsa-miR-769-5p SLC24A6 0.0000004 3 3 3

hsa-miR-202 SOCS5 0.0000007 3 3 3

hsa-miR-768-5p DYRK1A 0.000002 3 3 3

hsa-miR-660 BIN1 0.000003 3 3 3

hsa-miR-330-3P CYLD 0.000005 3 3 3

hsa-miR-500 ANKHD1 0.0000008 3 3

hsa-miR-7 RPN2 0.000003 3 3

hsa-miR-365 FADS1 0.000004 3 3

hsa-miR-301 GPR68 0.000005 3 3

hsa-miR-128a MAP3K14 0.000003 3

hsa-miR-489 MOSC2 0.000004 3

hsa-miR-556 TARS2 0.000004 3

hsa-miR-373 TBCE 0.000005 3

hsa-miR-126 GPN3 0.000005 3

We considered bindings site as those predicted by at least one prediction. The table shows the 24 pairs, their corresponding Kaplan-Meier p-values and the 11 utilities
used by the miRecords algorithm. The number of predicting algorithms per miR-gene pair sorts the table.
doi:10.1371/journal.pcbi.1003351.t001

MiR-Gene Association As a Prognostic Biomarker
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Figure 2. 373 GBM patients were stratified using the described method and analyzed for the association between miR-gene
behavior and prognosis. (A) The set of patients is assigned to different cohorts according to contribution, or lack of, to the correlation metric
between MAF and hsa-miR-330-3p (text and Figure 1). The left hand side panel is composed of the pool of samples that merge to display a strong
(negative) correlation, while the right hand side panel displays the pool of samples that merge to give no significant correlation. (B) Kaplan-Meier
survival curves of the groups that emerged from the analysis. Group 1 (blue line) has lower survival rates (and a significant negative correlation
between the miR and the gene), and Group2 (green line) has higher survival rates. The right-hand panel in (B) also shows how hsa-miR-330-3p itself,
without its use in the metric, does not provide any significant stratification.
doi:10.1371/journal.pcbi.1003351.g002

Figure 3. Gene expression levels of hsa-miR-330-3p and MAF in Group 1 and Group 2. The figure displays no significant change in
expression levels between the groups, despite the presentation of a specific allele in the miR promoter region in Group 2.
doi:10.1371/journal.pcbi.1003351.g003

MiR-Gene Association As a Prognostic Biomarker
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such methods as basis for biomarkers to separate patient groups

and uncover disease relevant regulation candidates.

In conclusion, the identification of genomic regulatory mech-

anisms, their affiliation with clinical outcome and the association

between specific modifications in genome sequence that can

explain gain and loss of such regulatory activity, combine to

suggest specific disease mechanisms and possible means of

intervention in the course of the disease. This discovery has been

made possible by employing regulation as a quantifiable metric,

combined with the availability of whole genome sequences. While

in practice, such detailed knowledge of a patient’s genomic data

may only be available through personal genomics [21], progress in

the field and decline in costs of molecular characterization

together place such implementations at center stage.

Materials and Methods

TCGA
All data were obtained from The Cancer Genome Atlas

(TCGA) database, available at http://cancergenome.nih.gov/.

This dataset comprises molecular characterizations from over 370

glioblastoma patients. For each patient, the database provides

gene expression, miR expression values and whole genome

sequencing data for 19 patients in this study. In addition, the

following clinical data variables were recorded for each patient:

age, gender, vital status and chemotherapy status.

Gene expression was quantified using an Affymetrix HT Human

Genome U133 Array Plate Set. The expression data were normalized

by Quantile normalization to produce RMA levels [22].

Validation set 1
Validation set 1, from Enerly et al. [15] is composed of gene

expression, microRNA expression and clinical information from

99 breast cancer patients (GEO accession [GSE19783]). Gene-

expression was quantified using Agilent whole genome microarray

4X44K, and miRNA expression was quantified using Agilent

Human miRNA Microarray 2.0.

Validation set 2
Validation set 2, from Buffa et al. [16] is composed of gene

expression, microRNA expression and clinical information from

99 breast cancer patients (GEO accession [GSE22220]). Gene-

expression was quantified using Illumina humanRef-8 v1.0

expression beadchip, and miRNA expression was quantified using

Illumina Human v1 MicroRNA expression beadchip.

Feature-selection
The expression levels of all pairs were obtained from the TCGA

database and feature-selection algorithms were applied to identify

a subgroup with significant negative correlation between the

expression of the miR and its predicted gene target. In each

iteration the algorithm added one patient’s expression data to the

analysis; if this data point diminished the correlation value and the

significance, then the algorithm excluded the patient from the

group. The algorithm iterated across groups until the highest value

was reached. Only the miR-gene pairs that produced a subset of

patients with significant negative correlation and insignificant

correlation in the remaining set were selected.

Figure 4. Distribution of clinical features in the two groups stratified by the miR-gene metric according to the following features:
Age, Gender, Tumor longest dimension, endothelial proliferation, Histological type and palisading necrosis. The figure demonstrates
that the two groups display very similar clinical features.
doi:10.1371/journal.pcbi.1003351.g004

MiR-Gene Association As a Prognostic Biomarker
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Survival analysis
Kaplan-Meier survival analysis was performed on all the pairs

extracted from the feature-selection analysis [23], through clinical

data (Vital Status), to determine the power of a pair for survival

stratification. This analysis was done to identify pairs that could

stratify prognosis on the basis of the presence or absence of a

correlation.

Bonferroni correction for multiple comparisons was applied to

the p-value so only those pairs with p-value,6.661026 were

extracted. Twenty-six pairs were found to be significant in

prognosis stratification after the adjustment.

MicroRNA binding site prediction
Using the miRecord comparison survey [13], we predicted

microRNA binding sites on the 26 miR-gene pairs that were

correlated in only one subset of patients and significant in

prognosis stratification. miRecord is an integrated resource for

miR-target interaction prediction that combines predictions from

11 existing programs including TargetScan [24]/TargetScanS

[25], PicTar [26], miRanda [27], DIANA-microT [28] and

MicroInspector [29]. We identified 24 genes out of the 26, by at

least one program, as having a possible binding site for their

corresponding miR. Table 1 details these results.

Algorithm (pseudo code)
1. For every gene

1.1 For every microRNA

1.1.1 Randomly choose three patients - Group1

1.1.2 Corr=correlation (Group1_microRNA,

Group1_gene-expression);

1.1.3 For k=1:(number_of_patients - 3)

1.1.3.1 Add a patient to Group1

1.1.3.2 Tmp_corr=correlation (Group_mi-

croRNA, Group_gene-expression);

1.1.3.3 If (abs (Corr).abs (Tmp_corr))

1.1.3.3.1 Leave patient at Group2

1.1.3.4 Else

1.1.3.4.1 Add patient to Group1

1.1.3.5 End

1.1.4 End

1.1.5 If one group is significant and the other is

insignificant

1.1.5.1 Survival_pval=logrank (Vital_Sta-

tus, Groups);

1.1.6 End

1.2 End

2. End

Figure 5. Breast cancer patients from two independent datasets were stratified using the described method and analyzed for the
association between miR-gene behavior and prognosis. In a manner similar to the one described in Figure 2, the set of patients is stratified,
this time by the correlation metric between EGR1 and hsa-miR-377. Again, as in Figure 2, the two panels give the samples that follow (left) a strong
correlation, and (right), no correlation. Then, a Kaplan-Meier survival analyses is conducted on the two groups, and demonstrates how Group 1 (blue
line) has higher survival rates (and a significant negative correlation between hsa-miR-377 and EGR1), and Group 2 (green line) has lower survival
rates.
doi:10.1371/journal.pcbi.1003351.g005
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False discovery rate analysis
With the increase in genome-wide sequencing and high-

throughput technologies, the analysis of large data sets has moved

into the mainstream of computational biology. It is often the case

that thousands of features in a genome-wide data set are tested

against some null hypothesis, where a number of features are

expected to be significant. False discovery rate (FDR) [30] is a

statistical method aimed at correcting for multiple hypothesis

comparisons, much as the Bonferroni correction does. Here, to

determine the FDR for the 26 miR-gene pairs described above, we

performed FDR analysis on the dataset.

The FDR algorithm iteratively randomizes the survival rates

1000 times to identify miR-gene pairs that stratify prognosis

according to the randomized survival, thus mimicking the results

for a random non-disease-related state. The results revealed that

out of 1000 iterations across more than 100,000 pairs, the highest

number of pairs that sustained Bonfferoni correction was six.

Figure S1 shows the distribution of the results. Therefore, the FDR

for finding 26 significant miR-Gene pairs is ,0.001, which

reinforces the hypothesis that the results shown here provide

insight into the mechanism of the disease through miR-Gene

association.

Algorithm sensitivity analysis
Sensitivity analysis was performed in order to evaluate the

algorithm performance when the data is scrambled. Our feature

selection algorithm starts by randomly choosing three patients and

then iterates across all patients in order to 1) stratify patients by

their miR-gene correlation status and 2) evaluate the effect these

groups have on the patient’s survival status. In order to evaluate

any possible outcome, which may the result of different initial

conditions, i.e., a different initial 3-sample set; we randomly

choose 1000 pairs of miR-gene and calculated the entire set of

three possible combinations to start from. Figure S1 demonstrates

the average and standard deviation for all combinations in the

1000 pairs selected in addition to the 17 pairs identified in the

analysis. These results highlight, once again, the robustness of the

algorithm. The initial selection of three patients eventually does

not affect final results.

Supporting Information

Figure S1 The figure shows a sensitivity analysis, evaluating the

algorithm performance over different initial conditions. An

exhaustive search over possible initial 3-sample choice is made.

As the feature selection algorithm starts by randomly choosing

three patients and then iterating across all patients, this sensitivity

analyses measures the effect of the initial 3-sample choice over a

random set of 1000 pairs, as well as the pairs discussed in the

paper. For this set of 1000 pairs, calculated sensitivity determining

the difference in results that stems from initial choice. This figure

gives the average and standard deviation of all combinations in the

random 1000 pairs selected. As the figure shows, these initial

conditions do not significantly affect the final results.

(TIF)

Figure S2 Kaplan-Meier survival curves of the four genes that

emerged from the analysis in the tow breast cancer datasets that

were analyzed. Group 1 (blue line) indicates on lower expression

levels, and Group2 (green line) indicates on higher expression

levels.

(PPTX)

Figure S3 Kaplan-Meier survival curves of the four microRNAs

that emerged from the analysis in the tow breast cancer datasets

that were analyzed. Group 1 (blue line) indicates on lower

expression levels, and Group2 (green line) indicates on higher

expression levels.

(PPTX)

Table S1 The table presents patients’ genotype and their

barcode in relevance to the identified SNP discussed in the text.

As the table demonstrates, there is a perfect overlap between the

miR-gene group affiliation and the genotype.

(DOCX)
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