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Abstract

The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to
ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at
odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics’ behavior.
One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze
weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate
key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from
joint probability distributions of number of partners (contacts) and number of interaction events through which contacts
are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach
widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact
behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact
networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.
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Introduction

Contact structure between hosts is known to have a key

influence on disease spread [1]. A striking result is for instance that

the more heterogeneous the contact network is, i.e. the higher the

variance in the number of contacts per individual, the more rapid

the initial disease spread.

One way to capture contact structure is to use a network [2].

Such contact networks are typically described by a square binary

adjacency matrix, where each term on the ith line and jth column

can take the value 0 or 1 to indicate respectively the absence or the

presence of a contact between individuals i and j. Contact

networks are widely used because they possess several convenient

properties, one of which being that the dominant eigenvalue of the

adjacency matrix is an indicator of the initial propagation speed of

an infectious disease spreading on this network [3,4].

The main limitation of contact networks is that their exact shape

is often difficult to infer. This is why there is a continuous effort to

predict disease spread from network summary statistics that are

easier to estimate, such as the distribution of the number of

contacts (degrees). For instance, the number of secondary

infections generated by a typical infected host in a fully susceptible

population, i.e. the basic reproductive number R0 [1], scales with

the ratio of the second moment Sk2T and first moment (mean)

SkT of the distribution in the number of contacts k. This result

holds both for static networks (denoted Rstat
0 ) [5] as well as for fully

mixed, dynamic networks (denoted Rmix
0 ) [6,7] with

Rmix
0 ~

b

c

Sk2T
SkT

~
b

c

s2
k

SkT
zSkT

� �
ð1aÞ
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SkT
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where s2
k~Sk2T{SkT2 is the variance of the distribution of the

number of contacts. The static case corresponds to networks in

which the identity of contacts is fixed (as approximatively seen in

sexual contact networks) and the fully mixed dynamic case

corresponds to a situation in which individuals update their

contacts dynamically in a fully mixed fashion within the

population (as approximatively seen in airborne infections).

Rstat
0 and Rmix

0 represent the lower and upper bounds of the

basic reproductive ratio [8] for SIR epidemics on random

networks if individuals transmit the infection at a rate b and

recover from the infection at a rate c. On both static and dynamic

heterogeneous networks with a large or even diverging variance in

the distribution of the number of contacts, epidemics die out only

for very small or even vanishing transmission rates b.

One of the typical key assumptions epidemiological models on

networks make to obtain such elegant expressions for R0 is that the

transmission rate is the same between all pairs of individuals. This

is materialized by the fact that all the edges of the contact matrix

have a weight of 0 or 1. This is known to be a simplifying

assumption [9]. A well-studied example related to infectious

diseases is that of sexual contact networks, where the number of

sex acts per unit of time is not constant in all partnerships [10–12].

More generally, the number of interaction events (which

correspond to potential transmission events) may vary among

contact pairs and is likely to decrease with the number of contacts
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an individual has (see also Figure S3). Simplifying the reality is

commendable but the problem is that tampering with the

weighting of the network has been shown to lead to the loss of

important epidemiological properties of heterogeneous unweight-

ed networks, such as the low value of the epidemiological threshold

or the negative correlation between the epidemiological threshold

value and network size [13]. To summarize, although contact

networks appear to be ‘scale free’ in structure, they might not

exhibit the properties one might expect from this structure.

An increasing number of studies in epidemiology point to the

importance of considering weighted networks. Some examples

include the spread of sexually-transmitted infections [13], disease

transmission in sheep flocks [14], respiratory diseases of humans

[15] or general infectious diseases of human spreading on a social

contact network [16] or on airline connection networks [17].

Several more conceptual studies have also been published in the

theoretical physics literature (e.g. [2,18–20]). Most of these studies

have in common that they use weighted networks and resort to

(heavy) numerical simulations. Indeed, contrary to unweighted

networks, we lack analytical frameworks to analyze epidemic

spread on weighted networks.

Here, we present an original framework, which builds on

configuration type network epidemic approaches [21,22] that

offers an alternative to simulating epidemics on full networks. It

allows to model the dynamics of a disease spreading on a weighted

network and to estimate key epidemiological variables from the

network’s properties. The framework provides us with explicit

expressions for the rate of early epidemic expansion (r0) and the

basic reproductive ratio (R0) of the infection without requiring

strong simplifying assumptions regarding epidemiological process-

es or the distribution of weights on the contact network. It also

allows for a derivation of the full time course of epidemic

prevalence and contact behaviour of susceptible, infected and

recovered individuals (in terms of the probability generating

functions – PGFs – of the degree distributions). As sketched in

Fig. 1, the parametrisation is done in a general fashion using the

joint probability distribution Pkl of an individual to have k contacts

among which (s)he randomly distributes l interaction events. We

validate our analytical results using numerical simulations on

networks.

Importantly, since this framework relies on summary statistics of

the network and does not require knowledge of the exact shape of

the network, it can be parametrized using large scale survey data.

The network information we lose by using these summary statistics

requires that we make the assumption that there is no assortativity

between individuals in our framework. However, we show that

even with these assumption we can approximate epidemic

dynamics better than with non weighted networks.

Materials and Methods

The configuration model
Individuals have k contacts and l interaction events per time

interval, which are distributed among their k contacts (l is

sometimes also referred to as the strength of the node [9]).

The model is broadly applicable as it can be parameterised

through any joint probability distribution of the number of

partners (k) and number of interaction events (l). Such a joint

probability distribution Pkl can be written as the product

Pkl~PkPlDk, PlDk being the probability distribution of the number

of interaction events per time l given that the individual has k

contacts. If PlDk~dlk, where dlk is 1 if l = k and 0 otherwise, we are

then back to a ‘classical’ network case, with an exact linear

dependency between the number of contacts and the number of

interaction events (for a detailed discussion, see Text S1, Section

D, The recovery of the classical equations in the linear case). Our

framework can capture more general situations by explicitly

choosing PlDk.

Our analytical approximation assumes that an individual

distributes his/her l interaction events multinomially among his/

her k contacts, which are static and are randomly assigned as in

configuration models [21,22]. This individual is infected at a rate

proportional to his/her average number of interaction events with

Figure 1. Weighting between contacts. Both the number of
contacts that an individual maintains and the weight that (s)he assigns
to each contact are relevant for the spread of an infectious agent. Here,
each individual has l interaction events that (s)he can distribute among
his/her k contacts. On the scale of the transmission network, these are
modelled by the joint probability distribution Pkl to find an individual
with k contacts and l interaction events per time interval.
doi:10.1371/journal.pcbi.1003352.g001

Author Summary

Understanding how infectious diseases spread has public
health and ecological implications. The contact structure
between hosts strongly affects this spread. However, most
studies assume that all types of contacts are identical,
when in reality some individuals interact more strongly
than others. This is particularly striking for sexual-contact
networks, where the number of sex acts is not identical for
all partnerships. This heterogeneity in activity can either
speed up or slow down epidemic spread depending on
how strongly the individuals’ number of contacts coincides
with their activity. There are two limitations to current
frameworks that can explain the lack of studies on
weighted networks. First, analytical results are difficult to
obtain, which requires numerical simulations. Second,
inferring weighted networks from survey data is extremely
difficult. Here, we present a novel framework that allows to
alleviate these two limitations. Building on configuration
type network epidemic approaches, we manage to
capture disease spread on weighted networks from the
distribution of the number of contacts and distribution of
the number of interaction events (e.g. sex acts). This allows
us to derive analytical estimates for the epidemic threshold
and the rate of spread of the disease. It also allows us to
readily incorporate survey data, as illustrated in this study
with data from the National Survey of Sexual Attitudes and
Lifestyles (NATSAL) carried out in the UK.

Epidemics on Weighted Networks
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i infected contacts among his/her total k contacts (so 0ƒiƒk).

This averaging implies the choice of a time scale for the number of

interaction events such that SlTwSkT (the network shape is

assumed to be constant over the time period considered so the

number of contacts is not affected by the time scale). The

analytical approach only relies on the nodes’ statistics and does not

consider the constraints for half-contacts to match half-contacts

with similar weight, whereas in reality, the weight on a link

between two nodes should be the same for the two nodes. This

could lead to an unrealistic network segregation for some artificial

networks where SlTwSkT. This network segregation can affect

epidemic dynamics in these networks in a way that is not seen in

the analytical approach per se but can be considered through

corrections in the analytical approach as we discuss later on.

The epidemiological model
A susceptible individual becomes infected at a rate proportional

to the number of interaction events per time interval (l), the

transmission probability per interaction event of the pathogen (b)

and the probability for each of his/her contacts to points to an

infected individual (pSI ). The population dynamics of susceptible,

infected and recovered individuals with k contacts and l interaction

events per time interval (denoted Skl , Ikl and Rkl respectively) are

thus captured by the following set of differential equations:

_SSkl~{bpSI lSkl ð2aÞ

_IIkl~bpSI lSkl{cIkl ð2bÞ

_RRkl~cIkl , ð3cÞ

where c is the rate at which hosts recover and become immune to

subsequent infection (see Table 1). This setting can capture lifelong

infections if c = 0.

The dynamics of the total number of susceptible, infected and

recovered individuals can be obtained by summing over k and l in

equation system 2. This leads to:

_SS~{bpSISlTSS ð3aÞ

_II~bpSISlTSS{cI ð3bÞ

_RR~cI : ð3cÞ

where SlTS~
P

k,l lSkl=S is the average number of interaction

events per time a susceptible individual has.

To close the equation system (2)–(3), we need expressions for the

temporal dynamics of the pAB, i.e. the probabilities for a status A

individual’s contact to be with an individual in state B. These can

be derived through a careful assessment of the links/contacts

among susceptible and infected individuals over the course of an

epidemic. This means following the dynamics of the joint

probability distribution to find k contacts and l interaction events

per time among susceptible individuals PSkl~Skl=S through its

PGF, denoted GS(x,y,t). The temporal dynamics of GS(x,y,t) can

be calculated by observing that the dynamics of the corresponding

joint probability distribution of contacts and interaction events

of susceptible individuals are governed by the equation

_PPSkl~
_SSkl

S
{

_SS

S
PSkl . Hence, we close equation system (2)–(3) with

the following equations:

_ppSI~pSI bpSS
SklTS

SkTS

{b(1{pSIzpSS)
SlTS

SkTS

{c

� �
ð4aÞ

_ppSS~{bpSI pSS
SklTS{2SlTS

SkTS

ð4bÞ

_GGS(x,y,t)~bpSI (SlTSGS(x,y,t){yG
(0,1)
S (x,y,t)), ð4cÞ

where G
(0,1)
S (x,y,t) is the partial derivative of GS(x,y,t) with

respect to y. Note that SlTS~G
(0,1)
S (1,1,t) and SkTS~

G
(1,0)
S (1,1,t). For furthers details about the terms in this equation

system, see Table 1.

The set of differential equations describing the epidemic process

is derived by careful bookkeeping of the links along which an

infectious agent spreads (a detailed derivation is provided in Text

S1, Section A, Equations for the epidemic model on weighted networks).

Analytical results and their validation
Distributions used. To validate the analytical approach, we

generated four types of networks corresponding to the combina-

tions of homogeneous and heterogeneous behaviour in the

number of contacts k and the number of interaction events l as

well as the corresponding networks with a linear dependency

between k and l. We studied the spread of an infectious agent on

these artificial networks using the analytical approach by plugging

the corresponding joint probability generating functions into

equations (3) and (4).

More precisely, we consider combinations of Poisson and power

law distributions for the number of contacts k and interaction

events per time l. As we neglect isolated hosts, we use the Poisson

distribution Pn~
1{dn0

1{e{SnT

SnTn

n!
e{SnT with support for nw0 and

probability generating function g(x)~
eSnT(x{1){e{SnT

1{e{SnT and

power law distributions with exponent l and cut-off k,

Pn~
n{le{n

k

Lil e{1
k

� � and g(x)~
Lil xe{1

k

� �

Lil e{1
k

� � (normalisation through

the Polylogarithm Lil) for homogeneous and heterogeneous

behaviour, respectively. If the joint probability distribution Pkl is

given by the product Pkl~PkPl of independent distributions with

PGFs g1(x) and g2(y), their joint PGF G(x,y) is also given by the

product G(x,y)~g1(x)g2(y). In the linear case with Pkl~Pkdkl ,

the PGF G(x,y) is given by G(x,y)~g1(xy).
Generating networks from PGF. Networks were generated

by assigning each host a number k of ‘half-contacts’ (stubs) and l

interaction events per time interval drawn from the distribution

Pkl . Each host then shared his/her interaction events equi-

probably at random (i.e. multinomially) among his/her k contacts.

Pkl was chosen to satisfy SlT~2SkT corresponding to a timescale

in which a host has on average 2 interaction events per contact.

The matching of half-contacts (stubs) was done at random but

by respecting their assigned number of interaction events per

contact. The problem is that not all probability distribution Pkl

can be realised topologically within a network. Indeed, weighting

of interactions between contacts can impose strong constraints on

Epidemics on Weighted Networks
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network topology [23]. The fact that contacts can only occur

between stubs with the same weight can lead to network

segregation and assortative effects that are not seen in the

analytical approach per se due to its node-centric view (see Text S1,

Section E, Network segregation and the limiting case Pkl~PkdSlTl ). It is

even possible to devise joint probability distributions Pkl that

cannot be represented through a network topology (although this

is not a problem for Pkl empirically derived from realised

networks). In simulated networks, this necessity for exact matching

segregates the network into subnetworks, which can show

assortativity either with respect to the degree of connected nodes

or with respect to their edge weights.
Correcting for assortativity. If the number of interaction

events per time and per contact is large (i.e. if SlT=SkT&1), hosts

nearly equi-distribute their interaction events among all their

contacts due to convergence under the law of large numbers.

Decreasing SlT yields a more realistic network, as this introduces

some variability in the number of interaction events among a

host’s contacts, which offers more flexibility in the assignment of

interaction events on short time scales and reduces assortative

effects.

Weight assortativity arises in networks that have a (nearly) constant

number of contacts k per individual and where the number of

interaction events l is distributed in a heterogeneous way, thus

leading to an early expansion among the most highly active

individuals. This can accelerate the initial expansion of an

epidemic but, at the same time, it also constrains disease spread

compared to what one could expect from the analytical approach.

Alternatively, the network can also segregate with respect to the

number of contacts an individual holds (i.e. contact or degree

assortativity). An extreme case can be observed when a (nearly)

constant number of interaction events has to be distributed among

a heterogeneous number of contacts. This leads to a (near)

isolation of individuals with single contacts from the epidemic

process (see Text S1, Section E, Network segregation and the limiting case

Pkl~PkdSlTl ).

We can introduce some tolerance in ‘negotiating’ the number of

interaction events per contact. Another way to deal with weight

and degree correlations between neighbouring individuals is to

drop the assumption that weights are multinomially distributed

among an individual’s contact. Indeed, heterogeneous weight

distributions among an individual’s contacts can reduce correla-

tions among neighbouring individuals’ degrees and weights [23].

However, this cannot be done without changing Pkl to an

empirical distribution �PPkl , while at the same time deviations might

arise from the analytical approach as the assumption of

multinomial distribution of weights is violated.

Simulations on weighted networks
Networks for simulation are obtained by first generating 10,000

nodes with k half-contacts (stubs) and l interaction events as drawn

from the probability distribution Pkl . The l interaction events a

node has are then distributed multinomially among its k stubs.

Stubs are randomly matched together, with matches being

rejected if the weights of the stubs differ by more than one

interaction event. In addition matches are rejected if they differ by

more than 10% of the smaller weight involved to avoid biases in

Table 1. Notations used in the study.

_ff (x,t)~
L
Lt

f (x,t)
partial derivative of function f with respect to t

f (a,b)(x,y,t)~
La

Lxa

Lb

Lyb
f (x,y,t)

partial derivative of function f a times with respect to x and b times with respect to y

Akl number of individuals in group A with k contacts and l (potential) transmission events (per time interval)

A~
X

k,l
Akl

number of individuals in group A

Nkl~
X

A
Akl

number of individuals with k contacts and l transmission events (per time interval)

N~
X

k,l
Nkl

total number of individuals

PAkl~
Akl

A

probability for an individual in group A to have k contacts and l transmission events per time interval

GA(x,y,t)~
X

k,l
PAkl (t)x

kyl probability generating function (PGF) of PAkl (t)

SkTA~G
(1,0)
A (1,1,t) average number of contacts of A individuals

SlTA~G
(0,1)
A (1,1,t) average number of transmission events per time interval of A individuals

SklTA~G
(1,1)
A (1,1,t) average number of contacts times transmission events per time interval of A individuals

Pkl~
Nkl

N

probability for an individual to have k contacts and l (potential) transmission events per time interval

G(x,y,t)~
X

k,l
Pkl (t)x

kyl~
X

A

A

N
GA(x,y,t)

probability generating function (PGF) of Pkl (t)

SkT~G(1,0)(1,1,t) average number of contacts of individuals

MA~
X

k,l
kAkl~AG

(1,0)
A (1,1,t) number of links coming from A individuals

M~
X

A
MA

number of links

MAB number of links coming from A individuals and pointing to B individuals

pAB~
MAB

MA

probability for a link starting from an A individual to point to an B individual

A,B correspond to epidemic stages, i.e. S, I, R for susceptible, infected, recovered.
doi:10.1371/journal.pcbi.1003352.t001
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nodes with few links. If stubs with non-identical weights are

matched, the contact is assigned the mean weight randomly

rounded to the next integer. This results in the empirical

distribution �PPkl as mentioned in the previous subsection.

We use the Gillespie direct algorithm [24] to run stochastic SIR

epidemics on continuous time. For each susceptible node i,

transmission occurs at rate
X
j[I

bWj,i, where b is the probability of

transmission per sex act, W is the weighted adjacency matrix

listing the number of interaction events per time unit between all

pairs of nodes, and I is the set of infected nodes connected to node

i. Infected nodes recover at rate c. For each case analyzed, 20

nodes were initially infected uniformly at random in a population

of 10,000 and 100 replicate simulations were carried out over each

of 20 replicate networks.

Derivation of r0 and R0

The derivation of the early exponential growth rate r0 is based

on the observation that the rate of epidemic expansion as

described by equations (3a–3c) is proportional to the number of

links/contacts between susceptible and infected individuals MSI ,

i.e. pSI SSlTS~
MSI

MS

SSlTS~MSI
SlTS

SkTS

, with MS~SG
(1,0)
S

(1,1,t)~SSkTS being the number of contacts of susceptible

individuals.

As there is no explicit expression for MSI we have to rely on

approximate equations that are valid in the early stages of an

epidemic. In the mean field approximation, MSI is approximated

by the number of infected individuals (I) and the average number

of contacts per individual found originally in the total population

(SkT~G(1,0)(1,1,0)). As soon as the epidemic is set, i.e. once we

are beyond the mean field approximation relying on a randomly

picked node, MSI is given by the product of I and a slightly more

sophisticated estimate of the number of contacts of infected hosts

than in the mean field approximation. More precisely, each

infected node contributes to MSI by the average excess degree of a

recently infected node chosen proportional to its number of

interaction events
G(1,1)(1,1,t)

G(0,1)(1,1,t)
{1~

SklT
SkT

{1 (for details, see

Text S1, Section A, Equations for the epidemic model on weighted

networks). This means that the contact the infection has spread from

is discounted and that all ‘new’ contacts are assumed to still be

susceptible in the early phase of an epidemic. In order to correctly

estimate MSI in the full chain of early infections, it is necessary to

discount not only the contact from which an individual got

infected but also the contact along which the epidemic

spreads further. This results in MSI&I
G(1,1)(1,1,t)

G(0,1)(1,1,t)
{2

� �
~

I
SklT
SkT

{2

� �
.

Altogether we have,

_II~bpSISlTSS{cI

~bMSI

SlTS

SkTS

{cI

We also have MSI
SlTS

SkTS

&MSI
SlT
SkT

where the approximation

holds in the early phase of the epidemic.

If we assume that MSI&ISkT, then

_II~(bSlT{c)I : ð5Þ

If we assume that MSI&I SklT
SkT {2
� �

, then

_II~
SklT{2SlT

SkT

� �
b{c

� �
I : ð6Þ

The exponential growth rate of the infected population in

equation (6) corresponds to r0. Approximation (5) corresponds to

a ‘mean field approximation’ representing the neighbourhood of a

randomly picked node, i.e. not a node picked according to its

number of interaction events per time interval. Approximation (6)

considers that an infected individual has been picked with a

probability proportionally to its number of interaction events per

time interval. The doubling time tD can be derived from the early

exponential growth rate r0 as tD~ln(2)=r0.

The basic reproductive ratio R0 is the average number of

secondary infections that a typical infected host produces in a fully

susceptible population. As for SIR models on classical random

networks, it is derived by first evaluating the distribution of excess

contacts of a typically infected host, i.e. the probability for a node

chosen according to its number of interaction events per time (l) to

have k excess contacts. This probability is Qkl~
lP(kz1)l

G(0,1)(1,1)
. R0 is

calculated in Text S1 (Section C, The basic reproductive ratio R0) as

the number of infections that spread along these excess contacts

before recovery of the typically infected host.

Results

Validation of the analytical model with simulations on
networks

In order to test our analytical model, we consider epidemiolog-

ical dynamics taking place on artificial networks on which we

release the constraints found in ‘classical’/unweighted networks by

assuming that the number of interaction events l an individual has

does not necessarily increase linearly with his/her number of

partners k. To create these networks, we used combinations of

Poisson and power law distributions for the number of contacts k

and interaction events per time l. This allowed us to introduce

arbitrary combinations of homogeneous or heterogeneous behav-

iour in the way contacts are made and in the number of

interaction events established, that may be either independent or

dependent (as in the linear case).

To validate the model, we compared the epidemic prevalence (I)

from repeated simulation runs with the results derived from the

analytical approach using the probability generating functions

corresponding to Pkl and �PPkl , G(x,y) and �GG(x,y). (Note that

Pkl(0)~PSkl(0), �PPkl(0)~�PPSkl(0), G(x,y,0)~GS(x,y,0) and
�GG(x,y,0)~�GGS(x,y,0).) The epidemiological dynamics are summa-

rised in Fig. 2. In addition of the analytical approach for Pkl

(G(x,y)), �PPkl (�GG(x,y)), we also show an approximation (applied to

Pkl ), in which we exclude individuals with one contact. The latter

is relevant for networks with heterogeneous number of contacts

and (nearly) constant number of interaction events per individual

(contact or degree assortativity). Quantitative measures to assess

the level of discrepancy between simulations and approximations

are provided in Text S1 (Section F, Agreement between approximations

and simulations) and Table S2. The derivation of analytical

expressions for the error (e.g. a 95% confidence interval) is likely

Epidemics on Weighted Networks
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to be an extremely difficult task as these expressions should consider

the complex implications on epidemic dynamics that are caused by

deviations in the network topology from those of random networks.

The simplest way might be to use numerical simulations to estimate

the magnitude of the error for given networks.

Overall, the analytical approach matches the simulation results

well if the constraints imposed by Pkl on the specific networks

topology are properly taken into account. The assortativity

correction (in orange) is most relevant for a heterogeneous

distribution of contacts (k follows a power law) and a homogeneous

Figure 2. Dynamics of the number of infected hosts (I) during epidemic spreading on different types of networks. The distributions in
the number of contacts (k) and interaction events per time (l) are either homogeneous (Poisson) or heterogeneous (power law). For the number of
interaction events, we also show the linear case in which l is strictly proportional to the number of contacts k, i.e. Pl~dkl . k and l are drawn from joint
distributions Pkl with SlT~2SkT (except for the analytical Pkl model’s linear case where l~k being compensated by a double transmission rate). The
figures show the epidemic prevalence I as the outcome of the simulation runs (grey, dotted lines), of the the numerical solution of the analytical
model with Pkl (red, solid line) and �PPkl (red, dashed line). In addition, we show the epidemic prevalence when excluding individuals with only one
contact (k~1) which is relevant for epidemics on networks with heterogeneous numbers of contacts including many individuals with k~1 in
combination with a (nearly) constant number of interaction events, as realised through a Poisson distribution (orange line, cf. specifically power law,
Poisson). Parameters chosen correspond to SkT~4 (Poisson case: SkT~4, SlT~8, power law case: lk~1:4, ll~0:89, kk~kl~22). Epidemiological
parameters are b = 0.01 (0.02 for the analytical Pkl model’s linear case), c = 0.004 in arbitrary units and I(0) = 20. The insets show the same data for the
early epidemic expansion in logarithmic scale showing early exponential growth according to I(0)er0t (black line) with r0 from Table 2.
doi:10.1371/journal.pcbi.1003352.g002

Epidemics on Weighted Networks

PLOS Computational Biology | www.ploscompbiol.org 6 December 2013 | Volume 9 | Issue 12 | e1003352



distribution of interaction events (l is Poisson distributed). This is

because the strongest constraints on network topology are

expected to occur with these distributions (Fig. 2, top panel, right

side). On the contrary, for more homogeneous networks (Fig. 2,

left panel), the assortativity correction is less needed. In the linear

case, the correction is not relevant (Fig. 2, bottom panel).

A particularly interesting observation is that epidemics spread

slower on networks with heterogeneous contacts if the network is

weighted than if the number of interaction events scales linearly

with the number of contacts for each individual (i.e. ‘classical’

linear networks). This is particularly true in networks where the

average weight per contact is inversely proportional to the number

of contacts an individual has. In our simulations, this effect is the

clearest when Pk follows a power law distribution and Pl a Poisson

distribution (Fig. 2 top panel, right side).

Capturing epidemic characteristics (expressions for r0

and R0)
There are different ways to assess the initial propagation of an

infectious agent in an otherwise fully susceptible population. One

possibility is to estimate the initial exponential growth rate in the

number of infected individuals (r0). Another possibility consists in

estimating the number of secondary cases created by a newly

infected host in a fully susceptible population, which is classically

referred to as the basic reproductive ratio R0 [1].

Subtle effects arise depending on whether we choose the

neighbourhood of a random individual as a reference or the

neighbourhood of a ‘typically’ infected individual. The first case

corresponds to what is usually referred to as a ‘mean field

approximation’ and captures well the very first infection events.

The second case (using a ‘typical’ infected individual) is more

appropriate to capture the next stages of early epidemic expansion

because it accounts for the fact that spatial structure has been

sensed or set by the epidemic process. We thus use it for the

derivation of R0.

The expressions for r0 and R0 for the SIR model are shown in

Table 2 and are derived in details in the Materials and Methods

and in Text S1, respectively. Note that these do not involve any

approximation beyond those implied in the model’s assumptions,

i.e. they are exact within the model framework. The derivation for

R0 when cw0 is the only case that requires some further

approximations to obtain an explicit formula (see Text S1, Section

C, The basic reproductive ratio R0).

In the expression for r0 and R0, all the occurrences of the

transmission probability (b) are weighted by the number of

interaction events per contact. This makes sense because this

corresponds to a transmission rate. Note that there is a slight

difference between r0 and R0 because in the former we have the

ratio of the means (SlT=SkT), whereas in the latter we have mean

of the ratios (Sl=kT). This is due to the fact that the averaging is

done at a different step in the calculations.

More interestingly, the expressions for r0 and R0 both scale with

the second moment SklT of the joint probability distribution Pkl .

This implies that the number of contacts (k) and the interaction

events (l) an individual maintains equally affect epidemic spread.

At the same time the correlation between these quantities is

relevant to model rapid epidemic spread: for epidemic control,

targeting individuals with most contacts or interaction events can

prove to be much less efficient than targeting those who maximise

both. The formulae in Table 2 are generalisations of formula 1b,

which corresponds to the linear case where the number of

interaction events scales with the number of contacts a person

maintains, i.e. SklT*Sk2T. Note that earlier approaches on

weighted networks correspond to the fully mixed situation in

formula 1 in which k is interpreted as the number of interaction

events [6].

Figure 2 shows epidemic expansion in different types of

simulated networks (grey, dotted lines) in comparison with

analytical approximations (red and orange lines). The insets in

logarithmic scale show that the exponential growth rate

r0~
SklT
SlT

{2

� �
SlT
SkT

b{c calculated for the early epidemic

expansion approximates well the simulation and analytical results.

The early exponential growth rate r0 can slightly underestimate

the dynamics if the contact network is homogeneous (Pk is Poisson

distributed), while the distribution of interaction events is

heterogeneous (Pl follows a power law). This underestimation is

due to the fact that weight assortativity generates a subnetwork of

individuals with many interaction events, which speeds up

epidemic expansion in its early phase (Fig. 2, middle panel, left

side).

Application of the model to epidemiological data
The knowledge of transmission networks along which an

infectious agent can spread within a host population is of great

importance to public health. These networks might be hard to

assess for air-borne infections because they are very dynamic

[25,26] but easier to infer for sexually transmitted infections (STI)

because they are more static. Such sexual contact networks have

been surveyed in many studies covering homosexual as well as

heterosexual populations and different societal contexts [27–29] to

understand and prevent the spread of STI. The National Survey of

Sexual Attitudes and Lifestyles (NATSAL [28]) provides detailed

data on the situation in the United Kingdom, including

distributions in the number of sexual partners (k) and sex acts

(interaction events, l) a person has within certain time frames.

Table 2. r0 vs. R0.

Early epidemic growth rate r0 Basic reproductive ratio R0

Epidemic expansion from randomly picked index
case, (mean field approximation) MSI&ISkT

_II&(bSlT{c)I

rMF
0 ~bSlT{c

RMF
0 ~

bSlT
c

Early epidemic expansion, structure set by

epidemic, MSI&I
SklT
SlT

{2

� � _II&
SklT
SlT

{2

� �
SlT
SkT

b{c

� �
I

r0~
SklT
SlT

{2

� �
SlT
SkT

b{c

R0&
S l

k
Tb

S l
k
Tbzc

SklT
SlT

{1

� �

b is the transmission probability, c the recovery rate, SlT the average number of interaction events an individual has, SkT the average number of contacts per individual,
SklT is the second moment of the joint probability distribution Pkl and Sl=kT is the average number of interaction events per contact. Note that the equation for R0 is
exact for c~0.
doi:10.1371/journal.pcbi.1003352.t002
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As shown in Fig. 3A, both the number of partners (contacts, k)

and sex acts (interaction events, l) an individual has are

heterogeneously distributed. However, their joint distribution Pkl

does not show a linear behaviour, implying that the number of sex

acts l does not scale linearly with the number of partners k an

individual has. This is also supported by Pearson’s correlation

coefficient which is 0.15, i.e. positive but not indicating a strong

linear relationship between k and l (see also Supporting Figure S3).

When they combine a linear relationship between number of

partners and number of sex acts with the observed broad

distributions of sexual contacts and sex acts, several models

predict extremely rapid early epidemic expansion and an epidemic

threshold that is potentially vanishing in the limit of infinite

network size [5–8,30,31], as can be seen from equation (1).

In our ‘Validation’ section we have shown that, regarding the

number of interaction events, a deviation from the linear

behaviour decreases epidemic expansion and peak prevalence,

especially for transmission networks that are characterized by a

heterogeneous distribution in the number of contacts per

individual k and regardless of whether the distribution of

interaction events/sex acts is homogeneous (Poisson) or heteroge-

neous (power law). This is also reflected more quantitatively in the

expression for R0, which is dominated by the second moment SklT
of Pkl . In other words, (as explained above when interpreting our

approximations) the more the number of partners (k) correlates

with their number of sex acts (l) the faster the early epidemic

expansion.

These differences between weighted and unweighted networks

are visible in Fig. 3, which shows the epidemic expansion of a

susceptible-infected (SI) epidemic with transmission probability

b = 0.01 per sex act in two scenarios. We chose to model SI

dynamics by setting c = 0 in order to simulate HIV spreading on a

Figure 3. Disease spread on a network inferred from data. A) Characteristics of the heterosexual contact network inferred from the NATSAL
contact tracing study [28]. The network shows a heterogeneous joint probability distribution Pkl , which is the probability for an individual to have k
contacts during the last 5 years and l sex acts during the last 4 weeks (higher values of Pkl are in red and lower values are in green). This
heterogeneity is also seen for the marginal distributions Pk (on the right) and Pl (on the top). B) Dynamics of an SI epidemic spreading on an
unweighted (black line) or a weighted sexual contact network. The results of simulations on the weighted network are in grey, the approximations of
our model are in red or in orange for the case with assortativity correction. The network has been reduced to nodes with k.0 and transmission
probability per sex act is b = 0.01. C) Dynamics of the average number of contacts SkT of susceptible (in green) and infected individuals (in red) over
the course of an epidemic spreading on the weighted network. The inset shows the probability of a host to be susceptible or infected at t = 10 years
conditioned to the number of contacts during the last 5 years (more or less than 3 contacts). D) Same as panel C but for the number of sex acts SlT. In
Panels B, C and D, the weighting is done using the Pkl shown in panel A. Individuals with more contacts tend to be disproportionally infected (panel
C). Individuals with more sex acts tend to be even more infected (panel D).
doi:10.1371/journal.pcbi.1003352.g003
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short time scale, but the model could be evaluated with analogous

results for SIR dynamics (see Text S1, Section G, Captions of the

Supplementary Figures, Figure S1). In the first scenario (black curve,

Fig. 3B), the number of sex acts grows linearly with the number of

contacts respecting the average number of sex acts (SlT~6:05
during 4 weeks). In the second scenario we use a weighted

network, where the joint probability distribution Pkl is obtained

from the NATSAL data (red curve, Fig. 3B) and can be

complemented by a correction for assortative effects (orange

curve, Fig. 3B).

The exponential growth rates of the epidemics are r0~0:021
per year for the linear, unweighted, network and r0~0:0034 per

year for the weighted network. This confirms that the ‘linear’

scenario supports faster epidemic expansion. The correction for

assortative effects underestimates the epidemic prevalence in the

network because in the NATSAL network heterogeneity in the

number of contacts and interaction events does not lead to a strong

network segregation, i.e. individuals with a single or few contacts

are not isolated (see Fig. 2 and the case in which both Pk and Pl

follow power law distributions). Although the survey data shown in

Fig. 3A only provide us with a rough picture of the real

transmission network and although relying on the number of

partners during 5 years overestimates the number of concurrent

partners, the data are sufficient to confirm a remarkable reduction

in the speed of epidemic expansion when shifting from a classical

unweighted transmission network towards a more realistic

weighted transmission network. This finding is in particular

consistent with an earlier simulation study on epidemic spreading

along a network of homosexual contacts [13].

The framework can also be used to follow the dynamics in the

epidemic subgroups and to identify risk groups along the course of

the epidemics (see Text S1, Section B, Conditional probabilities and risk

groups). Fig. 3C and D show that the average number of contacts

SkT and sex acts SlT per individual increases early on in the

infected population and decreases in the healthy population. This

reflects the over-representation of some individuals among those

being infected as sketched by the insets: during the epidemic (here

shown at t = 10 years) the probability of being infected grows with

the number of contacts k an individual has, and even more so with

the number of sex acts l (s)he has.

Discussion

Network theory has broadened our understanding of the spread

of infectious agents — or other entities such as information,

money, travellers or goods — in complex settings. In their simplest

form, network models do not consider that contacts may show

variability in their transmission capacity. However, the probability

of disease transmission along a contact strongly depends on the

intensity of the contact, transportation links vary in their

throughput and information may not be shared equally among

all possible channels. Although earlier studies have shown that this

weighting in terms of interactions between contacts has non-

negligible impact on the spreading dynamics, the modelling of

epidemics on weighted networks largely focuses on simulation

studies [13,16,32], regular networks [33], mean field approxima-

tions [34,35] or discrete time dynamics [20,36]. Therefore, explicit

expressions for epidemic characteristics such as the basic

reproductive ratio R0 are available only in special cases.

It is possible to simplify the epidemiology by using a Reed-

Frost model. For this, one needs to assume that infections take

place in discrete time steps, with non-overlapping generations and

that each infected individual recovers with certainty one time step

after infection. These simplifications allow to assess outbreak

probabilities using branching processes [20]. In this formalism, as

shown in [36], R0, denoted RRF
0 , can be derived as the dominant

eigenvalue of the mean offspring matrix (md,k§2), where md,k

represents the expected number of individuals with k contacts that

an individual with d contacts infects considering potentially

degree-dependent network weights. Importantly, it is only because

Britton et al. make strong simplifying assumptions in their model,

such as the independence between network weights and nodes’

degrees, that they can derive an explicit form of R0. In contrast to

our findings on NATSAL data, the Reed-Frost approach

systematically predicts negative exponential growth rates of the

epidemics for both scenarios (the network average of linear case is

SRRF
0 T~0:2 and that of survey data case is SRRF

0 T~0:1). The

discrepancy between our model and that of [20] stems from the

implicit assumption of the Reed-Frost model with discrete time

steps they use, which is that recovery occurs immediately after

infection and therefore that c&b.

We extend earlier results by developing a framework based on

partial differential equations that allows to model continuous time

SIR epidemic dynamics for general weighted networks defined

through the joint probability distribution for an individual to have

k contacts and l interaction events. From this we are able to derive

the full epidemic dynamics in terms of the number of susceptible,

infected and recovered individuals over time as well as explicit

expressions for the basic reproductive ratio R0 and the exponent of

early epidemic expansion r0. The application of the method to

epidemics on artificial and empirically-motivated networks

matches well with simulation results on these same networks.

Moreover, it also stresses the impact of assortative effects

introduced by contact weighting on epidemic dynamics; an aspect

that will need closer attention in future research.

One limitation to our approach is due to potential errors in the

inference of the network. There are known biases in the self-

reporting of number of partners (with different trends between

men and women [37]) and self-reported number of sex acts are

likely to exhibit similar biases. One extension of this study would

be to see how such noise in the network inference could affect

epidemic spread. Our intuition is that the consequences should be

less important than for non weighted networks because heteroge-

neity in the weights is already likely to dampen striking network

properties in terms of disease spread [13].

As many earlier methods, ours analyses model disease spread on

networks from a node centric summary statistics, by considering

the number of contacts and transmission events per time.

Therefore, it inherently neglects correlation between nodes. In

other words there is no consideration of assortativity between

individuals based on their number of contacts or transmission

events per time. At the same time, individuals share their activity

randomly among all their contacts (weights are homogeneously, or

multinomially, distributed among edges that leave a node), which

can enforce correlations among nodes in certain networks. Also

clustering is observed in many contact networks [38] and this issue

should be addressed in an extended version of our model.

Most analytical and numerical models predict disease spread on

network using only one summary statistics, the distribution of the

number of partners. We show that additional insights can be

gained, while maintaining some analytical results, by including

another summary statistics, such as the distribution of the number

of sex acts knowing the number of partners. These data are easier

to collect than full information of the contact network (especially

for a weighted network), which makes our framework widely

applicable. We demonstrate this applicability here using data from

the NATSAL study conducted in the UK. We note that for some

artificial distributions, our results begin to diverge from simulations
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on real networks. However, the framework has proven to be

applicable for empirical distributions and analysis of more

empirical data will allows us to further test the robustness of the

method using more realistic assumptions.

Supporting Information

Figure S1 Epidemic SIR dynamics on the network as presented

in Fig. 3 of the main manuscript. Transmission probability per sex

act is also b = 0.01 but recovery can occur at a rate c = 0.004 per 4

weeks, i.e. parameters corresponding to Fig. 2 of the main

manuscript. Different from the SI dynamics shown in Fig. 3 of the

main manuscript hosts may recover and do not spread infection

indefinitely.

(PNG)

Figure S2 Epidemic incidence or rate of infection

bpSI SG
(0,1)
S (1,1,t)~bpSI SSlTS (cf. equation 3b) for SI dynamics

(grey line) and SIR dynamics (dark grey line) on the network as

presented in Fig. 3 of the main manuscript.

(PNG)

Figure S3 Relationship between a person’s total number of sex

acts and number of partners derived from the NATSAL data. In

Panel A, we plot the self-reported number of sex acts over the last

4 weeks vs. the self-reported number of sexual partners over the

last 4 years. In Panel B, we plot the self-reported number of sex

acts over the last 4 weeks vs. the self-reported number of sexual

partners over the last 3 months. In Panel C, we plot the self-

reported number of sex acts over the last 7 days vs. the self-

reported number of sexual partners over the last 3 months. In all

three cases, the data do not support a linear relationship (the

number of sex acts per partner decreases with the number of

partners/contacts).

(PNG)

Table S1 Model notations.

(PDF)

Table S2 Agreement between approximations and simulations.

(PDF)

Text S1 Supporting Information.

(PDF)
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15. Stehlé J, Voirin N, Barrat A, Cattuto C, Colizza V, et al. (2011) Simulation of an

SEIR infectious disease model on the dynamic contact network of conference

attendees. BMC Med 9: 87.

16. Eames KTD, Read JM, Edmunds WJ (2009) Epidemic prediction and control in

weighted networks. Epidemics 1: 70–76.
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