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Abstract

Generalized linear models (GLMs) represent a popular choice for the probabilistic characterization of neural spike responses.
While GLMs are attractive for their computational tractability, they also impose strong assumptions and thus only allow for a
limited range of stimulus-response relationships to be discovered. Alternative approaches exist that make only very weak
assumptions but scale poorly to high-dimensional stimulus spaces. Here we seek an approach which can gracefully
interpolate between the two extremes. We extend two frequently used special cases of the GLM—a linear and a quadratic
model—by assuming that the spike-triggered and non-spike-triggered distributions can be adequately represented using
Gaussian mixtures. Because we derive the model from a generative perspective, its components are easy to interpret as they
correspond to, for example, the spike-triggered distribution and the interspike interval distribution. The model is able to
capture complex dependencies on high-dimensional stimuli with far fewer parameters than other approaches such as
histogram-based methods. The added flexibility comes at the cost of a non-concave log-likelihood. We show that in practice
this does not have to be an issue and the mixture-based model is able to outperform generalized linear and quadratic
models.
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Introduction

To account for the stochasticity inherent to neural responses,

single cells as well as populations of cells are often characterized in

terms of a probabilistic model. A popular choice for this task are

generalized linear models (GLMs) and related approaches [1–6].

These models can often be chosen such that the corresponding

maximum likelihood problem is a convex optimization problem

where a global optimum can be found. This guarantee comes at a

price, as GLMs tightly constrain the computations which can be

performed on the input. More complex computations can

nevertheless be implemented by choosing a nonlinear feature

representation of the input which is then fed into the linear model.

In practice, however, it is typically very challenging to select the

appropriate feature space because it presupposes a deeper

understanding of the cell’s nonlinear behavior or unfeasibly large

amounts of data.

Several approaches have been suggested to overcome the

limitations of the generalized linear model. A natural extension is

given by generalized quadratic models [7–9]. While a quadratic model

represents a true generalization of a linear model, it can also be

viewed as a linear model with a quadratric extension of the feature

space (and, depending on the parametrization, some additional

constraints on the parameters). Consequently, it shares similar

limitations. A linear combination of quadratic features might still

fail to represent the kind of stimulus properties a neuron responds

to, but going to higher-dimensional general-purpose feature spaces

quickly leads to overfitting. The number of parameters which need

to be estimated grows linearly with the stimulus dimensionality in a

linear model, quadratically in a quadratic model, and correspond-

ingly faster if one uses a feature space of higher order.

An alternative approach is offered by nonparametric methods

such as maximally informative dimensions (MID) [10]. Here, one first

seeks a projection of the stimulus onto a lower-dimensional

subspace such that as much information as possible is retained

about the presence or absence of a spike. Afterwards, histograms

are used to map out the nonlinear dependence of the neuron on

the projected stimulus. This approach has the advantage that it

can, at least in principle, capture arbitrary dependencies on the

stimulus. However, the number of parameters that need to be

estimated grows exponentially with the dimensionality of the

stimulus subspace. This limits the approach to cells which are

selective for only a few stimulus dimensions, although nonlinear

extensions of this approach exist [11].

Here, we explore a different tradeoff. We derive a much more

flexible neuron model for single cells which can, at least in

principle, approximate arbitrary dependencies on the stimulus.

The model can be viewed as generalizing generalized linear and

quadratic models, but in contrast to quadratic models cannot

easily be reduced to a GLM by choosing a different representation
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of the stimulus. Nonlinear stimulus features are directly learned

from the data by maximizing the model’s likelihood and do not

need to be hand picked. The number of parameters of the model

still grows only quadratically with the dimensionality of the

stimulus, and the complexity of the model can be tuned to take

into account the cell’s complexity and the amount of data

available. We demonstrate that optimizing this model is feasible in

practice and can lead to a better fit than either generalized linear

or quadratic models.

Methods

In the following—after briefly reviewing generalized linear and

quadratic models—we introduce a new model for single cell

responses and discuss its properties.

Ethics statement
All experimental and surgical procedures were carried out in

accordance with the policy on the use of animals in neuroscience

research of the Society for Neuroscience and the German law.

Generalized linear and quadratic models
In a GLM it is assumed that the output y conditioned on some

input x is distributed according to an exponential family and that

the expected output is given by

E½yDx�~g wTx
� �

,

where g is an invertible nonlinearity. Parameters of the model are

the weights w[RN and potentially additional parameters of the

exponential family. In the following, we will assume that x is a

representation of the stimulus and y[f0,1g indicates the presence

or absence of a spike.

A special case of the GLM applicable to our problem is, for

instance, the linear-nonlinear-Bernoulli (LNB) model, where

the exponential family is given by the Bernoulli distribution.

As nonlinearity we might choose the sigmoidal logistic

function,

s(x)~ 1ze{xð Þ{1: ð1Þ

In the following, we will derive this linear model from a

generative modeling point of view. This will help to motivate

and see the connections to the extension presented later.

Let us consider the distribution over the stimulus x conditioned

on y. If y equals 1, this distribution corresponds to the spike-

triggered distribution. If y equals 0, we will call it the non-spike-

triggered distribution. At least for the moment, let us assume that both

distributions are Gaussian, that is,

p(xDy)~N (x; my,Sy)

with means m0,m1 and covariances S0,S1. Bayes’ rule allows us to

turn these assumptions into a probabilistic model of the neuron’s

behavior,

p(yDx)~
p(xDy)p(y)

p(x)
:

Using a few simple calculations, the probability of observing a

spike, or firing rate, can be seen to be

p(y~1Dx)~s(f (x)), ð2Þ

where

f (x)~log
p(xDy~1)

p(xDy~0)
zlog

p(y~1)

p(y~0)
: ð3Þ

Using our assumption of Gaussianity, this reduces to

f (x)~x
T
Kxzw

T
xza, ð4Þ

where we have performed the reparametrization

K~
1

2
S{1

0 {S{1
1

� �
,

w~S{1
1 m1{S{1

0 m0,

and the bias term is given by

a~
1

2
m

T

0 S{1
0 m0{

1

2
m

T

1 S{1
1 m1z

1

2
log

DS0D
DS1D

zlog
p(y~1)

p(y~0)
:

If the spike-triggered and non-spike-triggered covariances are

assumed identical, the quadratic term vanishes and we obtain the

linear-nonlinear-Bernoulli model from above. Without this

assumption, we are left with a quadratic model [7–9].

The unconstrained quadratic model is equivalent to a GLM

with a quadratic extension of the feature space, since

x
T
Kx~

X
i,j

Kijxixj ð5Þ

is linear in the parameters Kij . In practice, K is often replaced by a

low-rank approximation
PM

m~1 bmumu
T

m [7–9,12], where M

controls the rank. The quadratic form in this case is given by

f (x)~
X

m

bm(u
T

mx)2zw
T
xza: ð6Þ

Author Summary

An essential goal of sensory systems neuroscience is to
characterize the functional relationship between neural
responses and external stimuli. Of particular interest are
the nonlinear response properties of single cells. Inherently
linear approaches such as generalized linear modeling can
nevertheless be used to fit nonlinear behavior by choosing
an appropriate feature space for the stimulus. This
requires, however, that one has already obtained a good
understanding of a cells nonlinear properties, whereas
more flexible approaches are necessary for the character-
ization of unexpected nonlinear behavior. In this work, we
present a generalization of some frequently used gener-
alized linear models which enables us to automatically
extract complex stimulus-response relationships from
recorded data. We show that our model can lead to
substantial quantitative and qualitative improvements
over generalized linear and quadratic models, which we
illustrate on the example of primary afferents of the rat
whisker system.

Beyond GLMs: A Generative Approach

PLOS Computational Biology | www.ploscompbiol.org 2 November 2013 | Volume 9 | Issue 11 | e1003356



When choosing this parametrization, the optimization is no longer

a convex problem [9] and the model no longer a GLM. In the

following, we will use ‘‘quadratic model’’ only to refer to the

unconstrained version—a GLM with a quadratic feature space—

and ‘‘linear model’’ to refer to the GLM without quadratic

features.

Spike-triggered mixture model
The generative point of view immediately suggests generaliza-

tions by loosening the assumptions of Gaussian distributed spike-

triggered and non-spike-triggered stimuli. In the following, we

consider mixtures of Gaussians as possible candidates,

p(xDy)~
X

k

aykN (x; myk,Syk):

Mixture models provide a good compromise between the

assumptions of the tightly constrained generalized linear models

and nonparametric approaches such as histograms. By plugging

the mixture distributions into Equation 3, we obtain a new neuron

model whose complexity can be controlled by adjusting the

number of mixture components. We dub this model the spike-

triggered mixture model (STM).

In the same manner that we have derived a model for the

neuron’s dependency on the stimulus, we can incorporate

dependence on other features as well. Let t be the time past since

the neuron fired its last spike. Using Bayes’ rule, we obtain

p(yDx,t)!p(xDy)p(tDy)p(y),

where here we have made the additional assumption that x and t
are independent given y. This assumption is also known as the

naive Bayes assumption and is often employed in classification. It

has empirically been observed that naive Bayes classifiers often

perform well even when the assumption of independence is not

met [13,14].

Taken together, the input to the sigmoid nonlinearity (Equation

2) is given by

f (x,t)~log

P
k a1kN (x; m1k,S1k)P
k a0kN (x; m0k,S0k)

zlog
h1t

h0t
zlog

p

1{p
, ð7Þ

where p represents the prior probability of observing a spike and

we have used histograms h0 and h1 to represent the interval

distributions, p(tDy)~hty (Figure 1). Note that if we do not

constrain the parameters, there are several redundancies in this

parametrization. For example, we can multiply both h1t and h0t

by a common factor without changing the model’s predictions. If

we reparametrize the model to get rid of redundancies and in

addition assume that one mixture component is enough to

represent the non-spike-triggered distribution, the input to the

sigmoid takes the much simpler form

f (x,t)~log
X

k

exp xTKkxzwT
kxzak

� �
zlog ht: ð8Þ

The assumption of Gaussian distributed non-spike-triggered

stimuli is sensible, for instance, if an a priori Gaussian distributed

stimulus is used to drive the neuron and the width of each bin of

the spike train is small such that the posterior probability of

observing a spike is generally also small, since in this case

p(xDy~0)!p(y~0Dx)p(x)&p(x):

The spike history dependent term on the right-hand side of

Equation 8 can also be written in terms of a linear filter,

log ht~vTw(z),

where z[f0,1gT
represents the spike history, and w(z)~et is the

unit vector with zeros everywhere except at the position of the

most recent spike. That is, the only difference to a linear model

with history dependent term vTz is that here all but one spike are

suppressed by w. In our experiments, we found that the two forms

of spike history dependency worked equally well for most cells.

It is instructive to compare Equation 8 with Equation 4. While

the quadratic model can be cast into the form of a linear model

with a quadratic feature space, this is in general not possible for the

STM. The function log
P

k exp fk is also known as soft maximum,

since it can be viewed as a smooth approximation to the maximum

of the fk. Our model is thus effectively taking the maximum of the

responses of a number of quadratic models. Also note that the

number of parameters is only a constant times the number of

parameters of the quadratic model, which means it still grows only

quadratically in the number of stimulus dimensions. But the

number of parameters can be reduced further, as discussed in the

next section.

Reducing the number of parameters
Assuming a single non-spike-triggered mixture component as in

Equation 8 and ignoring the spike history for the moment, the

number of parameters of the STM grows as O(K :N2), where N is

the stimulus dimensionality and K is the number of mixture

components. This growth might still be impractical where N is

Figure 1. Illustration of the spike-triggered mixture model
(STM). A. A sigmoidal nonlinearity is applied to a log-likelihood ratio of
two mixtures of Gaussians to determine the firing rate of the model,
which is then used to generate spikes. B. By making a naive Bayes
assumption, additional information and measurements such as inter-
spike interval distributions can easily be incorporated into the model in
the form of additional log-likelihood ratios.
doi:10.1371/journal.pcbi.1003356.g001

Beyond GLMs: A Generative Approach
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large or the amount of available data is small, as is often the case

with neural data.

To reduce the number of parameters, we can employ the same

trick as for the quadratic model and replace the matrices Kk by

low-rank approximations (Equation 6). If we additionally share

features um between the different components, we obtain

f (x)~log
X

k

exp
X

m

bkm(uT
mx)2zwT

kxzak

 !
: ð9Þ

The number of parameters now grows as O(K :MzM:NzK :N),
where M is the number of quadratic features um contributing

M:N parameters, K :M is the number of coefficients bkm, and

K :N is the number of parameters added by the linear features wk.

That is, for fixed M and K , the number of parameters is linear in

the number of stimulus dimensions. We will refer to this variant of

the model as the factored STM.

Experimental setup
We tested our model on spike trains obtained from 18 whisker-

sensitive trigeminal ganglion cells of adult Sprague-Dawley rats.

Recordings were made with a single electrode (sampling frequen-

cy: 20 kHz, bandpass filter: 300–5000 Hz). Manual stimulation

was used to identify which whisker the neuron innervated as well

as the approximate preferred direction of the whisker, after which

the whisker was placed inside a plastic tube driven by a metal

stimulator arm. The stimulator arm was programmed to deliver

low-pass filtered (100 Hz) Gaussian white noise stimulation along

the neuron’s preferred movement direction. Stimulation was

divided into 50 unfrozen trials in which the stimulation sequence

varied between trials, and 50 frozen trials in which a Gaussian white

noise sequence was generated for the first trial only and then

repeated for each subsequent trial. Spikes were extracted offline on

the basis of waveform shape and all cells were categorized as either

slowly adapting (SA) or rapidly adapting (RA). Example spike trains of

two cells for frozen stimuli are shown in Figure 2.

We extracted 10 ms windows from the stimulus and reduced

their dimensionality by keeping the first 10 principal components

(w99:99% explained variance). We also extracted 25 ms of the

spike history preceding each bin of the spike train. The

dimensionality of the spike history was reduced to 100 by binning

spikes into 100 equally sized bins of 250 ms width (no bin

contained more than 1 spike). We then removed all but the most

recent spike from the spike history and used this as input to all

models. A linear projection of this vector is equivalent to the form

of spike history dependency in Equation 8.

Filters of generalized linear models were first trained assuming a

sigmoid nonlinearity. Together with a Bernoulli output distribu-

tion, this guarantees a concave log-likelihood such that an optimal

solution can be found. Afterwards, we replaced the sigmoid

nonlinearity with a more flexible nonlinearity consisting of a sum

of Gaussian blobs,

g(x)~tanh
X

l

cl exp {
ll

2
(x{ml)

2

� � !
,

where the hyperbolic tangent ensures that the predicted proba-

bility of a spike does not exceed 1. We jointly optimized the

parameters of this nonlinearity and the linear filter by alternately

maximizing the average log-likelihood of the linear-nonlinear

model using limited-memory BFGS [15], a standard quasi-

Newton method (see Text S1 of the supporting information for

gradients of the parameters). In a final step, we used a

nonparametric histogram estimate (150 bins) to map out the

nonlinearity. Through this multi-step procedure we tried to

maximize the chances of finding a linear-nonlinear description

of a neuron’s behavior where one exists. Note that strictly

speaking, this model is no longer a generalized linear model (since

the nonlinearities used are not invertible and the nonlinearities’

parameters are optimized). Quadratic models were optimized

using the same procedure after extending the input by quadratic

features.

The parameters of the STM (Equation 7) were initialized by

estimating the spike-triggered, non-spike-triggered, and interspike

interval distributions. Mixtures of Gaussians were fitted using

standard expectation maximization [14,16] and interval distribu-

tions were estimated using histograms. While naive Bayes

classifiers often already work well, it can be beneficial to directly

optimize the conditional log-likelihood [17]. After initializing the

parameters, we thus discriminatively finetuned the parameters

using BFGS [18]. We found that this indeed helped to

substantially improve the performance where the model depended

on both the stimulus and the spike history.

We used between three and five components for the spike-

triggered distribution and one and two components for the non-

spike-triggered distribution, which was found to work well in

preliminary runs on a different but related dataset with similar

stimuli. Using two non-spike-triggered components increased the

stability of the optimization for some cells. Finally, factored STMs

were trained discriminatively using limited-memory BFGS with

randomly initialized parameters.

All models were trained on the 50 unfrozen trials and

performance was evaluated based on the 50 frozen trials.

Results

We qualitatively and quantitatively compare the performance of

the generalized linear, quadratic and spike-triggered mixture

model (STM) for different cells and find in both cases that the

STM can lead to substantial improvements.

Qualitative comparison
Figure 2 shows spike trains generated by the different models

when fitted to one SA cell and one RA cell. The trial-to-trial

variability of the responses of most cells in the dataset is quite low.

This behavior is well captured by the STM, while the responses of

the generalized linear and quadratic models generally seem to be

noisier. This difference is more pronounced for SA cells than for

RA cells, where all models appear to give a reasonably good fit.

Corresponding peristimulus time histograms (PSTHs) can be seen

in Figure 3 (details on how the PSTHs were computed are given in

the next section).

Similar conclusions can be drawn by looking at spike-triggered

distributions (Figure 4). Ensembles of spike-triggered positions xt

and velocities _xxt of the time-varying stimulus suggest a complex

dependency of the responses on the stimulus for at least some cells.

Note, however, that even a linear neuron can produce non-

Gaussian spike-triggered distributions when the stimulus is

correlated over time and the cell’s firing depends on its history

of generated spikes. Also note that while here we show 2-

dimensional spike-triggered distributions, the input to the models

was a 10-dimensional stimulus (and a 100-dimensional spike

history), as described above.

To get a better intuition for the degree of nonlinearity of a cell,

we can compare the cell’s spike-triggered distribution with the

spike-triggered distribution of the best matching linear model. In

Beyond GLMs: A Generative Approach
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the given examples, the linear model is unable to reproduce the

spike-triggered distributions of the cells displayed in Figure 4. For

the SA cell, even the quadratic model fails to reproduce many of

the features of the neuron’s spike-triggered distribution, while the

STM’s behavior much more closely resembles that of the real cell.

Quantitative comparison
To quantify the performance of the different models, we

estimate the cross-entropy or negative log-likelihood,

E½{log p(yDx)�, ð10Þ

where the expectation is taken over stimuli x and spikes y

generated by the real neuron. We estimate this quantity using 50

frozen trials not used during training of the model. The cross-

entropy is a natural measure for comparing different models, as it

is the measure which is optimized during maximum likelihood

Figure 2. Spike trains generated by real and model neurons. Stimuli corresponding to the spike trains are shown at the top. The first row
below the stimulus shows spike trains and interspike interval distributions generated by one slowly adapting (A) and one rapidly adapting cell (B) of
the rat’s whisker system. The two cells shown are the SA cell and RA cell where the quantitative improvement in performance gained by using an STM
over a quadratic model was largest.
doi:10.1371/journal.pcbi.1003356.g002

Figure 3. Peristimulus time histograms. The insets show peristimulus time histograms (PSTHs) corresponding to the spike trains in Figure 2 (best
viewed on a computer screen). PSTHs were estimated from 50 trials for real cells, 1000 trials for model cells, and smoothed using a Gaussian kernel.
The kernel width was chosen automatically (see text) except for the zoomed-in excerpt of the PSTH in B, where for better visibility we used a slightly
wider kernel (FWHM: 0.15 ms). The variance explained (R2) by the generalized linear model, quadratic model and STM was 0.15, 0.26, and 0.47 (A),
and 0.19, 0.41, and 0.5 (B), respectively.
doi:10.1371/journal.pcbi.1003356.g003

Beyond GLMs: A Generative Approach
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estimation of the parameters, and many other system-identifica-

tion approaches such as spike-triggered averaging can often be

viewed as performing maximum likelihood or penalized maximum

likelihood learning [19].

The cross-entropy can be used to lower-bound the mutual

information between stimuli and spikes,

I ½y,x�~H½y�{H½yDx�§H½y�{E½{log p(yDx)�:

The better a model distribution p(yDx) approximates a cell’s

behavior, the smaller the difference will be between the lower

bound and the true information transmitted by the cell. Note that

this mutual information only quantifies the information carried by

one bin of the spike train while we are generally more interested in

the information carried by an entire spike train, y[f0,1gN
.

The spike train’s mutual information with the stimulus can be

decomposed as follows

I ½y,x�~
X

t

I ½yt,xDyvt�,

where y
vt denotes the history of spikes preceding time t. To

correctly quantify the mutual information between the spike train

and the stimulus, it is thus imporant to take spike history effects

into account. If we also use the fact that a neuron’s firing will only

be affected by the stimulus preceding a spike, xƒt, we get

I ½yt,xDy
vt�~H½ytDyvt�{H½ytDxƒt,yvt�:

for the mutual information of the spike train per time bin. Dividing

by the bin width yields an information rate (measured in bits per

second or similar). Estimating this quantity requires two models:

one for approximating the distribution p(ytDyvt) and one for

approximating p(ytDxƒt,yvt). A model for the former can take the

form of Equation 8 but with the stimulus-dependent terms

dropped.

Results averaged over all recorded SA cells (N~8) and all RA

cells (N~10) are given in Figure 5. The average improvement of

the STM over the quadratic model is 45.40 bit/s for SA cells and

15.48 bit/s for RA cells (for models taking into account spike

history). The improvement for the cell with the largest difference

to the quadratic model is 95.15 bit/s for SA cells and 43.05 bit/s

for RA cells (the cells displayed in Figures 2 to 4). The firing rates

of these two neurons were 117 Hz and 52.6 Hz, respectively, so

that both numbers roughly correspond to 0.8 bit/spike improve-

ment. These improvements correspond to the amount of

information carried by the cells that would have been missed if

a quadratic model was used to estimate mutual information

instead of an STM. The average differences between the quadratic

and the linear model, and the STM and the quadratic model (with

and without including spike history) were all significant (one-tailed

Wilcoxon signed-rank test, pv:01; Figure 5C and D).

In addition to comparing different models, we can also compute

and compare our model’s performance to the cross-entropy of a

PSTH, which has also been called oracle model [20]. We computed

PSTHs by convolving the average response to the frozen stimulus

with a Gaussian kernel. We took all but one trial to compute the

PSTH and the remaining trial for prediction. That is, the

probability of a spike at time t in trial i was predicted to be

p(yi
t~1Dx)~

1

J{1

X
j=i

X
s

yj
sks(t,s), ð11Þ

where J is the number of trials and ks is a normalized Gaussian

kernel of width s,

ks(t,s)!exp {(t{s)2=2s2
� �

,
X

s

ks(t,s)~1:

For spike counts larger than 1, the same approach could be taken

by using the right-hand side of Equation 11 as the rate parameter

of a Poisson distribution. We found it was necessary to add a small

offset to the PSTH to achieve good results. Both the offset and the

Figure 4. Spike-triggered distributions of real and model neurons. The plots show spike-triggered histograms of positions xt (horizontal
axis) and velocities _xxt (vertical axis) of the stimulus for the same neurons displayed in Figure 2, that is, for one SA cell (A) and one RA cell (B). Stimuli
were measured 1.5 ms before a spike occured. Note that these are not the stimuli the STM was trained on, which were 10-dimensional. Solid lines
indicate one and two standard deviations of the Gaussian prior stimulus distribution.
doi:10.1371/journal.pcbi.1003356.g004

Beyond GLMs: A Generative Approach
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kernel width were automatically chosen from a prespecified set of

parameters to minimize the cross-entropy averaged over all trials.

That is, for each individual cell, we chose the kernel width with the

best prediction performance. The optimal kernel widths were

found to be around 0.12 ms and 0.09 ms (full width at half

maximum, FWHM) for the SA and the RA cell displayed in

Figure 3, respectively.

While the performance of the PSTH does not give us a

guaranteed lower bound on the achievable cross-entropy, it gives

us a very optimistic estimate of the performance that can be

achieved by a model which does not take spike history into

account. We found that the PSTH yielded a significantly

lower cross-entropy than an STM without history dependency

(pv:01), but not significantly lower than an STM which takes

spike history into account (p~:32 and p~:58, respectively;

Figure 5C and D).

PSTHs for model cells were estimated from 1000 spike trains

(sampling spike trains was necessary since the models depend on

the spike history) using the same kernel as for the real cell. The

variance explained (R2) by the generalized linear model, quadratic

model and STM was 0.15, 0.26, and 0.47 for the SA cell, and

0.19, 0.41, and 0.5 for the RA cell (Figure 3), respectively. Note

that the explained variance depends heavily on the chosen kernel

width and wider kernels would yield larger coefficients.

How much data is enough?
The high firing rate of the cells and the resulting abundance of

data allowed us to neglect regularization and overfitting issues.

The training set contained on average about 25,000 spikes for SA

cells and 6,700 spikes for RA cells. However, typically much less

data is available.

To counter overfitting, different approaches to regularization

can be taken. We already suggested reducing the number of

parameters of the STM via factorization and parameter

sharing (Equation 9). To get an idea of how the factored

STM’s performance behaves as a function of the available

data, we artificially reduced the amount of data by randomly

picking a subset of the 50 training trials. Of that subset, we

used 50% for validation and 50% for optimization. During

optimization, the performance on the validation set was tested

every 5 iterations. If it decreased 50 times in a row, training

was stopped and the parameters with the lowest validation

error until then were kept. Other than early stopping, no other

form of regularization was used. The test set was the same as

the one used in Figure 5.

Figure 6 shows the performance of the factored STM for

different amounts of spikes in the training set. The factored STM

used 6 components and 5 quadratic features (246 parameters in

total) for the SA cell, and 3 components and 5 quadratic features

Figure 5. Quantitative model comparison. Linear, quadratic and spike-triggered mixture models (STM) were evaluated on 8 slowly adapting
cells (A) and 10 rapidly adapting cells (B). The performance of each model is measured in terms of the cross-entropy (negative log-likelihood)
averaged over all cells (smaller is better). Light bars correspond to models which ignore the spike history, dark bars correspond to models which
explicitly take the spike history into account. By subtracting the cross-entropy from the estimated entropy of the spike trains (‘‘Prior’’), an estimate of
mutual information (MI) between stimuli and spike trains is obtained. The bars in C and D show (from left to right) the differences in performance
between the linear model and the prior, the quadratic model and the linear model, and the STM and the quadratic model (with and without spike
history dependency, respectively). The two right most bars show the improvement of the PSTH over the STM with and without spike history
dependency.
doi:10.1371/journal.pcbi.1003356.g005
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(198 parameters) for the RA cell. For comparison, we also plot the

performance of a generalized linear model (111 parameters)

trained with early stopping on a subset of the training data, as well

as the performance of non-factored STMs (532 parameters and

400 parameters, respectively) and quadratic (156 parameters)

models trained on the entire training set.

For the SA cell, the performance of the factored STM started to

decrease more rapidly as soon as less than 5,000 spikes were

present in the training set. However, even with 2,500 spikes the

average performance was still much better than the performance

of a quadratic model trained on the entire dataset. For the RA cell,

the performance started to deteriorate at about 2,000 spikes. Note

that the performance of the linear model worsened at a similar

rate. Reducing the number of parameters further by using half the

spike history or six instead of ten principal componets to represent

the stimulus did not help to improve performance in the regime of

few data points. The performance might however be improved by

choosing suitable priors for the parameters, which we did not

explore here.

Training with half the dataset of the RA cell (about 2:5:106 data

points) on average took 9.4 minutes for the factored STM and

2.7 minutes for the linear model with parallelized implementations

written in C++ when run on a machine with 12 Intel Xeon E5-

2630 cores (2.3 GHz).

Discussion

We have shown that a spike-triggered mixture model can lead

to better performance than either linear or quadratic models,

which we illustrated on the example of rat primary afferents. A

possible explanation for the improved performance might be that

our model can better cope with a cell’s adaptation to the stimulus.

Because the firing rate of our model is effectively a maximum over

a number of quadratic models, the model is able to respond

differently in different regions of the stimulus space. Our model

may yield even bigger improvements when applied to cells higher

up the hierarchy—such as cortical cells—where highly nonlinear

dependencies on the stimulus are to be expected [21]. In

particular, an interesting empirical question is whether STMs will

be able to improve upon quadratic models in modeling complex

cells [22]. As a generalization, the STM can capture the same kind

of invariances that the quadratic model can capture, but in

addition allows us to spend parameters in different ways by adding

components instead of quadratic feature dimensions.

Here, we chose to give up on the constraint of convexity to be

able to build a more flexible neuron model. In practice, non-

convex or even multimodal likelihoods do not have to be an issue.

Many local optima of the STM likelihood are created simply by

permutations of the parameters of the different mixture compo-

nents and are therefore unproblematic. We found that initializing

mixture models with EM and fine-tuning with an off-the-shelf

optimizer worked well for our data and the performance of the

resulting model was stable across different intializations. The

parameters of the factored variant of the STM (Equation 9) were

randomly initialized and gave comparable results (Figure 6).

Alternatively, we could have used support vector machines,

kernel logistic regression (KLR) [23] or other kernel based

approaches [24] for gaining flexibility while retaining convexity.

In KLR, the input to the sigmoid (Equation 2) determining the

firing rate takes the form

f (x)~
X

i

wik(xi,x)zb, ð12Þ

where i indexes training points xi and k is a kernel measuring the

similarity between stimuli or, more generally, inputs to the neuron.

If a Gaussian RBF kernel is used, KLR becomes similar to an

STM with all covariance matrices constrained to a multiple of the

identity matrix and one mixture component placed on top of each

data point (cf. Equation 8).

KLR is equivalent to a linear-nonlinear-Bernoulli model with a

cleverly chosen feature space whose dimensionality grows with the

number of data points. Hence, one advantage of KLR is that its

objective function is convex. Advantages of a parametric model

like the one presented in this paper are more readily interpretable

parameters and lower computational costs when the number of

training points is large. Ultimately, whether kernel based methods

or a generative approach should be preferred presumably depends

on whether one has a better intuition of what represents a good

kernel for the input space, or a better intuition of what represents a

good characterization of the spike-triggered distribution.

Figure 6. Performance as a function of available data. The factored STM was trained with different random subsets of the training trials and
evaluated on all test trials for one SA cell (A) and one RA cell (B). The horizontal axis represents the number of spikes in the training set. Shown are
the average performances (solid blue line) along with 90% confidence intervals (5th and 95th percentile). For comparison, we also show the
performance of the linear model trained with different subsets of the data, the average performances of the non-factored STM, and the quadratic
model trained on the entire training set. Note that the factored STM outperforms the generalized linear model even when only a small fraction of the
dataset is used.
doi:10.1371/journal.pcbi.1003356.g006
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The idea of using spike-triggered distributions to construct and

motivate neuron models is not new. However, most work in this

direction has focused on spike-triggered averages and covariances

[25–29]. Here we used mixtures of Gaussians and histograms to

derive a new neuron model, but other distributions might work

better in a different context and might be worth exploring.

Yet another related approach is to use feed-forward neural

networks [30–32]. While standard feed-forward neural networks

are in principle also able to represent arbitrarily complex stimulus-

response relationships [33], one can hope to get away with fewer

parameters, less data, or simpler optimization schemes when using

a model tailored to the task at hand. In contrast to general

nonlinear regression strategies, a generative approach can lead to

much more problem-specific architectures and nonlinearities

(Equations 8 and 9). Similar cascades of linear-nonlinear units

have been proposed but motivated by physiological rather than

statistical considerations [20,34–36].

STMs can easily be extended to model populations of

neurons similar to how GLMs are extended to populations by

introducing coupling filters [5,37]. Analogous to how we

incorporated dependency on the spike history of a single

neuron, a form for the dependency between neurons can also be

motivated via a log-likelihood ratio for the distribution of cross-

interspike intervals.

Code for fitting STMs is provided at http://bethgelab.org/

code/theis2013a/.
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