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Abstract

Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems
biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have
become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm,
TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud
computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to
performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance
algorithms provide significant performance improvement compared to the best individual algorithms and community
prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an
unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal
algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory
network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory
network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a
quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two
expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the
unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides
a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.
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Introduction

Most genes do not exert their functions in isolation [1], but

make their functions through regulations among them. Such

regulatory interactions are in the same cell, between different cells,

and even between different organs, forming large-scale gene

regulatory networks (GRNs). The impact of genetic abnormality

can spread through regulatory interactions in GRNs and alter the

activity of other genes that do not have any genetic defects [2].

Analyses of GRNs are key to identify disease mechanisms and

possible therapeutic targets for the future [1]. Therefore,

reconstruction of accurate and comprehensive GRNs from

genome-wide experimental data (e.g., gene expression data from

DNA microarray experiments) is one of the fundamental

challenges in systems biology [3,4].

A plethora of algorithms have been developed to infer GRNs

from gene expression data, i.e., mutual-information (MI) based

algorithms [5–12], correlation-based algorithms [5], Bayesian

networks (BNs) [13–17], regression-based algorithms [18–22],

graphical gaussian model (ggm) [23], meta predictors that

combine several different methods [24,25], and several other

approaches that were recently proposed [26–32], i.e., random

forests based algorithm [26] (GENIE3) and two-way ANOVA

based algorithm [27] (ANOVA). Each network-inference algo-

rithm generates a confidence score for a link between two genes

from expression data and assumes that a predicted link with higher

confidence score is more reliable. Systematic and comparative

assessment of the performance of these inference algorithms

remains a major challenge in network reconstruction [33].

Several studies compared performances of the network-infer-

ence algorithms [7,8,9,34]. Especially, the DREAM5 (Dialogue on

Reverse Engineering Assessment and Methods) challenge evalu-

ated performances of many and diverse network-inference

algorithms (29 algorithms submitted by challenge participants

and 6 commonly used ‘‘off-the-shelf’’ algorithms) by using

benchmark dataset composed of large-scale Escherichia coli,

Saccharomyces cerevisiae, and in silico regulatory networks and their

corresponding expression datasets [35]. The evaluation demon-
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strated that no single individual algorithm performs optimally

across all the three expression-datasets, i.e., GENIE3 and ANOVA

perform optimally for E. coli dataset, while two algorithms based

on regression techniques are optimal for in silico dataset. Further,

algorithm-specific biases influence the recovery of different

regulation patterns, i.e., MI and correlation based algorithms can

recover feed-forward loops most reliably, while regression and BNs

can more accurately recover linear cascades than MI and

correlation based algorithms [35].

Above observations suggest that different network-inference

algorithms have different strengths and weaknesses [33,35]. A

natural corollary to the observations is that combining multiple

network-inference algorithms may be a good strategy to infer an

accurate and comprehensive GRN. Recently, Marbach et al.

proposed a new network-inference algorithm, ‘‘Community

Prediction’’, by combining several network-inference algorithms

that were submitted to DREAM5 challenge [35]. The Community

Prediction combining 29 algorithms (‘‘off-the-self’’ algorithms are

not used) shows higher or at least comparable performance to the

best among the 29 algorithms across all DREAM5 datasets.

Further, performance of community prediction increases as the

number of integrated algorithms increases. Thus, community

prediction based on integration of many algorithms can be a

robust approach to infer GRNs across diverse datasets and will

provide a powerful framework to reconstruct unknown regulatory

networks.

Analysis of DREAM5 results [35] reveal that algorithms

complement each other in a context-specific manner and

harnessing the combined strengths and weaknesses of diverse

techniques can lead to high quality inference networks. Thus, it is

important to analyze the anatomy of diversity and quantify it. This

is particularly important to systematically evaluate the character-

istics of individual techniques and leverage their diversity in

finding an optimal combination set for a specific experimental data

context. Recently, Marbach et al. showed that integration of

algorithms with high-diversity outperform that with low-diversity

[35]. However, their diversity analysis is qualitative and, to our

knowledge, there is no measure to quantify algorithm diversity.

Analysis of small in silico datasets of the DREAM3 challenge

demonstrated that integration of the best five algorithms

outperforms integration of all algorithms submitted to the

challenge [33]. Selection of optimal algorithms for a given

expression data and integration of the selected optimal algorithms

may be more powerful strategy to reconstruct accurate GRNs than

using many algorithms. Development of a method to determine

optimal algorithms is a key to reconstruct accurate and compre-

hensive GRNs, although it is difficult to identify beforehand

optimal algorithms for reconstruction of an unknown regulatory

network because of biological and experimental variations among

expression datasets.

A measure to quantify similarity among gene-expression

datasets could be a clue to determine the optimal algorithms for

reconstruction of unknown regulatory networks. This is because, if

expression-data associated with known regulatory network (e.g.,

the DREAM5 datasets) is similar to that with unknown regulatory

network, optimal algorithms for data with known regulatory

network could be also optimal for data with unknown regulatory

network.

Motivated by the above observations and issues, this paper

focuses on four strategies towards building a comprehensive

network reconstruction platform –

N A computational framework to integrate diverse inference

algorithms.

N Systematically assess the performance of the framework against

the DREAM5 datasets composed of genome-wide transcrip-

tional regulatory networks and their corresponding expression

data from actual microarray experiments as well as in silico

simulation.

N Develop a measure to quantify diversity among inference

techniques towards identifying optimal combination of algo-

rithms which elucidate accurate GRNs.

N Develop a measure to quantify similarity among expression

datasets towards selecting optimal algorithms for reconstruc-

tion of unknown regulatory networks.

To investigate these possible strategies, we first develop a novel

network-inference algorithm that can combine multiple network-

inference algorithms. Second, to evaluate inference performances

of the algorithms precisely, we used the DREAM5 datasets

composed of E. coli and S. cerevisiae transcriptional regulatory

networks and their corresponding expression data from large-scale

microarray experiments, together with synthetic network and

corresponding expression datasets (http://wiki.c2b2.columbia.

edu/dream/index.php/D5c4). A cloud-based computing frame-

work was developed on the Amazon Web Services (AWS) system

to systematically benchmark the large data-sets and compute-

intensive algorithms. Third, we define a mathematical function

quantifying diversity between algorithm pairs to analyze the

anatomy of diversity and its role in improving the performance of

reverse engineering techniques. Finally, we present a similarity

measure among expression-datasets and its potential to identify

optimal algorithms for reconstruction of unknown regulatory

networks.

Results

We developed a computational workflow for the combination of

network-inference algorithms and systematic assessment of their

performance. The workflow of our framework is composed of

three steps (see Supplementary figure S1 and Materials and

Methods for details):

Author Summary

Elucidating gene regulatory networks is crucial to under-
stand disease mechanisms at the system level. A large
number of algorithms have been developed to infer gene
regulatory networks from gene-expression datasets. If you
remember the success of IBM’s Watson in ‘‘Jeopardy!’’ quiz
show, the critical features of Watson were the use of very
large numbers of heterogeneous algorithms generating
various hypotheses and to select one of which as the
answer. We took similar approach, ‘‘TopkNet’’, to see if
‘‘Wisdom of Crowd’’ approach can be applied for network
reconstruction. We discovered that ‘‘Wisdom of Crowd’’ is
a powerful approach where integration of optimal
algorithms for a given dataset can achieve better results
than the best individual algorithm. However, such an
analysis begs the question ‘‘How to choose optimal
algorithms for a given dataset?’’ We found that similarity
among gene-expression datasets is a key to select optimal
algorithms, i.e., if dataset A for which optimal algorithms
are known is similar to dataset B, the optimal algorithms
for dataset A may be also optimal for dataset B. Thus, our
‘‘TopkNet’’ together with similarity measure among
datasets can provide a powerful strategy towards harness-
ing ‘‘Wisdom of Crowd’’ in high-quality reconstruction of
gene regulatory networks.

Harnessing Diversity to Get Accurate Gene Networks
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I. Inference Methods: We obtained confidence score

between gene pairs based on 29 algorithms submitted by

DREAM5 participants and 6 commonly used ‘‘off the shelf’’

algorithms from Marbach et al [35]. Furthermore, we

calculated confidence score between two genes based on

other three algorithms, i.e., c3net [9], ggm [23], and mrnet

[8] algorithms. We used, in total, 38 network-inference

algorithms for the study.

II. TopkNet: A novel algorithm to generate predicted list of

regulatory links by the network-inference algorithms that

can combine multiple network-inference algorithms (in this

case, 38 algorithms) (see Figure 1).

III. Performance Assessment: Comparative evaluation of

the performance of TopkNet with that of the 38 network-

inference algorithms and Community Prediction, bench-

marked using the DREAM5 network-inference challenge

dataset composed of the large synthetic data (number of

genes = 1,643 and sample size = 805), large-scale E. coli and

S. celevisiae networks (number of gene = 4,511 and 5,950,

respectively), and their corresponding real microarray gene

expression data (with sample size of 805 and 536,

respectively). Table 1 summarizes the different data-sets

employed in the performance assessment for this study. We

used a cloud-computing infrastructure built on Amazon

EC2 instances to infer GRNs from the large-scale DREAM5

dataset (see Materials and Methods for details).

TopkNet (the maximum value of k is the number of integrated

algorithms, 38 in this case) is based on leveraging the diversity of

the different techniques by combining the confidence of each gene

pair interaction computed by the algorithms. TopkNet applied a

bagging method, which was introduced by Breiman L [36], to

combine confidence scores between each gene pair from multiple

network inference algorithms. Top1Net assumes that two genes

have a regulatory links between them, if at least one network-

inference algorithm assigns high confidence level to the link

between them, while Top38Net assumes that two genes have a

regulatory link between them, only if all the 38 algorithms assign

high confidence levels to the link between them (see below and

Figure 1 for details). TopkNet with k = 2–37 and Community

prediction (which takes the average of ranks assigned by different

algorithms), are intermediates between Top1Net and Top38Net.

Figure 1 gives an illustrative example of TopkNet (for

simplicity, in this illustrative example, we used 5 individual

algorithms) on a sample target network (Figure 1A). As shown in

Figure 1B, a network-inference algorithm assigns a confidence

level to each link and links are ranked according to their

confidence levels, i.e., a link with higher confidence level has

higher rank value. For each link, 5 individual network-inference

algorithms (represented by different colors) assigned 5 rank values

to each link (Figure 1C). Among the five rank values of each link,

TopkNet regards kth highest rank value as the rank value of the

link (Figure 1D). For example, five rank values (1, 3.5, 10, 10.5,

and 12) are assigned to the regulatory link between nodes 1 and 2

(Figure 1C). In this case, Top1Net and Top2Net regards 1 and

3.5 as the rank value of the link, respectively (see Figure 1D). As

shown in color spectrums in Figure 1D, TopkNet algorithms

reconstruct GRNs which include predicted connections from

multiple algorithms.

Based on the observation that network-inference algorithms

tend to assign high confidence levels to true-positive links [6,34],

Top1Net algorithm would infer the largest number of true-

positive links among all algorithms, i.e., TopkNet algorithms

would infer smaller number of true-positive links as the value of k

increases and, at the same time, can avoid inferring false-positive

links. Thus, in general, Top1Net would outperform other

algorithms in terms of inference performances, as seen in the

predicted network in Figure 1.

Comparative performance assessment
Network inference algorithms have increased following Moore’s

Law (doubling every two years) [33,37]. Consequently, it has

become increasing important to develop comprehensive perfor-

mance benchmarking platforms to compare their relative strengths

and weaknesses and leverage them to improve quality of inferred

network. Two key components fundamental to performance

assessment are representative metrics to quantify performance

and standardized data sets on which to evaluate them.

In this section, we first outline these components employed in

this study on the basis of which the performance of TopkNet is

evaluated.

Benchmarking data sets. The performance of gene network

reconstruction algorithms require benchmarking against various

data sets representing network dynamics (for example, gene

expression profiles) for which the underlying network is known.

However, the ability to generate biologically plausible networks

and validate them against experimental data remains a funda-

mental tenet in network reconstruction. In this respect, the

DREAM initiative provides a community platform for the

objective assessment of inference methods. The DREAM

challenges provide a common framework on which to evaluate

inference techniques against well-characterized data sets. In this

study, we used large scale experimental data from the DREAM5

network inference challenge.

Performance metrics. True-positive rate, false-positive rate,

recall, and precision are representative metrics to evaluate perfor-

mances of network inference algorithms (see Materials and Methods

for details). True-positive (false-positive) rate is, among all true (false)

links, how many of them are with ranks beyond a threshold.

Precision is, among all links with ranks beyond a threshold, how

many of them are true links, while recall is, among all true links, how

many of them are with ranks beyond a threshold. For example, in

Figure 1, Top2Net for threshold of 3.5 shows recall = 6/7 (one

missing) and precision = 6/7 (one mistake). By changing threshold

gradually, we obtained a receiver operating characteristic (ROC)

and Precision/recall (PR) curves that are graphical plots of true-

positive rate vs. false-positive rate and precision vs. recall,

respectively. These curves are straightforward visual representation

of performances of network-inference algorithms.

Further, we calculated three representative metrics, i.e., AUC-

PR (area under the PR curve), AUC-ROC (area under the ROC

curve), and max f-score (f-score is harmonic mean of precision and

recall) for these algorithms (see Materials and Methods for details).

AUC-PR and AUC-ROC evaluate the average performances of

network-inference algorithms, while max f-score evaluates the

optimal performance of network-inference algorithms. A network-

inference algorithm with higher inference performance would

show higher AUC-PR, AUC-ROC, and max f-score. Moreover,

DREAM5 also provides performance benchmarking package

which computes an overall score (OS) across the entire dataset

[35]. By using the package, we also calculated overall score to

evaluate performance of TopkNet algorithms against community

prediction and 38 algorithms (for performance of the individual 38

algorithms, see Supplementary table S1).

TopkNet performance on DREAM5 data set
To evaluate how TopkNet leverages diversity amongst the

candidate algorithms to infer consensus network, we used the

Harnessing Diversity to Get Accurate Gene Networks
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Figure 1. Example of a prediction by TopkNet formed from five individual network predictions. (a) Target Network. Circles and links are
genes and regulatory links among genes, respectively. (b) The five lists are ranked according to the confidence levels of links, the most reliable
prediction is at the top of the list and has the highest rank, i.e., Algorithm1 assigns the highest confidence level and the rank value of 1 to a link
between nodes 1 and 2. The true link of the target network is highlighted in yellow. We regard links with rank of 1–7 as regulatory links inferred by
the algorithms because the target network composed of 7 links. Red lines and blue dashed lines represent true positive and false negative links,
respectively. (c) Five rank values for each link and the mean value among the five values. Green, red, orange, blue, and purple represent rank values
from Algorithm1, Algorithm2, Algorithm3, Algorithm4, and Algorithm5, respectively. (d) Rank value of a link by TopkNet and that by Community
Prediction. Top1Net and Top2Net regards 1st and 2nd highest value among five rank values for a link as the rank value of the link, respectively.
Community Prediction calculates the mean value among five rank values for a link and regards the mean as the rank of the link. For example, rank of
the links between genes 1 and 2 for Community Prediction is 7.4. This example illustrates how Top1Net can be more accurate than the other
algorithms.
doi:10.1371/journal.pcbi.1003361.g001
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DREAM5 benchmarking data comprised of large scale synthetic

and experimental gene regulatory networks for E.coli and

S.cerevesiae as outlined in Table 1 and computed different

performance metrics on them. As seen in the PR and ROC

curves for in silico, E. coli, and S. cerevisiae datasets (Supplementary

figures S2 and S3), Top6net shows constantly higher performance

compared to community prediction. Other three performance

metrics (AUC-PR, AUC-ROC, and Max f-score) of TopkNet with

k = 5–8 are also higher than those of community prediction for all

the three datasets (see Figures 2B–J). Thus, overall score of

TopkNet with k = 5–8 is significantly higher than that of

community prediction (see Figure 2B). However, the performance

metrics of TopkNet is only comparable to the best individual

algorithms and not significantly better. Community prediction also

showed significantly lower performances than the best individual

algorithm.

These results indicate that, while TopkNet would provide better

strategy to integrate multiple algorithms than community predic-

tion, such a strategy does not always significant increase in

performance compared to the cost of integration. As seen in this

section, the overall score of the best individual algorithm (40.279)

is comparable to that of TopkNet with k = 5–7 (40.110–41.251)

and is much higher than that of community prediction and

TopkNet with k = 1 (30.228 and 10.432, respectively). This is

because, for the DREAM5 datasets, several low-performance

algorithms assign high confidence scores to many false-positive

links and such false links could decrease the performance of

TopkNet (especially, with k = 1) and community prediction

algorithms.

Thus, by integrating only high-performance algorithms that

tend to assign high confidence score to true-positive link, TopkNet

(especially, with k = 1) and community prediction may show much

higher performances than the best individual algorithms. To

investigate this issue, we evaluate TopkNet (and community

prediction) based on integration of 10 optimal algorithms

(algorithms within top 10 highest AUC-PR) for each of the in

silico, E. coli. and S. cerevisiae datasets. As seen in Supplementary

figures S4 and S5, PR and ROC curves of Top1Net are constantly

over those of the best individual algorithm and community

prediction for in silico and E. coli datasets, although, for S. cerevisiae,

PR-curve of the best individual algorithm slightly over that of

Top1Net. Other three metrics (AUC-PR, AUC-ROC, and Max f-

score) of TopkNet with low k (k = 1 for in silico and E. coli and k = 2

for S. cerevisiae) are significantly higher or at least comparable to

those of the best individual algorithm and community prediction

(see Figures 3B–J). Therefore, the overall score of TopkNet with

k = 1 and 2 (74.935 and 73.261, respectively) are significantly

higher than that of the best individual algorithm (40.279) and

community prediction (56.158) (see Figure 3A). These results

highlight that integration of multiple high-performance algorithms

by Top1Net or Top2Net consistently reconstructs the most

accurate GRNs for different datasets.

As demonstrated in this section, selection of optimal algorithms

for a given expression data and Top1Net, Top2Net, and

community prediction based on integration of the selected optimal

algorithms could be a powerful approach to reconstruct high-

quality GRNs. However, currently, to our knowledge, there is no

method to determine beforehand optimal algorithms for expres-

sion data associated with an unknown regulatory network.

Development of a method to determine optimal algorithms is a

key to reconstruct unknown regulatory networks (We investigate

this issue in the next section).

Selection of optimal algorithm pairs to infer GRNs based
on algorithm diversity

Different network-inference algorithms employ different and

often complementary techniques to infer gene regulatory interac-

tions from an expression dataset. Therefore, a consensus driven

approach, which leverages diversity in network-inference algo-

rithms, can infer more accurate and comprehensive GRNs than a

single network-inference algorithm. However, as demonstrated in

this study, a simple strategy of increasing the number of algorithms

may not always yield significant performance gains compared to

the cost of consensus, i.e., the computation cost (CPU time and

memory usage).

It is pertinent to analyze the anatomy of diversity between

different algorithms in a theoretical framework to answer the

questions of -

N To what extent, then, are the algorithms different from each

other?

N Does bringing diversity of the algorithms into community

prediction improve the quality of inferred networks?

For the purposes, Marbach et al. conducted principal compo-

nent analysis (PCA) on confidence scores from 35 network-

inference algorithms [35]. They mapped 35 algorithms onto 2nd

and 3rd principal components and grouped the algorithms into

four clusters by visual inspection. The analysis demonstrated that

integration of three algorithms from different clusters shows higher

performance than that from the same cluster. It indicates that the

diversity signature of the selected algorithms, and not just the

number of algorithms, plays an important role in the performance

of the network reconstruction techniques.

However, their algorithm diversity is qualitative and, to our

knowledge, there is no quantitative measure for algorithm

diversity. In order to quantify diversity among the individual

algorithms employed in this study, we developed two quantitative

measures of diversity which calculates distance between algorithms

pairs on the basis of confidence scores of regulatory interactions

inferred by the algorithms. One is based on simple Euclidean

distance (EUC distance) and the other is based on EUC distance

on 2nd and 3rd components from PCA analysis (PCA distance) (see

Materials and Methods for details). In Figure 4, we provide a toy

model to explain how diversity among network-inference algo-

rithms is defined.

By using the diversity measures, we calculated distance among

10 optimal algorithms for each of the DREAM5 datasets to

examine whether bringing quantified algorithm diversity into

Top1Net (and Community prediction) improves the performances

of network reconstruction. Based on the calculated distances, we

defined high-diversity pairs as top 10% of algorithm pairs with

highest distance, while low-diversity pairs are defined as bottom

10% of algorithm pairs with lowest distance. In this study, we have

45 algorithm pairs among 10 optimal algorithms and thus top 5

algorithm pairs with highest distance are high-diversity pairs, while

Table 1. The DREAM5 datasets used in this study.

- In silico1 E. coli2 S. celevisiae3

Number of genes 1,643 4,511 5,950

Number of samples 805 805 536

1In silico Dream 5 dataset.
2Dream 5 dataset from E.coli.
3Dream5 dataset from S.cerevisiae.
doi:10.1371/journal.pcbi.1003361.t001
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bottom 5 algorithm pairs with lowest distance are low-diversity

pairs.

Next, we evaluated the performances of Top1Net (or commu-

nity prediction) based on integration of high-diversity pairs and

those of low-diversity pair. As seen in Figures 5B–J and

Supplementary figures S6B–J, AUC-PR, AUC-ROC, and max

f-score of high-diversity pairs by EUC distance are higher or at

least comparable to those of low-diversity pairs by EUC distance

across all datasets. Especially, for in silico and E. coli datasets, AUC-

PR and Max f-score of high-diversity pairs by EUC distance are

significantly higher than that of low-diversity pairs by EUC

distance. Thus, the overall score of high-diversity pairs is also

significantly higher than that of low-diversity pair (P,0.05) (see

Figure 5A and Supplementary figure S6A). The performances of

high-diversity pairs by PCA distance are also higher or at least

comparable to those of low-diversity pairs by PCA distance (see

Supplementary figures S7 and S8). Furthermore, median value of

the overall score of high-diversity pairs (47.725 and 50.250 by

Top1Net, for EUC and PCA distances, respectively) are much

higher than that by the best individual algorithms (40.279) and

that by community prediction that integrates 38 network-inference

algorithms (30.228). In summary, these results indicate that -,

N Even for the same number of algorithms (in this case, two

algorithms are integrated), the quantitative diversity to selected

pairs can improve the performance of the consensus methods

(TopkNet and community prediction).

N Quantitative diversity-guided consensus can reduce the cost of

consensus (only 2 algorithms integration instead of 38

algorithms integration in this case) without compromising the

quality of the inferred network as shown in this study where

the inference performance of high diversity pair is much higher

than that of 38 algorithms combination.

Selection of optimal algorithms based on similarity
among expression datasets towards reliable
reconstruction of regulatory networks

Top1Net or Top2Net based on integration of highest-perfor-

mance algorithms consistently reconstruct the most accurate

GRNs, as demonstrated in the previous section (see Figure 3).

However, as Marbach et al. mentioned, ‘‘Given the biological variation

among organisms and the experimental variation among gene-expression

datasets, it is difficult to determine beforehand which methods will perform

optimally for reconstruction an unknown regulatory network’’ [35], and, to

our knowledge, there is no method to select the optimal network-

inference algorithms. Development of a method to select optimal

network-inference algorithms for each of the expression datasets

remains a major challenge in network reconstruction.

A measure to quantify similarity among expression datasets can

be a key to select optimal network-inference algorithms for each of

the datasets, because, if similarity between expression-data

associated with known regulatory network (e.g., DREAM5

datasets) and that with unknown regulatory network is high,

optimal algorithms for the known dataset can be repurposed to

infer regulatory network from unknown dataset. Driven by this

observation, we developed a similarity measure among gene-

expression datasets based on algorithm diversity proposed in

previous section.

First, we briefly explain the overview of the procedure to

calculate similarity among expression datasets (see Figure 6 and

Materials and Methods for the details). The procedure is

composed of 4 steps. (1) The expression datasets were split into

a dataset for which optimal algorithms are unknown (e.g, Data1 in

Figure 6A) and datasets for which optimal algorithms are known

(e.g., Data2 and Data3 in Figure 6A). (2) For each of the datasets,

confidence scores of links were calculated by network-inference

algorithms. In the example shown in Figure 6B, each of 5

algorithms calculates 6 confidence scores for 6 links. (3) By using

the confidence scores calculated in the step (2), diversity among

algorithms was calculated based on a distance measure proposed

in the previous section (EUC and PCA based distances, see

Figure 6C and Materials and Methods for details), for each of the

datasets. In the example shown in Figure 6C, we have 10

algorithm pairs among 5 algorithms and thus, as shown in

matrices in the figure, we have 10 distances between two

algorithms for each of the three datasets. (4) By using algorithm

diversity calculated in the step (3), we calculated correlation

coefficient of the algorithm distances between two datasets (see

Figure 6D). In terms of algorithm diversity, the correlation

coefficient is regarded as similarity measure between the two

datasets. In the example shown in Figure 6D, Data1 is more

similar to Data2 than Data3. Thus, optimal algorithms for Data2

are better fit than those for Data3 to infer GRN from Data1.

Next, to evaluate whether dataset similarity can be used to

govern optimal selection of inference algorithms, we calculated the

similarity among the DREAM5 gene-expression datasets and

compared the performance of the algorithms across the datasets.

As seen in Figure 7 and Table 2, correlation between S. cerevisiae

and E. coli datasets (Spearman’s correlation coefficient r = 0.99) is

much higher than that between E. coli and in silico (r = 0.87 and

0.81 by EUC and PCA distances, respectively) and that between S.

cerevisiae and in silico (r = 0.83). In terms of algorithm diversity,

similarity between E. coli and S. cerevisiae datasets is much higher

than that between E. coli and in silico and that between S. cerevisiae

and in silico.

Further correlation of algorithm performances between dataset

pair with high similarity (e.g., E. coli and S. cerevisiae pair) is higher

than that between dataset pair with low similarity (e.g., in silico and

E. coli pair and in silico and S. cerevisiae pair) (see Supplementary

figure S7 and Supplementary Table S2). These results indicate

that, for dataset pair with high similarity, optimal network-

inference algorithms for one dataset also tend to be optimal for the

other dataset.

From above observations (observations in Figure 7, Supple-

mentary figure S9, Table 2, and Supplementary table S2), we

hypothesized that, if similarity between the two expression-

datasets is high, integration of algorithms that are optimal for

one dataset could perform well on the other dataset. To examine

this issue in more detail, we integrated algorithms that are

optimal for S. cerevisia dataset (algorithms with 10 highest AUC-

PR values on the dataset) and those for the in silico dataset and

evaluated their performance of these two integrations against E.

coli dataset.

Figure 2. Performances of TopkNet and community prediction based on integration of the 38 network-inference algorithms. Black
squares and lines show performances of TopkNet algorithm. For example, values at k = 1 represent performances of Top1Net algorithm. Red and
green lines represent performances of community prediction and those of the best algorithm, respectively. (A) Overall score. (B) AUC-PR for in silico
dataset. (C) AUC-ROC for in silico dataset. (D) Max f-score for in silico dataset. (E) AUC-PR for E. coli dataset. (F) AUC-ROC for E. coli dataset. (G) Max f-
score for E. coli dataset. (H) AUC-PR for S. cerevisiae dataset. (I) AUC-ROC for S. cerevisiae dataset. (J) Max f-score for S. cerevisiae dataset.
doi:10.1371/journal.pcbi.1003361.g002
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As seen in Figures 8A, B, and C, against the E.coli dataset,

performances (AUC-PR, AUC-ROC, and max f-score) of optimal

integration from S. cerevisiae dataset (green lines) are generally

higher than those from in silico dataset (red lines). Further, against

the S. cerevisiae dataset, we evaluate performances of optimal-

algorithm integration from E. coli dataset and that for in silico

dataset and found that optimal integration from E. coli dataset

(green lines) generally outperform that from in silico dataset (red

lines) (see Figures 8D, E, and F). Because similarity between S.

cerevisiae and E. coli datasets are much higher than that between E.

coli and in silico datasets and that between S. cerevisiae and in silico

datasets (see Figure 7 and Table 2), these results support the above

hypothesis.

Further, as shown in Figure 8, performance of Topknet

integrating optimal algorithms from a dataset with high-similarity

(green lines) is comparable to that integrating top 10 highest-

performance algorithms (blue lines). Thus, data-similarity based

optimal algorithm selection together with TopkNet (or community

prediction) based integration of the selected optimal algorithms can

be a powerful strategy to reconstruct unknown regulatory network.

Figure 3. Performances of TopkNet and Community prediction based on integration of top 10 highest-performance algorithms.
Black squares and lines show performances of TopkNet algorithm. For example, values at k = 1 represent performances of Top1Net algorithm. Red
and green lines represent performances of community prediction and those of the best algorithm, respectively. (A) Overall score. (B) AUC-PR for in
silico dataset. (C) AUC-ROC for in silico dataset. (D) Max f-score for in silico dataset. (E) AUC-PR for E. coli dataset. (F) AUC-ROC for E. coli dataset. (G)
Max f-score for E. coli dataset. (H) AUC-PR for S. cerevisiae dataset. (I) AUC-ROC for S. cerevisiae dataset. (J) Max f-score for S. cerevisiae dataset.
doi:10.1371/journal.pcbi.1003361.g003

Figure 4. A toy example to calculate diversity among algorithms. (A) Confidence scores from algorithms. Confidence score of a link between
two genes were generated by each of three algorithms. In this case, each algorithm has 6 confidence scores for 6 links. Note that the three algorithms
in this example are algorithms to infer non-directional algorithms and make symmetrical matrices of confidence scores, i.e., confidence score of link
from gene1 to gene 2 is same as that from gene2 to gene1. Thus, for simplicity, upper triangles of confidence score matrices are not shown in the
figure. (B) Diversity among algorithms based on Euclidean distances. In this example, each of three algorithms has a vector of 6 confidence scores for
6 links between two genes. Euclidean distance between two vectors of confidence scores from two algorithms is calculated and is defined as diversity
between the two algorithms. (C) Diversity among algorithms based on 2nd and 3rd components of PCA analysis. In this example, PCA analysis is
conducted on three vectors of 6 confidence scores from three network-inference algorithms and the three algorithms are mapped on to 2nd and 3rd
principal components (see left panel of C). Euclidean distance between two algorithms is calculated by using the 2nd and 3rd principal components
and is defined as diversity between the two algorithms.
doi:10.1371/journal.pcbi.1003361.g004
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Discussion

With an increasing corpus of inference algorithms, leveraging

their diverse and sometimes complementary approaches in a

community consensus can be a promising strategy for reconstruc-

tion of gene regulatory networks from large scale experimental

data. A computational platform to systematically analyze, assess

and leverage these diverse techniques is essential for the successful

application of reverse engineering in biomedical research.

This study presents a reverse engineering framework which can

flexibly integrate multiple inference algorithms, based on Top-
kNet - a novel technique for building a consensus network based

on the algorithms. It is pertinent to note here that the consensus

framework based on TopkNet can be flexibly extended to include

various types of network-inference algorithms.

Comparative evaluation on the DREAM5 datasets showed that,

although TopkNet based on 38-algorithm integration shows lower

or at most comparable performance to the best individual

algorithms, Top1Net based on integration of top 10 highest

performance algorithms significantly outperforms the best indi-

vidual algorithm as well as community prediction. The results

demonstrated that (i) a simple strategy to combine many

algorithms does not always lead to performance improvement

compared to the cost of consensus and (ii) selection of high-

performance algorithms for a given expression dataset and

Top1Net based on integration of the selected high-performance

algorithms could be a powerful strategy for reliable reverse

engineering.

Why does Top1net algorithm integrating 10 optimal algorithms

perform quite well and outperform the best individual method?

This is because 10 optimal algorithms tend to assign high-

confidence scores to true-positive links and Top1net method can

recover many true-positive links that are with the highest

confidence scores from 10 optimal algorithms. Furthermore, 10

optimal algorithms are based on different techniques (e.g., mutual

information, regression, and other statistical techniques) and

Top1net can leverage diversity from the optimal algorithms. For

example, the optimal algorithms based on mutual-information and

regression techniques can accurately recover true positive links in

feed-forward loops and linear cascade modules, respectively [35],

while Top1net could integrate the algorithms and accurately

recover both feed-forward loops and linear cascade module in a

GRN. Therefore, Top1net shows higher inference performance

than the best individual algorithms.

Why, then, Top1net outperforms community prediction and

Topknet with higher k? Community prediction and Topknet with

larger k recover links with lower confidence scores than Top1net,

i.e., community prediction uses mean among confidence scores

from 10 optimal algorithms and Topknet uses kth highest

confidence score from the algorithms. Links with lower confidence

scores from optimal algorithms are more likely to be false-positive

links and thus Top1net shows higher inference performance than

community prediction and Topknet with higher k.

A key to reconstruct accurate GRNs is development of a

method to determine optimal algorithms for a given expression

dataset associated with unknown regulatory network. As men-

tioned in results, if similarity between expression-data associated

with known regulatory network (i.e., DREAM5 datasets) and that

with an unknown regulatory network is high, optimal algorithms

for data with known regulatory network may be also optimal for

reconstruction of the unknown regulatory network.

Based on this observation, we developed a measure to quantify

similarity among the expression datasets based on algorithm

diversity and demonstrated that, if similarity between the two

Figure 5. Performances of Top1Net based on integration of
high- or low-diversity algorithm pairs by EUC distance. H and L
represent high-diversity and low-diversity algorithm pairs, respectively.
(A) Box-plots of overall score. (B) Box-plots of AUC-PR for in silico
dataset. (C) Box-plots of AUC-ROC for in silico dataset. (D) Box-plots of
Max f-score for in silico dataset. (E) Box-plots of AUC-PR for E. coli
dataset. (F) Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of
Max f-score for E. coli dataset. (H) Box-plots of AUC-PR for S. cerevisiae
dataset. (I) Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-plots
of max f-score for S. cerevisiae dataset. * and ** represent P,0.05 and
P,0.01, by the Wilcoxon rank sum test.
doi:10.1371/journal.pcbi.1003361.g005
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expression-datasets is high, integration of algorithms that are

optimal for one dataset could perform well on the other dataset.

Thus, the similarity measure proposed in this study can be a good

clue to identify optimal algorithms for reliable reconstruction of an

unknown regulatory network.

The consensus framework outlined in this paper, TopkNet,

together with analysis of similarity among expression datasets, provide

a powerful platform towards harnessing the wisdom of the crowds

approach in reconstruction of large scale gene regulatory networks.

Materials and Methods

DREAM5 datasets
We used the DREAM5 datasets (http://wiki.c2b2.columbia.

edu/dream/index.php/D5c4) to evaluate performance of net-

work-inference algorithms. The DREAM5 dataset composed of an

in-silico network (1,643 genes), the real transcriptional regulatory

network of E. coli (4,511 genes), that of S. celecisiae (5,950 genes),

and corresponding expression dataset (805, 805, and 536 samples

for the in-silico, E. coli, and S. celevisiae networks, respectively). The

expression dataset of E. coli and that of S. celevisae are composed of

hundreds of experiments, i.e., genetic, drug, and environmental

perturbations. The in-silico network is generated by extracting a

subnetwork composed of 1,643 genes from the E. coli transcrip-

tional network. The expression datasets of the in-silico network

was simulated by software GeneNetWeaver version 2.0 [38]. For

the DREAM5 datasets, in the same manner to Marbach et al.

[35], we used the links with the top 100,000 highest confidence

scores by each network-inference algorithm to evaluate perfor-

mance of the algorithm.

To evaluate performance of inference algorithms for the

DREAM5 datasets, DREAM organizers provide a matlab

Figure 6. Overview of a method to calculate similarity between two expression datasets. (A) Datasets. Expression datasets were split into
a dataset for which optimal algorithms are unknown (e.g., Data1) and datasets for which optimal algorithms are known (e.g., Data2 and Data3). (B)
Confidence scores of links between two genes. For each of datasets, confidence scores from each of algorithms (e.g., algorithms, A1, A2, A3, A4, and
A5) were calculated. (C) Diversity among algorithms. By using confidence scores calculated in (B), diversity among algorithms were calculated for
each of three datasets. In this example, we examined five algorithms and thus, for each of the datasets, we have a vector of 10 distances between two
algorithms. (D) Similarity between two expression datasets. Correlation coefficient between the vector of algorithm distances from Data1 and that
from Data2 was calculated. The calculated correlation coefficient is defined as similarity between Data1 and Data2. In the example in this figure,
Data1 is more similar to Data2 than Data3. Thus, optimal algorithms for Data2 could perform better than those for Data3 to infer GRN from Data1.
doi:10.1371/journal.pcbi.1003361.g006

Figure 7. Similarity among gene-expression datasets based on algorithm diversity. The scatter plots show correlation of algorithm
distance between two gene-expression datasets. Each of points in scatter plots represents each of algorithm pairs. Because we have 703 algorithm
pairs among 38 algorithms, 703 points are in each of the figures. Vertical axis represents (EUC or PCA) distance between two algorithms for one gene-
expression dataset, while horizontal axis represents that for the other gene-expression dataset. (A) Scatter plots of EUC distance for in silico and E. coli
datasets. (B) Scatter plots of EUC distance for in silico and S. cerevisiae dataset. (C) Scatter plots of EUC distance for E. coli and S. cerevisiae datasets (D)
Scatter plots of PCA distance for in silico and E. coli datasets. (E) Scatter plots of PCA distance for in silico and S. cerevisiae datasets. (F) Scatter plots of
PCA distance for E. coli and S. cerevisiae datasets.
doi:10.1371/journal.pcbi.1003361.g007
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software (http://wiki.c2b2.columbia.edu/dream/index.php/

D5c4). The software calculates 4 metrics for each network, i.e.,

AUC-PR, AUC-ROC, AUC-PR p-value, and AUC-ROC p-

value. AUC-PR (AUC-ROC) p-value is the probability that a

given or greater AUC-PR (AUC-ROC) is obtained by random

scoring of links. Furthermore, the software calculates an overall

score that was used to evaluate the overall performance of the

algorithms for all three networks (the large synthetic network, large

real E. coli, and S. celevisiae GRNs) of the DREAM5 network

inference challenge. The overall score (OS) is defines as

OS = 0.5(p1+p2), where p1 and p2 are the mean of the log-

transformed AUC-PR p-values and that of the log-transformed

AUC-ROC p-values taken over the three networks of the

DREAM5 challenge, respectively.

Confidence score of regulatory links from 38 network-
inference algorithms

We obtained confidence scores between two genes by 35

algorithms (29 algorithms are from DREAM5 participants and 6

algorithms are commonly used ‘‘off-the shelf’’ algorithms) from

supplementary file of Marbach et al. [35]. For c3net, ggm, and

mrnet algorithms, we calculated confidence scores of regulatory

link by using GeneNet package [39], c3net R package [9,10], and

minet R package [40], respectively. Because Marbach et al. used

links with top 100,000 highest confidence scores from each of 35

algorithms for analyses [35], we used top 100,000 links from c3net,

ggm, and mrnet for analyses in this study.

Metrics to evaluate performance of inference algorithms
For a given threshold value of confidence level, network-

inference algorithms predict whether a pair of genes have

regulatory link or not. A pair of genes with a predicted link is

considered as a true positive (TP) if the link is present in the

underlying synthetic network, while the pair is a false positive (FP)

Table 2. Correlation coefficient of algorithm distances and
that of performance metrics across the DREAM5 gene-
expression datasets.

Dataset 1 Dataset 2 EUC distance1 PCA distance2

In silico3 E.coli4 0.87 0.81

In silico S.cerevisiae5 0.83 0.83

E.coli S.cerevisiae 0.99 0.99

1Spearman’s correlation coefficient of algorithm distance (EUC distance)
between Dataset 1 and Dataset 2.
2Spearman’s correlation coefficient of algorithm distance (PCA distance)
between Dataset 1 and Dataset 2.
3In silico Dream 5 dataset.
4Dream 5 dataset from E.coli.
5Dream5 dataset from S.cerevisiae.
doi:10.1371/journal.pcbi.1003361.t002

Figure 8. Optimal algorithm selection based on similarity among expression datasets and its potential to improve network-
inference accuracy. Red lines show performance of TopkNet integrating algorithms that are optimal for a dataset with high-similarity, while green
lines show that with low-similarity. Blue lines show performance of TopkNet integrating top 10 highest-performance algorithms. Dashed lines in red,
green, and blue represent performance of community prediction integrating algorithms that are optimal for a dataset with high-similarity, that with
low-similarity, and top 10 highest-performance algorithms, respectively. (A) AUC-PR for E. coli dataset. (B) AUC-ROC for E. coli dataset. (C) Max f-score
for E. coli dataset. (D) AUC-PR for S. cerevisiae dataset. (E) AUC-ROC for S. cerevisiae dataset. (F) Max f-score for S. cerevisiae dataset.
doi:10.1371/journal.pcbi.1003361.g008
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if the synthetic network does not have the link. Similarly, a pair of

genes without a predicted link is considered as a true negative (TN)

or false negative (FN) depending on whether the link exists or not

in the underlying synthetic network, respectively. By using the

values of TP, FP, TN, and FN, we can calculate several metrics to

evaluate performances of network-inference algorithms.

One representative metric is precision/recall curve where the

precision (p) and recall (r) are defined as p~
TP

TPzFP
and

r~
TP

TPzFN
, respectively. By using many threshold values, we

obtained a precision/recall curve that is a graphical plot of the

precision vs. the recall and is a straight forward visual represen-

tation of performances of network-inference algorithms. The area

under the precision/recall curve (AUC-PR) is a summary metric of

precision/recall curve and measures the average accuracy of

network-inference algorithms. Another representative metric is

ROC curve that is a graphical plot of the true-positive rate vs. the

false-positive rate. The area under the ROC curve (AUC-ROC)

also represents the average inference performance of algorithms.

On the other hand, max f-score [41] evaluates optimum

performance of network-inference algorithms where f-score is

defined as harmonic mean of the precision and recall

(f-score~
2pr

rzp
). As predictions of network-inference algorithms

become more accurate, the value of AUC-PR, AUC-ROC, and

max f-score becomes higher. We used AUC-PR, AUC-ROC, and

max f-score for performance evaluation. To obtain these three

metrics, we used package provided by the DREAM5 team [35]

(PR curve, ROC curve, AUC-PR, AUC-ROC, and overall score)

and perl script provided by Küffner et al. (max f-score) [27].

Distances among network-inference algorithms
By using confidence scores among genes by network-inference

algorithms, we calculated, DEUC(X,Y), the simple Euclidean

distance between two network-inference algorithms (EUC dis-

tance) X and Y for expression datasets with given number of genes

and given sample size. Before giving a definition for DEUC(X,Y), let

us first define some notations. Let n be number of genes in the

expression dataset and CS(i, j, X) be confidence value between

genes i and j by algorithm X on the expression dataset. G = {(1,2),

(2,3), … (i,j) …(n-1,n)} represents the list of all possible

combinations of two genes for n genes. We defined the EUC

distance between the two algorithms as DEUC(X,Y)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(i,j)[G

(CS(i,j,X){CS(i,j,Y))2
r

.

Further, we calculated, DPCA(X,Y), the distance between two

network-inference (X and Y) on 2nd and 3rd principal components

(PCA distance) from PCA analysis on confidence scores of 38

algorithms. Let PC2(X) and PC3(X) be the 2nd and 3rd components of

X, respectively. We defined the PCA distance between two algorithms

as DPCA(X,Y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(PC1(X){PC1(Y))2z(PC2(X){PC2(Y))2

q
.

For the PCA analysis, we used R code, pricomp2.R, obtained from

http://aoki2.si.gunma-u.ac.jp/R/src/princomp2.R.

Similarity between two expression datasets based on
algorithm diversity

By using distances among algorithms, we calculated, S(da1,da2),

similarity between two expression datasets da1 and da2. Before

giving definition of S(da1,da2), let us first define some notation. Let

k and A = {a1, a2, …, ai, …, ak} be the number of algorithms and

the list of the algorithms, respectively. AC = {(a1,a2),(a2,a3),…,

(ai-1,ai),…, (ak-1,ak)} represents all possible combinations of two

algorithms among k algorithms (k(k-1)/2 algorithm combinations).

For example, in this study, we examined 38 algorithms and have

38*37/2 = 703 algorithm combinations. D(ai,aj,da1) represents

distances between two algorithms a1 and a2 for da1.

Dda1{AC} = {D(a1,a2,da1), D(a2,a3,da1), …, D(ai-1,ai,da1), …

D(ak-1,ak,da1)} represents a vector of k(k-1)/2 algorithm distances

for da1 (in this study, we have a vector of 703 algorithm distances

for each of DREAM5 datasets). We defined S(da1,da2) as

Spearman’s correlation coefficient between two vectors,

Dda1{AC} and Dda2{AC}.

Cloud computing infrastructure on Amazon EC2 to infer
GRNs from the large-scale DREAM5 expression datasets

To infer GRNs from the large-scale expression data of

DREAM5 (expression data of E.coli and S. cerevisiae), we built a

cloud computing infrastructure on Amazon EC2 ‘‘High-memory

double’’ instances (34.2 GB memory and 4 virtual cores with 3.25

EC2 Compute Units each) with Redhad linux and R version

2.15.0 [42]. We placed all the input data on the ephemeral storage

disk (850 GB) of the Amazon EC2 instances and TopkNet output

results (e.g., a listing of confidence scores between genes) to files on

the storage disk.

Supporting Information

Figure S1 The work flow of the experimental frame-
work of this study. Expression datasets were obtained from the

DREAM5 challenge web page (http://wiki.c2b2.columbia.edu/

dream/index.php/The_DREAM_Project). Inferred network from

the expression datasets by a network-inference algorithm is

compared to the networks of the DREAM5 challenge (Step (iii)).

See Materials and Methods for details.

(TIF)

Figure S2 PR curves of TopkNet and community
prediction based on integration of the 38 individual
algorithms. (A) PR curves for in silico datasets. (B) PR curves for

E. coli dataset. (C) PR curves for S. cerevisiae dataset. Vertical and

horizontal axes represent precision and recall, respectively.

(TIF)

Figure S3 ROC curves of TopkNet and community
prediction based on integration of the 38 individual
algorithms. (A) ROC curves for in silico datasets. (B) ROC

curves for E. coli dataset. (C) ROC curves for S. cerevisiae dataset.

Vertical and horizontal axes represent true-positive and false-

positive rate, respectively.

(TIF)

Figure S4 PR curves of TopkNet and community
prediction based on integration of the top 10 highest-
performance algorithms. (A) PR curves for in silico datasets.

(B) PR curves for E. coli dataset. (C) PR curves for S. cerevisiae

dataset. Vertical and horizontal axes represent precision and

recall, respectively.

(TIF)

Figure S5 ROC curves of TopkNet and community
prediction based on integration of the top 10 highest-
performance algorithms. (A) ROC curves for in silico

datasets. (B) ROC curves for E. coli dataset. (C) ROC curves for

S. cerevisiae dataset. Vertical and horizontal axes represent true-

positive and false-positive rate, respectively.

(TIF)

Figure S6 Performances of community prediction
based on integration of high- or low-diversity algorithm
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pairs by EUC distance. H and L represent high-diversity and

low-diversity algorithm pairs, respectively. (A) Box-plots of overall

score. (B) Box-plots of AUC-PR for in silico dataset. (C) Box-plots

of AUC-ROC for in silico dataset. (D) Box-plots of Max f-score for

in silico dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F)

Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of Max f-

score for E. coli dataset. (H) Box-plots of AUC-PR for S. cerevisiae

dataset. (I) Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-

plots of max f-score for S. cerevisiae dataset. * and ** represent

P,0.05 and P,0.01, by the Wilcoxon rank sum test.

(TIF)

Figure S7 Performances of Top1Net based on integra-
tion of high- or low- diversity algorithm pairs by PCA
distance. H and L represent high-diversity and low-diversity

algorithm pairs, respectively. (A) Box-plots of overall score. (B)

Box-plots of AUC-PR for in silico dataset. (C) Box-plots of AUC-

ROC for in silico dataset. (D) Box-plots of Max f-score for in silico

dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F) Box-plots

of AUC-ROC for E. coli dataset. (G) Box-plots of Max f-score for

E. coli dataset. (H) Box-plots of AUC-PR for S. cerevisiae dataset. (I)

Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-plots of

max f-score for S. cerevisiae dataset. * represents P,0.05 by the

Wilcoxon rank sum test.

(TIF)

Figure S8 Performances of community prediction
based on integration of high- or low- diversity algorithm
pairs by PCA distance. H and L represent high-diversity and

low-diversity algorithm pairs, respectively. (A) Box-plots of overall

score. (B) Box-plots of AUC-PR for in silico dataset. (C) Box-plots

of AUC-ROC for in silico dataset. (D) Box-plots of Max f-score for

in silico dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F)

Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of Max f-

score for E. coli dataset. (H) Box-plots of AUC-PR for S. cerevisiae

dataset. (I) Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-

plots of max f-score for S. cerevisiae dataset. * and ** represent

P,0.05 and P,0.01, by the Wilcoxon rank sum test.

(TIF)

Figure S9 Comparison of algorithm performances
across gene-expression datasets. The scatter plots show

correlation of algorithm performance between two gene-expres-

sion datasets. Vertical axis represents algorithm performance for

one gene-expression dataset, while horizontal axis represents that

for the other gene-expression dataset. (A) Scatter plots of AUC-PR

for in silico and E. coli datasets. (B) Scatter plots of AUC-PR for in

silico and S. cerevisiae datasets. (C) Scatter plots of AUC-PR for E.

coli and S. cerevisiae datasets. (D) Scatter plots of AUC-ROC for in

silico and E. coli datasets. (E) Scatter plots of AUC-ROC for in

silico and S. cerevisiae datasets. (F) Scatter plots of AUC-ROC for E.

coli dataset and S. cerevisiae datasets. (G) Scatter plots of max f-score

for in silico and E. coli datasets. (H) Scatter plots of max f-score for

in silico and S. cerevisiae datasets. (I) Scatter plots of max f-score for

E. coli and S. cerevisiae datasets.

(TIF)

Table S1 Performances of the 38 individual algorithms.
The table shows overall score, AUC-PR, and AUC-ROC of the

38 algorithms.

(XLS)

Table S2 Correlation coefficient of performance met-
rics across the DREAM5 gene-expression datasets. The

table shows Spearman’s correlation coefficient of performance

metrics across the DREAM5 gene expression datasets.

(DOC)
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