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Abstract

One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production
of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for
this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still
lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the
fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the
combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is
impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest
MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i)
the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively
determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network.
Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention
strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all
synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute
strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new
engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption
of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can
be quickly calculated and screened with neither network size nor the number of required interventions posing major challenges.
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Introduction

Stoichiometric and constraint-based modeling techniques such

as flux balance analysis or elementary modes analysis have become

standard tools for the mathematical and computational investiga-

tion of metabolic networks [1–4]. Although these methods rely

solely on the structure (stoichiometry) of metabolic networks and

do not require extensive knowledge on mechanistic details, they

enable the extraction of important functional properties of

biochemical reaction networks and deliver various testable

predictions. The steadily increasing number of reconstructed and

examined genome-scale metabolic network models of diverse

organisms proves that methods for constraint-based modeling can

deal with networks comprising up to several thousands of

metabolites and reactions [1].

Metabolic networks consisting of m internal metabolites and n

reactions can be formalized by an m6n stoichiometric matrix N. A

common assumption of constraint-based methods is that the

network is in steady state (i.e., the metabolite concentrations do

not change) resulting in a system of homogeneous linear equations

Nr~0 ð1Þ

where r is the vector of (net) reaction fluxes or reaction rates. In

addition, the non-negativity constraints on fluxes through

irreversible reactions must be fulfilled:

ri§0 Vi [ Irrevð Þ ð2Þ

(Irrev comprises the indices of the irreversible reactions). The two

constraints (1) and (2) form a convex polyhedral cone (the flux cone)

in the n-dimensional space of the rate vectors r. Flux Balance

Analysis (FBA; [3]) searches for optimal flux distributions within

this cone that maximize a given linear objective function

maximize
r

cT r: ð3Þ

Typical objective functions are maximization of growth (or

biomass yield) or of the yield of a certain product. For FBA, the

irreversibility constraint (2) can be refined to general upper and

lower boundaries for each reaction rate ri:

aiƒriƒbi, i [ 1 . . . nf g: ð4Þ
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Elementary-modes analysis [2,5] is another stoichiometric tech-

nique facilitating the exploration of the space of feasible steady

state flux distributions by means of particular flux vectors e
fulfilling the basic constraints (1) and (2) and in addition a non-

decomposability property. The latter demands that an elementary

mode e is irreducible (or support-minimal), hence, there is no

vector r?0 obeying (1) and (2) and

P rð Þ5P eð Þ: ð5Þ

Here, P(r) and P(e) represent the support of r and e, respectively,

i.e., they contain the indices of the vector elements being non-zero:

P(t) = {i | ti?0}. Elementary modes (EMs) represent stoichiomet-

rically balanced metabolic pathways or cycles and several

important properties of a metabolic network can be analyzed by

its unique set of EMs [2,5]. EMs correspond to extreme rays of

convex cones and can be computed as such [6,7].

One ultimate goal of metabolic network modeling is the

targeted manipulation of the network behavior. A typical

application is metabolic engineering where one is interested in

the optimization of the production of a certain compound by a

given host organism. A number of constraint-based optimization

techniques have been proposed for this purpose [2,8,9,10,11,12].

FBA can directly be used to determine the optimal (maximal)

value for a given optimization problem (e.g., maximal yield of

biomass or of a certain chemical when growing on a certain

substrate). This approach, however, cannot yet explain which

manipulations will eventually drive the cell towards this optimum.

A simple approach would be to use flux-variability analysis (FVA,

[13]) to analyze how the feasible ranges of stationary fluxes in a

metabolic network would change when switching from the wild-

type to a desired phenotype. More sophisticated and directed

FBA-based optimization routines operate on the principle put

forward by the OptKnock approach [8]. Here, the key idea is to

search for interventions that lead to obligatory coupling between

the production of biomass and of a desired compound. Mathe-

matically, OptKnock is a bilevel optimization problem where the

inner problem defines biomass optimization as the cellular

objective and where the outer optimization problem is to search

for reaction removals (represented by integer variables) that lead,

under consideration of the inner problem, to maximal product

formation. The bi-level optimization coupling can be reformulated

as a single level mixed integer linear program (MILP). Successful

applications (e.g. [14]) and several refined variants of OptKnock

(including, for example, RobustKnock [9] and OptORF [11])

have been published (for a review see [12]). The advantage of

FBA-based approaches is that they can readily be applied to

genome-scale networks. However, a potential disadvantage is that

they deliver particular solutions only where often multiple

alternate solutions exist which might be equally or even more

relevant than the found solutions. Some methods have therefore

been proposed to enumerate intervention strategies. A brute-force

approach would be to test all single, double, triple … reaction

knockouts with respect to their impact on the objective function

[15,16]. Suthers et al. [15] used this method to enumerate

synthetically lethal reaction sets and found that this search

becomes prohibitive in genome-scale networks for interventions

with more than two or three reaction knockouts (the upper limit

set in [16] was also three). They designed therefore a more

directed search algorithm based on a bi-level optimization method

formulated as a mixed integer linear program (MILP) [15].

However, to the best of our knowledge, enumerated knockout sets

in genome-scale networks did not exceed a cardinality of three.

This is a serious limitation because complex interventions

problems may require 5, 6, 7 or more knockouts, even in

medium-scale networks (see [17] and the examples in the Results

section).

The method of Minimal Cut Sets (MCSs) directly addresses the

enumeration of metabolic intervention strategies [10,18,19].

MCSs specify minimal sets of reactions whose removal (knockout)

will block certain undesired (target) flux distributions. For

example, one can compute (i) MCSs that block growth; (ii) MCSs

that disable the production of a certain compound; (iii) MCSs that

block all flux vectors where a certain compound is produced with a

low (including zero) yield. In the context of MCSs, the term

‘‘minimal’’ refers to the property that reaction cuts specified by

any proper subset of an MCS are insufficient to ensure the full

repression of the undesired behaviour. In this regard, the

minimality of MCSs is similar to the minimality or non-

decomposability property of elementary modes specified by

equation (5). In fact, there is a dual relationship between MCSs

and EMs: the MCSs blocking a certain set of target flux vectors are

the minimal hitting sets of the set of (target) EMs that generate these

behaviors [19,20]. By this property, each MCSs must hit

(knockout) at least one utilized reaction from each EM. As a

consequence, MCSs can be computed as minimal hitting sets (or

so-called hypergraph transversals) of the target modes, for

instance, by the Berge algorithm (see [20]) or by Binary Linear

Programming [21].

Another approach to compute MCSs, which exploits the

inherent dual relationship between EMs and MCSs, was recently

presented by Ballerstein et al. [22]. Briefly, the MCSs of a given

metabolic network can be computed as certain EMs of a dual

network; the latter being derived by a simple transformation of the

(primal) network. This finding makes it possible to calculate MCSs

by using optimized algorithms for EM computation [7].

However, there are two potential problems related to MCSs.

First, when the reactions contained in an MCS are removed, we

are sure that the targeted network functions are disabled but other

(desired) functions might be blocked as well. For instance, it can

occur that an MCS which disables low-yield pathways synthesizing

a desired product also blocks growth of the organism making this

Author Summary

Mathematical modeling has become an essential tool for
investigating metabolic networks. One ultimate goal of
metabolic network modeling is the rational redesign of
biochemical networks to optimize the production of
certain compounds by cellular systems. Accordingly,
several optimization techniques have been proposed for
this purpose. However, for large-scale networks, an
effective method for systematic enumeration of the most
efficient intervention strategies is still lacking. Herein we
present MCSEnumerator, a new mathematical approach by
which thousands of the smallest intervention strategies
(with fewest targets) can be readily computed in large-
scale metabolic models. Our approach is built upon an
extended concept of Minimal Cut Sets, the latter being
minimal (irreducible) combinations of reaction (or gene)
deletions that will lead to the fulfilment of a given
intervention goal. The strength of the presented approach
is that smallest intervention strategies can be quickly
calculated with neither network size nor the number of
required interventions posing major challenges. Realistic
application examples with E.coli demonstrate that our
algorithm is able to list thousands of the most efficient
intervention strategies in genome-scale networks for
various intervention problems.
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MCS impractical. To prevent such side effects, the concept of

constrained minimal cut sets (cMCSs) was introduced by Hädicke and

Klamt [10] where not only undesired but also desired function-

alities (to be preserved) can be specified. When the EMs are

available, an adapted Berge algorithm can be used to conveniently

compute cMCSs by specifying in addition to the target modes

(expressing the unwanted behaviour) a set of desired modes

expressing the functionality that must be preserved. A cMCS will

hit all target EMs and keep a (user-specified) minimal number of

desired EMs. As shown in [10], cMCS provide a very flexible and

powerful approach to enumerate intervention strategies; many

other techniques such as Minimal Metabolic Functionality [2,17],

and the aforementioned OptKnock and RobustKnock may be

reformulated as special cMCSs problems. cMCSs are also well-

suited to identify knockout combinations leading to coupled

growth and product formation.

The second and more serious problem of (c)MCSs is that their

full enumeration in large/genome-scale networks becomes pro-

hibitive. The algorithms requiring as inputs the target (and

possibly desired) EMs are usually not applicable: despite large

progress in algorithmic design [7] the full set of EMs is often not

computable at genome-scale. For the same reason, the dual

approach of Ballerstein et al. [22] cannot be applied either.

On the other hand, for the purpose of applying MCSs in real

networks, those with the smallest number of elements are usually

the most relevant. Thus, it is worthwhile to consider computing

only the (c)MCSs with low cardinality. The effective enumeration

of the smallest cut sets is therefore the key goal of the present work.

Usually, the unwanted/desired functionalities to be disabled/

kept in a metabolic network can be described by sets of linear

equalities and inequalities over the fluxes. For the purpose of

computing MCSs, we could therefore use an exhaustive FBA-

based scheme by testing all single, double, triple and higher

knockout sets whether they are suitable cut sets or not. The

formulation of FBA problems would circumvent the problem to

enumerate the EMs first. However, as discussed above, this

approach becomes problematic if larger knockout sets are required

to solve an intervention problem, as it must test a large number of

candidate sets with increasing MCS size (the number of candidates

grows with
n

k

� �
where n is the number of possible cuts and k the

size of cut set candidates). Therefore, it is not normally possible to

find genome-scale MCSs in reasonable time with more than 4

knockouts using this scheme.

Whereas the direct calculation of smallest MCSs in large-scale

networks cannot be properly addressed yet by current methods, a

method for computing the smallest (or shortest) EMs in genome-

scale networks was recently presented by de Figueiredo et al. [23].

This algorithm formulates the search for the EMs with fewest

elements as a Mixed Integer Linear Programming (MILP)

problem and delivers in the k-th iteration the k-th shortest EM

(hence, it starts with shortest EM, delivers then the second shortest

and so forth). As shown by the authors, this approach can readily

be applied to genome-scale networks to find the first hundred or

even thousand shortest EMs involving the fewest number of

reactions.

The goal of the present work is to realize a similar approach for

computing the k-smallest MCSs from a given network structure.

We show that this can be achieved in two steps. First, the original

network and the actual intervention goal are converted to its dual

representation using the approach of Ballerstein et al. [22]. We

then compute the shortest EMs (up to a certain size or number) in

the dual network by employing a modified algorithm of de

Figueiredo et al. [23]. As the EMs in the dual network correspond

to the MCSs of the primal, the shortest EMs in the dual system will

represent the smallest MCSs of the original network.

The paper is organized as follows: we will first briefly review the

approach of de Figueiredo et al. for computing k-shortest EMs and

introduce several modifications improving the performance of this

algorithm. In particular, we will make use of certain features of

MILP solvers provided for effective enumeration of solutions of a

MILP problem.

Thereafter we will describe how the network constraints

(including inhomogeneous constraints) and the intervention goal

have to be translated into their dual description in which we can

then enumerate the shortest EMs to obtain the smallest MCSs in

the primal network. We shall also explain how constrained MCSs

can be computed within this framework. Finally, to demonstrate

the power of our new approach we will exemplify its use by

computing relevant intervention strategies (of different complex-

ities) in iAF1260, a genome-scale metabolic model for E.coli [24].

These benchmarks demonstrate, for example, that our approach

enables us to enumerate synthetic lethals of E.coli up to size 5

which was not possible before. Moreover, we show that the

algorithm facilitates the calculation of thousands of the minimal

intervention strategies that lead to growth-coupled synthesis of

certain compounds by E. coli.

For the sake of simplicity, throughout the manuscript we will

deal with reaction cut (or knockout) sets, which must in practice be

translated to gene knockout sets to construct the corresponding

mutants. This transformation can be easily achieved if the

corresponding gene-enzyme-reaction associations are available.

The latter could also directly be included in the problem

formulations given below to compute gene (instead of reaction)

cut sets.

Methods

MILP framework for enumerating shortest elementary
modes

Representing sets in a MILP problem. Both elementary

modes and minimal cut sets can be represented as sets of reactions

(sets of active reactions in case of EMs and sets of deleted reactions

in case of MCSs). Since we are mainly interested in the

composition and size (cardinality) of EMs and MCSs it is

important to represent them efficiently in the MILP problem to

be formulated. Here we will make use of indicator variables, a feature

provided by advanced MILP solvers (such as CPLEX – we will

refer to this solver throughout the paper but most of the used

functionality is also available in other MILP solvers). An indicator

is a binary variable that can be thought of as controlling the

activity of one or more constraints. Indicators can be part of the

objective function and constraints controlled by indicators may in

turn influence other indicator variables as well. An important

application of these variables that we use here is to indicate

whether another variable is equal or greater than zero. More

precisely, we use an indicator variable zi to indicate whether a real

and non-negative variable xi is greater than zero:

zi~0<xi~0 and zi~1<xi§cw0: ð6Þ

Importantly, in the following we can use c = 1 as threshold for a

variable to be greater than zero because the solutions (the EMs) to

the MILPs set up here are scalable by arbitrary factors due to the

unboundedness of the xi. In principle, a different positive value

could be chosen for c but setting c = 1 can be expected to not cause

any particular numerical problems.

Enumeration of Metabolic Intervention Strategies
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The functionality of indicator variables is often implemented by

a ‘‘big M’’ formulation with integer variables (cf. eqs.(1) and (2) in

[23]), but as this can lead to numerical problems, the use of

indicators is now preferred (note that by constraints such as (6)

indicator variables are more powerful than simple binary integer

variables). For reasons of clarity, we directly use indicator variables

in the formulations of MILPs where needed (in CPLEX they are

set up through API functions) and leave their integration with the

regular MILP constraints to the MILP solver. The use of binary

indicator variables zi will turn the linear problems discussed so far

into a MILP problem with discrete and continuous variables. In

contrast to Figueiredo et al. [23], we do not demand that the

coefficients in the stoichiometric matrix are integers; in the latter

case one would obtain a pure integer linear problem.

MILP formulation for computing the shortest EM. We

now rephrase the MILP problem presented in [23] for determin-

ing the shortest EM but here with explicit use of indicator

variables. In the following, we assume that the network and the

stoichiometric matrix N contain only irreversible reactions. This is

no limitation since reversible reactions can be decomposed into

two irreversible ones, one in forward and one in backward

direction. Using (6) we now define indicator variables for the

reaction rates ri:

zi~0<ri~0 and zi~1<ri§cw0, i [ 1 . . . nf g ð7Þ

(as mentioned above we can safely use c = 1). For all reaction pairs

(s,t), s,t M {1,…, n} that were derived from the same formerly

reversible reaction we demand that only one of both (directions)

can be active to avoid spurious cycles:

zszztƒ1: ð8Þ

To exclude the trivial vector r = 0, we demand in addition that an

EM must contain at least one active reaction:

Xn

i~1

zi§1: ð9Þ

The determination of the shortest EM can then be expressed as an

optimization problem with the objective function

minimize
Xn

i~1

zi ð10Þ

subject to the linear constraints (1), (2) and the integer constraints

(7)–(9). A solution to the system above assigns values to the vectors

r and z so that all constraints are fulfilled and the value of the

objective function is minimized. The vectors r and z contain the

shortest EM in vector and set representation, respectively. Note

that this MILP does not yet contain constraints enforcing the

elementarity of the solution. However, due to the non-decompos-

ability property of EMs all solutions minimizing (10) must be EMs

and, moreover, they are the shortest EMs as they involve a

minimal number of reactions.

Standard MILP formulation for enumerating shortest

EMs. The actual enumeration of the k-shortest EMs as

implemented by de Figueiredo et al. [23] starts with the shortest

EM and iteratively yields new EMs of increasing size. Because

typically many EMs of the same size exist all EMs of a given size

are returned before larger ones are found. As an essential step,

EMs found in previous iterations need to be excluded by proper

constraints on the zi (see below). The pseudo-code for enumerating

the k shortest EMs thus reads:

ALGO1: k-shortest EMs via de Figueiredo et al. [23]

ems = {};

k = 0;

WHILE k , MaxNumEM

k++;

newem = solveMILP( ); /* calculate one optimal solution

(k-shortest EM) of the MILP */

ems = ems {newem};

add_exclusion_constraint(newem);

ENDWHILE

The last step in the loop remains to be explained, the addition of

exclusion constraints to the MILP which make sure that duplicates

or supersets of already identified EMs will not be returned as

solutions by subsequent solveMILP() calls. An exclusion constraint

takes the following form (cf. eq. (7) in [23]): Let ~zziM{0,1} be the

value of zi in the MILP solution for the EM newem. The constraint

added for this EM reads:

Xn

i~1

(~zzi
:zi)ƒ

Xn

i~1

(~zzi){1: ð11Þ

This constraint (also known as integer cut) makes sure that

solutions found by the next optimizations cannot contain the

complete set of reactions used in the current EM thus excluding

also supersets of the current EM from the solution space. Similar

constraints have frequently been used also in other metabolic

network studies when searching for multiple solutions of a given

optimization problem (see, e.g., [15]). Once an exclusion

constraint has been added to the system it has to be kept for all

further iterations. Consequently, the number of constraints in the

MILP continuously increases.

Enumeration of EMs with fixed size. In this subsection, we

propose a modified scheme for enumeration of shortest EMs. We

first introduce an additional size control constraint

sz lbƒ

Xn

i~1

ziƒsz ub ð12Þ

(with sz_lb, sz_ub MN) specifying how many elements an EM may

contain.

We restate that the exclusion constraints (11) are needed to

prevent supersets of known EMs from being erroneously identified

as EMs. If all EMs up to size d are known and exclusion constraints

for them have been added, then the next solution will be an

elementary set of size s.d (unless all sets have already been found

in which case the MILP will be infeasible). We can therefore fix

the size control constraint to s (sz_lb = sz_ub = s; normally starting

with s = d+1) so that only EMs of exactly this size are calculated. As

long as solutions of size s are enumerated, exclusion constraints for

the solutions would only be required to prevent the same solution

from being found again because supersets of these solutions are

already excluded by the size control constraint. This opens up the

possibility to use the MILP without adding exclusion constraints at

all while generating the solutions of a fixed size s by using the

warm start feature of advanced MILP solvers. With this feature,

the preprocessing will not be reiterated when computing the EMs

of size s and the search tree generated during the previous search

for a solution can be reused for finding the next solution. This

Enumeration of Metabolic Intervention Strategies
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improves the efficiency of the whole procedure and by continuing

with the same search tree it is also made sure that the same

solution is not returned twice. In CPLEX, this feature is provided

by a function populate allowing the enumeration of all possible

solutions to a MILP problem. Also, when searching for EMs of a

fixed size only, the problem does not require an optimization over

the sum of the zi any more (since the latter is fixed as a constraint)

and becomes thus merely a search for a feasible solution which is

potentially easier to solve.

Importantly, when all EMs of size s have been, enumerated

exclusion constraints for the found EMs must be added as usual

before continuing with s+1 (to avoid that supersets of EMs of size s

will be found in subsequent iterations). However, the advantage of

this approach remains because exclusion constraints need not be

added when processing all EMs with cardinality s. We summarize

the basic scheme as follows:

ALGO2: k-shortest EMs via fixed size

newem = solveMILP( ); /* calculate first optimal solution of the

MILP (the shortest EM) */

s = objective_value(newem); /* s: current lower boundary of EM

size */

ems = {newem};

remove_objective_function( ); /* remove the minimization over the zi */

WHILE s, = maxEMsize

setConstraint(EMsize = s); /* fixed size of EM */

newems = populateMILP( ); /* enumerate all feasible EMs

with size s */

ems = ems < newems;

add_exclusion_constraints(newems);

s++;

ENDWHILE

The search that is conducted during a populateMILP call can

usually be halted (e.g., by a time limit) and continued so that the

solutions found so far can be accessed before the search is finished.

This means that even if for a given set size more solutions than can

be practically calculated exist it is still possible to use this scheme to

get at least a partial result.

Enumeration of smallest MCSs by enumeration of
shortest EMs in the dual network

We present now the key methodological development of this

work showing that the basic algorithm for enumerating shortest

EMs introduced in the previous section can also be used to

compute smallest MCSs. The procedure is based on the duality

properties of EMs and MCSs presented by Ballerstein et al. [22]

which we outline in the following. A necessary first step to establish

the scheme is to describe the undesired network functionality (the

‘‘target flux vectors’’ r to be disabled by the MCSs) by a suitable

inequality constraint

tT r§b ð13Þ

where t is a (n61) vector. Usually, t corresponds to a single row

with zeros except a single 1 for a target reaction (rate) whose

operation is to be blocked (e.g. biomass formation if we searched

for synthetic lethals). Setting in addition b to 1 we would target all

flux vectors in which the rate of the target reaction is non-zero (in

our context we can again set b to an arbitrary value greater than

zero without loss of generality).

Constraint (13) specifying the target flux vectors can be

generalized to:

Trƒb: ð14Þ

Here, matrix T (of size t6r) together with b [ <tposes t

inhomogeneous inequality constraints defining the target flux

polyhedron (which may be bounded becoming then a polytope). It

must be made sure that the zero flux vector is not contained in the

target flux polyhedron as it can not be blocked by reaction

knockouts. A nice feature of (14) is that we may directly include

inhomogeneous constraints to characterize target flux vectors (with

maintenance ATP demand as a typical example).

In addition to (14) and to the standard network constraints (1)

and (2), Ballerstein et al. augmented the system by equality

constraints setting all reaction rates to zero

Ir~0 ð15Þ

(I is the (n6n) identity matrix). These constraints ensure that the

system becomes infeasible as the zero flux vector implied by (15)

contradicts (14). Note that (15) can be seen as the maximal (trivial)

cut set knocking out every reaction in the network. In fact, the

MCSs correspond to minimal subsets of the homogeneous

equations in (15) which ensure (induce) inconsistency of the

inequality system posed by constraints (1), (2), (14) and (15).

Minimal subsets of constraints that induce inconsistency of an

inequality system are also known as irreducible inconsistent subsets

(IISs; [25]). Generally, IISs can be calculated as follows: using the

Farkas Lemma, the infeasible primal system is converted to its dual

system which is ensured to be consistent. It can be shown that the

IISs of the primal system correspond to extreme rays (and thus

EMs) in the dual system which makes it possible to calculate them

using methods from EM computation. Since IISs in our particular

case may, in general, also contain constraints from (1) or (2), a

modified algorithm was introduced in [22] to ensure that only

those IISs ( = EMs in the dual system) are computed which are

minimal with respect to the constraints in (15) and correspond thus

to the MCSs.

We thus need to transform the primal system defined by (1), (2),

(14), (15) into its dual which can be written as follows (cf. equation

(8) in [22]; Ndual is the ‘‘dual stoichiometric matrix’’ and rdual the

dual ‘‘rate’’ vector):

Ndualrdual~ NT I {IT
Irrev TT

� �
u

v

h

w

0
BBBBB@

1
CCCCCA~0

bT wƒ{c

u[<m, v[<n, h[<DIrrevD, w[<t, h§0,w§0, cw0

ð16Þ

The (sub-)matrix IIrrev [ <n | DIrrevD contains the identity matrix for

irreversible reactions of the primal system and is filled with

n-|Irrev| zero rows at the position of reversible reactions (note that

reversible reactions of the primal system need not to be split before

dualizing the system; however, reversible reactions affected by (14)

must sometimes be split to properly describe the target flux

polyhedron). As described above, the MCSs in the primal

correspond to particular EMs of the dual system (16) which have

minimal support in the v variables. The dual variables vi,
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iM{1 … n} are thus of particular importance as their values

indicate which reactions participate in an MCS. Concretely, if

vi?0 then reaction i is part of the MCS (irrespective of the sign of

vi), if vi = 0 then it is not. Therefore, similar as we did for reversible

reactions when computing shortest EMs, both positive and negative

values of vi must be checked with indicators and in order to

facilitate this each vi is split into two variables, vpi and vni, both with

the lower bound 0. Furthermore, since h$0 and because the

MILP can directly operate on inequalities, we can rewrite (16) to:

NT
r Ir {Ir TT

r

NT
i Ii {Ii TT

i

 ! u

vp

vn

w

0
BBBBB@

1
CCCCCA

~

§

0

0

 !

bT wƒ{c

u[<m, vp,vn[<n, w[<t,vp,vn,w§0,cw0

ð17Þ

(the sub-matrices with subscript i refer to the part of the

irreversible reactions and subscript r to the part of the reversible

reactions of the primal system). As mentioned above, for the vpi

and vni we introduce the associated indicators zpi and zni, and (in

equivalence to (8)) the constraints

zpizzniƒ1 ð18Þ

stating that vpi and vni cannot be active simultaneously. The

constant c in (17) can again be set to any positive value (e.g., to 1);

this will not change the set of minimal non-zero combinations of

vpi and vni fulfilling (17) which are relevant for the optimization

problem formulated below (eq. (19)).

After dualization, we can now compute the smallest MCSs of

the primal system by applying algorithm ALGO2 in the dual

system. As constraints we need to consider (17) (replacing (1) and

(2) from the primal system) as well as (18) and as objective function

we exchange (10) with

minimize
Xn

i~1

(zpizzni): ð19Þ

Furthermore, because the presence of one reaction in a concrete

solution is now indicated by two separate variables, the exclusion

constraints (11) must be adapted accordingly to (~zzpi and ~zzni are the

values of a given concrete solution and ~zzi is a shortcut for ~zzpi+~zzni):

Xn

i~1

(~zzi
:zpi)z

Xn

i~1

(~zzi
:zni)ƒ

Xn

i~1

(~zzi){1: ð20Þ

In this way both positive and negative values of the original vi are

counted in the same way towards reaction participation in the

MCS. Finally, for the same reason, the size control constraint (12)

sums here over zpi+zni as in the objective function (19).

The MCSs of the primal network are eventually obtained by

taking the z-vector of the solutions found in the dual; z is obtained

by collapsing zpi and zni: zi = zpi+zni.

Enumeration of smallest constrained MCSs
In the previous subsection we dealt with enumeration of smallest

MCSs, however, we have not yet clarified how constrained MCSs

can be computed by this approach. As it turns out, this is

straightforward: one first enumerates the smallest MCSs blocking

the undesired flux vectors as described above. We can assume that

the desired flux vectors (of which at least one has to be kept) is

formulated by appropriate inequalities - similar as for the targeted

undesired flux vectors in (14):

Drƒd: ð21Þ

We can then filter the true cMCS from the set of (unconstrained)

MCSs by testing for each MCS with a separate linear program

whether the removal of the reactions in the MCS still allows the

network to perform the desired function, i.e., whether the system

given by (1), (2), and (21) is feasible when setting the rates of the

reactions contained in the MCS to zero. From our experience, the

computational costs for these tests are negligible compared to the

calculation of the smallest MCSs, even if hundred thousand MCSs

have to be tested (see Results section).

Implementation
The MCSEnumerator method has been integrated as a new

functionality in the CellNetAnalyzer package, a MATLAB toolbox for

biological network analysis [26,27]. The implementation uses the

IBM ILOG CPLEX Optimization Studio V12.4 for solving the

respective MILP and LP problems. Arbitrary intervention problems

can be defined by providing the respective matrices and vectors

describing the network and the desired and undesired flux vectors.

The resulting MILPs are set up via the JAVA-CPLEX API and

MATLAB’s integrated JVM while for running the LPs the

MATLAB-CPLEX interface is used. A separate package containing

the data and script files needed for running the iAF1260 examples

discussed herein can be downloaded from http://www.mpi-

magdeburg.mpg.de/projects/cna/etcdownloads.html.

Results

We analyze basic properties of the runtime behavior of our

algorithm by means of three realistic benchmark problems with

different complexities. All computations were performed with the

CPLEX 12.4 MILP solver. When using multiple threads

deterministic parallel mode was used to get repeatable behaviour.

The search tree that CPLEX dynamically constructs took up less

than 3 GB of RAM for all the systems used here.

Enumeration of MCSs blocking growth in a model of the
central E. coli metabolism

In order to compare our MILP-based MCS enumeration

scheme to other approaches the same benchmark problems as in

Table 1 in [22] were used. The target of the (unconstrained) MCSs

in these problems is the deactivation of biomass synthesis in a

smaller model of the central metabolism of E. coli for growth under

different substrates (acetate, succinate, glycerol, glucose). The

MCSs determined in this way will thus correspond to the synthetic

(reaction) lethals for E. coli (whose compositions depend strongly

on the provided substrate). Before using the different MCS

calculation routines the metabolic network is compressed by

combining correlated reactions (operating with a fixed ratio under

steady state conditions) to single cumulated reactions [6]. The

compression in the primal system can also conducted if the

computation is done in the dual system. MCSs found in the

compressed network must be decompressed after calculation [18].

The number of calculated MCSs and computation times are

shown in Table 1. As a first observation, it is apparent that

calculation of EMs followed by the Berge algorithm (computing

MCSs as the minimal hitting sets of the selected target EMs; Haus

Enumeration of Metabolic Intervention Strategies

PLOS Computational Biology | www.ploscompbiol.org 6 January 2014 | Volume 10 | Issue 01 | e1003378



et al. 2008) is the most efficient of the shown MCSs calculation

methods. The approach of Ballerstein et al. to compute primal

MCSs as EMs in the dual system performs similar to EM

calculation+Berge algorithm in the (primal) network but in its

current implementation it requires a lot of memory. For this

reason, the MCSs for glucose could not exhaustively be

enumerated by this approach on the computer used (with an

effective memory limit of 2GB per process).

Although the MILP algorithm developed herein was actually

developed to compute the smallest MCSs, we can use it here even

for enumerating all of them. The EMs in the dual network (the

MCSs in the primal) where computed with both MILP

formulations for shortest EM calculation: ALGO1 (the original

approach by de Figueiredo et al. [23] implemented with indicator

variables) and the ALGO2 approach calling the populate sub-

routine for fixed EM sizes. Generally, applying the MILP

formulations to the dual system is at first sight comparatively slow

even when using multiple threads. Nonetheless, it is apparent that

solving the dual system with our new ALGO2 is more efficient

(,17 times faster) than ALGO1 based on the scheme used by de

Figueiredo et al. [23]. As can be seen for the MCSs with glucose as

substrate, increasing the number of threads from 1 to 4 on the

same CPU decreases the time needed for computation to some

extent when using ALGO1 or ALGO2. Using 12 threads on a

compute cluster node yields a more noticeable speed improvement

but, as in the case of 4 threads, the combined computation times of

all threads is still larger than in the case where a single thread is

used.

The main advantage of our new approach can be seen in the

case where only the MCSs up to size 4 have to be calculated (fifth

row in Table 1): here the dual approach in combination with

ALGO2 is clearly the fastest way to determine small MCSs among

the approaches compared.

Enumerating synthetic lethals in an E. coli genome-scale
network

As described in the Introduction section, the direct calculation

of EMs and MCSs in genome-scale networks is normally

infeasible. For this reason, the Berge algorithm and the dual

system approach by Ballerstein et al. used in the previous example

become impractical. In contrast, with the MILP approach

enumerating shortest EMs in the dual system as proposed here,

calculation of small MCSs becomes possible.

To demonstrate this, we use the E. coli genome-scale network

iAF1260 [24] that accounts for 1260 ORFs and defines the

reversibilities of the included reactions. In total, this network

comprises 1668 internal metabolites and 2382 reactions including

304 exchange reactions with the environment and 29 spontaneous

reactions. The intervention goal for the MCSs to be computed is

again to disable growth (biomass formation) when glucose is

available as sole carbon source. The glucose uptake rate was fixed

to rmax
GlcUp = 10 mmol/(gDW?h) and the ATP maintenance require-

ment was set to the standard value of rATPmaint = 8.39 mmol/

(gDW?h). Analogous to Suthers et al. [15] we considered a cell

viable if it has a growth rate larger than mmin$0.01?

mmax = 0.0093 h21. With these inhomogeneous conditions, the

MCSs will thus correspond to synthetic reaction lethals as also

computed by Suthers et al. [15], where full enumeration for MCSs

up to size 3 was achieved (some MCSs of size 4 could also be

determined). With glucose and oxygen available 152 reactions are

disabled as suggested by the gene-regulatory model included in the

iAF1260 reconstruction. A subsequent flux variability analysis

revealed 991 blocked reactions in total and these were removed
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from the network. In addition, spontaneous and exchange

reactions, of which 23 resp. 97 remain after removing blocked

reactions, were not allowed to take part in any MCS. After

removing the blocked reactions network compression by combin-

ing correlated reaction sets was again applied by which the

(primal) network could be reduced to 562 metabolites and 936

(lumped) reaction subsets of which 816 can be knocked out. By

using ALGO2 in the dualized system, for the first time it was

possible to fully enumerate all synthetic (reaction) lethals of sizes 1

to 5 as shown in Table 2 yielding a total set of 2486 MCSs.

Although the last iteration (MCSs with 5 knockouts) took several

days all of them could be determined. Comparison of the runtimes

of our MCSEnumerator implementation and of SL Finder (used in

[15]) for the calculation of MCSs of size two and three indicates

that our algorithm is more than 100 times faster therefore allowing

full enumeration of synthetic reaction lethals also of size 4 and 5.

We also tested the homogeneous version of the above

intervention problem, that is, we calculated the MCSs blocking

growth without the additional constraints for ATP maintenance

(rATPmaint is a free flux), without restriction on glucose uptake and

without the minimum threshold for the growth rate (all flux vectors

with biomass production .0 have thus to be blocked). As

expected, for we found less MCSs of size 1–5 (1933 in total)

because the target polyhedron containing the target flux vectors

was expanded leading to larger MCSs with more than 5 reaction

deletions. We also observed that the computation of the MCSs in

the homogeneous problem was much faster (,17 hours) than for

the inhomogeneous scenario (,430 hours) indicating that inho-

mogeneous constraints may complicate the whole calculation

procedure.

Constrained MCSs for coupling anaerobic growth and
ethanol production in E. coli

The following third example relates to a typical problem of

finding rational intervention strategies for metabolic engineering

purposes. We here focus on a biotechnologically relevant

application, namely to let E. coli produce a biofuel (ethanol) from

glucose. The intervention goal is thus to disable flux vectors with a

low ethanol yield in E. coli (undesired behavior) while retaining the

capability for both maintenance and growth of the bacterium

under anaerobic conditions (desired functionality). This forms a

constrained MCS problem. All cMCSs that fulfill the stated

requirements will lead to obligatory coupling between growth and

ethanol formation.

We used again the iAF1260 genome-scale network model of

E. coli metabolism but this time with the oxygen uptake removed to

establish anaerobic conditions on the network. As before, glucose

is the only available carbon source. To study the effect of different

capacities for substrate uptake, we considered two possible limits

for the glucose uptake rate: rmax,1
GlcUp = 10 mmol/(gDW?h) and rmax,2

GlcUp =

18.5 mmol/(gDW?h). The latter value has been measured under

anaerobic conditions where E. coli tends to exhibit higher substrate

uptake rates [28]. The ATP maintenance requirement was set to

rATPmaint$8.39 mmol/(gDW?h).

With these values in mind, we formulated the following

intervention goal: the task is to identify cMCSs that guarantee a

minimal ethanol yield of Y min,1
Eth=Glc

w1:4 or, in a second scenario, of

Y min,2
Eth=Glc

w1:8. In addition, a minimum growth rate of at least

mmin$0.001 h21 was demanded.

With these inhomogeneous constraints we can now specify the

target flux polyhedron containing all undesired network behaviors

to be eliminated by the cMCSs:

fr[<qD Nr~0 ^ ri§0 Vi [ Irrev ^ rATPmaint§

8:39 ^ rGlcUpƒrmax
GlcUp ^ YEth=Glc(r)ƒY min

Eth=Glcg
ð22Þ

(YEth/Glc(r) denotes the ethanol yield of the reaction rate vector r).

The set of desired behaviors from which we want to keep at least

some flux vectors is given by:

fr[<qD Nr~0 ^ ri§0 Vi [ Irrev ^ rATPmaint§

8:39 ^ rGlcUpƒrmax
GlcUp ^ YEth=Glc(r)wY min

Eth=Glc ^ rm§mming
ð23Þ

(The constraints due to anaerobic growth (e.g., oxygen uptake is

zero) were not restated in (22) and (23).)

With these values, several linear programs were run in a

preprocessing step to explore network capabilities. For rmax,1
GlcUp and

rmax,2
GlcUp, the maximal ethanol yield is 2 (molecules ethanol per

molecule glucose). The maximum growth rate is 0.1955 h21 (for

rmax,1
GlcUp) and 0.4954 h21 (for rmax,2

GlcUp) if we want to achieve an ethanol

yield of at least 1.4 (Y min,1
Eth=Glc

); these values drop to 0.1356 h21and

0.4827 h21, respectively, for a minimal ethanol yield of 1.8

Table 2. Enumeration of smallest MCSs (synthetic reaction lethals) disabling growth in a genome-scale network model of E.coli.

MCS size number of MCSs physical time with MCSEnumerator physical time with SL Finder

1 277 11.1 s [included]

2 96 39.1 s 91 min

3 247 16.8 min .75.5 h *)

4 402 18.5 h n/a

5 1464 410.4 h n/a

MCSs (synthetic reaction lethals) that disable growth in an E. coli genome-scale metabolic network with glucose as sole carbon source. The full/compressed networks
contain 1668/562 metabolites and 2382/936 reactions. For computation 12 threads on a cluster node with two Intel Xeon DP X5650 processors (each 6 cores) were
used. The computation time given in each row specifies the time needed to calculate the MCSs of the respective size. The total computation time for MCSs of size 1–5
was thus ,430 h. In order to get comparable run times the SL Finder was executed on the same computer with GAMS 24.1.3 (using CPLEX 12.5.1 as solver). All physical
memory was made available and up to 9 GB were used during optimization. The MCSEnumerator calculations were also done on a typical desktop PC with a quad-core
CPU (Intel(R) Core(TM) i5-3570, 3.40 GHz) showing that the computation times increase only moderately by approximately 50%.
*)Only 226 synthetic triple lethals (which are all contained in the MCSs found by MCSEnumerator) could be calculated after which optimization could not be continued
due to numerical problems reported by the solver.
doi:10.1371/journal.pcbi.1003378.t002
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(Y min,2
Eth=Glc

). Hence, we can be sure that the set of desired behaviors

is not empty.

We then computed the cMCSs. As described in the Methods

section, the calculation of cMCSs (accounting for undesired and

desired behavior) based on our approach requires to first compute

the MCSs blocking the undesired behavior and to keep afterwards

only those MCSs that admit the desired behavior. This test is done

for each found MCS by solving a separate linear program (LP)

which verifies whether the remaining network supports the desired

behavior. To reduce the search space, blocked reactions for the

network under desired ethanol production conditions were

determined and removed in a preprocessing step using flux

variability analysis [13]. In addition, 104 reactions were disabled

for growth on glucose as suggested by the gene-regulatory model

included in the iAF1260 reconstruction. The FVA then identifies

996 blocked reactions in total, which are removed from the

network. Furthermore, the remaining 19 spontaneous and 94

exchange reactions were again not allowed to take part in the

MCSs. The latter can be easily achieved by setting the upper

bounds of the corresponding zpi and zni indicator variables to zero.

After network compression, the (primal) network could be

reduced to 562 metabolites and 958 (lumped) reaction subsets of

which 845 can be knocked out.

Note also that the disruption of glucose uptake or ATP

maintenance are valid MCSs deleting all undesired behaviors

but they violate for trivial reasons the desired functionality (growth

not possible) and can thus not be contained in any valid cMCSs.

Such reactions being essential for the desired flux space could also

be identified at an early stage and then be excluded from the

search space.

Table 3 shows the results for the computation of the (c)MCSs

for this problem. As we considered two different maximal glucose

uptake rates and two different minimal ethanol yields we obtained

four scenarios. We were able to enumerate all cMCSs up to size 7

in all four scenarios within 21 hours. For each scenario, after

calculating first the (unconstrained) MCSs up to size 7, each MCS

was tested with a LP whether the solution space of (23) is non-

empty (i.e., whether the MCS is a valid cMCS). These tests took

less than 7 minutes running time (single-threaded; on the same

computer that was used for MCS calculation) for each of the four

scenarios. Hence, the LPs account only for a negligible part of the

overall computational costs.

As can be seen in Table 3, only a fraction (between 1.3% and

6%) of the computed MCSs up to size 7 turned out to be valid

cMCSs. However, a large number of several thousand cMCSs

could eventually be computed for each scenario.

We then analyzed the cMCSs in more detail. A first observation

in Table 3 is that in three of the four scenarios considered cMCSs

were found comprising only three reaction deletions; whereas for

the case with smaller glucose uptake and higher demanded ethanol

yield (scenario 2 in Table 3) at least 5 reaction removals are

required. Generally, it is intuitive that expanding the space of

undesired flux vectors in (22) and reducing the space of desired

solutions in (23) by increasing Y min
Eth=Glc can lead to larger cMCSs

since (i) a larger set of undesired flux vectors must be suppressed,

and (ii) due to the reduced set of desired behaviors a smaller number

of MCSs become admissible cMCSs. Hence, there is no cMCS in

scenario 2 that is a subset of any cMCSs in scenario 1 in Table 3, but

the other way around can occur. The same relationship exists

between scenarios 3 and 4. Thus, the higher the yield that we want

to guarantee by an intervention strategy, the larger is the required

effort in terms of number of reaction knockouts.

The situation is different in the case of increasing rmax
GlcUp. While

the target flux polyhedron in (22) increases potentially demanding

more cuts, the space of desired behaviors in (23) expands as well

meaning that an MCS that was not a suitable constrained MCS in

the case with smaller rmax
GlcUp could now become a suitable cMCS.

Hence, when increasing rmax
GlcUp, some cMCSs of a given size might

disappear whereas others may arise as new solutions. This is also

reflected by the cMCSs of size three which are depicted in Figure 1.

All these cMCSs block central pathways for glucose degradation. An

essential cut (red cross in Figure 1) for all cMCSs is that of the

glucose-phosphate isomerase blocking upper glycolysis. In addition,

all the considered cMCSs block the Entner-Doudoroff pathway by

either cutting the phosphogluconate dehydratase or the 2-keto-3-

deoxyphosphogluconate aldolase (blue crosses in Figure 1). In

addition, for scenario 1 (with the smaller values for rmax
GlcUp and

Y min
Eth=Glc), we have to cut one additional reaction out of 4 reactions of

the pentose phosphate pathway (dark green crosses in Figure 1)

whereas for scenarios 3 and 4 (whose two cMCSs of size three are

identical) the third cut is given by the pyruvate-formate lyase

reaction (light green cross in Figure 1). This result confirms that

increasing rmax
GlcUp (from scenario 1 to scenario 3) may remove

existing cMCSs but also produce new ones.

Table 3. Computation of constrained MCSs leading to coupled ethanol and biomass formation by E. coli under anaerobic growth
on glucose.

Scen. rmax
GlcUp Ymin

Eth=Glc # MCSs # cMCSs cMCSs size runtime [h] phys./CPU

3 4 5 6 7

1 10 1.4 185302 8342 8 46 283 1309 6696 20.5/207.6

2 10 1.8 153338 1987 0 0 77 317 1593 13.8/136.8

3 18.5 1.4 156477 8819 2 98 533 1737 6449 16.6/166.4

4 18.5 1.8 138675 4618 2 70 509 917 3120 20.9/212.2

Constrained MCSs up to size 7 that lead to ethanol synthesis with high yield in E.coli while slow growth is possible. Four scenarios were considered differing in the
maximal glucose uptake rate (rmax

GlcUp ; given in mmol/(gDW?h)) or/and in the demanded minimal ethanol yield (Y min
Eth=Glc ; given in molecules ethanol per molecules

glucose) in the strain to be constructed. The total number of MCSs (#MCSs) refers to knock-out sets blocking flux vectors with low ethanol yield; the number of
constrained MCSs (#cMCSs) refers to the subset of MCSs which allow in addition growth above the minimum threshold (for details see text). For the cMCSs found, the
distribution over cut set sizes are also shown (no cMCSs with less than 3 cuts exist; the upper limit of cuts was set to 7).
The full/reduced networks contain 1668/564 metabolites and 2382/958 reactions (the reactions in the compressed network represent lumped reaction subsets). For
computation 12 threads on a cluster node with two Intel Xeon DP X5650 processors (each 6 cores) were used.
doi:10.1371/journal.pcbi.1003378.t003
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The cMCSs for scenario 1 (the red cut, one of the two blue cuts

and one of the four dark green cuts in Figure 1) also illustrate the

difference between reaction and enzyme/gene cut sets. Since two

of the four reactions with a green cross are catalyzed by the same

enzyme (transketolase) knocking out the corresponding two genes

(there are two different transketolases in E. coli) would actually cut

two reactions at the same time for which the model predicts that E.

coli can not grow anymore. Thus, only four of the eight cMCSs

remain valid on gene basis. However, as already explained earlier,

those effects can be taken into account based on gene-enzyme-

reaction associations.

The fact that three reaction or gene knockouts may suffice to

induce a high ethanol yield of more than 1.8 (scenario 4) is a

surprising fact on its own. Previous work on computing

intervention strategies for ethanol overproduction in a smaller

(core) network of E. coli showed that more than three reaction

knockouts would be required to ensure a large ethanol yield (see,

e.g., [10]). Given the results with three knockouts made herein, this

might be a bit confusing since much more inefficient pathways will

exist in a genome-scale network which must all be blocked.

However, similar as discussed above for a scenario with increased

substrate uptake rates, a larger network may also have additional

high-yield metabolic routes (allowing coupled biomass and ethanol

synthesis) not contained in the smaller network which could

‘survive’ a cut set for blocking the low-yield pathways. We can thus

conclude that genome-scale network models may reveal metabolic

engineering strategies that are smaller than those found in small-

or medium-scale subnetworks. Importantly, one always has to keep

Figure 1. Constrained MCSs with three reaction knockouts leading to coupled ethanol and biomass formation by E. coli under
anaerobic growth on glucose. The graphics indicates the found cMCSs requiring only three knockouts (Table 3). In total, 8 cMCSs were found for
scenario 1 and two cMCSs for scenarios 3 and 4 (both being identical for the two scenarios). All these cMCSs cut the reaction with the red cross and
one of the two reactions with a blue cross. In addition, for scenario 1, one of the dark green cuts has to be made whereas the two cMCSs for scenario
3 and 4 require the light green cut (see also explanations in the text).
doi:10.1371/journal.pcbi.1003378.g001
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in mind that an MCS predicts an intervention purely from

stoichiometric relationships. Whereas blockage of the undesired

flux vectors can be guaranteed if the network structure is correct, it

can not ensure that the remaining pathways will have the capacity

to carry a flux that is large enough to fulfil the requirements of the

desired flux vectors. In addition, unknown regulatory constraints

may further reduce the space of desired behaviors by which some

cMCSs may become invalid.

We mention here that two other intervention strategies with

three knockouts for production of ethanol by E.coli were presented

in [9]. However, these solutions ensure high ethanol yield only if

the cell grows at maximal growth rate whereas our interventions

are more stringent since they guarantee a high ethanol yield for any

growth rate of the mutant.

Having exhaustively enumerated the cMCSs up to a given size

enables one to analyze essential features and performance

measures of all found intervention strategies by which eventually

the optimal knockout strategy can be selected. Figure 2 shows

exemplarily two such performance studies. Figure 2A displays for

each cMCS of scenario 3 the relationship between (i) maximal

growth rate, (ii) minimal (guaranteed) product yield (shown for

maximal substrate uptake rate; the lower boundary for arbitrary

substrate uptake rates still holds to be 1.4), and (iii) number of

required reaction deletions (cut set size). It can be seen that most

cMCSs (including those with the smallest size 3) achieve relatively

low growth rates (lower than 0.1 h21) and that in order to have a

growth rate larger than 0.1 h21 it is necessary to use cut sets with a

least 6 knockouts. If higher growth rates and/or smaller cut sets

are required the minimal product yield would have to be lowered.

Other performance measures of designed mutant strains can be

studied as well. One such proposed measure is substrate-specific

productivity (SSP) which is the product of the growth-rate and the

product yield [29]. Figure 2B shows the SSP of all cMCSs

computed for scenario 3. It can be seen that highest SSP values

can only be achieved with cut sets of size 6 or 7. This illustrates

again that a trade-off between number of knockouts and certain

performance measures has sometimes to be made when eventually

selecting an intervention strategy for implementation. Such a

screen is greatly facilitated if all cut sets have been enumerated up

to a certain size. More advanced screening methods for evaluating

strain design strategies have been suggested in [30] and could

readily be applied to calculated cMCSs.

As a technical note, it is not absolutely mandatory to have all

MCSs (up to a maximal size) enumerated before running the LP

checks for testing the ‘‘survival’’ of some desired flux vectors: these

checks could be (independently) performed as soon as an MCSs

has been found by the MILP solver. In fact, it is in principle

possible to integrate the LP into the MILP so that the cMCSs are

computed directly which offers the advantage that far fewer

exclusion constraints need to be integrated while the enumeration

proceeds. In practice, however, this approach showed a markedly

inferior performance for the system studied here. One reason is

that the LP adds further degrees of freedom to the solution space

and leads to redundant solutions for the cMCSs which requires a

more intricate control of the populate procedure to suppress these

redundant solutions. Whether the integrated approach can be

reformulated in a manner that facilitates a more efficient

calculation of its cMCSs solutions is a potential topic for further

investigation.

To summarize the results of this sub-problem, our algorithm

enabled the enumeration of all reaction knock-out sets up to size 7

that lead to coupled ethanol and biomass synthesis in E.coli. To the

best of our knowledge, this exceeds by far other attempts to

enumerate such metabolic engineering strategies in large-scale

networks.

If more computational capacity is available, one might try to

find even larger cMCSs. However, the best knockout strategy to be

implemented is likely to be contained among the up to 8819

Figure 2. Performance measures of calculated strain designs for growth-coupled ethanol production in E.coli. A: Minimal (guaranteed)
ethanol yield (under maximal substrate uptake rate) vs. maximal possible growth rate for each cMCS of scenario 3 in Table 3. The size of the cMCSs
are indicated by different markers. It becomes apparent that when higher maximal growth rates are required larger cut sets become necessary
implying also a decrease in the guaranteed ethanol yield. B: Substrate-specific productivity (SSP) induced by the cut sets of scenario 3 in Table 3. Cut
sets were ordered with respect to the number of required knockouts. Note that some crosses represent several cMCSs having, for example, the same
SSP.
doi:10.1371/journal.pcbi.1003378.g002

Enumeration of Metabolic Intervention Strategies

PLOS Computational Biology | www.ploscompbiol.org 11 January 2014 | Volume 10 | Issue 01 | e1003378



smallest cMCSs found as the number of required interventions will

be one (though not the only) key criterion when deciding for a

concrete strain design.

Constrained MCSs for coupling aerobic growth with
fumarate or serine production in E. coli

One large-scale study to evaluate the growth-coupled produc-

tion potential in E.coli has been presented by Feist et al. [29]. The

aim was to identify strain designs based on reaction knockouts with

a maximum production rate at optimal growth for a number of

substrate/product pairs. This was achieved by first applying

OptKnock [8] with a knockout limit of either three or five and

then using the results in the initial population for OptGene which

employs genetic programming as optimization method [31].

OptGene was then run with a time limit of one week to find

additional strain designs with up to 10 knockouts. As underlying

E.coli model the iAF1260 reconstruction [24] was taken and in

order to reduce the search space the knockouts were restricted to a

subset of about 150 reactions in the network. As minimum growth

rate for the strains a limit of 0.1 h21 was chosen and an ATP

maintenance of 8.39 mmol/(gDW?h) required. Both glucose and

oxygen uptake were limited to 20 mmol/(gDW?h). Given this setup

it was possible to calculate strain designs for many substrate/

product pairs but for some of them strains with only low

productivity or even no strains with growth-coupled product

synthesis were found.

Here we wanted to test the potential of our method for some of

the intervention problems. We focused on the aerobic production

of either fumarate or serine from glucose which both have a

potential for high yield as calculated by FBA. However, growth-

coupled strains for the production of fumarate only achieved 20%

(5 knockouts, OptKnock) respectively 23% (7 knockouts, Opt-

Gene) of the theoretical maximum while for serine no growth-

coupled strains could be identified in [29]. We therefore applied

our approach to look for (additional) strain designs for these two

configurations.

To demonstrate the power of our method in dealing with large-

scale systems, we increased the search space drastically compared

to [29] by allowing all reactions to be knocked out except for those

that are either spontaneous or essential for the production

condition. Since glucose is taken up under aerobic conditions,

the same 152 reactions as for the calculation of the synthetic lethals

above have also been removed. This results in 718 (fumarate) resp.

719 (serine) knockout candidates (compared to 150 candidates

used in [29]). As the results in [29] suggested that growth coupling

will be difficult for fumarate and serine production we chose a

comparatively low minimal product yield of 0.5. This constraint

together with the ATP maintenance requirement und the uptake

limits was used to calculate MCSs that disable flux vectors with

product yields below 0.5. Afterwards, only those (constrained)

MCSs were kept that fulfil the minimal growth rate requirement.

For fumarate production, the MCSs up to size 7 were calculated

(taking 13.6 h) from which 30 cMCSs (all of size 7) could be

extracted. Applying those cMCSs would result in production

strains exhibiting – at maximal substrate uptake rates – a

guaranteed (minimal) fumarate yield between 0.71 and 0.89

corresponding to minimal production rates between 40.9% and

51.3% of the theoretical maximum of 34.68 mmol/(gDW?h) (note

that the minimal yield for any substrate uptake rate is ensured to

be 0.5 as demanded by the constraints for the desired flux vectors).

As for the ethanol study, all these values are independent of the

assumption of optimal growth. Likewise, in the case of serine

production, the MCSs up to size 6 were calculated (taking 3.1 h)

from which 140 cMCSs (all of size 6) could be extracted. These

would result in strains with with a guaranteed serine yield between

0.71 and 0.91 (at maximal substrate uptake rate) corresponding to

minimal production rates between 36.6% and 47.0% of the

theoretical maximum (38.71 mmol/(gDW?h)). Hence, our results

show that significantly larger fumarate production rates can be

achieved with 7 knockouts than computed by OptGene. In case of

serine where no suitable knockout strategy could be identified in

[29], our method proves the existence of strain designs for coupled

biomass and product synthesis and that 6 reaction knockouts

would be theoretically sufficient to guarantee a serine yield of 47%

of the theoretically maximal value. Moreover, tens of the smallest

strain designs with 6 knockouts could be identified by our

algorithm in a comparably fast way and larger ones could also be

determined if desired.

Discussion

In this work we presented MCSEnumerator, a new algorithmic

approach to enumerate the smallest (c)MCSs up to a given size in

genome-scale networks. This approach is based on a MILP

problem calculating the shortest EMs in the dual representation of

the metabolic network eventually yielding the smallest cMCSs.

The whole procedure can be summarized by five steps:

1) Build the metabolic network as usual by specifying the

stoichiometric matrix and the irreversibility constraints

(equations (1) and (2)). Optionally, network compression steps

can be applied.

2) Define the space of undesired (target) flux vectors and

(optionally) the space of desired flux vectors by means of the

linear inequalities (14) and (21), respectively. The (c)MCSs to

be computed will ensure that no target flux vector can operate

whereas the operation of at least one desired flux vector will

be feasible.

3) Build the dual system which is immediately given by (17).

Introduce indicator (or binary) variables (z) for the v variable

and pose the MILP optimization problem for computing the

shortest EM in the dual system (19).

4) Enumerate the k-shortest solutions (EMs) of the MILP

problem from step 3 by using ALGO2.

5) Translate the EMs found in the dual to MCSs in the primal. If

desired behaviors were specified in step 2, run one LP for each

MCSs to check whether it is a constrained MCS, i.e., whether

some desired flux distributions remain feasible after cutting

the reactions contained in the MCS.

With these five steps, MCSEnumerator provides a generic

approach for enumerating smallest intervention strategies; one just

has to plugin the corresponding matrices in equation (17) and can

then start the calculation using ALGO2.

Apart from the combination of dualization and shortest EM

calculation in step 3, another key development made herein is the

improvement of the required sub-routine for computing shortest

EMs (ALGO2) which is now based on a more efficient

enumeration of feasible EMs with fixed size and which

consequently makes use of available enumeration features of

modern MILP solvers. Appropriate integration of such function-

alities could also be useful to effectively solve other enumeration

problems in the field.

Despite the fact that calculation of all (c)MCSs with our

approach is slower compared to other approaches requiring EMs

to be calculated in a first step, it has the advantage that the smallest

(c)MCSs, which are often the most interesting ones, can be found

first and that no EMs need to be calculated beforehand. This

Enumeration of Metabolic Intervention Strategies

PLOS Computational Biology | www.ploscompbiol.org 12 January 2014 | Volume 10 | Issue 01 | e1003378



property renders (c)MCSs calculation feasible in genome-scale

networks. Also, the number of elements in an MCS has no major

impact on the performance as it would have in brute-force

enumerations (that exhaustively test all reaction subsets) and as it

has been observed also for several directed search algorithms.

The main drawback of using a MILP stems from the fact that

constraints have to be continuously added to remove already

found MCSs and their supersets from the solution space. Hence

this method is bound to slow down with increasing number of

constraints which explains the inferior performance when com-

puting all MCSs. However, the shown application examples

demonstrated that our approach is capable to compute hundreds

of thousands of smallest MCSs and several thousand smallest

constrained MCSs in genome-scale networks (Table 3) which has

not been achieved before. The large set of smallest cMCSs should

suffice to characterize the space of the most efficient intervention

strategies from which, in metabolic engineering applications, the

most promising ones can be selected, possibly by screening the

cMCSs via certain performance parameters.

The algorithmic advantage of the presented approach lies thus

in the possibility to quickly (compared to other approaches)

calculate the smallest (c)MCSs with neither network size nor the

number of elements in the (c)MCSs posing major challenges. With

these results and due to the fact that the approach of (c)MCSs

allows the setup of complex intervention problems in a flexible and

convenient way, we expect that a large number of metabolic

network studies can benefit from our conceived framework.

An interesting aspect for future work will be to investigate how

far ALGO2 (the sub-routine used for shortest EM calculation) can

be generalized to enumerate also other elementary sets arising in

different contexts of computational biology (e.g., for calculating

minimal intervention sets in signaling or regulatory networks [32]).
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