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Abstract

The role intrinsic statistical fluctuations play in creating avalanches – patterns of complex bursting activity with scale-free
properties – is examined in leaky Markovian networks. Using this broad class of models, we develop a probabilistic approach
that employs a potential energy landscape perspective coupled with a macroscopic description based on statistical
thermodynamics. We identify six important thermodynamic quantities essential for characterizing system behavior as a
function of network size: the internal potential energy, entropy, free potential energy, internal pressure, pressure, and bulk
modulus. In agreement with classical phase transitions, these quantities evolve smoothly as a function of the network size
until a critical value is reached. At that value, a discontinuity in pressure is observed that leads to a spike in the bulk modulus
demarcating loss of thermodynamic robustness. We attribute this novel result to a reallocation of the ground states (global
minima) of the system’s stationary potential energy landscape caused by a noise-induced deformation of its topographic
surface. Further analysis demonstrates that appreciable levels of intrinsic noise can cause avalanching, a complex mode of
operation that dominates system dynamics at near-critical or subcritical network sizes. Illustrative examples are provided
using an epidemiological model of bacterial infection, where avalanching has not been characterized before, and a
previously studied model of computational neuroscience, where avalanching was erroneously attributed to specific neural
architectures. The general methods developed here can be used to study the emergence of avalanching (and other complex
phenomena) in many biological, physical and man-made interaction networks.
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Introduction

An important problem in many scientific disciplines is

understanding how extrinsic and intrinsic factors enable a complex

physical system to exhibit a bursting behavior that leads to

avalanching [1,2]. Avalanching is a form of spontaneous

behavior characterized by irregular and isolated bursts of activity

that follow a scale-free distribution typical to systems near

criticality. In the brain, this mode of operation is thought to play

a crucial role in information processing, memory, and learning

[2–6].

Although avalanche dynamics have been extensively studied in

vitro [7] and in vivo [8,9] for cortical neural networks, it is not clear

what causes avalanching. A recent in silico attempt to address this

issue [10] was based on approximating the dynamics of a

Markovian model of nonlinear interactions between noisy

excitatory and inhibitory neurons by Gaussian fluctuations around

the macroscopic system behavior using the linear noise approx-

imation (LNA) method of van Kampen [11]. This led to the

conclusion that the cause of neural avalanches is a balanced feed-

forward (BFF) network structure. We argue here that the Gaussian

approximation used to arrive at this conclusion is not appropriate

for studying avalanching, thus leading to deficient results. As a

consequence, understanding the underlying causes of avalanching

in silico is still an open problem.

To address this challenge, we introduce a theoretical framework

that allows us to examine the role of intrinsic noise in inducing

critical behavior that leads to avalanching. Although the idea that

noise may induce avalanching has been proposed more that a

decade ago [12], our framework leads to a novel understanding of

the underlying causes of avalanching in a particular class of complex

networks. We focus on a general Markovian network model, which

we term leaky Markovian network (LMN), with binary-valued (0,1)
state dynamics. These dynamics are described by a time-dependent

probability distribution that evolves according to a well-defined

master equation [13] (see Methods for details). It turns out that a

LMN is a continuous-time stochastic Boolean network model with a

state-dependent asynchronous node updating scheme (we provide

details in Text S1). LMNs can model a number of natural and man-

made systems of interacting species, such as genetic, neural,

epidemiological, and social networks.

Recent work has clearly demonstrated the importance of

stochastically modeling physical systems using Markovian net-

works. The main reason is that intrinsic noise produced by these

networks may induce behavior not accounted for by deterministic

models [14–17]. Examples of such behavior include the emer-

gence of noise-induced modes, stochastic transitions between

different operational states, and ‘‘stabilization’’ of existing modes.

In this paper, we study the effect of intrinsic noise on

avalanching by using a LMN model. We do so by employing
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the notion of potential energy landscape [13,18,19] and by

establishing a connection between statistical thermodynamics and

the kinetics of bursting. We quantify the landscape by calculating

logarithms of the ratios between the stationary probabilities of

individual states and the stationary probability of the most

probable state. To reduce computational complexity, we follow

a coarse graining approach that transforms the original LMN

model into another (non-binary) LMN model with appreciably

smaller state-space. To accomplish this task, we partition the nodes

of the LMN into homogeneous subpopulations and characterize

system behavior by using the dynamic evolution of the fractional

activity process, which quantifies the fraction of active nodes (nodes

with value 1) in each subpopulation. Moreover, we parameterize

the LMN in terms of the network size V~N=N0, where N is the

net number of nodes in the network and N0&1 is a normalizing

constant such that V can be approximately considered to be

continuous-valued. We refer the reader to the Methods section for

details.

The behavior of the fractional activity process is fundamentally

affected by V. In general, the strength of stochastic fluctuations

(intrinsic noise) in the activity process may be thought of as the

probability of moving uphill on a fixed potential energy surface,

which decays exponentially with increasing V. At sufficiently large

network sizes V, the LMN operates around a ground state of the

potential surface located at a fixed point m� predicted by the

macroscopic equations associated with the LNA method, which

we assume to be unique, nonzero, and stable (see Methods and

Text S1 for details). In this case, a new mode of operation is

introduced in the system, as the network size decreases, in the form

of a potential well in the topographic surface of the energy

landscape, located at the inactive state 0. This is a ‘‘noise-induced’’

mode, since it appears at small network sizes at which the

fractional activity process is subject to appreciable intrinsic

fluctuations.

We show in this paper that noise-induced deformation of the

stationary potential energy landscape is the underlying cause of

avalanching in LMNs. For sufficiently large network sizes, the

potential energy landscape can be approximated by a quadratic

surface centered at m�. In this case, the LMN operates within the

potential well associated with this mode, except for rare and brief

random excursions away from that mode. As a consequence, the

fractional activity process will fluctuate in a Gaussian-like manner

around the macroscopic mode. At smaller network sizes, the

fractional activity process is characterized by a bistable behavior

between the macroscopic and noise-induced modes, spending

most time within the potential well associated with the macro-

scopic mode, at which the potential energy surface attains its

global minimum, while occasionally jumping inside the potential

well associated with the noise-induced mode at 0. As a

consequence, the fractional activity dynamics take on a bursting

behavior characterized by long periods of appreciable activity

followed by short periods of minimal (almost zero) activity. When

the network size decreases further, the noise-induced mode

becomes the main stable operating point (i.e., the point at which

the potential energy surface attains its global minimum), whereas

the macroscopic mode becomes shallower and eventually disap-

pears. In this case, the system is trapped within the potential well

associated with the noise-induced mode, except for random and

brief excursions away from that mode. As a consequence, the

fractional activity process will still exhibit bursting, but now

characterized by long periods of minimal (almost zero) activity

followed by short bursts of appreciable activity.

Thermodynamic analysis reveals critical behavior in LMNs (we

provide details in the Methods section and Text S1). By employing

a number of statistical thermodynamic quantities, such as internal

and free potential energies, entropy, internal pressure, pressure

and bulk modulus (inverse compressibility), we effectively summa-

rize the stochastic behavior of a LMN as its size V decreases to

zero. We also use these summaries to quantify network robustness

and the stability of a given state. In agreement with the classical

theory of phase transitions, the previous thermodynamic quantities

evolve smoothly as a function of V until a critical network size Vc

is reached. At this size, a discontinuity is observed in the system

pressure, which produces a spike in the bulk modulus demarcating

loss of thermodynamic robustness. Critical behavior is caused by

reallocation of the ground states (global minima) of the potential

energy landscape due to noise-induced deformation of its

topographic surface. In particular, observed critical behavior

produces two distinct phases: one in which the fixed point m�

predicted by the macroscopic equations associated with the LNA

method constitutes the ground state of the potential energy

landscape and one in which the ground state is reallocated to the

noise-induced mode at 0. We conclude that avalanching is a

complex mode of operation that dominates system dynamics at

near-critical and subcritical network sizes due to deformations of

the potential energy landscape as the network size decreases to

zero, caused by appreciable levels of intrinsic noise.

It is important to mention here that our work provides a novel

stochastic perspective to the well-known phenomenon of self-

organized criticality (SOC) [20]; i.e., the spontaneous emergence

of critical behavior without tuning system parameters whose values

are influenced by external factors. We approach SOC from the

perspective of nonlinear Markovian dynamics and directly

associate self-organization properties of a complex network with

the existence of a unique probability distribution at steady-state,

which leads to a unique stationary potential energy landscape. Our

work demonstrates that SOC may emerge as a consequence of two

interweaved adaptive processes that may take place on separate

timescales [21,22]: a short timescale convergence to dynamic

equilibrium (stationarity), during which the topological structure of

a neural network subsystem is kept relatively fixed (is quasistatic),

and longer timescale alterations in topological properties that lead

Author Summary

Networks of noisy interacting components arise in diverse
scientific disciplines. Here, we develop a mathematical
framework to study the underlying causes of a bursting
phenomenon in network activity known as avalanching. As
prototypical examples, we study a model of disease
spreading in a population of individuals and a model of
brain activity in a neural network. Although avalanching is
well-documented in neural networks, thought to be crucial
for learning, information processing, and memory, it has
not been studied before in disease spreading. We employ
tools originally used to analyze thermodynamic systems to
argue that randomness in the actions of individual
network components plays a fundamental role in ava-
lanche formation. We show that avalanching is a sponta-
neous behavior, brought about by a phenomenon
reminiscent to a phase transition in statistical mechanics,
caused by increasing randomness as the network size
decreases. Our work demonstrates that a previously
suggested balanced feed-forward network structure is
not necessary for neuronal avalanching. Instead, we
attribute avalanching to a reallocation of the global
minima of the network’s stationary potential energy
landscape, caused by a noise-induced deformation of its
topographic surface.
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to changes in the size of the network. For example, the neural

activities modeled by our LMNs occur on a short timescale

compared to the timescale of neural development, where it is

well known that programmed cell death plays a major role [23].

This large reduction in the number of neurons could presumably

serve to bring neural subsystems within proximity of their

critical sizes in accordance with their underlying connectivity

structures. On the other hand, an adaptive interplay between

the short timescale neural dynamics and the quasistatic topological

network structure may lead to a longer timescale topological self-

organization that enlarges or contracts the neural subsystem

with an objective to keep the system robustly close to criticality

[22]. We show that such long timescale alterations can result in a

spontaneous reallocation of the ground states in the stationary

potential energy landscape due to a noise-induced deformation

of its topographic surface. Our approach associates SOC

with observable stochastic multistability, which is directly related

to the phenomenon of phase transition, thus bridging the gap

between ‘‘self-organized’’ and ‘‘classical’’ criticality (see also

[24]).

Finally, we would like to point out that, in the neural network

literature, it is commonly said that avalanching occurs in the

supercritical regime near the critical point. On the other hand, we

show in this paper that avalanching occurs in a subcritical regime

near the critical point. To avoid confusion, the reader must keep in

mind that these statements do not contradict each other. Correctly

using the terms ‘‘subcritical’’ and ‘‘supercritical’’ depends on the

parameter employed to take a system from one regime to the

other. Contrary to existing works that study criticality in terms of

functional parameters (e.g., in terms of the firing rate of all neurons

in a neural network), we study in this paper criticality in terms of a

structural parameter, the system size, which is inversely related to

the strength of intrinsic noise. In this case, avalanching occurs at

network sizes smaller but near a critical value, which forces us to

use the aforementioned terminology.

Methods

Leaky Markovian networks
We consider a directed weighted network G with N nodes from

a set N~f1,2, . . . ,Ng, characterized by an N|N adjacency

matrix A. The element ann’ of this matrix assigns a value to the

edge leaving the n’-th node and entering the n-th node whose

importance will become clear shortly. Each node represents a

species (e.g., an individual or neuron) which, in some well-defined

sense, can be active or inactive at time t with some probability. We

use Xn(t) to denote the state of the n-th node of the network at

time t, taking value 1 if the node is active and 0 if the node is

inactive. Then, we represent the state dynamics of the network by

an N-dimensional random process fX(t), t§0g whose n-th

element Xn(t) takes binary 0–1 values. We refer to fX(t), t§0g
as the activity process.

We assume that, within an infinitesimally small time interval

½t,tzdt), the state of the n-th node is influenced by the net

input rn(x) to the node, where x is the state of the network G at

time t and rn is a real-valued scalar function. In particular, we

assume that the probability of the n-th node to transition from the

inactive to the active state within ½t,tzdt) is proportional to dt,

given by pz
n (x)dtzo(dt), where pz

n (x) is known as the propensity

function and o(dt) is a term that goes to zero faster than dt. We

set

pz
n (x)~(1{xn)½‘zn zfn(rn(x))�, ð1Þ

for some nonnegative parameter ‘zn and a nonnegative function

fn(r). The term (1{xn) ensures that transition to the active state is

possible only when the n-th node is inactive (i.e., when xn~0),

whereas the function fn(r) describes how the net input affects the

probability of transition. On the other hand, when ‘zn w0, the

parameter ‘zn forces the node to be ‘‘leaky,’’ in the sense that it has

a fixed propensity to transition from the inactive to the active state,

even when the net input is zero. ‘‘Leakiness’’ is a property

observed in many applications, including the ones discussed in this

paper.

We also assume that the probability of the n-th node to

transition from the active to the inactive state within ½t,tzdt) is

given by p{
n (x)dtzo(dt), where the propensity function p{

n (x) is

given by

p{
n (x)~xn½‘{n zgn(rn(x))� ð2Þ

for some nonnegative parameter ‘{n and a nonnegative function

gn(r). The term xn ensures that transition to the inactive state is

possible only when the n-th node is active (i.e., when xn~1),

whereas the function gn(r) describes how the net input affects the

probability of transition. On the other hand, when ‘{n w0, the

parameter ‘{n forces the node to be ‘‘leaky,’’ in the sense that it has

a fixed propensity to transition from the active to the inactive state

even when the net input is zero.

In general, the weights ann’ are used to determine the net

input rn(x) to node n. As a matter of fact, rn(x) must not depend

on xn’ when ann’~0. In particular, we set ann~0, for every n[N ,

which implies that the nodes are not self-regulating. In some

applications (such as the ones considered in this paper), we can

set

rn(x)~hnzaT
n x, ð3Þ

where aT
n is the n-th row of the adjacency matrix A and hn is a

constant. In this case, hn may represent the influence of external

sources on the node (which we assume for simplicity to be fixed

and known), whereas aT
n x represents the influence of all active

nodes in the network on the state of the n-th node.

fX(t), t§0g is a Markov process. By assuming that all nodes in

the network are initially inactive at time t~0, we can show that

the probability distribution P(x; t) :~Pr½X(t)~xDX(0)~0� satis-

fies the master equation

LP(x; t)

Lt
~
XN

n~1

fpz
n (x{en)P(x{en; t)zp{

n (xzen)P(xzen; t)

{½pz
n (x)zp{

n (x)�P(x; t)g,

ð4Þ

for x[X :~f0,1gN
, initialized with the Kronecker delta function

D(x) [i.e., P(x; 0)~D(x)], where en is the n-th column of the

N|N identity matrix. The model described by this equation is a

continuous Boolean network model with state-dependent asyn-

chronous node updating (more details can be found in Text S1). It

can also be viewed as a special case of an interacting particle

system (IPS) model [25] and it thus follows IPS-like dynamics.

Unfortunately, solving this equation is a notoriously difficult task,

especially when the number N of nodes in the network is large.

This is due to the fact that we need to calculate the probabilities

P(x; t), for tw0, at every point x in the state space X , whose

cardinality DX D grows exponentially as a function of N , since

DX D~2N .

Intrinsic Noise, Critical Behavior and Avalanching
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Coarse graining
We address the previous problem by employing a ‘‘coarse

graining’’ procedure, similar to that suggested in [26] (see also

[27]), which allows us to appreciably reduce the size of the state

space while retaining key properties of the system under

consideration. We assume that we can partition the population

N~f1,2, . . . ,Ng of all species in the network G into K

homogenous sub-populations N k, k~1,2, . . . ,K , where K%N.

Due to the homogeneity of each sub-population, it may not be of

particular interest to track the states of individual species in a given

sub-population N k. Instead, it may be sufficient to track the

fraction Yk(t) of active species in N k, defined by

Yk(t) :~
1

Nk

X
n[N k

Xn(t), ð5Þ

where Nk :~DN k D. In this case, we may replace the original

network with a smaller directed weighted network G0 comprised of

K nodes from the set K~f1,2, . . . ,Kg that represent the

homogeneous sub-populations. We assume that, for every k[K,

there exists a function rk such that rn(x)~rk(y), for all n[N k,

where y is a K|1 vector whose k-th element yk is given by

yk~N{1
k

P
n[N k

xn. In this case, the stochastic process

fY(t), t§0g is also Markovian, governed by the following master

equation (details in Text S1)

LP(y; t)

Lt
~
X
k[K
fpz

k (y{~eek)P(y{~eek; t)zp{
k (yz~eek)P(yz~eek; t)

{½pz
k (y)zp{

k (y)�P(y; t)g,
ð6Þ

initialized with the Kronecker delta function D(y) [i.e.,

P(y; 0)~D(y)], where P(y; t) :~Pr½Y(t)~yDY(0)~0� and ~eek is

the k-th column of the K|K identity matrix multiplied by N{1
k .

The new propensity functions are given by

pz
k (y)~Nk(1{yk)½lz

k zwk(rk(y))� ð7Þ

p{
k (y)~Nkyk½l{

k zck(rk(y))�, ð8Þ

where wk, ck, lz
k , and l{

k are such that, for every

k[K,fn~wk,gn~ck,‘zn ~lz
k , and ‘{n ~l{

k , for n[N k. We refer

to fY(t), t§0g as the fractional activity process.

When the input to a node n of the network is given by

rn(x)~hnzaT
n x, there is indeed a function rk(y) so that

rn(x)~rk(y), for every n[N k. This function is given by

rk(y)~gkz
P

k’[K wkk’yk’, where gk and wkk’ are such that

hn~gk, for every n[N k, and ann’~wkk’=Nk’, for every n[N k,

n’[N k’ (details in Text S1). Note also that Yk(t) takes values in

Yk :~f0,1=Nk, . . . ,1g. Therefore, the fractional activity process

fY(t), t§0g takes values in Y~Y1|Y2| � � �|YK . As a result,

the state-space Y will be appreciably smaller than X , since

DYD~PK
k~1 (1zNk)%2N~DX D, and solving the master equation

of the fractional activity process will be easier than solving the

master equation of the activity process.

Macroscopic equations and LNA
We define the fractional ‘‘size’’ of the k-th sub-population as

fk :~Nk=N. The thermodynamic limit is obtained by taking

Nk??, for every k[K, such that all fk’s remain fixed. In this

case, Y(t) becomes a continuous random variable in the K-

dimensional closed unit hypercube ½0,1�K . Furthermore, since

Nk??, for every k[K, one might expect that the intrinsic noise

at each node of the coarse network G0 will be averaged out due to

coarse graining. As a matter of fact, it can be shown that Y(t)
converges in distribution to the deterministic solution m(t) of the

macroscopic differential equations

dmk(t)

dt
~½1{mk(t)�½lz

k zqk(rk(m(t)))�

{mk(t)½l{
k zck(rk(m(t)))�,

ð9Þ

for tw0,k[K, initialized by m(0)~0. For simplicity of notation, we

denote the thermodynamic limit by N??.

If the macroscopic equations have a unique and stable fixed

point m� in the interior of the unit hypercube ½0,1�K , then for large

enough but finite N, the linear noise approximation (LNA)

method of van Kampen [11] allows us to approximate

the fractional activity process Y(t) by adding correlated

Gaussian noise W(t) to the macroscopic solution m(t). In this

case,

Yk(t)^mk(t)z
Wk(t)ffiffiffiffiffiffi

Nk

p , ð10Þ

for tw0, k[K, where, for each t,Wk(t), k[K, are zero-mean

correlated Gaussian random variables with correlations

rkk’(t)~E½Wk(t)Wk’(t)� that satisfy a system of Lyapunov equa-

tions (details in Text S1). As a consequence, Y(t) is approximated

by a multivariate Gaussian random vector with mean m(t) and

covariance matrix C(t)~NR(t)NT , where N is a diagonal matrix

with elements 1=
ffiffiffiffiffiffi
N1

p
,1=

ffiffiffiffiffiffi
N2

p
, . . . ,1=

ffiffiffiffiffiffiffi
NK

p
, and R(t) is the

correlation matrix of random vector W(t).

Potential energy landscape
We consider the probability distribution PV(y; t) of the

fractional activity process Y(t) at time t, where we explicitly

denote the dependence of this distribution on the network size V.

Let y�V(t) be a state in Y at which PV(y; t) attains its (global)

maximum value at time t and define the function

VV(y; t) :~{
1

V
ln

PV(y; t)

PV(y�V(t); t)

� �
: ð11Þ

Note that VV(y; t)§0 with equality if and only if y is a state at

which PV(y; t) attains its (global) maximum value, known as a

ground state. Moreover,

PV(y; t)~
expf{VVV(y; t)g

ZV(t)
, ð12Þ

for y[Y, t§0, where ZV(t) :~
P

y[Y expf{VVV(y; t)g. In this

case, PV(y; t) is a Boltzmann-Gibbs distribution with potential

energy function VV(y; t) and partition function ZV(t). The (local

or global) minima of VV(y; t) are associated with ‘‘potential wells’’

(basins of attraction) in the energy surface, which correspond to

peaks in the probability distribution PV(y; t). We may therefore

view the fractional activity dynamics as fluctuations on a time-

evolving potential energy landscape VV(y; t) in the multidimen-

sional state-space Y, where downhill motions (towards the bottom

of a potential well) are preferred with high probability, but random

Intrinsic Noise, Critical Behavior and Avalanching
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uphill motions can also occur with increasing probability as the

population size decreases.

We are interested in the stationary potential energy

VV(y) :~limt??VV(y; t), since its landscape remains fixed once

the stochastic dynamics reach this point. At steady-state, the

fractional activity dynamics simply perform a random walk on

VV(y). To compute VV(y; t) and VV(y), we solve the master

equation of the fractional activity process numerically.

Thermodynamic stability, robustness, and critical
behavior

We characterize the stability, robustness, and critical properties

of a LMN by studying its behavior when nodes are removed from

the network. To do so, we introduce a number of quantities from

classical thermodynamics which are used to describe the behavior

of a physical system as its volume contracts or expands (see Text

S1 for details). We focus our interest here at steady-state

(irreducibility properties of the LMN model are discussed in

Text S1). We define the internal potential energy by

VV :~VE½VV(Y)�, where E½:� denotes expectation with respect to

the stationary probability distribution PV(y) :~limt??PV(y; t).

Moreover, we define the free potential energy by AV :~VV{SV,

where SV is the entropy of the network, given by SV~

{E½lnPV(Y)�. In thermodynamic terms, the free potential energy

measures the portion of the energy, not accounted for by the

energy of the most likely state, available in the LMN to do work at

fixed size.

We also define the internal pressure P0

V :~LVV=LV, pressure

PV :~{LAV=LV, and bulk modulus BV :~{VLPV=LV. The

internal pressure quantifies the rate of change in internal potential

energy with respect to a change in the number of nodes, whereas

the pressure quantifies the rate of change in free potential energy.

Finally, the bulk modulus measures the network’s resistance to

changing pressure.

It turns out that VV~E½IV(Y)�{IV(y�V)§0, where IV(y) :~

{lnPV(y) is the self-information of state y that quantifies the

amount of information associated with the occurrence of state y at

steady-state. Therefore, and from an information-theoretic per-

spective, the internal potential energy of a LMN measures how far

the self-information of the most likely state at steady-state is from

the expected self-information of all network states (which is the

entropy). Note that zero internal potential energy implies zero self-

information for the most likely state. In this case, the LMN will be

at the most likely state with probability one. As a consequence, we

may consider the internal potential energy as a thermodynamic

measure of the ‘‘stability’’ of a particular ground state of the

potential energy landscape with smaller values indicating increas-

ing stability of that state.

We can use the pressure as a measure of (thermodynamic)

robustness of a LMN with respect to the network size V. We say

that a LMN is robust against variations in network size if there is

no appreciable change in pressure when adding or removing

nodes. Therefore, a LMN is robust if the derivative LPV=LV of the

pressure or the bulk modulus is small (especially at small network

sizes). This implies that a robust network must significantly resist

changes in pressure.

Finally, we can use the bulk modulus BV to detect network sizes

at which a LMN exhibits critical behavior. As a matter of fact, it is

well-known that an intensive thermodynamic quantity, such as the

pressure, may experience a sharp discontinuity when another

thermodynamic variable, such as the network size, varies past a

critical value. If the pressure PV of a LMN experiences such a

discontinuity as the size V varies past a critical value Vc, then BV
will effectively capture this discontinuity by a pulse at Vc, thus

indicating that the network experiences phase transition at Vc.

Results

SISa and NN models
We explored our methods by considering two examples: a

stochastic version of a one-dimensional SISa model of Methicillin

resistant staphylococcus aureus (MRSA) infection [28,29] with one

homogenous population of N individuals, and a two-dimensional

stochastic neural network (NN) model with two homogeneous

populations of an equal number N=2 of excitatory and inhibitory

neurons [10] (details in Text S1). With the first example, we were

able to demonstrate for the first time that avalanching can also

occur in epidemiology, even when simple models are used. In the

second example, we show that the LNA method is not an

appropriate tool for explaining the emergence of bursting and

avalanching in neural network models. Despite a difference in

dimensionality and their functional form, the two examples

produce surprisingly similar results. The code, written in

MATLAB, used to produce the results can be freely downloaded

from www.cis.jhu.edu/,goutsias/CSS%20lab/software.html.

Thermodynamic analysis reveals critical behavior in LMNs
For each model, we computed the probability distribution

PV(y; t) and the potential energy landscape VV(y; t), defined by

Eq. (11), parameterized by the network size V, where y�V(t) is a

state at which PV(y; t) attains its (global) maximum. Figure 1

depicts four computed thermodynamic quantities as a function of

V, whereas, the supporting Figures S1, S2, S3, S4 depict movies of

the dynamic evolutions of the stationary potential energy

landscapes and probability distributions with respect to decreasing

V. The results for the two models are qualitatively identical,

despite the fact that the dimensionality of their state spaces are

different. Note that the internal and free potential energy plots

exhibit a deflection point at network size Vc~0:175 (population

size Nc~35), for the SISa model, and at Vc~0:49 (Nc~98), for

the NN model, revealing critical behavior. This is also evident

from the pressure, which experiences a discontinuity at Vc

and produces a spike in the bulk modulus. On the other hand,

the values of the bulk modulus are very close to zero at all

other network sizes. For this reason, we can conclude that both

models are robust with respect to network size (and hence to

variations in the strength of intrinsic noise) away from the critical

value Vc.

What is the underlying cause of this critical behavior? The

previous results suggest that the slope of the self-information

support curve s�(V) :~{ln PV(y�V(?);?) will experience a

discontinuity at the critical size Vc and a large curvature at that

size. This is a consequence of the fact that s�(V) equals the

pressure (see Text S1). Hence, loss of network robustness near Vc

indicates that there is a change in the ground state (global

minimum) of the stationary potential energy landscape at Vc. The

movies depicted in Figures S1 & S3 corroborate the validity of this

point. In particular, Figure 2 confirms that critical behavior in the

SISa model is caused by the ground state of the potential energy

landscape changing from the fixed point 0.4719 of the macro-

scopic equation [Eq. (S83) in Text S1] to the origin 0 of the state-

space as the network size decreases past the critical value

Vc~0:175. Likewise, critical behavior in the MM model is caused

by the ground state changing from (0:5032,0:5032) to (0,0) at

Vc~0:49.
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Figure 1. Thermodynamic behavior of two LMN models. Thermodynamic quantities computed for the SISa model, in (A), and the NN model, in
(B), shown as a function of network size V. The red dashed lines mark the critical network size: Vc~0:175 for the SISa model and Vc~0:49 for the NN
model. The results for the two models are qualitatively identical, despite the fact that their state spaces are of different dimensionality.
doi:10.1371/journal.pcbi.1003411.g001
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LNA fails to accurately predict rare large deviation
excursions to the active and inactive states

Figure S2 demonstrates that, for large V, the LNA method

provides a reasonable approximation to the stationary probability

distribution of the SISa model. This observation however becomes

questionable upon closer examination of the potential energy

landscape dynamics depicted in Figure S1. Although the LNA

potential energy landscape approximates well the true energy

landscape over an appreciable region around the macroscopic

ground state m�~0:4719, which accounts for about 99.8% of

probability mass, there are substantial differences at the left and

right tails of the landscape. These tails characterize rare large

deviations from the macroscopic ground state and do not conform

to the parabolic shape predicted by LNA. As a matter of fact, state

values smaller than m� reside over a lower and flatter landscape

than the one predicted by LNA, whereas state values larger than

m� reside over a higher and steeper landscape. As a consequence, if

the fractional activity process moves to a state at the left end tail of

the potential energy landscape (i.e., close to the inactive state y~0),

it may stay there for an appreciable amount of time before

returning back to the macroscopic ground state. On the other

hand, if the fractional activity process moves to a state at the right

end tail (i.e., close to the active state y~1), it may quickly return

back to the macroscopic ground state. This behavior, which is not

well-predicted by LNA, is corroborated by Figure 3, which shows

the actual stationary potential energy landscape as a function of y
when V~0:25 (N~50), the potential energy landscape predicted

by the LNA method, and the inverse mean escape time ½Te(y)�{1

from a state y [computed from Eqs. (S73), (S81) & (S82) in Text

S1]. Similar remarks hold for the NN model.

Stability of inactive state is directly linked to strength of
intrinsic noise

As the network size V decreases towards the critical value Vc,

the approximation produced by the LNA method begins to break

down, due to the emergence of a second well in the potential

energy landscape located at the inactive state 0 (see the movies

depicted in Figures S1 & S3). This potential well becomes

increasingly dominant, as compared to the well located at m�.

Since the ground state of the potential energy landscape transitions

from m� to 0 at the critical size Vc and remains at 0 for all VvVc,

we expect the inactive state to be the most stable state at subcritical

network sizes.

The internal potential energy remains fixed at supercritical

network sizes; see Figure 1. This is predicted by Eq. (S61) in Text

S1 and the fact that the LNA method provides a good

approximation to the solution of the master equation at

supercritical sizes (note that K~1 for the SISa model and K~2
for the NN model). At subcritical sizes, the internal potential

energy monotonically increases initially to a maximum value at

some network size V0 (V0~0:12 for the SISa model and V0~0:24
for the NN model) and subsequently monotonically decreases to

zero. As a consequence, the internal pressure (which is the

derivative of the internal potential energy with respect to V) is

negative for V0vVvVc and positive for 0vVvV0. Positive

internal pressure (decreasing internal potential energy) signifies the

fact that removing nodes (individuals or neurons) from the network

results in decreasing the distance between the self-information of

the most likely state (i.e., the amount of information associated

with the occurrence of the inactive state) from the average self-

information of all states and thus increasing the stability of this

state (details can be found in Text S1). As a consequence, and for

network sizes below V0, increasing levels of intrinsic noise result in

increasing the stability of the inactive state

Emergence of the noise-induced mode leads to bursting
To investigate the emergence of bursting in the SISa model, we

depict in the first column of Figure 4 realizations of the fractional

activity process (red lines) and the macroscopic dynamics (blue

lines), superimposed over the potential energy landscape, for three

network sizes, namely V~0:25wVc (N~50) in A, V~Vc~0:175

Figure 2. Critical behavior in the SISa model. The red curve
depicts the value VV(0) of the potential energy landscape as a function

of V, whereas the green curve depicts the value VV(0:4719). The two
curves intersect at V~0:175, which is a critical network size.
doi:10.1371/journal.pcbi.1003411.g002

Figure 3. The LNA method fails to accurately predict rare
deviations in the SISa model. The green curve depicts the
stationary potential energy landscape V0:25(y), when V~0:25
(N~50), superimposed over the potential energy landscape predicted
by the LNA method (dashed red curve). The black curve depicts the

inverse mean escape time ½Te(y)�{1 from a state y as a function of y. If
the fractional activity process moves to a state at the left end tail of the
potential energy landscape, it may stay there for an appreciable
amount of time before returning back to the macroscopic ground state,
whereas, if the fractional activity process moves to a state at the right
end tail, it may quickly return back to the macroscopic ground state.
This behavior is not well-predicted by LNA.
doi:10.1371/journal.pcbi.1003411.g003
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(N~35) in C, and V~0:1vVc (N~20) in E. Moreover, we

depict in the second column of Figure 4 the corresponding

stationary potential energy landscapes.

The stationary energy landscape depicted in Figure 4B exhibits

two potential wells. A shallow and narrow wellW0 located at 0 and

a relatively deep and wide wellW� located at the stable fixed point

m�~0:4719 of the macroscopic equation. Transitions fromW� into

W0 are dubious, since such transitions require appreciable

stochastic deviations, which are not likely to take place. On the

other hand, transitions fromW0 toW� are easier, requiring smaller

stochastic fluctuations (mean escape time from 0 is 200 days). In this

case, the fraction of infected individuals will fluctuate in a Gaussian-

like manner around m�, although it may sometimes become zero for

a relatively short period of time; see Figure 4A.

Figure 4. Emergence of noise-induced ground state and bursting in the SISa model. V~0:25wVc~0:175 (N~50) in (A, B), V~Vc~0:175
(N~35) in (C, D), and V~0:1vVc~0:175 (N~20) in (E, F). The left column depicts a single stochastic trajectory of the activity process (in red) along
with the corresponding macroscopic solution (in blue), superimposed on the potential energy landscape. The right column depicts the
corresponding stationary potential energy landscapes. See Text S1 for a discussion about the long time scales involved.
doi:10.1371/journal.pcbi.1003411.g004
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Figures 4D & 4F indicate that, as the network size decreases, the

first potential well W0 becomes deeper and wider, whereas the

second wellW� becomes shallower and eventually disappears; see

also the movie depicted in Figure S1. When V~Vc~0:175, the

two potential wells achieve the same depth. In this case, the

fractional activity processes may remain inside W0 longer than

before, since transitions from W0 into W� become more difficult

(mean escape time from 0 is now 286 days). As a consequence, the

fraction of infected individuals will fluctuate in a Gaussian-like

manner around m� as before, although it may now become zero for

a longer period of time; see Figure 4C.

On the other hand, Figure 4F indicates that, when V~0:1, the

potential well W� becomes extremely shallow. In this case, the

fractional activity process will spend most time within W0 with

infrequent and very short excursions outside this well (mean escape

time from 0 is 500 days). As a consequence, the fraction of infected

individuals will mostly be zero with occasional and brief switching

to nonzero values. This bursting behavior is clear from figure 5E

and is expected in the SISa model since, in a hospital setting or in

a swine herd, one often speaks of unpredictable ‘‘outbreaks’’ of an

infection, such as MRSA. The deterministic SISa model is

fundamentally incapable of predicting such complex behavior.

Similar remarks apply for the NN model; see the supporting

Figure S5.

Avalanche formation becomes a rare event at
supercritical network sizes

Because bursting occurs primarily at steady-state (see Figure 4),

we computed avalanche statistics from a single trajectory of the

fractional activity process obtained from a long sample of this

process. This helped us reduce the computational effort required

when calculating avalanche statistics from multiple runs. We

simulated the SISa model using the Gillespie algorithm for a

period of 300,000 years and used an avalanching threshold

e~0:01 to compute the presence of an avalanche (details in Text

S1). This allowed us to characterize the SISa model as being active

if at least 1 out of 100 individuals was infected. In Figure 5A, we

depict log-log plots of the estimated probability distributions of the

fractional avalanche size, for sizes between 0.01 and 10 and for

various choices of V. We also depict the rate of avalanche

formation for each case, calculated as the number of avalanches

that occurred per day. For the three subcritical network sizes

below 0.175, the distributions exhibit scale-free behavior (i.e., the

log-log plots are linear) for fractional avalanche sizes below 1 (i.e.,

when the number of infections that occur during an avalanche is at

most N). This observation is clearly corroborated by the results

depicted in Figure 5B. On the other hand, for the three

supercritical network sizes above 0.175, we observe increasingly

lower rates of avalanching, indicating that avalanche formation

becomes eventually a rare event as V increases. Moreover, this is

accompanied with a loss of the scale-free behavior of the size

distribution, as it is clearly indicated by Figure 5B. We obtained

similar results for the NN model; see Figures 6A & 6B.

Predicted near-critical avalanche behavior concurs with
real experimental data

It has been argued in the literature that the empirical

observation of a power law in a statistical distribution is not

sufficient to establish criticality [30,31]. This has been particularly

scrutinized in the case of neural networks and specifically in

studying bursting [32–34]. Although our analysis clearly shows

that a LMN model will experience critical behavior as its size

decreases from the supercritical to the subcritical regime,

quantified by an observed abrupt behavior in the value of the

bulk modulus, an important question that arises at this point is

whether this prediction concurs with real experimental data. By

employing a method known as avalanche shape collapse [7,34], we

can demonstrate that our thermodynamic predictions lead to near-

critical avalanching behavior that can be confirmed by real

experimental data.

Avalanche shape collapse is used to demonstrate whether the

power laws observed in neural bursting is the result of a

mechanism operating near criticality. The basic idea behind this

method is that the distributions of some variables of interest in a

neural system near criticality are characterized by power laws.

Given avalanche data, we can organize avalanches into groups of

the same duration D. We can then draw a log-log plot of the

average size SST(D) of observed avalanches of duration D as a

function of D and expect that a linear trend will emerge with slope

1=n [i.e., we expect that the distribution of SST(D) will be

proportional to D1=n]. Note that, in order to compare our results

with the ones obtained in [7], we employ here the definitions for

avalanche duration and size obtained by partitioning time into

bins of equal duration Dt; see Text S1. Within each avalanche

group of size D, we can compute the avalanche shape by plotting the

average number y(tk,D) of neurons firing within the time interval

½kDt,(kz1)Dt) as a function of tk :~kDt, for k~0,1, . . .. Note

that right before and right after an avalanche there are no neurons

firing. Therefore, the avalanche shape describes the average

pattern of non-zero neuron firings between these two lulls in

activity.

If observed avalanche cascades are truly critical, then we expect

that the computed avalanche shapes will be self-similar, in which

case [7]

y(tk,D)*D1=n 1

D
y0(tk=D)~D1=n{1y0(tk=D), ð13Þ

where y0(:) is a scaling function that does not depend on D. In this

case,

y0(tk)*D1{1=ny(tkD,D), for tk~0,1=D, . . . ,1: ð14Þ

By testing whether available experimental data confirm these

conditions, we can increase our confidence that the data come

from a neural network which operates near criticality. We can

accomplish this by shape collapse: we multiply each avalanche

shape y(tk,D) with D1{1=n and rescale time to be between 0 and 1

by dividing tk with D.

Avalanche shape collapse has been recently applied on real

experimental data and has confirmed Eq. (14) – see Figure 3 in [7].

To investigate whether our LMN neural network model concurs

with these results, we have simulated our LMN neural network

model with N~80 neurons (V~0:4vVc~0:49) for a period of

80,000,000 ms (*22 hours). We then implemented the shape

collapse method by partitioning time into 20,000,000 bins of

Dt~4 ms each. The results depicted in Figure 7 agree with the

corresponding results depicted in Figures 2 & 3 of [7]. Our model

captures well the inverted parabolic nature of avalanche shapes

observed in real experimental data and our simulation results

confirm that the dynamics of our model undergo a shape collapse

similar to that observed in [7]. As a consequence, our in silico

experiment provides a conclusive argument that our model

operates near criticality, confirming the validity of our thermody-

namic analysis and further supporting the applicability of the

proposed modeling and analysis approach to avalanching.
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External influences affect avalanching
The previously discussed results for the SISa model are based on

setting g~10{4 days{1. This parameter quantifies the influence

of extrinsic factors (other than direct transmission from other

infected individuals) on the rate of infection. We therefore

investigated the effect of g on bursting.

The mean escape time from the inactive state depends inversely

proportional on the network size V and parameter g. This implies

that, for a fixed value of g, the stability of the inactive state increases

for decreasing V, in agreement with our previous discussion.

For fixed V, Te(0)??, as g?0, and moving away from the

inactive state becomes increasingly difficult. When g~0, the SISa

Figure 5. Avalanche statistics reveal scale-free behavior at subcritical network sizes for the SISa model. (A) Log-log plot of estimated
probability distributions of the fractional avalanche size for various network sizes V. The cases corresponding to subcritical network sizes below
Vc~0:175 exhibit high rates of avalanching with fractional avalanche size distributions characterized by scale-free behavior for sizes smaller than 1.
The cases corresponding to the supercritical network sizes exhibit increasingly lower rates of avalanching and gradual break-down of scale-free
behavior. The blue line indicates a linear square fit of the data when V~0:05. (B) Adjusted R2 values (solid blue curve) of the goodness of fit of a
linear regression of a portion (below 1) of the log-log probability distribution of fractional avalanche size computed at discrete network sizes V. R2

values close to one indicate scale-free (linear) behavior. Standard 4-th order polynomial fit of the computed R2 values produced a smoother curve
(dashed blue curve). The scale-free property of avalanching is characteristic to network sizes close or below the critical size Vc (dashed black line) and
disappears gradually as V increases away from the critical size, as indicated by the decreasing R2 values.
doi:10.1371/journal.pcbi.1003411.g005
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model reduces to the standard SIS model of epidemiology, which

enjoys far simpler dynamics: infections will always die out and never

appear again, since Te(0)~?. As a consequence, the stationary

probability distribution of the SIS model assigns all probability mass

to the inactive state. On the other hand, Te(0)?0, as g??, which

implies that, for sufficiently large g, the SISa model will be moving

away from the inactive state almost instantaneously.

Figure 8A depicts a plot of the critical network size Vc as a

function of g, for 10{5
ƒgƒ10{4. Clearly, decreasing g increases

the value of Vc. In particular, Vc??, as g?0. As a consequence,

and for sufficiently small values of g, V%Vc, which implies that no

avalanching is expected since the network will be operating in the

subcritical regime far away from the critical point. This can also be

explained by considering the fact that, for very small values of g,

infection from sources other than infected individuals will be so

small that the state of zero infective individuals will have such high

probability that excursions from the origin (and thus avalanches)

will be rare events.

Similarly, increasing g decreases Vc. In particular, Vc?0, as

g??. This implies that, for sufficiently large values of g, V&Vc,

Figure 6. Avalanche statistics reveal scale-free behavior at subcritical network sizes for the NN model. (A) Log-log plot of estimated
probability distributions of the fractional avalanche size for various network sizes V. The cases corresponding to subcritical network sizes below
Vc~0:49 exhibit high rates of avalanching with fractional avalanche size distributions characterized by scale-free behavior for sizes smaller than 1.
The cases corresponding to the supercritical network sizes exhibit increasingly lower rates of avalanching and gradual break-down of scale-free
behavior. The blue line indicates a linear square fit of the data when V~0:1. (B) Adjusted R2 values (solid blue curve) of the goodness of fit of a linear
regression of a portion (below 1) of the log-log probability distribution of fractional avalanche size computed at discrete network sizes V.
doi:10.1371/journal.pcbi.1003411.g006
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which implies that no avalanching is expected since the

network will be operating in the supercritical regime far away

from the critical point. This can also be explained by considering

the fact that, for very large values of g, infection from sources

other than infected individuals will be so prevalent that the state of

zero infective individuals will have such low probability that

excursions from the origin (and thus avalanches) will be rare

events.

For the values of g encountered in practice, we may have that

Vv*Vc. This implies that avalanching will be prevalent since the

network will be operating in the subcritical regime close to the

critical point. Similar results have been obtained for the NN model

(data not shown).

Balanced feed-forward structure is not necessary for
avalanching in NNs

In a previous work [10], analysis of the NN model using the

LNA method led to the conclusion that for a NN to exhibit

bursting it is required that ws%wd , where ws, wd are two

appropriately defined parameters (details about these parameters

can be found in Text S1). When ws%wd , the neural network is

balanced, in the sense that excitation is very close to inhibition.

Moreover, it has been shown that, when the LNA method is valid,

fluctuations in the average difference ½Y1(t){Y2(t)�=2 of the

fractional activity processes of the excitatory and inhibitory

neurons feed-forward into the evolution of the average sum

½Y1(t)zY2(t)�=2. It was then argued that a balanced feed-forward

Figure 7. Avalanche shape collapse concurs with real experimental data and confirms predicted near-critical avalanche behavior in
the NN model. (A) A log-log plot of the average avalanche size of simulated avalanches as a function of avalanche duration in a LMN neural network
model with N~80 neurons. A linear fit of the plot reveals a slope of 1.4292. These results agree well with the corresponding results depicted in
Figure 2 of [7] obtained from real experimental data. (B) Avalanche shapes obtained for three different durations: 60 ms (red curve), 68 ms (green
curve), and 76 ms (blue curve). The error bars quantify the standard error occurred by estimating the average number of neural firings using Monte
Carlo. (C) Shape collapse plots corresponding to the curves in (B). The results closely match the results depicted in Figure 3 of [7] obtained from real
experimental data and confirms the critical behavior predicted by thermodynamic analysis.
doi:10.1371/journal.pcbi.1003411.g007
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(BFF) structure is necessary for avalanching in relatively large NNs

and that this is achieved through amplification of low levels of

intrinsic noise.

Our thermodynamic analysis demonstrates that bursting could

be a noise-induced phenomenon that cannot be characterized by

the LNA method. This is due to the fact that, at supercritical

network sizes, the LNA method may not sufficiently approximate

the potential energy landscape in a neighborhood of the inactive

state, whereas the method breaks down completely at subcritical

network sizes. As a matter of fact, the supporting Figure S6 shows

that LNA produces a poor approximation to the potential energy

landscape close to 0 for the model considered in [10]. This is not

surprising, since the LNA method always results in a negligible

probability for the activity process to reach the inactive state 0

[35], which is a predicament that fundamentally contradicts the

very basic and experimentally observed nature of avalanching.

It turns out that the BFF condition is not necessary for bursting

in NNs. Instead, we have argued that bursting can be attributed to

the gradual formation of the noise-induced mode at 0 with

decreasing network size.

To further confirm this point, note that BFF behavior is

controlled by wd when ws is held fixed [10]. With ws~0:2, the

analysis in [10] implies that the NN model will exhibit bursting

only when wd&0:2. However, our results show that this is also

true when wd~0:3; see Figure 6. In Figure 8B, we depict the

computed critical system size Vc for a fixed value ws~0:2 as a

function of wdw0:2. This result demonstrates that, increasing the

value of wd increases the critical network size. Therefore, for a NN

Figure 8. Dependence of critical network size on model parameters. (A) Critical network size Vc of the SISa model as a function of the
external influence parameter g. (B) Critical network size Vc of the NN model as a function of parameter wd .
doi:10.1371/journal.pcbi.1003411.g008

Figure 9. Dependence of thermodynamic equilibrium on network size. (A) The maximum absolute affinity in the SISa model reveals that the
system is near thermodynamic equilibrium at network sizes V below 0.3. However, the system starts deviating from thermodynamic equilibrium as
the network size increases beyond this value. (B) The maximum absolute affinity in the NN model reveals that the system is away from
thermodynamic equilibrium at all network sizes considered.
doi:10.1371/journal.pcbi.1003411.g009
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with large V to exhibit bursting it is required that the value of wd

be sufficiently larger than the value of ws. This implies that the NN

must be balanced. Although the feed-forward condition is not

necessary for bursting, it ensures that, in large NNs, the noise

induced mode at 0 remains stable.

Discussion

In this paper, energy landscape theory, combined with

thermodynamic analysis, has led to a powerful methodology for

the analysis of Markovian networks. By introducing leaky

Markovian networks, we developed an in silico approach for

understanding the origins of bursting. We have quantified

topographic deformations of the energy landscape as a function

of network size and showed that bursting is a complex behavior

caused by the emergence of noise-induced modes and reallocation

of ground states. This led to a novel view of avalanching as a

complex behavior that dominates system dynamics at near-critical

or subcritical network sizes caused by appreciable levels of intrinsic

noise. Future improvements in computer hardware and software

will allow our methods to be used in more complicated problems

than the ones considered here in an effort to theoretically

understand and experimentally evaluate bursting as well as other

complex phenomena.

The main objective of our work is to demonstrate that intrinsic

noise in complex networks of interacting elements can induce

critical behavior leading to avalanching. The strength of intrinsic

noise in a given network is inversely proportional to its size,

quantified by the number of nodes in the network. As the network

size decreases, a critical behavior in thermodynamic behavior is

observed that leads to avalanching. This is contrary to what has

been done so far in the literature, which is mainly focused on how

extrinsic influences to a network lead to criticality and avalanching

[5]. The methodology proposed in this paper provides a link

between statistical and dynamic criticality, two well-known notions of

critical behavior [5]. Our results clearly demonstrate that

principles fundamental to statistical mechanics can be effectively

used to study criticality in phenomena that are dynamic by nature,

such as avalanching.

We should also note that living biological systems, such as

neuronal networks, must necessarily exchange matter and energy

with their surroundings (i.e., they are open thermodynamic

systems) and, as such, they should operate away from thermody-

namic equilibrium (see Text S1 for details). As a consequence, it is

common to refer to a homeostatic state in biological systems as

non-equilibrium steady state (NESS) to make explicit the fact that living

biological systems in dynamic equilibrium are not in thermody-

namic equilibrium.

In this paper, we utilize familiar tools (e.g., the Boltzmann-

Gibbs distribution) originally introduced in statistical mechanics to

study gasses at thermodynamic equilibrium. As a consequence, the

reader may think that our analysis is limited to complex networks

at equilibrium. Note however that our methods are based on a

Boltzmann-Gibbs distribution defined in terms of the solution of the

master equation, according to Eqs. (11) & (12), which are dynamic

in nature. As a consequence, our analysis is not limited to

equilibrium dynamics, because the master equation is capable of

describing systems far from dynamic and thermodynamic equilib-

rium (for more details on these two types of equilibrium, the reader

is referred to Text S1). As a matter of fact, in Figure 4, we depict

results away from dynamic equilibrium. Moreover, in Figure 9, we

depict the maximum absolute affinity �AAmax in the SISa and NN

models, defined by Eq. (S72) in Text S1, for various system sizes V.

Figure 9A indicates that the SISa model is near thermodynamic

equilibrium at network sizes below 0.3. However, this model moves

away from thermodynamic equilibrium as V increases beyond this

value. On the other hand, Figure 9B shows that the neural network

model is away from thermodynamic equilibrium for all network

sizes considered, as expected. Clearly, the tools suggested in this

paper are fully capable of analyzing non-equilibrium systems and

NESSs, such as those that arise in biology.

To conclude, we finally point out that, in some regions of the

brain, the ratio of the excitatory to inhibitory neurons is closer to

4:1 rather than the ratio of 1:1 used in this paper. The main reason

for our choice is to compare our results to the ones in [10], which

are based on the 1:1 ratio. Qualitatively, we do not expect that

changing the ratio will alter our conclusions, and this was indeed

confirmed by analyzing the leaky Markovian neural network

model using a 4:1 ratio (data not shown).

Supporting Information

Figure S1 Stationary potential energy landscape of the
SISa model. Movie of the dynamic evolution, with respect to

decreasing network size V, of the stationary potential energy

landscape (blue solid curve). The red dashed curve represents the

potential energy landscape predicted by the LNA method. The

double headed arrow indicates the region of 99.8% probability

predicted by the LNA method. In addition, the clip indicates when

the LNA method produces a probability distribution that extends

beyond the state space Y.

(GIF)

Figure S2 Stationary probability distribution of the
SISa model. Movie of the dynamic evolution, with respect to

decreasing network size V, of the stationary probability distribu-

tion (blue solid curve). The red dashed curve represents the

probability distribution predicted by the LNA method.

(GIF)

Figure S3 Stationary potential energy landscape of the
NN model. Movie of the dynamic evolution, with respect to

decreasing network size V, of the stationary potential energy

landscape of the NN model.

(GIF)

Figure S4 Stationary probability distribution of the NN
model. Movie of the dynamic evolution, with respect to

decreasing network size V, of the stationary probability distribu-

tion of the NN model.

(GIF)

Figure S5 Noise-induced reallocation of the ground
state of the stationary potential energy landscape in
the NN model. V~0:9 (N~180) in (A), V~Vc~0:49 (N~98)

in (B), and V~0:1 (N~20) in (C). For network sizes above the

critical value Vc~0:49, the ground state of the potential energy

landscape is at the fixed point m�~(0:5032,0:5032), predicted by

the macroscopic equations. As the network size V decreases from

supercritical to subcritical values, the depth of the potential well

located at m� decreases, whereas a new potential well emerges,

located at the inactive state 0, with increasing depth and width.

For network sizes below the critical value, noise-induced

deformation of the potential energy landscape results in a

reallocation of the ground state from m� to the inactive state 0.

This type of ‘‘phase transition’’ demarcates the onset of

avalanching.

(TIF)

Figure S6 Failure of LNA to sufficiently approximate the
stationary probability distribution in the NN model. (A)
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The true stationary probability of the fractional activity process in

the NN model considered in [10], with N~1,600, g~0:001,

l~0:1, ws~0:2, and wd~13:8. (B) The approximating stationary

probability distribution obtained by the LNA method. Clearly, the

LNA method provides a poor approximation to the actual

probability distribution in this case. In particular, the true

distribution depicted in (A) predicts a probability of 0.45 for the

network to be at a state close to the inactive state 0 and a

probability of 10{3 for the network to be at a state within a small

neighborhood around the mode m�~(0:5032,0:5032), predicted

by the macroscopic equations. On the other hand, the corre-

sponding probabilities predicted by the sampled Gaussian

distribution depicted in (B) are 1:6|10{3 and 4|10{3.

(TIF)

Text S1 Additional mathematical and modeling details:
LMNs and Boolean networks, Markovianity of the fractional

activity process, the linear noise approximation method applied to

the LMN model, leakiness and irreducibility, definition of

thermodynamic quantities and connections to thermodynamic

stability, robustness and critical behavior, equilibrium and non-

equilibrium behavior, relation between noise-induced modes,

stochastic transition and bursting, new definition for avalanches,

details on the epidemiological and neural network examples.

(PDF)
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