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Abstract

The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems
such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this
approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover
complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-
expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic
variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-
expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge
that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a
widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene
networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical
genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe
an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number
of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our
statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic
graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the
gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast
eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is
well supported by the results from experimental perturbation studies related to DNA replication stress response.
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Introduction

Recent advances in the next-generation sequencing and other

high-throughput technology has allowed researchers to collect

various types of genome-scale datasets, providing unprecedented

opportunities to discover detailed gene regulation processes in cells

via analysis of the massive data. The standard approaches for

identifying the causal regulatory relationship among genes have

been based on examining gene-expression data collected after an

experimental perturbation of one or two genes such as in gene

knockout studies [1,2] or over-expression studies [3]. In a typical

experimental design, genome-wide gene-expression levels are

measured using microarrays under different experimental condi-

tions such as strains with one or two genes knocked out [1,2].

Then, the differential gene-expression patterns between control

and experimental conditions are examined to obtain clues as to the

organization of genes into functional modules and key regulators

of those modules.

However, this standard approach for identifying the wiring of

gene networks based on experimental perturbations of gene

regulation system comes with many limitations. Experimentally

perturbing the activity of a gene can be very costly, time-

consuming, and laborious and it is even more so for repeating such

perturbation for every single gene in an organism to obtain a

comprehensive picture of gene network wiring. Furthermore, the

experimental methods are usually limited to a perturbation of one

or two genes at a time due to experimental infeasibility and

combinatorial explosion in the number of experiments to perform.

Thus, they cannot be used to perturb more than two genes at the

same time to obtain information on multifactorial gene interac-

tions. More importantly, it is often not possible to apply such

experimental perturbation studies to humans for ethical reasons.

Finally, given the set of differentially expressed genes under each

perturbation, it is difficult to distinguish between those genes that

are directly regulated by the perturbed gene and those genes in the

downstream of the pathway whose expressions are influenced as

secondary/indirect effects.

Genetical genomics approach has been proposed as a less

expensive but more powerful alternative to the approach with

experimental perturbations [4,5]. Genetical genomics treats

genetic variation as naturally-occurring perturbation of gene

regulatory networks and tries to learn gene networks by examining

the effects of genetic variation on gene expression measurements

within a large population of individuals. The key advantage of

genetical genomics approach is that unlike experimental pertur-

bations that can be performed only on one or two genes at a time,
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there are more than millions of genetic variants across genomes in

the case of a human population, enabling the effects of

multifactorial perturbations to be observed directly in gene

expression data. Another advantage is that while experimental

perturbation studies involve artificial perturbations in lab with

often large perturbation effects, the perturbations of gene network

by genetic variants occur in nature and usually induce more subtle

changes in gene expressions. Thus, understanding the conse-

quences of network perturbations by genetic variants is likely to

lead to more direct understanding of the gene networks that exist

in nature. In addition, genetical genomics approach can be easily

applied to humans as well as other organisms, since genotype and

gene-expression data are routinely collected for the purpose of

expression quantitative trait locus (eQTL) mapping to understand

the genetic architecture of complex phenotypes and diseases [6,7].

However, the genetical genomics approach poses a significant

computational challenge, because it is not obvious how to decode

the effects of multifactorial genetic perturbations from genotype

and gene expression data. In an experimental approach with a

perturbation of one or two genes, the genes that are differentially

expressed under each perturbation experiment can be easily

identified with a simple computation. However, in genetical

genomics approach, the gene expression variability is the result of

aggregated effects of multifactorial perturbations by a large

number of genetic variants and it is not obvious how to decouple

the aggregated perturbation effects to identify the set of genes that

are differentially expressed with respect to each perturbation by

each individual genetic variants. Furthermore, as many of the

genetic variants do not have any functional consequences or

perturbation effects, genetical genomics approach has an addi-

tional computational challenge of identifying eQTLs or the genetic

variants that affect gene expressions, while identifying the gene

network perturbed by these eQTLs at the same time. Because of

these computational challenges, given gene-expression and geno-

type data, researchers tended to limit their analysis to eQTL

mapping, where eQTL mapping can be viewed as a special case of

genetical genomics analysis that assumes an isolated effect of

genetic perturbation on a single gene with no downstream effects

in gene network. While statistical methods such as graph-guided

fused lasso (GFlasso) [8] have been developed to detect genetic

effects on multiple correlated gene-expression traits, they focused

only on eQTL mapping assuming a known gene network, instead

of performing a more powerful genetical genomics analysis. Those

few existing computational methods for genetical genomics

analysis have been limited in terms of computational efficiency

and statistical power [9–12]. For example, discovering eQTLs and

reconstructing the gene network perturbed by those eQTLs were

performed in two separate steps, leading to reduced statistical

power [9], or average gene-expression levels within each gene

module were used as a trait to identify eQTLs rather than using

the original gene-expression data, leading to the loss of informa-

tion on individual gene activities [13].

In this paper, we propose a statistical framework that directly

addresses all of the above computational challenges of genetical

genomics analysis within a single statistical analysis to achieve the

maximum statistical power for identifying gene networks via

single-nucleotide-polymorphism (SNP) perturbations. Given SNP

genotype and gene-expression data collected for a large number of

individuals, our statistical method simultaneously identifies 1) the

gene network structure by decoding the effects of multifactorial

perturbations of gene regulation system by a large number of

SNPs, 2) eQTLs that perturb this gene network, 3) the genes

whose expressions are directly perturbed by eQTLs and the genes

whose expressions are indirectly perturbed as secondary down-

stream effects of the direct perturbations in the network, and 4)

detailed characterizations of the SNP perturbation effects on the

gene network by decoupling the complex multifactorial SNP

effects on the gene network with respect to each individual

perturbation.

Our proposed statistical framework is based on probabilistic

graphical models, and in particular, we introduce a new statistical

model, called a sparse conditional Gaussian graphical model

(CGGM), that models a gene network under SNP perturbations as

an undirected graphical model. In our statistical model, the

unknown gene network is represented as a graph over gene-

expression traits and this graph is associated with an unknown

probability distribution that models the strengths of gene-gene

interactions in the gene network and the strengths of perturbation

effects of SNPs (Figure 1A). Then, both the gene network structure

perturbed by SNPs and probability distribution associated with the

network structure are learned jointly from data. We show that the

learning problem is convex, leading to increased statistical power

and a guarantee in the quality of the estimated model, and develop

an efficient learning algorithm that scales to a large dataset. Given

the estimated graphical model, we describe inference methods to

characterize the detailed mechanisms of how the effects of SNP

perturbations propagate through the network (Figures 1B–D).

From the computational point of view, addressing the

challenges of genetical genomics analysis requires handling the

computational challenges of both gene-network analysis given

gene-expression data and eQTL mapping given gene-expression

and genotype data, namely gene-network structure learning and

SNP feature selection, at the same time. We show that in fact our

sparse CGGM subsumes as special cases both a sparse Gaussian

graphical model [14–17], which is popular as a model for gene

network, and a sparse linear regression model [8,18,19], which is

widely used for eQTL mapping, thus providing a natural unifying

representation for a gene network and eQTLs perturbing this

network. Moreover, by embedding the standard regression model

for eQTL mapping within a probabilistic graphical model and

leveraging the representational power of a graphical model, our

Author Summary

A complete understanding of how gene regulatory
networks are wired in a biological system is important in
many areas of biology and medicine. The most popular
method for investigating a gene network has been based
on experimental perturbation studies, where the expres-
sion of a gene is experimentally manipulated to observe
how this perturbation affects the expressions of other
genes. Such experimental methods are costly, laborious,
and do not scale to a perturbation of more than two genes
at a time. As an alternative, genetical genomics approach
uses genetic variants as naturally-occurring perturbations
of gene regulatory system and learns gene networks by
decoding the perturbation effects by genetic variants,
given population gene-expression and genotype data.
However, since there exist millions of genetic variants in
genomes that simultaneously perturb a gene network, it is
not obvious how to decode the effects of such multifac-
torial perturbations from data. Our statistical approach
overcomes this computational challenge and recovers
gene networks under SNP perturbations using probabilis-
tic graphical models. As population gene-expression and
genotype datasets are routinely collected to study genetic
architectures of complex diseases and phenotypes, our
approach can directly leverage these existing datasets to
provide a more effective way of identifying gene networks.

Learning Gene Networks with SNP Perturbation
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approach allows to extract a significantly more detailed charac-

terization of the functional roles of eQTLs than any of the existing

methods for eQTL mapping.

In our experiments, we apply our statistical framework to

HapMap-simulated and yeast eQTL datasets [20,21]. Using

HapMap-simulated data, we demonstrate our approach can

recover the true underlying gene network under SNP perturbations,

and at the same time, can recover true eQTLs with greater

statistical power than other existing methods that have been

developed for eQTL mapping. In addition, we applied our method

to yeast eQTL dataset collected for 112 segregants of two yeast

parent strains, BY4716 and RM11-1a [21]. Nearly all of the

previous analyses of this dataset focused either on eQTL mapping

or on gene network analysis ignoring the genetic information, with

an exception of the genetical genomics analysis of this dataset

performed by multivariate regression with covariance estimation

(MRCE) [22] that has also been mistakenly called sparse CGGM

[23] as we further discuss in the next section. However, the analysis

by MRCE [23] was performed for only a small subset of the full

dataset because of its expensive computational cost. In our

experiment, MRCE took more than weeks of computation to

analyze the full yeast eQTL dataset, whereas our method ran within

a day. We provide an in-depth analysis of SNP perturbations of a

subnetwork over genes involved in stress response in yeast, and show

that this subnetwork obtained from SNP perturbations by our

approach is well supported by the network inferred from

experimental perturbations in knock-out studies in the literature.

Materials and Methods

We begin our discussion with a brief background on sparse

Gaussian graphical models for learning gene networks from gene

expression data and sparse regression models for identifying

eQTLs from gene expression and SNP data. Then, we present our

proposed statistical framework for genetical genomics analysis and

describe the model, learning algorithm, and inference procedure

for sparse CGGM.

Background on Sparse Gaussian Graphical Models for
Gene Network Learning

A Gaussian graphical model defines a probability distribution over

an undirected graph that models a gene network. The nodes of the

graph correspond to continuous-valued random variables for gene-

expression traits and the edges represent probabilistic conditional

Figure 1. Illustration of our statistical framework for learning a gene network with genetical genomics analysis. (A) The graph
structure of sparse CGGM for modeling a gene network perturbed by SNPs. The gene network is defined over gene-expression traits yk ’s
(k~1, . . . ,20). The edges between gene-expression traits yk ’s and SNPs xj ’s (j~1, . . . ,4) indicate the direct perturbations of the gene-expression traits
by the given SNPs. The nodes for SNPs xj ’s are shaded to show that the SNPs are conditioning variables in the conditional probability model. (B)
Illustration of how the effects of the direct perturbation of the gene network by SNP x1 propagate through the gene network, as obtained by
performing inference on sparse CGGM in Panel (A). While SNP x1 perturbs gene-expression traits y3 and y14 directly, this effect propagates through
the network to perturb the expressions of other genes indirectly. The two directly perturbed genes y3 and y14 are shown as diamond-shaped nodes.
The size and color-shade of each node indicate the strength of indirect perturbation of the given gene-expression trait by SNP x1 , with a larger and
darker node for stronger perturbation. (C) The portion of the overall indirect SNP perturbation effects in Panel (B) that arose from the propagation of
the direct perturbation of gene y3 by SNP x1 . (D) The portion of the overall indirect SNP perturbation effects in Panel (B) that arose from the
propagation of the direct perturbation of gene y14 by SNP x1 . Within our statistical framework, we can perform inference on sparse CGGM in Panel (A)
to obtain the indirect perturbations in Panel (B), and then decompose the indirect perturbations in Panel (B) into Panels (C) and (D) in a principled
manner.
doi:10.1371/journal.pcbi.1003420.g001
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dependence relationships between pairs of nodes [14–17]. Given

microarray gene-expression measurements Y~½y1, . . . ,yN �T[
RN|K for K genes and N individuals, a Gaussian graphical model

assumes that the gene-expression measurement yi~½yi
(1), . . . ,yi

(K)�
T

for the ith individual is an independently and identically distributed

sample from a Gaussian distribution N(0K ,S ), where 0K is a vector of

K 0’s and S is a K|K covariance matrix. Then, it is well-known that

the inverse covariance H~S{1 represents a Gaussian graphical

model, where the non-zero (or zero) value for h(k,l) in the (k,l)th entry

of H represents the presence (or absence) of edges between the kth and

lth gene-expression traits in the gene network. While each non-zero

element h(k,l) in H implies conditional dependency between the kth

and lth gene-expression traits given all the other gene-expression

traits, computing the inverse of H to obtain the covariance S~H{1

amounts to performing an inference in this graphical model to obtain

marginal dependencies, or equivalently dependencies between the two

nodes without consideration of any other nodes.

Graphical lasso [14,16,24] has been widely used to learn a

sparse Gaussian graphical model, where only statistically signifi-

cant gene-gene interactions have edges with non-zero entries in H.

Graphical lasso minimizes the negative log-likelihood with

sparsity-inducing L1 penalty as follows:

arg min
H

{log det Hztr S Hð Þzl Hk k1, ð1Þ

where tr(A) is the trace of matrix A, S is the sample covariance

matrix, Hk k1~
P

k

P
l h k,lð Þ
�� �� is the L1 norm of H, and l is the

regularization parameter that determines the amount of sparsity.

A large value of l leads to a sparser estimate with a greater

number of zero elements in H. The optimal value for l can be

determined using cross-validation. The problem in Eq. (1) is

convex and can be solved efficiently [16].

Background on Sparse Regression Methods for eQTL
Mapping

In eQTL mapping, the problem of identifying SNPs influencing

gene-expression levels from eQTL data is often formulated as that

of learning a multivariate linear regression model [8,18,19]. Given

genotype data for J SNPs X~½x1, . . . ,xN �T , where xi~

½xi
(1), . . . ,xi

(J)�
T

is a vector of length J with each element taking

values from f0,1,2g for the number of minor alleles at the given

locus, and the expression measurements for K genes Y~½y1,

. . . ,yN �T[RN|K for N samples, a linear regression model for the

functional mapping from SNPs to gene-expression traits is given as:

Y~XBzE, ð2Þ

where B[RJ|K is the regression coefficient matrix representing the

unknown association strengths, and E[RN|K is the matrix of noise

terms whose rows are Gaussian-distributed with mean zeros and

covariance Y. Typically, a model without an intercept is considered,

assuming that the genotype data are standardized to have mean 0
and unit variance.

Since each gene-expression trait typically has only a small

number of eQTLs, lasso [19,25] has been widely used to obtain a

sparse estimate of B. Lasso minimizes the squared-error criterion

with L1 penalty as follows:

arg min
B

tr((Y{XB)(Y{XB)T )zlDDBDD1, ð3Þ

where l is a regularization parameter that controls the amount of

sparsity in B. Eq. (3) is convex with a single globally optimal

solution, and efficient algorithms are available for solving it [26].

Lasso essentially performs K separate regression analyses,

treating the K gene-expression traits as independent of each

other. In order to combine the statistical power across multiple

correlated gene-expression traits, GFlasso [8] assumed a known

gene network and extended the standard lasso by including an

additional penalty, called graph-guided fusion penalty, that

encourages multiple related genes in the gene network to be

influenced pleiotropically by a common SNP. Given a gene

network with a set of edges E and edge weights rmk’s for each edge

(m,k)[E between the mth and kth genes, the graph-guided fusion

penalty takes the form of J(B)~
P

j

P
(m,k)[E Drmk DDb(j,m){sign

(rmk)b(j,k)D, where each term in the penalty encourages the amount

of influence of the jth SNP on the expression levels of the mth and

kth genes to be similar if the two genes are connected with an edge

in the network. GFlasso was capable of identifying SNPs with

pleiotropic effects, but it was restrictive in that the gene network

should be known a priori.

Within the same statistical framework of linear regression

method, MRCE [22] attempted to shift the focus from eQTL

mapping towards genetical genomics analysis by identifying the

gene network and eQTLs jointly. Towards this goal, MRCE

relaxed the assumption of uncorrelated noise (i.e., Y being a

diagonal matrix) in lasso and estimated the full noise covariance

matrix Y. Then, the inverse of the noise covariance V~Y{1

corresponds to a gene network. MRCE minimizes the negative

log-likelihood of data with an L1 penalty for both B and V~Y{1:

arg min
B, V

{N logjVjztr((Y{XB)V(Y{XB)T )

zl1jjBjj1zl2jjVjj1,

ð4Þ

where l1 and l2 are the regularization parameters. We notice that

unlike GFlasso, MRCE does not have any mechanisms to leverage

the estimated gene network V to model pleiotropic effects of SNPs

on multiple correlated gene-expression traits in B. The optimization

problem in Eq. (4) is not convex, but bi-convex, since fixing either B
or V and solving for the other is a convex optimization problem.

Thus, Rothman et al. [22] proposed to optimize for each of B and V
alternately given the other over iterations. However, they noted that

this strategy often does not converge, and instead suggested to use

an approximate method that prematurely terminates the iterative

optimization procedure after two iterations. As we discuss in the

Results section, we found that even this approximate method was

too slow to be applicable to a dataset of even moderate size.

The same statistical method for MRCE has been proposed

independently in the literature under the name of sparse

conditional Gaussian graphical models (CGGMs) [23]. However,

we emphasize that the statistical model that is learned in MRCE is

not a graphical model, because as we further discuss in detail in

the next sections, the parameters B do not model conditional

dependencies as in graphical models but only models marginal

dependencies. We believe that MRCE was mistakenly called a

sparse CGGM due to the resemblance between the inverse noise

covariance matrix V in MRCE and the inverse covariance matrix

H in graphical lasso as well as the aspect of the standard regression

model as a conditional model for Y given X. The sparse CGGM

that we propose in this paper is set up as a proper probabilistic

graphical model and as we show in the next sections, is

significantly more powerful than MRCE in terms of representa-

tional power and computational efficiency.

Learning Gene Networks with SNP Perturbation
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Under the same name of sparse CGGMs, Li et al. [27]

introduced a related but different statistical method that also

models a gene network corresponding to V~Y{1 in MRCE.

However, unlike our approach and MRCE, the estimation

procedure for the sparse CGGM in [27] amounted to a two-

stage process, where the gene-expression data are pre-processed to

remove SNP effects in the first stage and then these pre-processed

gene-expression data are used to learn a gene network in the

second stage. Thus, their graphical model was defined only on

gene-expression traits and did not directly model the relationship

between SNPs and gene expressions to identify eQTLs. In

contrast, our sparse CGGM is set up as a graphical model on

both gene expressions and SNPs, performs a joint estimation of

gene network and eQTLs, and infers various perturbation effects

of SNPs on gene expressions via inference.

CGGMs for Modeling Gene Networks under SNP
Perturbations

In this section, we introduce a statistical model for CGGM as a

model for a gene network under SNP perturbations. Then, in the

next sections, we describe a learning algorithm for estimating a

sparse model for CGGM from data and discuss inference schemes

for the estimated sparse CGGM. A sparse CGGM estimated from

data captures the gene network structure and direct perturbations

of the gene-expression levels by eQTLs via conditional depen-

dency structure in the estimated graph structure. By performing

inference on this estimated sparse CGGM, we can obtain a

detailed characterization of how the direct SNP perturbation

effects propagate through the gene network to perturb the

expression levels of other genes indirectly.

The key idea behind our proposed approach is to model a

gene network under SNP perturbations as a Gaussian graphical

model for a gene network conditional on SNPs. We derive a

CGGM as a conditional distribution p(yi Dxi) from the Gaussian

graphical model for a joint probability distribution p(yi,xi) for

SNPs xi and gene-expression traits yi for the ith individual. Let

us assume a Gaussian graphical model p xi,yið Þ~N 0JzK ,Sð Þ

with covariance S~
Sxx Sxy

ST
xy Syy

� �
and inverse covariance H~

S{1~
Hxx Hxy

HT
xy Hyy

� �
, where zero mean is assumed after mean-

centering each gene-expression trait and SNP. Then, the

conditional distribution of yi given xi can be obtained as

p(yi Dxi)~N(ST
xy S{1

xx xi, Syy{ST
xy S{1

xx Sxy). We further re-write

this conditional distribution, using the inverse covariance

matrix H and the partitioned inverse formula [28] to obtain a

CGGM:

p(yi Dxi)~N({H{1
yy HT

xyxi, H{1
yy ): ð5Þ

CGGM parameters Hyy and Hxy represent a gene network and

SNP perturbation effects on this gene network, respectively. A

non-zero value for the (j,k)th element of Hxy indicates that the

jth SNP is an eQTL for the kth gene-expression trait. This SNP

perturbation captures the direct influence of the jth SNP on the

kth gene expression, since the graphical model captures

conditional dependencies. While in experimental perturbation

studies the expressions of only one or two genes can be directly

perturbed (e.g., by knocking out the genes), our CGGM for

genetical genomics study allows multiple gene-expression traits

to be perturbed by multiple SNPs at the same time. Then, this

multifactorial genetic perturbations of gene-expression levels are

decoded to learn a gene network by a learning algorithm that

estimates Hyy and Hxy simultaneously.

In order to show the direct correspondence between a CGGM

and a general undirected graphical model, we re-write Eq. (5) by

expanding the quadratic term in the Gaussian distribution in Eq.

(5) to obtain:

p(yi Dxi)~exp({1=2yi
yyyi{xi

xyyi)=Z,

~exp({1=2
X
m,l

hyy(m,l)y
i
(m)y

i
(l){

X
k,j

hxy(j,k)x
i
(j)y

i
(k))=Z,

ð6Þ

where Z~

ð
exp({

1

2
yi

yyyi{xi
xyyi)dyi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)K

detHyy

s
exp

(
1

2
xi

xy H{1
yy HT

xyxi ) is a constant, also known as a partition

function in the literature of probabilistic graphical models [29],

which ensures that p(yi Dxi) forms a proper probability distribution

integrating to 1. As Eq. (6) is equivalent to the Gaussian-

distribution form in Eq. (5), this constant can be obtained in a

closed-form by directly comparing Eq. (6) with Eq. (5). If Hyy is

positive definite, the integral in the partition function is finite and

the probability distribution is well-defined. The representation in

Eq. (6) explicitly shows that a CGGM is an undirected graphical

model [29] defined over a graph with two sets of edges, namely the

set of edges connecting each pair of gene-expression traits in gene

network and another set of edges connecting each SNP to gene

expressions that the SNP is influencing (Figure 1A). Then,

following the definition of an undirected graphical model [29],

the numerator in Eq. (6) is a weighted sum of features over the

graph edges, where yi
(m)y

i
(l)’s and xi

(j)y
i
(k)’s are features and Hyy and

Hxy define edge weights. The gene network is modeled an

undirected graph, but the directions from SNPs to gene-expression

traits are implicit, since the model is a conditional probability

model for gene-expression traits conditional on SNPs.

Learning Sparse CGGMs
Since both gene-gene interactions and SNP perturbations of

gene-expression traits are highly modular and localized, we are

interested in learning a sparse model for CGGM. In other words,

only statistically significant gene-gene interactions should be

represented as edges with non-zero entries in Hyy and only a

small number of statistically significant direct SNP perturbations

should be estimated as having non-zero effect sizes in Hxy. In

order to impose a sparsity constraint, we learn a sparse CGGM by

minimizing the negative log-likelihood of data with an L1 penalty

as follows:

arg min
Hyy ,Hxy

L(Hxy,Hyy; X,Y)zl1DDHxyDD1zl2DDHyyDD1, ð7Þ

where L(Hxy,Hyy; X,Y)~1=2tr(YHyyYT )ztr(XHxyYT )z
P

i

log Z(Hxy,Hyy,xi) is the negative log-likelihood of data based on

Eq. (6) or equivalently Eq. (5), and l1 and l2 are the regularization

parameters that control the amount of sparsity. It is not necessary

to explicitly consider the positive-definite constraint for Hyy within

the optimization problem in Eq. (7), because the partition function

in the data log-likelihood contains log det(Hyy) term that acts as a

log-barrier function for the positive-definite constraint [30].

Within the L1 penalty for Hyy, we do not penalize the diagonal

elements of Hyy, since we found that this leads to a slightly better

performance in our experiments, consistent with what has been

reported for graphical lasso. It is straightforward to prove that the

Learning Gene Networks with SNP Perturbation
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problem in Eq. (7) is convex (Text S1) [30]. Thus, the learning

algorithm is guaranteed to find the globally optimal solution that

achieves the maximum statistical power.

The main challenge for solving Eq. (7) arises from the non-

smoothness of the L1 penalty function. We adopt a variant of

accelerated proximal gradient algorithms, called a Nesterov’s

second method [31], that has been developed as a general-purpose

algorithm for handling a non-smooth component of the parameter

estimation problem while improving the convergence (and thus,

computation time) of the standard gradient descent algorithm [31–

33]. We provide details of the learning algorithm in Text S2.

Lasso [25] and graphical lasso [14,16,24] can be viewed as

special cases of the sparse CGGM estimation problem in Eq. (7).

When l1wwl2, the sparse CGGM learning problem in Eq. (7)

essentially reduces to applying graphical lasso to gene-expression

data, ignoring genotype data, since the large l1 encourages all or

nearly all of the elements of Hxy to be set to zeros. On the other

hand, if l1vvl2, the sparse CGGM learning problem becomes

equivalent to lasso that fits a regression model for each gene-

expression trait separately, ignoring gene network, since the large

l2 tends to set all or almost all of the off-diagonal elements of Hyy

to zeros. The optimal values for l1 and l2 that strike the right

balance between these two extreme cases can be found by cross-

validation.

Inference on Sparse CGGMs for Detailed
Characterizations of SNP Perturbations of Gene Networks

So far, we showed that by learning a sparse CGGM, it is

possible to decode the underlying gene network and its direct

multifactorial perturbations by SNPs from data. Now, we show

that given a sparse CGGM estimated from data, we can perform

inference on this graphical model to characterize the mechanisms

of SNP perturbations of gene network in detail. Below, we discuss

how inference schemes can be used on our estimated model to

learn about indirect/secondary downstream effects of the direct

SNP perturbations, a decomposition of the overall multifactorial

SNP perturbation effects with respect to each individual direct

perturbation, and a decomposition of observed covariance in gene

expressions into genetic and non-genetic components. We note

that all of these inference schemes involve only few simple matrix

operations and are highly efficient.

Direct and Indirect SNP Perturbations of Gene Net-

work. Unlike experimental perturbation studies for learning a

gene network, in genetical genomics analysis with our statistical

framework, the properties of a sparse CGGM as a graphical model

allow us to learn whether the differential gene expression arises from

direct or indirect/secondary effects of the SNP perturbation. Direct

perturbations of gene-expression traits by SNPs are encoded

explicitly as conditional dependencies or as the sparsity pattern of

Hxy in the estimated sparse CGGM. Then, performing inference on

this graphical model is equivalent to inferring indirect SNP

perturbations of gene-expression traits, which arose from the effects

of direct SNP perturbations propagating through the gene network

to affect other neighboring gene-expression traits indirectly and

pleiotropically.

More specifically, while Eq. (6) provides the standard form of a

CGGM as a graphical model (Figure 1A), obtaining the form in

Eq. (5) from Eq. (6) amounts to performing inference in the

CGGM (Figure 1B). In other words, performing inference in a

CGGM parameterized by Hyy and Hxy is equivalent to computing

B~½{H{1
yy HT

xy�
T
~{Hxy H{1

yy and Y~H{1
yy , where the

choice of notation B and Y was deliberate due to the connection

between inference in a CGGM and the standard regression model

in Eq. (2) as discussed in the next section. Thus, even if the jth
SNP does not perturb the kth gene-expression trait (i.e., the (j,k)th
entry of Hxy is zero), if the (j,k)th entry of B is non-zero, the jth

SNP perturbs the kth gene-expression trait indirectly, as a result of

the downstream effects of the direct perturbation of other genes in

the network by the jth SNP.

More generally, indirect SNP perturbations can be inferred by

examining the sparsity pattern of B. The indirect SNP perturba-

tions as captured by the sparsity pattern of B in sparse CGGM is

determined by both direct SNP perturbations (the sparsity pattern

of Hxy) and the topology of the estimated gene network (the

sparsity pattern of Hyy). For example, if the gene network Hyy

contains multiple connected components, where each connected

component is a network over a subset of gene-expression traits

without any edges across different connected components, the

effects of direct SNP perturbations propagate to influence other

gene-expression traits only within the given connected component.

This leads to a sparsity pattern in B, where a SNP directly

influencing a gene-expression trait in Hxy has non-zero indirect

perturbation effects in B for all of the gene-expression traits within

the same connected component. On the other hand, if Hyy is a

diagonal matrix with no edges in the gene network, the direct SNP

perturbation effects do not propagate through the gene network,

and the sparsity pattern in B remains the same as that of Hxy.

More generally, gene network Hyy plays the role of calibrating

how the effects of direct genetic perturbations in Hxy propagate to

affect other gene-expression traits indirectly in B, such that an

eQTL has strong pleiotropic effects within strongly-connected

parts of the gene network.

Decomposition of SNP Perturbation Effects. Given a

sparse CGGM, the amount of the overall influence of a SNP on a

particular gene-expression trait in B can be further decomposed

into contributions from each of the directly-perturbed genes that

pass the perturbation effects to other parts of the network. For

example, while each row of B captures the overall direct/indirect

perturbation effects of the given SNP on gene network (Figure 1B),

this overall perturbation effects can be decomposed with respect to

each of the genes that are directly perturbed by the same SNP

(Figures 1C and D). In experimental perturbation studies, only one

or two genes are perturbed, but in genetical genomics analysis with

multifactorial perturbations, each SNP can directly perturb

multiple genes at the same time, such as mutations in a

transcription factor perturbing expressions of multiple target

genes. We show that a simple matrix operation for a decompo-

sition of B can identify how each of the directly perturbed genes

propagate the perturbation effects to other genes.

More specifically, the overall indirect perturbation effects B can

be decomposed into Bk’s, k~1, . . . ,K , as follows:

B~{Hxy H{1
yy ~{Hxy Y

~{
XK

k~1

Hxy(:,k) Y (k,:)~
XK

k~1

Bk,
ð8Þ

where A(:,z) and A(z,:) represent the zth column and row of matrix

A, respectively. Bk contains information on how the kth gene

passes on the direct SNP perturbation effects it received to other

gene-expression traits. Figures 1B, C, and D illustrate a single row

of each of B, B3, and B14, respectively, corresponding to SNP x1

and gene-expression traits y3 and y14 in the graphical model in

Figure 1A.

Decomposition of Gene-Expression Covariance. In ad-

dition, given the estimate of sparse CGGM parameters, the overall
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observed covariance in gene-expression data can be approximately

decomposed into the covariance induced by the gene network Hyy

and the covariance induced by direct SNP perturbations

propagating to different parts of the network. In order to derive

this decomposition, ignoring the L1 penalty that introduces a

sparsity bias, we consider the problem of finding the optimal

CGGM parameter Hyy as finding the parameter values that satisfy

the following optimality condition:

LL(Hxy,Hyy; X,Y)

LHyy
~

1

2
YT Y{

1

2

X
i

E½yiyi

where the expectation is taken with respect to p(yi Dxi,Hxy,Hyy)

and can be computed as

E½yiyi i)zE½yi�E½yi�T

~H{1
yy zH{1

yy HT
xyxixi

xy H{1
yy :

Then, from the above two equations, we obtain

YT Y~N H{1
yy z

X
i

H{1
yy HT

xyxixi
xy H{1

yy

The left-hand side of the above equation corresponds to the

observed covariance of gene-expression traits, whereas the first

and second terms on the right-hand side of the equation

correspond to the decomposition of the overall covariance into

the part induced by gene network and the other part induced by

SNP perturbations, respectively. Eqs. (9) and (10) also follow

directly from the standard result on the property of log-linear

models, a type of undirected graphical models, that finding

maximum likelihood estimates of parameters is equivalent to

matching the expectation of features under the model with the

empirical expectation of features (Theorem 20.1 in [29]). CGGMs

are a member of log-linear models, and in Eq. (9), the expectation

of features under the model and the empirical expectation of

features correspond to
P

i E½yi

yi
(m)y

i
(l) are features. In sparse CGGMs, because of the bias

introduced by the L1 penalty for sparsity in parameters, the

equality in Eq. (10) holds only approximately.

Relationship between CGGM and Standard Regression

Method. The CGGM representation in Eq. (5) as obtained after

inference in the probabilistic graphical model in Eq. (6) reveals its

connection to the standard regression model in Eq. (2). The

standard regression model is parameterized directly by B and Y,

whereas in CGGMs, the graphical model parameterized by Hyy

and Hxy is learned first and then B and Y are obtained via

inference. Maximum-likelihood estimation of parameters in the

absence of sparsity constraint leads to the same estimate for B in

both models. However, imposing a sparsity constraint on Hxy and

Hyy for the conditional dependencies and then obtaining B via

inference in sparse CGGM results in different estimates for B,

compared to sparsifying B directly as in the standard sparse

regression approach. We argue that imposing a sparsity constraint

on CGGM parameters rather than on the standard regression

parameters produces more interpretable results that distinguish

between sparse direct SNP perturbations and their propagation

through the gene network for indirect SNP perturbations of the

network. This is analogous to the case of Gaussian graphical

models, where it is generally accepted as a more reasonable

approach to impose a sparsity constraint on inverse covariance

parameters for the graphical model than on covariance parameters

that result from inference in the graphical model.

The CGGM representation in Eq. (5) after performing inference

also reveals its connection to and advantages over MRCE.

Although MRCE and CGGM are related in that V in MRCE

corresponds to Hyy in CGGM, MRCE is based on the standard

regression model and is parameterized by B. One of the key

advantages of using CGGM parameterization over MRCE

parameterization is that our formulation leads to a convex

optimization for estimation, whereas MRCE estimation problem

is only bi-convex, not jointly convex. The important consequence

of this difference is that MRCE optimization only reaches a

locally-optimal solution with unstable convergence. In contrast,

CGGM optimization is orders-of-magnitude more efficient than

MRCE and finds the globally optimal solution, achieving higher

accuracy for the recovered network and eQTLs with greater

computational efficiency. Finally, although V in MRCE and Hyy

in CGGM are equivalent as far as the model is concerned, their

estimates are not identical because of the difference in the

properties of optimization problems and the quality of solutions

between the two approaches.

Results

In this section, we demonstrate the performance of our

statistical framework on HapMap-simulated and yeast eQTL

datasets [20,21] and compare the results with those from MRCE

[22] that has been previously developed for genetical genomics

analysis. Although our method primarily focuses on the recovery

of gene network under SNP perturbations, it has the potential to

enhance the power for detecting eQTLs by considering eQTL

mapping in the context of network learning problem. In order to

test this hypothesis, we also compare our method and MRCE with

GFlasso [8] in terms of the accuracy for detecting eQTLs, as

GFlasso has been developed specifically for eQTL mapping.

We used a Matlab implementation of Algorithm 1 in Text S2

for sparse CGGM, an R implementation of MRCE downloaded

from the authors’ website, and a Matlab implementation of the

smoothing proximal gradient method [34] for GFlasso. We used

the approximate MRCE algorithm that terminates the exact

method after two iterations as suggested by the authors [22],

because the exact method often did not converge and was too slow

to be applicable to large-scale simulation experiments, taking two

or three days with cross-validation for a single simulated dataset of

500 SNPs and 30 gene-expression traits.

Simulation Study
In order to simulate eQTL datasets, we used the SNP genotype

data from HapMap phase III release 2 [20] as SNP data X and

simulated gene-expression traits Y, given X and known model

parameters. We used the SNP data for chromosome 21 of the 343

individuals of African origin, including ASW, LWK, MKK, and

YRI population groups. After removing SNPs with minor allele

frequency v0:05 and highly correlated SNPs with squared

correlation coefficient r2
w0:6, we obtained 4,901 SNPs. In each

simulated dataset, we randomly selected a region of 500 SNPs and

simulated the values of 30 gene-expression traits for each individual,

based on the CGGM in Eq. (5). As almost all statistical methods for

eQTL mapping assumes the standard linear regression model in Eq.

(2), we performed experiments on gene-expression traits simulated

from this model as well. In order to set the model parameters, we

first set the sparsity pattern and then assigned values to the non-zero

elements of the parameters as follows.
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N Simulation from CGGM with known Hxy and Hyy. In order to set

the sparsity pattern of Hyy for gene network structure, we

randomly partitioned the 30 expression traits into three

modules of similar size and assumed relatively dense edge

connections within each module and sparse edge connections

between different modules. Specifically, we connected a pair of

gene-expression traits with an edge with probability 0:5 within

a module and with probability 0:02 between modules. Given

this sparsity pattern in Hyy, we assigned values to the non-zero

elements of Hyy by drawing edge weights randomly from a

uniform distribution U ½a,b� for pre-determined values of a and

b and setting Hyy to the graph Laplacian of this weight matrix.

A graph Laplacian is a symmetric matrix, where the off-

diagonal elements are negative edge weights and diagonal

elements are the sum of the weights of all the edges connecting

to each node [35]. In general, a graph Laplacian is only

positive-semidefinite, and to ensure Hyy is positive definite, we

added small positive values to the diagonal elements.

xy for direct SNP

trait within each module is perturbed directly by a small

number of SNPs. Specifically, we randomly selected one gene-

expression trait in each of the three modules in Hyy and set

each SNP as directly perturbing the selected gene-expression

trait with probability 0:02. Then, we set the values of the non-

zero elements of Hxy to random draws from a uniform

distribution U ½a,b�.
N Simulation from the standard linear regression model with known B and

Y. We used the same strategy as in Hyy to set Y{1. In order to

set the sparsity pattern of B, we assumed pleiotropic effects of

eQTLs, where all gene-expression traits within each module

are influenced by the same set of SNPs. For each gene module

in Y{1, we let each SNP be an eQTL for the gene-expression

traits in the module with probability 0:02. The association

strengths for these eQTLs were randomly drawn from a

uniform distribution U ½a,b�.

While in our simulation studies we primarily focused on the

relatively small datasets of 500 SNPs and 30 gene-expression traits

as described above, in order to demonstrate the performance and

scalability of our method, we also applied our method to larger-

scale simulated datasets of 1,000 SNPs and 500 gene-expression

traits. Because MRCE, the main competing method to our

approach, required substantially more computation time than our

approach even on the smaller datasets, we were unable to compare

the performance of MRCE on these larger simulated datasets.

Instead, we compared our method with other computationally

efficient methods, including GFlasso and a base-line approach of

applying graphical lasso [16] and lasso [25] sequentially to learn

gene networks and eQTLs.

We use precision-recall curves and prediction errors as

quantitative measures of the performance of different statistical

methods. Precision-recall curves summarize how accurately each

method recovers the true eQTLs and gene network structure by

plotting precisions and recalls on y- and x-axes. In order to

compute precisions and recalls, for each simulated dataset, we

ranked all the elements of the estimated parameter matrices in a

descending order according to their absolute values and compared

this ranked list with the set of non-zero elements in the true

parameters. On the other hand, prediction errors evaluate the

performance of different methods on how accurately each method

can predict gene-expression levels, given SNPs and estimated

model parameters. Once the parameters are estimated using

training data, prediction errors are obtained as
1

NtsK

X
i

(yi{ŷyi)T (yi{ŷyi), where ŷyi is the prediction of gene expressions

given by the model for the ith individual in an independent test

dataset and Nts is the number of samples in the test set.

Given the 343 samples in the full dataset, we used 300 samples as

a training dataset and the remaining 43 samples as a test dataset. In

order to determine the optimal regularization parameters in sparse

CGGM, MRCE, and GFlasso during the training phase, we created

a grid for different choices of regularization parameters, performed

a five-fold cross-validation for each point on the grid, and selected

the values that give the smallest cross-validation error as the optimal

regularization parameters.

Illustration of Sparse CGGM Behavior
In order to illustrate the behavior of a sparse CGGM, we

present the results from applying our method to a single dataset

simulated from a CGGM parameterization and compare them

with what we obtained from GFlasso and MRCE (Figure 2). The

non-zero elements of the true model parameters were drawn from

U ½0:8,1:1� for Hxy and U ½0:2,0:5� for Hyy. Since GFlasso requires

the gene network to be known, we used the correlation coefficient

matrix of gene-expression trait data thresholded at 0:6 as a gene

network in GFlasso estimation. The true parameters for Hyy and

Hxy along with B~{Hxy H{1
yy are shown in the left, middle, and

right columns, respectively, in Figure 2A. The estimated param-

eters for sparse CGGMs, MRCE, and GFlasso are shown in

Figures 2B–D, respectively. In the plots for Hxy and B, the rows

and columns correspond to gene-expression traits and SNPs,

respectively, and the results are shown only for the first 150 SNPs.

In each panel, the white pixels correspond to the zero elements of

the parameters and the darker pixels to non-zero elements. We

note that while sparse CGGM provides the estimates of both Hxy

and B, MRCE and GFlasso provide a single estimate of eQTL

effect sizes in B and do not distinguish between direct and indirect

effects of eQTLs on gene-expression traits.

As shown in Figure 2B, our method successfully recovers the

three gene modules in the true gene network as the block-diagonal

structure in Hyy along with the sparse direct perturbation of this

network by eQTLs in Hxy. When we perform inference in the

estimated sparse CGGM by computing B~{Hxy H{1
yy to learn

indirect perturbation of the network by eQTLs, the direct

perturbations of eQTLs in Hxy propagate primarily within each

gene module in Hyy, leading to vertical stripes in B. Although

MRCE learns a gene network from data, unlike sparse CGGM, it

does not have any mechanism to leverage this gene network to

learn pleiotropic or indirect effects of eQTLs on gene modules and

the estimated B in Figure 2C shows isolated eQTLs for individual

gene-expression traits rather than vertical stripes. As can be seen in

Figure 2D, the GFlasso estimate of B shows vertical stripes for

eQTLs common within each gene module. However, it is

immediately clear that GFlasso results have significantly more

false positives for eQTLs than sparse CGGM and MRCE. This

demonstrates that genetical genomics approach has the potential

to improve the accuracy for detecting eQTLs than the conven-

tional approach that focuses solely on eQTL mapping.

Simulation from Sparse CGGMs
We performed a quantitative comparison of the performance of

sparse CGGM, MRCE, and GFlasso, by obtaining precision-recall

curves and prediction errors averaged over 50 simulated datasets.

Since MRCE and GFlasso are based on the standard linear
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regression model and sparse CGGM is based on a graphical

model, we evaluate the different methods on datasets simulated

from both models.

Recovery of Gene Networks. We first evaluate the two

statistical methods, sparse CGGM and MRCE, on the accuracy of

gene network structure recovery. The precision-recall curves for

the estimated Hyy and Y{1 averaged over 50 simulated datasets

are shown in Figure 3. In each panel of Figure 3, the true model

parameters were drawn from one of the nine combinations of the

three uniform distributions, namely U ½0:2,0:5�, U ½0:5,0:8�, and

U ½0:8,1:1� for Hxy (rows in Figure 3) and Hyy (columns in

Figure 3). The results in Figure 3 show that sparse CGGMs can

recover the gene network structure with significantly higher

accuracy for nearly all of the parameter settings. In addition, the

performance of sparse CGGMs is relatively stable across all

parameter settings, whereas the performance of MRCE varies

widely for different parameter settings.

Recovery of eQTLs. In the process of identifying the gene

network structure under SNP perturbations, sparse CGGM and

MRCE also address eQTL mapping, identifying the SNPs with or

without perturbation effects on gene network. Using the same

simulated datasets and estimated models from Figure 3, in

Figure 4, we evaluate the two methods on how accurately they

can recover the true eQTLs, and compare the precision-recall

curves with those from GFlasso that focuses only on eQTL

mapping. For sparse CGGM, we present two precision-recall

curves, one for direct eQTL effects in Hxy and another for indirect

eQTL effects obtained from B~{Hxy H{1
yy , by comparing the

estimated values with the true Hxy and B. For MRCE and GFlasso

that do not distinguish between the direct and indirect effects of

eQTLs, we obtained a single precision-recall curve by comparing

the estimated B with the true B~{Hxy H{1
yy .

Overall, in Figure 4, sparse CGGM consistently outperforms

MRCE and GFlasso on estimating eQTLs under all parameter

settings. In addition, the two statistical methods for genetical

genomics approach achieve significantly higher accuracy for

detecting eQTLs than GFlasso that focuses on eQTL mapping,

showing the advantage of discovering eQTLs by systematically

decoding a gene network and its perturbation effects by SNPs. We

also observe that for a given parameter setting for Hyy in each

column of Figure 4, as the range of values for Hxy increases from

U ½0:2,0:5� to U ½0:8,1:1�, the performance of all methods on

detecting eQTLs tend to improve.

Prediction Errors. In order to evaluate the different methods

on how accurately the estimated model can predict gene-expression

values given SNPs, we computed the prediction errors on the test

data using the same set of estimated models in Figures 3 and 4. The

results are shown as box plots in Figure 5. We observe from Figure 5

that sparse CGGMs consistently outperform MRCE and GFlasso

with the smallest mean and variance of the prediction errors under

all of the nine parameter settings.

Simulation from Standard Linear Regression Models
Since MRCE and GFlasso use the standard linear regression

model, we also compared the performance of the different

methods, using datasets simulated from the model in Eq. (2) with

known parameters for B and Y (Figure 6). We present the

precision-recall curves for Y and B averaged over 50 simulated

datasets in Figures 6A and B, respectively, and show the prediction

errors in Figure 6C. In our simulation, we set the true parameter

values to random draws from U ½0:5,0:8� for Y and U ½0:5,0:8� for

B. As can be seen in Figure 6, even if the datasets were simulated

from the standard linear regression model as used in MRCE and

GFlasso, our method still outperforms MRCE and GFlasso.

Figure 2. Comparison of the behavior of sparse CGGM, MRCE, and GFlasso using a single simulated dataset. A known sparse CGGM
was used to generate the simulated dataset. The left, middle, and right columns show the absolute values of Hyy for gene-network edge weights,
Hxy for the strengths of direct SNP perturbations, and B~{H{1

yy HT
xy for strengths of indirect SNP perturbations, respectively. In the middle and

right columns, Hxy and B are shown with gene-expression traits in rows and SNPs in columns. White pixels represent zero elements and darker pixels
represent non-zero elements of the parameter matrix. The true model parameters are shown in Panel (A), and the estimated parameters are shown
for (B) sparse CGGM, (C) MRCE, and (D) GFlasso. MRCE and GFlasso use the standard regression model for eQTL mapping, and thus provide a single
summary of SNP effects on gene expressions in B. GFlasso focuses only on the task of eQTL mapping and thus, does not provide an estimate of gene
network.
doi:10.1371/journal.pcbi.1003420.g002
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Simulation Using Large-Scale Datasets
The simulation results so far demonstrated that our method has

greater power for identifying gene networks and eQTLs than other

methods. However, in these experiments, we were constrained to

use relatively small datasets of only 30 gene-expression traits with

500 SNPs, because MRCE could not handle larger datasets

effectively in a systematic simulation study. In this section, we

demonstrate the effectiveness and scalability of our method, using

substantially larger simulated datasets of 500 gene-expression traits

and 1,000 SNPs.

Given a region of 1,000 SNPs from chromosome 21 of the

African individuals in HapMap phase III SNP data as described

above, we simulated the values for 500 gene-expression traits,

assuming sparse CGGMs with the true parameters determined as

follows. We assumed that the true gene networks are scale-free

networks, and set the network using the following strategy. First,

we determined the number of neighbors of each node by making a

random draw from a power-law distribution p(k)!k{1:8. Then,

we applied the algorithm for generating a scale-free network [36]

that repeatedly connects two nodes until we achieve the desired

node degrees initially determined according to the power-law

distribution. Given this network structure, we set the edge weights

to random draws from a uniform distribution U ½0:5,0:8�, and set

Hyy to the graph Laplacian of the edge-weight matrix with small

Figure 3. Precision-recall curves for estimated gene network structures using datasets simulated from sparse CGGMs. Each panel
shows the results from datasets simulated under different parameter settings for Hxy (rows) and Hyy (columns). Each precision-recall curve was
obtained as an average over results from 50 simulated datasets. Simulated datasets with 30 gene-expression traits and 500 SNPs were used.
doi:10.1371/journal.pcbi.1003420.g003
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positive values added to the diagonal elements. We set the true

eQTLs in Hxy by choosing each SNP as an eQTL for each gene-

expression trait with probability 0:02 and selecting one additional

SNP as an eQTL for hub nodes with more than 20 neighbors in

the network. For each eQTL in Hxy, we set the eQTL effect sizes

to random draws from a uniform distribution U ½0:5,0:8� with the

signs of the values determined randomly.

In Figure 7, we compare the performance of the different

methods averaged over 30 datasets simulated according to the

above strategy. The results are shown for the precision-recall curves

for the accuracy of detecting gene-network structures (Figure 7A)

and eQTLs (Figure 7B) as well as prediction errors (Figure 7C). As

MRCE could not run on a single dataset of the given size within a

few days, instead of using MRCE in our experiment, we compared

our method with GFlasso and also with a two-stage method of

applying graphical lasso and lasso to learn gene networks and

eQTLs separately. We observe from Figure 7 that sparse CGGMs

outperform all the other methods on these large-scale datasets.

Figure 4. Precision-recall curves for estimated eQTLs using datasets simulated from sparse CGGMs. Precision-recall curves for the
recovery of eQTLs are shown, using the same simulated datasets and estimated models in Figure 3. Each panel shows results from datasets simulated
under different parameter settings for Hxy (rows) and Hyy (columns). For sparse CGGMs, each panel shows two precision-recall curves, one for eQTLs
with direct perturbation effects Hxy and another for indirect perturbation effects B, whereas for MRCE and GFlasso, the results are shown only for the
association strengths B.
doi:10.1371/journal.pcbi.1003420.g004
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Computation Time and Scalability
In order to examine the scalability of sparse CGGM, MRCE, and

GFlasso, we compared the computation time for a single run of the

different methods on varying sizes of datasets in Figure 8. Figure 8A

shows the computation time for varying the number of gene-

expression traits with the number of SNPs fixed at J~300, whereas

Figure 8B shows the results from varying the number of SNPs with

the number of gene-expression traits fixed at K~100. Even though

we used the approximate method for MRCE to reduce the

computational cost of the exact method, our sparse CGGM

optimization is more efficient by orders of magnitude than MRCE

for problems of all sizes. Although GFlasso is more efficient than

both sparse CGGM and MRCE, it is significantly more limited in

that it focuses only on the problem of eQTL mapping.

Analysis of Yeast eQTL Dataset
We applied our method to an eQTL dataset collected for two

yeast parent strains, BY4716 (BY) and RM11-1a (RM), and their

112 segregants [21]. We obtained SNP genotypes for 1,260 loci after

removing the redundant SNPs with the same genotypes in

neighboring regions of the genome and obtained expression

measurements for 3,684 genes after removing the genes whose

expression measurements were missing for more than 5% of the 114

samples. In order to select the optimal regularization parameters l1

and l2, we performed a cross-validation with three random splits of

data into 100 samples for estimating model parameters and 14

samples for computing cross-validation errors. Then, a final

estimate of parameters was obtained by training a model on the

entire dataset using the optimal regularization parameters.

Figure 5. Prediction errors in simulation studies. Prediction errors on an independent test data given the estimated models in Figures 3 and 4
are shown as boxplots for different parameter settings for Hxy (rows) and Hyy (columns).
doi:10.1371/journal.pcbi.1003420.g005
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Figure 6. Results from datasets simulated from the standard linear regression model. (A) Precision-recall curves for the recovery of gene
network structure in Hyy (or Y{1). (B) Precision-recall curves for the recovery of eQTLs in B. (C) Prediction errors. The results were obtained as an
average over 50 simulated datasets. Simulated datasets with 30 gene-expression traits and 500 SNPs were used.
doi:10.1371/journal.pcbi.1003420.g006

Figure 7. Results from large-scale datasets simulated with sparse CGGMs. (A) Precision-recall curves for the recovery of gene network
structure in Hyy (or Y{1). (B) Precision-recall curves for the recovery of eQTLs in B. (C) Prediction errors. The results were obtained as an average over
30 simulated datasets. Simulated datasets with 500 gene-expression traits and 1,000 SNPs were used.
doi:10.1371/journal.pcbi.1003420.g007

Figure 8. Computation time and scalability. The computation time for a single run of sparse CGGM, MRCE, and GFlasso is shown for (A) varying
the number of gene-expression traits K with the number of SNPs fixed at J~300 and (B) varying the number of SNPs J with the number of gene-
expression traits fixed at K~100. The results for MRCE were obtained using the approximate algorithm.
doi:10.1371/journal.pcbi.1003420.g008
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Below, we examine the yeast gene network and eQTLs with

direct and indirect perturbations estimated by our method. In

addition, we provide an in-depth analysis of a subnetwork with a

strong evidence of being involved in DNA replication stress

response based on the literature. We also provide a quantitative

comparison of sparse CGGMs and other methods in terms of

prediction errors.

Scale-Free Gene Network for Yeast
Since many previous works showed that gene networks tend to

have a scale-free topology with few hub genes having many

neighbors, we examined the gene network parameters Hyy in the

estimated sparse CGGM for a scale-free property [37]. Given the

network edge weights in Hyy, we defined the degree of each node

as the sum of the absolute values of all incoming edge weights for

the node. Then, the best ordinary least square fit of linear model

for the empirical cumulative degree distribution was r2~0:98,

showing that the estimated network has a strongly scale-free

topology. Overall, in our estimate of network, 14 genes were

connected to more than 100 other genes, 156 genes had more than

10 neighbors, and 1,593 genes had at least one neighbor.

We hypothesized that each hub gene and its immediate

neighbors form a hub-gene module and are involved in a common

biological process. In order to test this hypothesis, we performed a

gene ontology (GO) enrichment analysis for the 25 largest hub-

gene modules, using Fisher’s exact tests (Table 1). We found that

Table 1. Yeast hub genes and hub-gene regulated modules estimated by sparse CGGM.

Hub gene Hub module size GO category p{value* Category size (Overlap)

CTT1 739 Cytoplasmic translation 3.08e-62 171 (110)

ARG1 564 Ribosome 2.24e-51 258 (111)

DSE2 340 Cytoplasmic translation 1.16e-22 171 (48)

PHM7 237 Carboxylic acid biosynthetic process 4.41e-15 392 (50)

GPH1 184 Ribonucleoprotein complex biogenesis 3.61e-26 192 (42)

MSC1 182 Oxidation-reduction process 5.11e-11 408 (38)

URA10 178 Cytoplasmic translation 1.53e-98 171 (88)

RTN2 150 Oxidation-reduction process 1.13e-11 408 (35)

ICY2 145 Cellular amino acid biosynthetic process 1.83e-27 153 (36)

SOL4 135 Oxidation-reduction process 1.28e-9 408 (30)

SPI1 119 Trehalose metabolic process 2.21e-10 11 (7)

Glycoside metabolic process 2.19e-9 14 (7)

ASP3-3 118 Glutamine family amino acid catabolic process 1.06e-7 14 (6)

LEU2 104 Cellular amine metabolic process 2.37e-9 299 (22)

TKL2 105 Oxidation-reduction process 1.50e-7 408 (23)

HIS4 97 Cellular amino acid biosynthetic process 9.00e-56 153 (55)

YHR033W 93 Mitochondrial membrane part 1.84e-30 143 (32)

Hydrogen ion transmembrane transporter activity 3.86e-20 57 (18)

Respiratory electron transport chain 1.82e-18 31 (14)

Cellular respiration 2.48e-18 70 (18)

SNZ1 91 Cellular amino acid biosynthetic process 8.43e-30 153 (32)

GAD1 91 Carbohydrate catabolic process 2.43e-8 84 (11)

Trehalose metabolic process 2.42e-7 11 (5)

ARG3 90 Ribonucleoprotein complex biogenesis 2.41e-25 192 (31)

HSP26 87 Extra cellular region 4.73e-9 95 (12)

TMT1 75 Cellular amino acid biosynthetic process 1.09e-22 153 (25)

TFS1 67 Carbohydrate catabolic process 1.37e-8 84 (10)

Trehalose metabolic process 5.13e-8 11 (5)

LYS1 62 Cellular amino acid metabolic process 1.79e-27 283 (32)

PGM2 57 Carbohydrate metabolic process 2.04e-11 283 (18)

Energy reserve metabolic process 9.94e-11 29 (8)

Glycogen biosynthetic process 1.76e-10 12 (6)

URA3 56 Superoxide dismutase activity 1.34e-5 6 (3)

De novo pyrimidine base biosynthetic process 2.39e-5 7 (3)

Response to toxin 2.39e-5 7 (3)

*The p{values were obtained from Fisher’s exact test. Only the top GO categories with the most significant p{values are shown for each module.
doi:10.1371/journal.pcbi.1003420.t001
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each hub-gene module was significantly enriched with genes in a

common GO category, showing that the genes in each hub-gene

module are likely to participate in a common pathway.

SNP Perturbations of Yeast Gene Network
Next, we examined the eQTLs identified by our method as

perturbing the above gene network. The eQTLs with direct

perturbations of the gene network as captured in Hxy tended to

concentrate on a small number of genetic loci, forming eQTL

hotspots. Although the sparsity pattern of Hxy showed that 1,248 out

of 1,260 SNP loci regulate directly at least one gene-expression trait,

the top 10 SNPs that affect the largest number of gene-expression

traits accounted for 15.8% of all SNP/gene-expression-trait pairs

with direct influence of SNPs on gene-expression traits, and the top

20 SNPs accounted for 28.5%. We defined these top 20 SNPs as

eQTL hotspots, and the genes directly regulated by each eQTL

Table 2. Yeast eQTL hotspots and hotspot-regulated modules in Hxy estimated by sparse CGGM.

Genome location Hotspot module size Slim GO category p{value*
Category size
(Overlap) Zhu et al. [38]

II:368,991 146 Nucleolus 1.63e-21 124 (43)

RNA modification 1.69e-5 41 (11)

II:548,401 359 Nucleolus 5.65e-24 124 (71) H

rRNA processing 4.71e-19 127 (63)

Ribosomal biogenesis 4.48e-10 58 (30)

II:658,746 231 Nucleolus 2.75e-33 124 (71)

rRNA processing 3.14e-25 127 (60)

III:105,042 77 Cellular amino acid metabolic process 5.95e-8 148 (18)

III:79,091 75 Oxidoreductase activity 1.84e-6 152 (16) H

IV:871,416 64 Response to chemical stimulus 6.25e-4 125 (10)

IV:929,769 105 Mitochondrial translation 1.75e-10 23 (10)

V:113,507 103 Plasma membrane 3.38e-7 124 (18) H

Transmembrane transporter activity 2.63e-5 109 (14)

V:350,744 174 Structural molecule activity 4.00e-20 144 (48)

V:395,442 79 Cellular respiration 2.20e-7 50 (11)

Nucleic acid binding transcription factor activity 1.92e-5 39 (8)

VII:52,613 109 Endoplasmic reticulum 3.43e-6 99 (15)

VIII:89,953 63 Chromatin organization 1.29e-7 27 (8) H

VIII:111,686 67 Conjugation 8.00e-11 27 (11) H

Site of polarized growth 3.47e-7 40 (9)

Regulation of cell cycle 1.13e-5 33 (7)

Cellular bud 2.99e-5 39 (7)

VIII:138,639 64 Mitochondrial translation 1.32e-7 23 (7)

Mitochondrion organization 1.17e-6 68 (9)

XII:957,108 61 Cellular respiration 1.29e-13 50 (16)

XII:660,992 196 Oxidoreductase activity 3.95e-13 152 (34) H

Lipid metabolic process 2.71e-7 76 (17)

Response to chemical stimulus 1.09e-5 125 (19)

XIII:46,077 86 Cellular amino acid metabolic process 8.30e-6 148 (15)

Carbohydrate metabolic process 1.63e-5 85 (11)

XIV:486,861 410 Mitochondrion organization 2.85e-7 68 (21) H

Mitochondrial envelope 1.03e-6 118 (27)

Generation of precursor metabolites 2.95e-6 80 (21)

XV:172,654 249 Oxidoreductase activity 1.48e-10 152 (38) H

Mitochondrial envelope 6.60e-10 118 (32)

XV:563,943 107 Generation of precursor metabolites 4.75e-27 80 (37) H

Cellular respiration 4.32e-26 50 (31)

Ion transport 1.29e-9 71 (17)

ATPase activity 3.45e-5 68 (11)

*The p-values were obtained from Fisher’s exact test. Only the top GO categories with the most significant p{values are shown for each module.
doi:10.1371/journal.pcbi.1003420.t002
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hotspot as a hotspot-regulated gene module (Table 2). In order to

avoid redundancy, in the case of multiple eQTL hotspots within a

20 kb region with largely overlapping hotspot-regulated gene

modules, we examined only one of those hotspots with the largest

hotspot-regulated gene module. Out of the 13 eQTL hotspots that

have been previously reported in analysis of the same dataset in [38],

9 hotspots overlapped with the results from our method.

In order to investigate whether the genes in each hotspot-

regulated gene module are involved in a common biological

function, we performed GO enrichment analysis (Table 2). We

performed Fisher’s exact tests, using GO slim categories download-

ed from http://www.geneontology.org/GO.slims.shtml, after re-

moving the GO categories with more than 500 genes. Our results

show that all of the hotspot-regulated gene modules are significantly

enriched for some GO categories, providing evidence that each

eQTL hotspot regulates a functionally coherent set of genes.

Since indirect SNP perturbations result from direct SNP

perturbations propagating through the network, eQTLs with

direct perturbations are likely to have stronger effect sizes than

indirect perturbations. In Figure 9A, we compared the overall

distribution of effect sizes of direct and indirect SNP perturbations

as captured in Hxy and B of the sparse CGGM by plotting

histograms of the absolute values of non-zero elements in Hxy and

B. For indirect SNP perturbations, only those SNP/gene-

expression-trait pairs that were estimated to be zero in Hxy but

non-zero valued in B were included. As can be seen in Figure 9A,

the direct perturbations are generally stronger than indirect

perturbations, confirming our hypothesis.

Then, we examined whether the direct SNP perturbations

estimated by our method are more likely to be cis eQTLs than the

indirect perturbations. We declared the direct and indirect SNP

perturbations in Hxy and B as cis eQTLs, if for a given pair of

SNP/gene-expression-trait, the gene sequence overlaps with the

linkage region represented by the given SNP. The histogram in

Figure 9B shows the distribution of the effect sizes of the estimated

direct and indirect SNP perturbations for cis eQTLs. As can be

seen in Figure 9B, direct SNP perturbations are significantly more

frequent in cis eQTLs than indirect SNP perturbations, and

explain nearly all of the cis eQTLs with strong effect sizes.

When we examined the cis eQTLs with direct perturbations in

our estimated model, we found that our approach was able to

identify some of the well-known direct genetic perturbations in the

literature. The genotypes for LEU2, URA3, HO, and LYS2 are

known to differ in the parent strains, BY and RM, where these

genetic differences have a large impact on the expressions of the

corresponding genes as well as other genes [21]. While LYS2 was

not included in our analysis, the LEU2, URA3, and HO expressions

were found to have cis eQTLs with direct perturbations in our

analysis, and at the same time, in our estimate of gene network,

LEU2 and URA3 appeared as hub genes with more than 50

neighbors. In particular, the cis eQTLs with direct perturbations of

LEU2 and URA3 were found to have the strongest effects among

all cis eQTLs shown in Figure 9B, whereas HO had a cis eQTL

with moderately strong direct perturbation. These results provide

evidence that our method can recover the true direct SNP

perturbations of a gene network, by decoupling direct SNP

perturbations of gene expressions from their secondary/indirect

effects on other gene expressions.

DNA Replication Stress Response Subnetwork and its
Perturbation by eQTLs in Yeast

We performed an in-depth analysis of the subnetwork around the

TFS1 gene and its perturbation by eQTLs. This subnetwork is shown

in Figure 10A, where the edge thicknesses correspond to the absolute

values of edge weights in Hyy, representing the strength of dependency

between two gene-expression traits. To avoid clutter, we only show the

edges with the absolute values of edge weights w0:05.

This subnetwork in Figure 10A contains many genes involved

in DNA replication stress response and other types of stimulus

response. In particular, TFS1 has been identified as a high-copy

suppressor of guanine nucleotide-exchange factor CDC25, which

activates the Ras/cyclic AMP pathway regulating growth and

metabolism in response to nutrients [39]. Many of the genes in

this subnetwork, including TFS1, its immediate neighbors (PGM2,

SOL4, RTN2, GDB1, RME1, PRB1, SDS24, IGD1), and 22 other

genes, have been previously observed with changed abundance or

localization under DNA damage [40]. In addition, the DDR2

gene in the subnetwork that codes for the DNA damage

Figure 9. Comparison of SNP perturbation effect sizes on yeast gene network in the estimated sparse CGGM. Histograms of the effect
sizes of direct and indirect SNP perturbations in yeast are shown for (A) all eQTLs and (B) cis eQTLs identified by sparse CGGM.
doi:10.1371/journal.pcbi.1003420.g009
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responsive protein has been found to have multi-stress response

function [41]. Also, several hub genes in the subnetwork have

been annotated as responding to other stress conditions such as

heat shock (HSP26) and oxidative stress (CTT1 and GAD1) [42–

44].

Direct and Indirect SNP Perturbations of the Subnet-

work. We examined the direct and indirect perturbations of this

subnetwork by an eQTL located in 1,095 kb region of chromo-

some 4. In Figure 10A, the genes whose expressions are directly

perturbed by this eQTL are shown as diamond-shaped nodes. The

round and colored nodes correspond to genes whose expressions

are indirectly perturbed by this eQTL. The node size and color

shade correspond to the effect sizes of the eQTL, with larger and

darker nodes for stronger SNP perturbations.

In Figure 10A, we see that only a small number of gene-

expression traits (TFS1, HSP26, GAD1, RTN2, and PRC1) are

directly perturbed by the given eQTL, whereas this direct eQTL

effects are passed on to other parts of the network to affect the

expressions of many other genes indirectly. These indirect eQTL

effects tend to be stronger on the immediate neighbors of the

directly perturbed genes and gradually decrease for those genes

farther away from the directly perturbed genes.

Figure 10. Yeast gene-subnetwork for DNA replication stress response and its SNP perturbation estimated by sparse CGGM. (A) The
yeast subnetwork for DNA replication stress response and its direct/indirect perturbation by a SNP in the region of 1,095 kb on chromosome 4
estimated by sparse CGGM learning algorithm. This SNP directly perturbs TFS1, HSP26, RTN2, and GAD1, and the propagation of this direct
perturbation to other parts of the network is obtained by performing inference on the estimated sparse CGGM. Edge thicknesses correspond to
absolute values of edge weights in Hyy. The diamond-shaped nodes represent gene-expression traits that are directly perturbed by the SNP, whereas
the round and colored nodes represent those genes whose expressions are indirectly perturbed by the SNP. The color shade and size of nodes
indicate the strength of the SNP perturbation of gene-expression trait. Our statistical framework allows the overall indirect SNP perturbation effects in
Panel (A) to be decomposed into the components that arose from the propagation of the direct perturbation effects of each of (B) TFS1, (C) HSP26, (D)
RTN2, and (E) GAD1 by the given SNP.
doi:10.1371/journal.pcbi.1003420.g010
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Decomposition of SNP Perturbation Effects. While

Figure 10A shows the overall perturbation effects of the given

eQTL on the subnetwork, in order to obtain a more detailed

description of the perturbation effects, we used Eq. (8) to perform a

decomposition of the overall effects of this eQTL with respect to

each of the directly-influenced genes from which the indirect

eQTL effects originated. The results of the decomposition are

shown for each of the four directly-influenced genes (TFS1,

HSP26, RTN2, and GAD1) in Figures 10B–E, respectively. The

genes whose expressions are directly perturbed by the eQTL and

who pass such direct eQTL effects to other parts of the network

are marked with red lines around the corresponding nodes in

Figures 10B–E. Although PRC1 is also directly perturbed by this

eQTL, we do not show the result for PRC1, because the strength of

the direct SNP perturbation on PRC1 is significantly smaller than

those for the other four directly-influenced genes. PRC1 is

connected to TFS1 and its activity is known to be inhibited by

TFS1-encoded protein with high affinity [45].

How strongly the direct eQTL perturbation effects propagate to

other parts of the network depends on both the strengths of the

direct SNP perturbations Hxy and the strengths of network edge

connections Hyy. For example, in Figure 10A, the given eQTL has

the largest direct influence on RTN2 among all of the directly-

influenced genes, and as can be seen in Figure 10D, RTN2 can

pass on this direct SNP perturbation to a larger part of the network

than TFS1, HSP26, and GAD1. On the other hand, as shown in

Figures 10A and D, among RTN2’s neighbors, HBT1 and MSC1

receive the strongest indirect SNP perturbations because these two

genes have stronger edge connections to RTN2.

Decomposition of Gene-Expression Covariance. Sparse

CGGM also allows for a decomposition of the observed covariance of

gene-expression data into two components, the covariance compo-

nent induced by the gene network and the covariance component

induced by the SNP perturbations, as described by Eq. (10). Based on

the same subnetwork in Figure 10 and all eQTLs perturbing this

subnetwork, we show the results of this decomposition in Figure 11.

Figure 11A represents the observed covariance in the gene-expression

data (the left-hand side of Eq. (10)), and Figures 11B and C show the

covariance component induced by the gene network (the first term on

the right-hand side of Eq. (10)), and the covariance component

induced by eQTLs (the second term on the right-hand side of Eq.

(10)), respectively. Edge thicknesses indicate the absolute values of

covariances. We note that the edges in Figure 11 represent marginal

dependencies in covariances, whereas the edges in Figure 10

represent conditional dependencies between two gene-expression

traits conditional on all the other gene-expression traits.

Experimental Evidence for the Estimated Subnet-

work. Although the DNA replication stress response subnet-

work in Figures 10 and 11 was obtained computationally using our

proposed statistical method, we found that this computational

result is supported well by the results from experimental

perturbation study in the literature and that many genes in the

subnetwork have a known role in DNA replication stress response

[46]. In [46], 45 up-regulated transcripts were identified in a

telomerase-deficient mutant, after an exposure to telomere

shortening and cellular senescence. Out of these 45 genes, 32

genes appeared in our gene-expression dataset of 3,684 genes, and

30 out of the 32 genes were one or two edges away from TFS1 in

our subnetwork in Figure 10A: 13 genes were immediate

neighbors of TFS1 and another 17 genes were neighbors of either

CTT1 (cytosolic atlas T) or DDR2 (DNA damage responsive). Both

CTT1 and DDR2 were neighbors of TFS1 in our subnetwork and

Figure 11. Decomposition of yeast gene-expression covariances for DNA replication stress response subnetwork using sparse
CGGM. (A) The covariance of yeast gene expression data for the genes shown in Figure 10. Sparse CGGM allows the observed covariance in Panel (A)
to be decomposed approximately into (B) the covariance induced by the gene network and (C) the covariance induced by SNP perturbations and its
propagation through the network. Edge width corresponds to covariance or the strength of gene-gene interaction. We note that the edges show
marginal dependencies in covariances rather than conditional dependencies in inverse covariances.
doi:10.1371/journal.pcbi.1003420.g011

Table 3. Prediction errors on yeast eQTL data.

Sparse CGGM GFlasso

Test-set Error 0.0343 0.1074

doi:10.1371/journal.pcbi.1003420.t003
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are known multi-stress response proteins targeted by the

transcription activator MSN2 that responds to stress conditions

[42]. In addition, our subnetwork captures many of the known

interactions among several key elements in DNA replication stress

response, such as PHM7, SOL4, RTN2, and PGM2 [40,47].

Finally, our results indicate that different types of stress response

pathways are closely related to each other, as genes involved in

stress responses under conditions other than DNA replication are

often found as neighbors of DNA replication stress response genes

in our subnetwork. For example, HSP26, a heat shock protein with

chaperon activity, is another target of MSN2, and is known to be

involved in response to heat shock and other stimuli [48]. This

HSP26 gene is connected in our subnetwork to XBP1, a

transcriptional repressor whose relative distribution in the nucleus

increases under DNA replication stress [40]. Likewise, GAD1, a

glutamate decarboxylase, is required in oxidative stress tolerance

[44] and is a neighbor of TFS1 and RTN2 in our subnetwork.

Overall, we conclude that the gene network obtained compu-

tationally by sparse CGGM learning algorithm using SNPs as

naturally-occurring perturbations of the gene regulatory system

generally matches the network obtained from experimental

perturbation study.

Prediction Accuracy for Yeast Gene Expressions Given

SNPs. As a quantitative evaluation of our method on yeast eQTL

dataset, we computed prediction errors on an independent test set

for sparse CGGM and compared the result with what we obtained

for GFlasso (Table 3). While it took sparse CGGM and GFlasso less

than a day for a single run of model training on all SNPs and gene-

expression traits, for MRCE a single run of the approximate

learning method was not completed after several weeks of

computation and we were unable to obtain prediction errors for

MRCE. We estimated a model on 100 samples and computed

prediction errors on the test set of the remaining 14 samples. During

the estimation stage, we selected the optimal regularization

parameters by cross-validation with three random splits of the 100

samples into 90 samples for fitting a model and 10 samples for

computing cross-validation errors. Since GFlasso requires a known

gene network, we used the correlation coefficient matrix of gene-

expression data thresholded at 0:6 as an input gene network. In

visual inspection, we found that this thresholded correlation matrix

for gene network captured gene module structures reasonably well,

when compared to the results from hierarchical agglomerative

clustering applied to the gene-expression data. The results in Table 3

show that sparse CGGM outperforms GFlasso on predicting gene-

expression levels from SNP genotypes.

Discussion

In this paper, we presented a new statistical framework for

genetical genomics analysis to learn a gene network by treating

SNPs as naturally occurring perturbants of a gene network. Within

this framework, we introduced a statistical model, called a sparse

CGGM, for modeling a gene network under SNP perturbations

and discussed an efficient learning algorithm and inference

methods. While genetical genomics approach has been recognized

as a more effective and less costly method for learning a gene

network than experimental methods, this approach has not been

widely used mainly because of the computational challenge that

the effects of perturbations by often millions genetic variants at a

time need to be decoded from data. Our approach directly

addresses this challenge and identifies a gene network by

decoupling the effects of multifactorial perturbations in eQTL

data. At the same time, our approach addresses many of the

weaknesses of the experimental methods and is able to identify

which genes are directly perturbed by each SNP or are indirectly

perturbed as downstream effects in the pathway. As eQTL data

collection is being routinely performed for model organisms, and is

more amenable for human tissues than experimental perturba-

tions, our approach opens up doors to the possibility of leveraging

these datasets for gene network learning rather than focusing on

finding eQTLs from such data. Although the primary goal of our

work and more generally genetical genomics analysis is to identify

a gene network, our statistical approach has additional advantages

of enhancing the current statistical tools of eQTL mapping and

extracting significantly more detailed information on the func-

tional role of eQTLs in the context of gene network.

Our approach provides a flexible statistical framework for

learning a gene network along with eQTLs that can be easily

extended in several different ways. For example, although in this

paper, our gene network was defined over the expression levels of

mRNAs, it is straightforward to include microRNA expression

data to construct a network over both mRNA and microRNA

expressions, both of which can be perturbed by genetic variants.

Another possible extension is to model epistatic interactions

among SNPs within sparse CGGM by introducing additional

features for SNP interactions in the probabilistic graphical model.

However, there are certain limitations to our approach. Although

our approach can handle thousands of gene-expression traits and

SNPs efficiently, it is still not efficient enough to be directly applied

to genome-wide analysis of eQTL datasets of higher-level organisms

with tens of thousands of gene-expression traits and millions of

SNPs. For such large-scale datasets, we suggest to split the full

dataset into smaller sets of gene-expression traits by applying a

clustering algorithm to obtain coarse-grained gene modules. Then,

our approach can be applied to each subset of gene-expression traits

for coarse-grained gene modules to extract fine-grained information

on gene-network connectivities. In order to perform a full joint

analysis of all data, in future work, we will consider improving the

computational bottleneck of matrix inversion for the gene network

parameters in the learning algorithm by replacing it with an

approximate but computationally less expensive inversion.

Another future direction is to relax the assumption in our model

that the gene-expression traits under SNP perturbations follow a

Gaussian distribution. Although Gaussian graphical models have

been widely used to infer a gene network from gene-expression

data due to many of the properties of Gaussian distributions that

lead to easy computations, this assumption can be potentially
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restrictive for modeling realistic biological processes.

The software for sparse CGGMs is available at http://www.cs.

cmu.edu/,sssykim/softwares/softwares.html#scggm.

http://www.cs.cmu.edu/~sssykim/softwares/softwares.html#scggm
http://www.cs.cmu.edu/~sssykim/softwares/softwares.html#scggm
http://www.cs.cmu.edu/~sssykim/softwares/softwares.html#scggm
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