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Abstract

Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone
hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT
signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of
inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF)
phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was
perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative
and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our
results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter,
whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the
steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo.
IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription
factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals
disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is
sensitive to perturbations implicated in disease.
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Introduction

Hepcidin is a humoral polypeptide that plays a central role in

systemic iron homeostasis (reviewed in [1]). One main function of

hepcidin is to maintain constant levels of iron circulating in the

blood despite imbalances in external iron availability: Iron

overload in the blood stimulates hepcidin transcription in

hepatocytes. Hepcidin in turn blocks intestinal iron uptake and

macrophage iron release into the blood by binding to the iron

exporter ferroportin and triggering its degradation. Thus, hepcidin

is part of a negative feedback circuit that stabilizes the iron blood

concentration.

Negative feedback is known to play a key role for the robustness

and homeostasis of biochemical networks (reviewed in [2]).

Biochemical negative feedbacks have been shown to compensate

for various perturbations including stochasticity in gene expression

[3,4], mutations [5] and pharmacological inhibition [6,7].

In systemic iron homeostasis, iron diet content affects the iron

concentration in the blood [8,9], suggesting that the hepcidin

feedback loop only partially compensates for perturbations.

Nevertheless, genetic perturbations of iron-dependent hepcidin

regulation result in hemochromatosis, a common hereditary

disease [10]. At the molecular level, hereditary hemochromatosis

(HH) is caused by inappropriately low hepcidin expression and an

inability to compensate changes in iron blood levels. HH patients

are characterized by chronic iron overload that causes organ

damage such as liver fibrosis.

Hepcidin expression is primarily controlled at the transcrip-

tional level. Information about iron blood levels is transduced from

the hepatocyte cell membrane to the nucleus by the bone

morphogenetic protein (BMP) signalling pathway [11,12]: In-

creasing iron blood concentrations are sensed by Hfe and Tfr2,

two transmembrane proteins mutated in HH [13,14]. The signal is

transmitted by the BMP co-receptor HJV and BMP receptor 1 to

trigger the phosphorylation and nuclear translocation of SMAD1/

5/8 transcription factors (referred to as SMADs hereafter). BMP6

is regulated by hepatic iron levels and plays a critical role in this

process [15,16]. The hepcidin promoter contains two BMP-

responsive elements (BRE1 and BRE2) that are recognized by the

SMADs (sometimes also abbreviated as BMP-RE1 and BMP-

RE2) [17–19]. Mutations in the BRE1 promoter element and in

the BMP signalling pathway are associated with HH [20].

Hepcidin expression is also regulated by inflammatory cytokines

and hypoxia [21,22]. Inflammatory cytokines such as IL6 activate

PLOS Computational Biology | www.ploscompbiol.org 1 January 2014 | Volume 10 | Issue 1 | e1003421



the STAT3 signaling pathway in hepatocytes. Phosphorylated

STAT3 transcription factors (TFs) are directly recruited to a

STAT binding site (STATBS) in the hepcidin promoter, thereby

enhancing hepcidin expression and reducing iron blood levels

[23,24]. Chronic inflammation causes an iron-related disorder,

known as anemia of inflammation (AI), because the persistent lack

of iron availability blocks erythropoiesis [10]. This indicates that

the integration of BMP and IL6 signals at the level of hepcidin

expression plays a key role in systemic iron homeostasis.

Combinatorial gene regulation by binding of multiple different

transcription factors to the same promoter is a recurrent aspect of

transcription networks. Thermodynamic modeling employs meth-

ods from statistical thermodynamics to describe combinatorial

binding of transcription factors and RNA polymerase (RNAP) to

the promoter, depending on the protein concentrations and

binding energies. [25–32]. The modeling framework focusses on

transcription initiation and is based on the assumption that gene

activity is determined by RNAP recruitment to the transcription

start site (TSS). Thermodynamic modeling has been shown to

accommodate various modes of signal integration on a promoter

[25,26,29], some of which have been confirmed experimentally for

bacterial and yeast promoters [33–36]. More recently, the

framework was extended to aspects of eukaryotic gene regulation,

including nucleosome positioning effects [37,38].

In this work, we combined experimental measurements and

thermodynamic modeling to quantitatively analyze how the iron-

sensing BMP and inflammatory IL6 pathways coordinately control

hepcidin expression.

Results

BMP-responsive elements 1 and 2 play different roles in
the regulation of hepcidin expression

Systemic iron homeostasis is maintained by an auto-regulatory

negative feedback loop that involves the transcriptional induction

of hepcidin in the liver: elevated iron levels in the blood induce

hepcidin expression by activating the BMP signaling pathway in

the liver. Released hepcidin in turn induces the degradation of

intestinal iron transporters, thereby lowering the blood iron level.

We analyzed a conceptual mathematical model of this circuitry to

understand how systemic iron homeostasis can be maintained

despite imbalances in iron availability and consumption (Supple-

mental Text S1). The model suggests that the regulatory loop most

potently balances iron blood levels if hepcidin expression responds

in a steep, nonlinear manner to alterations in iron blood levels.

Robust homeostasis further requires that the hepcidin promoter is

able to sense and to respond to a broad range of iron blood

concentrations. We therefore reasoned that data of dose-depen-

dent hepcidin promoter regulation, and its modulation by

inflammatory IL6 stimulation, could provide valuable insights

into the regulation of iron homeostasis.

Hepatic cell culture systems do not directly respond to

stimulation with extracellular iron [39]. BMP6 is involved in

hepatic iron-sensing in vivo, and is commonly used as an external

stimulus to characterize how hepcidin expression responds to

changes in iron blood levels in vitro [15,16]. We performed co-

stimulation experiments with BMP6 and IL6 in human hepatoma

(HuH7) cells, and measured the activity of a luciferase reporter

gene driven by the hepcidin promoter 24 h after stimulation. The

hepcidin expression response of HuH7 cells was characterized in

previous studies, and it was concluded that HuH7 cells reflect

known features of hepcidin expression in vivo (see Discussion).

Reporter gene assays were performed in HuH7 cells transiently

expressing luciferase constructs under control of wildtype (WT) or

mutant hepcidin promoters (Fig. 1B and C). The WT promoter

spans 3 kb upstream of the transcription start site, and contains a

proximal STAT-binding site (STATBS), a nearby BMP-responsive

element (BRE1), and a distal BMP-responsive element (BRE2).

We and others previously showed that these sequence motifs are

necessary and sufficient for responsiveness towards BMP and IL6

stimulation (see Discussion). In each of the three promoter

mutants, one of these transcription factor binding sites is non-

functional: The BRE1m and BRE2m constructs exhibit point

mutations in the corresponding BMP-responsive elements, while

STATdel is characterized by a complete deletion of the STAT-

binding site. For simplicity, we will generally refer to transcription

binding site mutations even when discussing the deletion of the

STATBS.

The raw luciferase activity reads of at least four biological

replicates were processed (see Methods) and the merged data is

shown in Fig. 1C (using the same arbitrary concentration units for

all heatmaps). BMP6 and IL6 mono-stimulation both increased

the luciferase activities of the WT promoter construct. Maximal

IL6 stimulation enhanced luciferase activities by 20-fold, while a

450-fold increase was observed upon maximal BMP stimulation.

The IL6 response saturated within the concentration range used,

because IL6 concentrations beyond 6 ng/ml hardly increased

expression any further. Thus, BMP6 increased expression much

more efficiently than IL6 in terms of maximal possible inducibility.

Co-stimulation with IL6 and BMP further enhanced the

luciferase activity of the WT promoter compared to mono-

stimulation. We confirmed by qPCR measurements that this co-

stimulation response quantitatively reflects the expression of

endogenous hepcidin mRNA (Supplemental Protocol S1, Supple-

mental Fig. S1).

As expected, the STATdel promoter fails to respond to IL6

stimulation, but is still sensitive to BMP treatment. The luciferase

activities of the BRE1m construct are much lower than WT for

both basal and induced conditions (Fig. 1C). However, the

BRE1m promoter is qualitatively similar to the WT promoter in

Author Summary

The nutritional iron uptake is tightly regulated because the
body has limited capacity of iron excretion. Mammals
maintain iron homeostasis by a negative feedback loop, in
which the peptide hepcidin senses the iron blood level
and controls iron resorption. Molecular perturbations in
the homeostasis loop lead to iron-related diseases such as
hemochromatosis or anemia of inflammation. Quantitative
studies are required to understand the dynamics of the
iron homeostasis circuitry in health and disease. We
investigated how the biological activity of hepcidin is
regulated by combining experiments with mathematical
modeling. We present a multi-scale model that describes
the signaling network and the gene promoter controlling
hepcidin expression. Possible scenarios of hepcidin regu-
lation were systematically tested against experimental
data, and interpreted using a network model of iron
metabolism in vivo. The analysis showed that the presence
of multiple redundant regulatory elements in the hepcidin
gene promoter facilitates homeostasis, because changes in
iron blood levels are sensed with high sensitivity. We
further suggest that inflammatory signals establish molec-
ular competition at the hepcidin promoter, thereby
reducing its iron sensitivity and leading to a loss of
homeostasis in anemia of inflammation. We conclude that
quantitative insights into hepcidin expression regulation
explain features of systemic iron homeostasis.

Quantification of Hepcidin Promoter Regulation
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terms of stimulus inducibility, because maximal BMP stimulation

induces a large increase in luciferase activity, while the maximal

IL6 dose has a much lesser impact.

The co-stimulation response of the BRE2m construct is

qualitatively different from that of the WT and BRE1m

promoters. The BRE2m promoter resembles a coincidence

detector (‘logical AND gate’): Mono-stimulation with either

BMP or IL6 raises luciferase activity to intermediate levels only,

and co-stimulation with both ligands is required for maximal

expression (Fig. 1C). This suggests that BRE1 and BRE2 fulfill

very distinct functions in hepcidin regulation: The BRE2m

promoter shows only a slight reduction in basal luciferase activity

compared to the WT promoter. This reduction in basal activity

did not reach statistical significance (paired t-test), and was much

less pronounced than the effect of a BRE1 mutation. The

promoter responsiveness to IL6 mono-stimulation was significantly

reduced by the BRE1 mutation but not by the BRE2 mutation

(paired t-test). Thus, BRE2 has lesser impact on the IL6-induced

fold-change in hepcidin expression than BRE1. The most

prominent feature of the BRE2m promoter is the reduced ability

to respond to BMP stimuli compared to the WT promoter

(0.001,p,0.0025, paired t-test): maximal BMP stimulation

enhances luciferase activity by only 80-fold in BRE2m, when

compared to 400-fold in WT and BRE1m. The loss of BRE1

hardly affects the promoter responsiveness to maximal BMP doses,

although it has some impact at intermediate BMP doses. Taken

together, these data raise the interesting question of how two

transcription factor binding sites with very similar sequence can

show qualitatively distinct behavior in hepcidin expression

regulation.

Modeling suggests that signaling crosstalk plays a minor
role in hepcidin expression regulation

The coordinated regulation of hepcidin expression by BMP and

IL6 may involve crosstalk at the level of signal transduction. We

analyzed signaling pathway interactions by measuring the

phosphorylation of STAT3 and SMAD1/5/8 after stimulation

with BMP and/or IL6 using quantitative immunoblotting. Cells

were stimulated for 12 h after starvation, and phosphorylated

SMAD1/5/8 and STAT3 were detected in the cell lysate using

phospho-specific antibodies (Supplemental Fig. S2). The signals

were quantified by densitometry and the results of biological

duplicates were merged (see Methods). SMAD1/5/8 but not

STAT3 showed basal phosphorylation in unstimulated cells which

is consistent the role of BRE1 in controlling basal luciferase

activities (Fig. 1C). As expected, stimulation with BMP or IL6

Figure 1. Signal integration at the hepcidin promoter. (A) Schematic representation of two critical signaling pathways controlling hepcidin
expression. SMAD and STAT transcription factors are phosphorylated upon BMP and IL6 stimulation, and bind BMP-responsive elements (BRE) and a
STAT-binding site (STATBS) in the hepcidin promoter, respectively. The importance of signaling crosstalk is not clear. (TSS: transcription start site;
RNAP: RNA polymerase) (B) and (C) Analysis of transcription factor crosstalk at the promoter level by reporter gene assays. Luciferase expression is
driven by the wildtype (WT) hepcidin promoter (3 kb upstream of TSS) or promoter mutants lacking one of the transcription factor binding sites
(panel B; BRE1m = BRE1 mutated; STATdel = deleted for STATBS). Luciferase activity of each reporter construct (shown on a log10-scale) was measured
for increasing doses of IL6 and/or BMP (n = 6). All heatmaps represent the mean of at least four biological replicates (see Methods), and are given in
the same arbitrary concentration units (D) Moderate inhibitory signaling crosstalk at the signaling level. Immunoblots against phosphorylated
SMAD1/5/8 and STAT3 (Supplemental Fig. S2) were quantified by densitometric analysis. The data points and error bars represent mean and standard
deviation of biological replicates (N = 2), respectively (see Methods). Lines are fits of the sigmoidal Hill equation (y = ybasal + ymax * Sn/(Sn + EC50

n),
S…stimulus, ybasal…basal signaling activity, ymax…maximal pathway activation, EC50….half-maximal-stimulus, n…Hill coefficient). The fits with and
without non-canonical stimulation (blue and green lines, respectively) solely differ in the ymax values.
doi:10.1371/journal.pcbi.1003421.g001

Quantification of Hepcidin Promoter Regulation

PLOS Computational Biology | www.ploscompbiol.org 3 January 2014 | Volume 10 | Issue 1 | e1003421



alone resulted in dose-dependent increases of SMAD1/5/8 and

STAT3 phosphorylation, respectively (Fig. 1D). Co-stimulation

with a saturating dose of IL6 appeared to slightly reduce BMP-

induced SMAD1/5/8 phosphorylation (Fig. 1D, bottom), but the

effect is not statistically significant (paired t-test). High doses of

BMP had significant inhibitory effects on IL6-mediated STAT3

phosphorylation (p,0.001, paired t-test). However, the effect was

moderate and typically resulted in a less-than two-fold reduction in

phospho-STAT3 levels (Fig. 1D, top). Thus, while co-stimulation

with BMP and IL6 enhances hepcidin expression relative to

mono-stimulation, a slight cross-inhibition is observed at the level

of transcription factor phosphorylation. We integrated these

measurements at different levels into a mathematical model to

quantitatively understand the determinants of hepcidin expression

regulation.

Our model describes luciferase activity as a function of the

extracellular IL6 and BMP concentrations, and consists of two

modules: The signaling module describes SMAD and STAT TF

phosphorylation in response to BMP and IL6 stimulation, while

the promoter module characterizes combinatorial TF binding to

the promoter and gene expression. The kinetic parameters of the

model as well as the regulatory details at the promoter level were

unknown. We therefore estimated the parameters by model fitting

to TF phosphorylation and luciferase activity data (Figs. 1C and

D), and systematically compared the ability of different promoter

variants to fit the data in an unbiased modeling approach.

The signaling module assumes that the dose-response curves of

IL6-induced STAT phosphorylation and BMP-induced SMAD

phosphorylation are of sigmoidal shape, as suggested by previous

studies [4,40]. Dose-response curves of TF phosphorylation are

therefore represented using sigmoidal Hill equations (Supplemen-

tal Text S3). Inhibitory crosstalk between SMAD and STAT

proteins was modeled by assuming that the phosphorylation

degree of one TF affects the Hill equation parameters describing

the other pathway.

The thermodynamic promoter model describes luciferase

activity as a function of the phosphorylated TF concentrations,

and assumes that TFs affect the occupancy of the promoter: If the

pSMAD and pSTAT concentrations are zero, the promoter will

either be completely empty or RNA Polymerase II (RNAP) may

bind to the transcription start site (TSS) at a basal level (Fig. 2A,

bottom row). For increasing TF concentrations the promoter will

be occupied by pSMAD, pSTAT or RNAP, or a combination of

these, giving rise to multiple promoter states. The presence of

three specific binding TF sites and RNAP binding to the TSS

yields to 24 = 16 promoter states (Fig. 2A). In which of these states

the promoter exists depends in a complex manner on the

concentration of phosphorylated TFs, their binding affinity for

DNA and may also be altered by TF/TF or TF/RNAP

interactions on the promoter. Equations that describe the

probability of each promoter state as a function of protein

concentrations and binding affinities can be derived based on

principles of statistical thermodynamics (Supplemental Text S2,

Supplemental Protocol S2).

The promoter states in the model are linked to gene expression

by assuming that RNAP-bound promoters are transcriptionally

active, while promoters devoid of RNAP binding are silent

(Fig. 2A). A transcription initiation rate can thus be calculated

from the probabilities of the promoter states (Supplemental Text

S2, Supplemental Protocol S2). We neglected gene regulation at

the levels of transcription elongation and post-transcriptional

processing in our model. The experimentally measured luciferase

activity is therefore assumed to be proportional to the simulated

initiation rate.

All variants of the promoter module comprised well-known

aspects of promoter regulation such as pSTAT/pSMAD binding

to the promoter and RNAP recruitment by TFs (grey arrows in

Fig. 2B). We additionally allowed cooperative TF binding,

implying that TFs may mutually enhance their recruitment to

the promoter (red arrows in Fig. 2B). Given three possible

cooperative TF interactions alone or in combination, we

considered 8 promoter module variants in total (Fig. 2B). Model

fitting was done by minimizing the x2 metric which allows for

larger difference between model and experiment if the experi-

mental error is large (see Methods). Model variants with different

numbers of parameters were compared with respect to goodness-

of-fit to the training data using the Akaike information criterion

(see Methods). Based on these measures, the data were best

explained by a promoter module containing a single cooperative

interaction among SMAD and STAT TFs bound to BRE1 and

STATBS, respectively (model 4 in Fig. 2B). More complex models

also containing the cooperative interaction between BRE1 and

STATBS (models 6—8 in Fig. 2B) did not fit the data better than

the selected model. Model variants lacking the BRE1-STATBS

cooperativity (models 1—3 and 5 in Fig. 2B) fitted the

experimental data less well than the selected model from a

quantitative point of view. Moreover, they qualitatively failed to

explain why IL6 mono-stimulation induces a lesser fold-change in

the BRE1m construct when compared to WT (Supplemental Fig.

S3, Fig. 1C, [19]).

The best-fit model (Figs. 2C and D) comprises 19 kinetic

parameters and describes the data with an accuracy close to

experimental measurement noise (x2 = 124, N = 80). Nine model

parameters enter the sigmoidal Hill functions which describe the

stimulus-induced TF phosphorylation, and signaling crosstalk

between transcription factors. The remaining 10 parameters

enter the promoter module, and describe the TF affinity for

DNA binding sites, the TF interaction strength with RNAP, and

the cooperativity of TF binding to DNA. The nature of the

model parameters is described in detail in Supplemental

Protocol S2, and a list of best-fit parameter values can be

found in Supplemental Table S1. Not all model parameters

could be unequivocally identified based on the experimental

data, implying that multiple parameter sets yield a comparable

fit to the training data (Supplemental Fig. S4). This non-

identifiability of parameters gives rise to uncertainties in the

model predictions. We therefore performed all model analyses

for many measurement-compliant parameter sets (with x2,135),

not only for the best-fit solution (see Methods). The model

predictions in Fig. 3 were therefore formulated as a range

corresponding to the simulation runs with the highest and lowest

predicted luciferase activity. In most cases, reliable model

predictions were possible despite non-identifiability of individual

parameter values.

In our model, hepcidin expression was mostly determined by

the dynamics of TF binding to the promoter, while inhibitory

signaling crosstalk played only a minor role: Elimination of

signaling crosstalk did not significantly change the simulated

luciferase activities, and this conclusion held true for all

measurement-compliant parameter sets (Supplemental Fig.

S5). Moreover, we compared the ability of model variants

with and without signaling crosstalk to fit the luciferase activity

data (Fig. 1C). The fit of the crosstalk-less model to the training

data was significantly better as judged by the Akaike

information criterion (Supplemental Fig. S5). We therefore

focused our model validation on regulation events at the

promoter level, and neglected the relatively weak signaling

crosstalk effects.

Quantification of Hepcidin Promoter Regulation

PLOS Computational Biology | www.ploscompbiol.org 4 January 2014 | Volume 10 | Issue 1 | e1003421



Cooperativity and competition at the promoter shape
the hepcidin expression response

We sought to verify our model by an independent set of

experiments not used for model calibration. The formulation of

model predictions was focused on double mutant promoters which

simultaneously lack two TF binding sites (Fig. 3A).

One central promoter mechanism predicted by the model is the

cooperative interaction between pSMAD and pSTAT TFs, bound

to BRE1 and STATBS, respectively. The double mutant promoter

lacking functional BRE1 and STAT elements (BRE1mSTATdel

promoter, Fig. 3A) was employed to independently confirm the

cooperativity effect. The BRE1STATdel promoter shows a ,30-

fold reduced expression relative to WT upon stimulation with

2 ng/ml IL6 (Fig. 3B, red bar). The corresponding STATBS and

BRE1 single deletions reduce expression by ,3 and ,30-fold,

respectively (Fig. 3B, blue and green bars). Thus, the BRE1m and

BRE1mSTATdel promoters exhibit similar expression levels. This

is consistent with BRE1-STATBS cooperativity, because the single

BRE1m single deletion already eliminates the cooperativity effect,

and thereby a large part of the STATBS contribution to

expression. In contrast, a transcription model lacking the

cooperativity would predict an independent contribution of both

sites, implying that the expression reduction in the BRE1m-

STATdel promoter equals the product of the single deletion fold-

changes (Fig. 3B, top). Thus, the double mutant data qualitatively

supports the model with cooperativity between BRE1 and

STATBS, also for higher doses of IL6 (Fig. 3B).

BRE1 and BRE2 play different roles in hepcidin expression

with respect to basal expression, BMP inducibility and co-

stimulation response. One difference between the two sites is the

above-mentioned cooperative interaction with the STATBS that is

specific to BRE1. How do the BMP-responsive elements differ

beyond this interaction? The model predicted that BRE1 has

higher affinity for phosphorylated SMAD than BRE2, explaining

why BRE1 plays a predominant role under basal conditions. Upon

sufficiently strong BMP stimulation both sites are predicted to

Figure 2. Mathematical modeling of signaling and promoter crosstalk. (A) Thermodynamic modeling of promoter states. Depending on the
transcription factor concentrations, the hepcidin promoter may be occupied by pSMAD (bound to BRE1 or BRE2), pSTAT (bound to STATBS) and
RNAP (bound to the transcription start site), alone or in combination, giving rise to 16 different promoter states. A central presumption of
thermodynamic modeling is that all RNAP-bound states are capable of transcription initiation, while RNAP-less states are considered silent. (B) A
model selection approach allows for the identification of protein-protein interactions on the promoter. Various model variants were tested for their
ability to fit the data in Fig. 1C. The minimal model (model 1) assumes that each transcription factor independently activates RNAP (grey arrows),
while more complex variants additionally take cooperativity among transcription factors into account (red arrows). Statistical criteria (Akaike
information criterion, likelihood ratio test) indicate that model topology 4 is best suited to describe all data (see Methods, Supplemental Protocol S2).
(C) and (D) Integrative crosstalk model simultaneously fits luciferase data and dose-response curves of transcription factor phosphorylation. The
thermodynamic promoter model (topology 4 in panel B) was coupled to a simple signaling model describing inhibitory crosstalk between phospho-
SMAD and phospo-STAT transcription factors (Supplemental Protocol S2). Solid lines in C represent model trajectories in comparison to
experimentally measured data points (shown as mean +/2 std). The simulated luciferase activities in D agree well with the corresponding data in
Fig. 1C.
doi:10.1371/journal.pcbi.1003421.g002

Quantification of Hepcidin Promoter Regulation
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activate RNAP with comparable efficiency. In conclusion, the

model suggested that BRE1 and BRE2 should behave similarly in

the absence of cooperative promoter interactions. This prediction

can be tested by co-stimulation of BRE2mSTATdel and

BRE1mSTATdel promoters which solely contain BRE1 and

BRE2, respectively (Fig. 3A). The experimental data was in good

qualitative agreement with model predictions: Both mutants

showed very similar co-stimulation heatmaps and primarily

responded to BMP stimulation (Fig. 3C, bottom row). Maximal

luciferase activity at high BMP levels was comparable for both

constructs, indicating that BRE1 and BRE2 indeed drive RNAP

activation with similar efficiency (Figs. 3C and D). Basal activity

was approximately 10-fold higher in the BRE2STATdel promot-

er, suggesting that the isolated BRE1 has indeed a higher pSMAD

affinity than BRE2 (Fig. 3D). Quantitative model predictions for

the BRE2mSTATdel and BRE1mSTATdel heatmaps were only

possible up to a certain range of absolute luciferase activities owing

to non-identifiability of model parameters (Fig. 3C, top and middle

row). The experimentally observed luciferase activities were within

the predicted range (Fig. 3C).

The model suggested that saturating RNAP binding to the TSS

limits hepcidin expression upon strong stimulation, whereas

signaling pathway saturation plays only a minor role. Saturation

implies that single deletions promoters should exhibit expression

levels relatively similar to WT, because the remaining TF binding

sites maintain near-complete occupancy of the TSS with RNAP.

This buffering effect should be abrogated upon a combined TF

binding site deletion, leading to the prediction that hepcidin

double mutant promoters exhibit very low expression compared to

the corresponding single mutants.

Figure 3. Verification of model predictions using double-mutant promoters. (A) Schematic representation of double-mutant promoters
which lack two transcription factor binding sites (cf. Fig. 1B). (B) Systematic analysis of transcription factor binding site deletion effects confirms
cooperativity of BRE1 and STATBS. The impact of binding site deletions was calculated by taking the luciferase activity ratios of different promoters
(indicated in the legend) and expressed as a log10-fold change (y axis). As expected for a system where both sites cooperatively enhance
transcription, the fold-change upon a combined deletion of BRE1 and STATBS (red) is less than the product of the single deletion fold-changes (green
and blue; see text). Data points are mean and standard deviation, and model predictions represent the range of measurement-compliant parameter
sets, as derived from a parameter identifiability analysis (see Methods, Supplemental Protocol S2). Only BRE1 and STATBS (but not BRE2) contribute to
expression upon IL6 stimulation. (C) and (D) Co-stimulation heatmaps of double mutant promoters reveal that BRE1 and BRE2 are functionally similar
in the absence of STATBS. (C) Heatmaps of luciferase activity under co-stimulation conditions. (D) Two-dimensional projection of the BRE1mSTATdel
and BRE2mSTATdel data in C (averaged over all IL6 concentrations). Data points are mean (panel C, bottom row) or mean +/2 std (panel D) (n = 6).
Model predictions were formulated as ranges based on a parameter identifiability analysis (see Methods, Supplemental Protocol S2), and show
measurement-compliant parameter sets with highest and lowest predicted luciferase expression (top and middle rows in panel C; edges of shaded
corridors in panel D). Data and model in D were normalized to basal luciferase expression in the BRE2mSTATdel construct. (E) Systematic analysis of
transcription factor binding site deletion effects confirms buffering of BRE1 and BRE2 single deletions. Concepts similar to panel B. The fold-change
upon a combined deletion of BRE1 and BRE2 (red bars) is higher than the product of the single deletion fold-changes (green and blue bars; see text).
BMP stimulation conditions were considered to ensure that BRE1 and BRE2 both contribute to expression.
doi:10.1371/journal.pcbi.1003421.g003

Quantification of Hepcidin Promoter Regulation
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We confirmed this prediction by measuring the activity of the

BRE1mBRE2m double mutant promoter (Fig. 3E): The double

deletion of BRE1 and BRE2 reduces the luciferase activity by up

to ,1000-fold compared to WT (red bars). The corresponding

single deletions typically reduce expression by ,10-fold or less,

and are thus much more similar to the WT promoter (blue and

green bars).

This behavior indicates TSS saturation, because the fold-change

by a double deletion equals the product of the corresponding

single deletion fold-changes in thermodynamic transcription

models without saturation. The validity of our model is further

supported by the quantitative agreement of the models’ predic-

tions with the data: the buffering of single deletions is more

pronounced for strong (co-) stimulation (Fig. 3E), where promoter

saturation is particularly prominent. We find similar, albeit less

pronounced, buffering effects between STATBS and BRE2

(Supplemental Fig. S6) and conclude that saturating RNAP

binding is an important aspect of promoter behavior.

Promoter saturation also explains why the BRE1 single

mutation strongly reduces expression at intermediate BMP

concentrations, while having lesser impact at basal and strong

stimulation conditions (Fig. 3E, blue bars, grey corridor). The

BRE1 deletion has a strong effect on expression at intermediate

BMP doses, because the high-affinity BRE1 is already fully

occupied by pSMAD. Higher BMP concentrations alleviate the

impact of BRE1 deletions, because low-affinity pSMAD binding to

the BRE2 saturates the promoter, thereby buffering the loss of

BRE1.

The steepness of hepcidin promoter regulation plays a
key role for systemic iron homeostasis

We investigated in silico how the simultaneous presence of two

BREs affects the behavior of the hepcidin promoter, and found

that this promoter design enhances the steepness of the BMP dose-

response curve: A certain increase in phospho-SMAD levels

induces a larger expression fold-change in the WT promoter when

compared to BRE1m and BRE2m promoters (Fig. 4A). The

hepcidin promoter only contains a single STAT binding site as

opposed to two BREs. Accordingly, the model predicts that the

hepcidin promoter specifically responds with high sensitivity

towards BMP stimulation, and is much less sensitive towards IL6

stimulation (Fig. 4B). The initial stimulation experiments used for

model training (Fig. 1C) were based on three BMP and IL6

concentrations, and therefore did not allow for conclusions

concerning the steepness of the BMP and IL6 response. To verify

the model prediction by an independent set of experiments, we

performed detailed dose-response measurements with multiple

doses of IL6 and BMP, respectively (Fig. 4C). These data confirm

that the BMP response is much steeper than the IL6 response, and

thereby validate the model.

Systemic iron homeostasis is maintained by an auto-regulatory

negative feedback loop in which hepcidin expression levels depend

on and control the circulating iron levels in the blood (Fig. 4D). A

high BMP sensitivity of the promoter may allow the iron-BMP

signaling axis to sense minor changes in iron blood levels, and to

maintain systemic iron homeostasis. We simulated iron homeo-

stasis in the living animal using an extended model with feedback

(Fig. 4D). Iron blood levels were described by the species Feb,

whose levels are controlled by influx and efflux reactions. The iron

influx rate is proportional to the intestinal iron concentration

(species Fei) which reflects the dietary iron content. Iron blood

levels control the activity of the BMP signaling pathway, and thus

hepcidin expression. Negative feedback regulation was considered

in the model by assuming that the iron influx is negatively

influenced by hepcidin (Supplemental Text S4).

Hepcidin expression regulation by BMP and IL6 in the model

was described using the previously derived best-fit model (Figs. 2C

and D). The remaining parameters of the model describe the iron

influx and efflux, hepcidin degradation, and the strength of

hepcidin-mediated feedback on the iron influx.

Homeostasis was analyzed by assessing how the iron blood level

in the model (Feb) responds to a change dietary iron content (Fei),

efficient homeostasis implying that a given fold-change in Fei elicits

a much lesser fold-change in Feb. The key assumption we made

was that hepcidin-mediated feedback regulation has a very strong

impact on the iron influx. For the limit of strong feedback, it can

be shown analytically that the degree of iron homeostasis is solely

determined by the steepness of the hepcidin promoter response,

and independent of the remaining model parameters (Supple-

mental Text S1). The range of intestinal iron concentrations for

which homeostasis is observed is determined by the range of BMP

concentrations that can be sensed by the hepcidin promoter

(Supplemental Text S1). The model thus allowed us to quantita-

tively analyze how the hepcidin promoter architecture affects

systemic iron homeostasis, although the remaining model param-

eters were unknown.

The simulations in Fig. 4E show that a model with the WT

hepcidin promoter efficiently maintains systemic iron homeostasis,

as the iron blood levels remain essentially constant over a broad

range of intestinal iron concentrations. Models with BRE1m and

BRE2m promoters perform less well, as the perturbation-response

curves are steeper and homeostasis is restricted to a narrower

range of influx rates (Fig. 4E, green and red curves). This suggests

that the simultaneous presence of two BMP-responsive elements in

the promoter indeed optimizes the performance of the systemic

iron homeostasis loop.

One important question is why IL6 stimulation reduces iron

blood levels and induces anemia of inflammation even though the

homeostasis loop should effectively buffer IL6-induced perturba-

tions in hepcidin expression. Simulations of the extended feedback

model show strongly diminished iron levels and a loss of

homeostasis if high IL6 levels are assumed (Fig. 4E, blue dashed

line). This effect can be understood by considering the BMP dose-

response curve of the best-fit promoter model for varying IL6

concentrations (Fig. 4F): increasing IL6 levels reduce the sensitivity

of the BMP dose-response curve due to (partial) saturation of the

TSS with RNAP. Moreover, significant changes in hepcidin

expression are restricted to a narrower range of phospho-SMAD

levels. The hepcidin promoter therefore responds less efficiently to

changes in the iron/BMP signaling in the presence of IL6. This

impairs the iron sensing capability of the hepcidin promoter in vivo,

and leads to a breakdown of feedback homeostasis.

Iron blood levels are chronically elevated in HH, in most cases

due to inactivating mutations in the iron-sensing BMP signaling

axis. One unexplored question is why HH is commonly associated

with inactivating mutations in the SMAD signaling pathway, while

mutations in the BRE1 promoter element are rare and BRE2

mutations have not been identified yet [20]. The iron homeostasis

model predicts that a BRE1 deletion affects the iron blood levels

more strongly than the BRE2 deletion in the WT homeostasis

range (compare green and red lines in Fig. 4E, respectively). The

more critical role of BRE1 may explain why only BRE1 mutations

have been associated with HH, and can be explained by its higher

phospho-SMAD affinity when compared to BRE2. The model

further predicts strong buffering of BRE1 and BRE2 single

deletions: Single mutations in either site have much weaker effects

than a complete feedback ablation by a BRE1mBRE2m double
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mutation (light blue line in Fig. 4E). The very strong effect of a

BRE double deletion in cultured cells (Fig. 3E) is thus predicted to

be preserved in vivo. These simulations may explain why BMP

signaling pathway mutations that simultaneously inactivate

expression regulation via BRE1 and BRE2 are by far the most

common cause of HH.

Taken together, the steepness of the hepcidin promoter

response appears to be a key parameter controlling how well the

systemic iron homeostasis loop compensates for fluctuations in

iron diet content.

Discussion

The fine-tuned expression of hepcidin plays a central role in

systemic iron homeostasis, and is deregulated in two major clinical

settings, HH and anemia of inflammation. Here, we comprehen-

sively characterized the gene regulatory function of the hepcidin

promoter using systematic promoter mutagenesis and co-

stimulation experiments. We employed a multi-scale modeling

approach capturing signaling and gene expression, and

discriminated various promoter regulation scenarios. This ap-

proach complements existing strategies linking signaling and gene

expression events [41,42], and may be extended in future studies

to model global transcription patterns based on mRNA expression

profiles, TF binding information and mRNA half-life data.

Gene expression may be a gradual or a binary event at the

single cell level [43]. Our mathematical model assumes that TF

phosphorylation and reporter gene expression measurements in a

cellular ensemble reflect the behavior of single cells, and thus

presumes a gradual mode of hepcidin expression. Experimental

studies indicate that BMP-induced target gene expression is indeed

a gradual event at the single-cell level [4]. In any case, the

population-based model reflects physiologically relevant aspects of

hepcidin expression, because systemic hepcidin levels in vivo are

governed by expression in an ensemble of hepatocytes.

The architecture of the hepcidin promoter was characterized in

detail in previous studies, and BRE1, BRE2 as well as STATBS

were identified as central cis-regulatory elements mediating BMP

and IL6 responsiveness [19,24,44]. Our results confirm the central

role of the STATBS, as STATBS deleted promoters cannot be

Figure 4. Systems properties of hepcidin expression. (A) The presence of two BREs enhances promoter sensitivity towards BMP stimulation.
Hepcidin expression (fold over basal) is shown as a function phospho-SMAD levels for the WT, BRE1m, and BRE2m promoter (phospho-STAT was
assumed zero). The dashed lines indicate the maximal steepness of the WT dose-response. The grey corridor indicates range of phospho-SMAD levels
in HuH7 cells. (B) and (C) Hepcidin expression is highly sensitive to BMP stimulation, and less sensitive to IL6. The luciferase activity (fold over basal) is
plotted as function of the IL6 (blue) or BMP (red) concentration. Panel B shows simulations of the best-fit model, while panel C contains experimental
data (n = 3–6) and fits of the Hill equation (solid lines). Dashed lines in C indicate the maximal steepness of the BMP response. (D) Extended
mathematical model describing negative feedback regulation of iron blood levels by hepcidin in vivo. Iron blood levels (Feb) are controlled by influx
and efflux reactions, and the iron influx rate is proportional to the intestinal iron concentration (species Fei). Iron blood levels control the BMP
signaling pathway, and thus the expression of hepcidin, which in turn lowers the iron influx. Hepcidin expression regulation by IL6 and BMP was
modeled using the best-fit crosstalk model (Fig. 2C and D; Supplemental Text S4). (E) Iron homeostasis requires two BMP-responsive elements and is
abolished by inflammatory stimulation. Simulations of the extended model (panel D) show how iron blood levels respond to changes in the intestinal
iron concentration. The model with a WT hepcidin promoter (blue solid line) shows relatively constant iron blood levels over a broad range of
intestinal iron concentrations (‘homeostasis range’). Homeostasis is less efficient and the homeostasis range is narrower in model variants with BRE1m
and BRE2m promoters, or if strong IL6 stimulation is assumed (see legend) The mutants are characterized by altered iron blood levels (reflecting iron
overload and deficiency, respectively). (F) IL6 stimulation reduces the BMP sensitivity of the promoter. The best-fit model (Fig. 2C and D) was
employed to simulate how increasing IL6 stimulation affects the BMP dose-response curve of the promoter. Dashed lines indicate the maximal slope
in the absence of IL6. Grey corridor same as in A.
doi:10.1371/journal.pcbi.1003421.g004
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induced by IL6 stimulation. The critical role of BRE1 and BRE2

for the BMP responsiveness was shown by reporter gene assays

with truncated versions of the promoter, and is also supported by

the high sequence conservation of these elements [17–19,44,45].

In a search for additional BREs, we performed a linker scanning

analysis of the hepcidin promoter, systematically replacing short

nucleotide stretches along the promoter sequence (unpublished

data). This analysis revealed no additional BMP target motifs.

Accordingly, we observe that the BRE1mBRE2m double mutant

shows near complete ablation of basal expression and BMP

responsiveness (Fig. 3C). However, stimulation with very high

doses of BMP appears to slightly enhance expression from the

BRE1mBRE2m promoter (Fig. 3C). We suggest that highly active

BMP receptors may weakly phosphorylate SMAD2/3 TFs which

are part of the TGFb signaling pathway, thereby activating the

previously described TGFb-responsive elements in the hepcidin

promoter [46].

Our model suggests that BRE2 enhances transcription with

similar or higher efficiency than BRE1 (Fig. 3, Supplemental Fig.

S4), thus raising the question of how a sequence element located as

far as 2 kb away from the TSS enhances transcription with high

efficiency. The 2 kb distance from the TSS corresponds to a length

of 680 nm along the strand; this number exceeds the length of the

mediator complex (,40 nm) which links RNA polymerase to

transcription factors [47]. Thus, BRE2-mediated transcription

initiation likely involves DNA looping. Our current model neglects

the details of DNA looping, but could be extended by existing

quantitative modeling approaches taking into account the

thermodynamics of DNA bending [48,49]. Such a detailed

promoter model should also consider that the BRE2 element of

the hepcidin promoter is flanked by bZIP, HNF4alpha/COUP

binding sites in the immediate neighborhood [17]. The single

deletion of the bZIP or HNF4alpha/COUP sites reduces the BMP

responsiveness of the hepcidin promoter. This indicates that a

complex of multiple transcription factors cooperates at the BRE2

site to recruit RNAP which may explain the apparently high

efficiency of BRE2 in driving transcription. Another prediction of

our model is that the strong impact of the BRE1 in the basal state

is due to its high affinity for phospho-SMAD binding when

compared to BRE2 (Supplemental Fig. S4, Fig. 3E). Both BREs

are characterized by the same sequence motif (GGCGCC),

suggesting that epigenetic differences in the chromatin state may

be responsible for the apparently different affinity of BRE1 and

BRE2. Taken together, the present model is likely to be a

simplified representation of the real events at the promoter. Future

studies are required to model individual events which are currently

lumped into overall interaction energies.

Different modes of signal integration may be realized in

transcriptional regulation. Two stimuli may control expression in

an additive or multiplicative way. We systematically compared the

co-stimulation response of the hepcidin promoter with the

corresponding mono-stimulation responses (Supplemental

Fig. S7). The fold-change in expression upon co-stimulation is

generally less than the product of the mono-stimulation fold-

changes in the WT promoter (Supplemental Fig. S7; Fig. 1C), as

also supported by previous studies in HuH7 and Hep3B cells

[50,51]. Analytical studies in the Supplemental Text S1 show that

this sub-multiplicative signal integration explains why IL6 co-

stimulation leads to a breakdown of systemic iron homeostasis

(Fig. 4E): Homeostasis is lost, because IL6 reduces the BMP-

induced fold-change in expression, thereby reducing the efficiency

of negative feedback regulation. Our model suggests that the less-

than multiplicative behavior of the WT promoter arises from

saturating RNAP binding to the TSS. The saturation effect is less

pronounced in single mutant promoters, explaining why these

exhibit near-multiplicative signaling integration (fold-change over

basal in response to co-stimulation equals the product of the

mono-stimulation fold-changes) (Supplemental Fig. S7). Interest-

ingly, the model predicts and experiments support that pSMAD

and pSTAT may also drive hepcidin expression in a synergistic,

more-than multiplicative manner due to the presence of the

cooperative BRE1/STATBS interaction if promoter saturation

effects are negligible: We changed the basal pSMAD level in the

model, and observed that a certain basal BMP signaling activity is

required for optimal responsiveness of the promoter towards IL6

mono-stimulation (Supplemental Fig. S7). This model prediction is

supported by experiments in HuH7 cells showing that SMAD4

siRNA lowers the IL6 inducibility of the hepcidin promoter ([46];

unpublished observation), and by data in hepatocyte-specific

SMAD4 knockout mice [52]. We conclude that the hepcidin

promoter shows high plasticity in the integration of BMP and IL6

signals, depending on the strength of basal and induced signaling.

In this study, we used in vitro measurements in HuH7 cells to

parameterize an in vivo model of systemic iron homeostasis,

thereby assuming that HuH7 cells quantitatively reflect hepcidin

regulation in vivo. HuH7 cells have been widely used in the field of

iron metabolism to study hepcidin regulation, and have been to

behave very similarly to other hepatoma cells (HepG2, Hep3B)

and primary hepatocytes [17,19,23,44,46,50,53]. While, to the

best of our knowledge, there are no reports of quantitative

comparisons on hepcidin regulation in vivo and in vitro, there is

abundant evidence that the in vivo data that qualitatively mirrors

the results obtained in vitro. For instance, Wang et al. reported that

SMAD4 is essential for hepcidin activation both in mice and in

primary hepatocytes [52], while Pietrangelo et al. showed in both

models that STAT3 is a key transcription factor for IL-6 activation

of hepcidin gene expression [54]. These results can be consistently

reproduced in HuH7 cells, suggesting that the molecular

mechanisms involved in these signaling pathways are preserved

in this cell line.

The hepcidin promoter contains two BMP-responsive elements

as opposed to a single STAT binding site, raising the question of

why such a promoter design may be advantageous for the

regulation of systemic iron homeostasis. We find that the presence

of two BREs ensures that hepcidin expression is very sensitive

towards changes in the iron-sensing BMP pathway (Fig. 4B–D).

This makes the negative auto-regulation loop more nonlinear,

thereby promoting systemic iron homeostasis (Fig. 4E). Systems

biology studies at the organismal level are required to confirm that

our simple model of iron homeostasis faithfully predicts the

dynamics of iron metabolism in vivo.

Materials and Methods

Model implementation
The mathematical model describing hepcidin expression (used

to generate Figs. 2C, 2D, 3B–3E, 4A–4C and 4F) consists of two

modules: (i) the signaling module which describes the phosphor-

ylation of SMAD and STAT transcription factors as a function of

the BMP and IL6 concentrations. (ii) the promoter module uses

the concentrations of phospho-SMAD/STAT (described by

module i) as inputs, and computes the hepcidin expression level

as an output. In the signaling module, we described the dose-

response behavior of SMAD/STAT phosphorylation at steady

state using sigmoidal Hill equations (Supplemental Text S3).

Potential signaling crosstalk was considered by assuming that the

phosphorylation of one TF modulates the maximal phosphoryla-

tion of the other TF (Supplemental Text S3). The promoter
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module was described based on the thermodynamic model derived

in Supplemental Text S2. In Supplemental Protocol S2, we

describe how this thermodynamic model was applied to hepcidin

expression regulation, combined with the signaling model and we

also provide a detailed description of all model parameters. The

hepcidin expression model was embedded into an ODE model to

describe systemic iron homeostasis by hepcidin-mediated negative

feedback (Figs. 4D and E). A detailed description of this ODE

model can be found in Supplemental Text S4.

Model fitting
The models were fitted to the experimental data by minimizing

x2 metric, given by x2 = (Mi-sj?Di)
2/si

2. Mi, Di and si are the

simulated value, the measured value and the experimental error,

respectively. The fitted scaling factor si accommodates that the

model is formulated in absolute concentration units, while

signaling and luciferase activities could only be measured in

arbitrary units. The simulated phospho-SMAD/STAT concen-

trations were fitted to the immunoblotting data (Fig. 2C), while the

simulated transcription initiation rate was fitted to the luciferase

measurements (Fig. 2D), i.e., gene expression was assumed to be at

steady state (see text). Parameter optimization was done using a

deterministic trust region optimizer in Matlab. In order to

circumvent local minima, we repeatedly fitted the model starting

from 80.000 quasi randomly distributed positions in the space of

allowed parameter ranges. The optimization apparently con-

verged to a global optimum, because ,45% of the fitting runs

yielded x2 values close to the minimum all 80.000 runs. We fitted

model topologies of different complexity by eliminating certain

reaction steps (Fig. 2B, Supplemental Protocol S2), and compared

the ability of model variants to fit the data. Models of different

complexities were compared based on their goodness-of-fit to the

training data set using the Akaike Information criterion

(AIC = x2+2k; k…number of model parameters) and the likelihood

ratio test (Supplemental Protocol S2). Both statistical measures

favored model topology 4 in Fig. 2B.

Parameter identifiability
Parameter identifiability was analysed using the strategy

proposed by Hengl et al. [55]: The parameter vectors of the top

45% fitting results from quasi-randomly distributed starting

parameter sets (see above) had a similar goodness-of-fit

(x2,135), and were analysed with respect to parameter ranges

and parameter correlations (Supplemental Fig. S4). The robust-

ness of model predictions was estimated by repeatedly simulating

predictions for the top 45% of the model solutions. The

simulations predicting the highest and lowest values are given as

a prediction range in Fig. 3.

Cell culture
The human hepatocarcinoma HuH7 cell line was cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM, high glucose;

Invitrogen) supplemented with 10% heat inactivated low-

endotoxin fetal bovine serum (FBS, Invitrogen), 1% penicillin,

1% streptomycin and 1 mM Sodium Pyruvate. Cell cultures were

maintained in a 5% CO2 atmosphere at 37uC.

Luciferase reporter gene assays
Generation of the luciferase reporter construct containing a

2762-bp fragment of the human hepcidin promoter (WT) and

derivate constructs with mutations in BMP-responsive element

1(position 284/279; BRE1m), BMP-RE2 (position 22255/

22250; BRE2m), STAT binding site (position 272/264;

STATdel), and in BMP-RE1 and BMP-RE2 (BRE1mBRE2m),

have been previously described [19,44]. In this study we generated

two additional reporter constructs that combined mutations in

BMP-RE1 or BMP-RE2 with the deletion of the STAT binding

site (constructs BRE1STATdel and BRE2STATdel, respectively).

HuH7 cells (1.56105 per well) were seeded onto six-well plates.

The next day, 500 ng of pGL3 reporter vectors containing the

hepcidin promoter constructs were transfected, together with

10 ng of a control plasmid containing the Renilla gene under the

control of the CMV promoter. Plasmid transfections were

performed using Lipofectamine 2000 (Invitrogen) according to

manufacturer’s instructions, and medium was replaced by FBS-

free medium. Twenty-four hours after transfection, cells were

treated with human BMP-6 (50 ng/ml, 24 h) and/or IL-6 (2 ng/ml,

24 h). Cells were harvested in Passive Lysis Buffer (Promega) for

measurement of luciferase activity and cellular extracts were

analyzed using the Dual-Luciferase-Reporter assay system (Pro-

mega) and a Centro LB 960 luminometer (Berthold Technologies).

Western blot analysis
HUH7 cells (1.56105 per well) were seeded onto 6-well plates

and the day after the culture medium was exchanged to FBS-free

medium. After 12 hours the cells were treated with increasing

doses of BMP-6 (60; 200; 800 ng/mL; R&D Systems) and/or IL-6

(2; 4; 6; 25 ng/mL; R&D Systems) for 12 hours and then

harvested for protein analysis. Cells were washed twice in ice cold

Dulbecco’s phosphate-buffered saline (PBS). Cell pellets were lysed

in ice-cold NET buffer (1% Triton X-100 (v/v), 50 mM Tris-HCl

pH 7.4, 150 mM NaCl, 5 mM EDTA, 20 mM NaF, 1 mM

Na3VO4) supplemented with 16 Complete Mini Protease

Inhibitor Mixture (Complete Mini,Roche Applied Science). The

protein concentration was measured using the BCA (bicinchoninic

acid) Protein Assay (Pierce). Protein lysates (15 mg) were subjected

to 10% SDS-PAGE and transferred to a nitrocellulose membrane

(Whatman) for protein immunodetection using rabbit anti-

phospho SMAD 1/5/8 (Cell Signaling #9511), mouse anti-

phospho STAT3 (Cell Signaling, #9138) and mouse anti-actin

(Sigma Aldrich, A2228). Blots were then incubated with horse-

radish peroxidase conjugated anti-mouse or anti-rabbit secondary

antibodies (Sigma Aldrich) and then subjected to chemilumines-

cence (Amersham Biosciences, ECL Plus). For the densitometric

analysis the resulting bands were digitalized and quantified using

the NIH Image J software (rsb.info.nih.gov/nih-image/)

Data processing
Luciferase Reporter Assays were performed in at least four

biological replicates. Reporter gene expression was monitored

using firefly luciferase, and co-transfection with Renilla luciferase

allowed for correction with respect to cell number and transfection

efficacy. The relative light units of firefly luminescence of each

experimental condition were divided by the relative light units of

the corresponding Renilla luminescence. Each replicate measure-

ment series was normalized by the median over all data points of

that series to correct for slight differences in absolute luciferase

signals between replicate experiments. Experimental errors were

estimated by calculating standard deviations over all replicates.

Errors in the fold changes of luciferase expression (Fig. 3B and E)

were estimated using a Monte-Carlo approach: Random realiza-

tions were drawn from normal distributions with mean and

standard deviation equal to those of the measured luciferase

expression data. Fold-changes were calculated for 103 pairs of

realizations, and the fold-change error was evaluated by calculat-

ing the standard deviation of the resulting probability distributions.
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Signaling crosstalk was monitored by immunoblotting against

phosphorylated SMAD and STAT in two biological replicates

(Supplemental Fig. S4). Bands were quantified by densitometry,

and duplicate measurements were merged by multiplying one of

the duplicate series with a fitted scaling factor to correct for

differences in arbitrary units between gels. Figs. 1D and 2C show

mean and standard deviation of merged duplicate experiments.

Some experimental errors estimated from scaling were unreason-

ably small; therefore a minimal experimental error was assumed,

based on typical variability in Western Blot measurements (relative

error of 5% plus an absolute error value).

Supporting Information

Figure S1 Luciferase measurements reflect endogenous hepcidin

mRNA expression. Expression fold-changes in the luciferase assay

data (x axis) are strongly correlated with expression fold-changes in

qPCR measurements of endogenous hepcidin mRNA (y axis). The

green and blue data points indicate qPCR measurements for two

independent biological replicates, each with technical replicates

(n = 2). The data points correspond to the following stimulus

concentrations: 6 ng/ml IL6, 25 ng/ml IL6, 200 ng/ml BMP6,

800 ng/ml BMP6, 200 ng/ml BMP6 + 25 ng/ml IL6, 800 ng/ml

BMP6 + 25 ng/ml IL6, and 800 ng/ml BMP6 + 6 ng/ml IL6.

The blue and green solid lines show linear fits to the data, and R

indicates the Pearson correlation coefficient of each qPCR

replicate series. See Supplemental Protocol S1 for a detailed

description, and for the qPCR protocol.

(JPG)

Figure S2 Immunoblotting of SMAD/STAT phosphorylation

upon co-stimulation indicates moderate inhibitory signaling

crosstalk. (A)–(D) HuH7 cells were stimulated with increasing

doses of IL6 in the presence or absence of BMP (A, C) or vice

versa (B, D). Signaling crosstalk was analyzed by immunoblotting

against phosphorylated SMAD and STAT. Actin levels serve as

loading controls. Two biological replicates were performed

(Replicate 1: panels A and B; Replicate 2: panels C and D).

(JPG)

Figure S3 Fitting and analysis of a model with non-cooperative

STAT and SMAD binding to STATBS and BRE1 sites. (A) and

(B) Best-fit of the non-cooperative model (variant 1 in Fig. 2B) with

inhibitory signaling crosstalk to luciferase data and dose-response

curves of transcription factor phosphorylation (Supplemental

Protocol S2). The simulated luciferase activities in A can be

compared to the corresponding experimental data in Fig. 1C.

Solid lines in B represent model trajectories in comparison to

experimentally measured data points (shown as mean +/2 std).

(C) The non-cooperative model fails to explain the loss of IL6

sensitivity in the BRE1m promoter. Shown are the luciferase

heatmaps of WT and BRE1m promoters (rows), as measured

experimentally (left column) or simulated using cooperative and

non-cooperative models, respectively (middle and right columns).

Each heatmap was normalized to the corresponding basal

expression level. The BRE1m promoter shows lower IL6

inducibility than WT in the data and in the cooperative model,

but not in the non-cooperative model (indicated by green arrow).

(JPG)

Figure S4 Analysis of parameter identifiability. (A) Box plots of

the measurement-compliant parameter ranges. The model with

inhibitory signaling crosstalk and BRE1-STATBS cooperativity

(variant 4 in Fig. 2B) was analyzed, and parameter combinations

with a similar goodness-of-fit (x2,135) were collected (see

Methods). The box plot indicate the distribution of each

parameter (mid line: median; box edges: upper and lower quartile;

whiskers contain 1.5 interquartile ranges from the edges; red

crosses: outliers). (B) and (C) Relationship of model parameters

describing the activities of BRE1 and BRE2. (B) Comparison

pSMAD binding affinities of BRE1 and BRE2 (KB1 and KB2,

respectively). (C) Comparison of RNAP interaction strength of

BRE1-bound and BRE2-bound pSMAD (fB1 and fB2, respective-

ly). Each circle corresponds to one measurement-compliant

parameter (defined as in panel A), the solid line indicates the

bisectrix.

(JPG)

Figure S5 The luciferase measurements can be quantitatively

modeled without assuming crosstalk between signaling pathways.

(A) Best-fit of a hecipidin expression model without crosstalk at the

level of BMP and IL6 signaling pathways. Luciferase expression

was simulated using Eqs. S3.1 and S2.13 (Supplemental Text S3

and Supplemental Protocol S2), and the transcription rate in the

model (pbound) was fitted to the data in Fig. 1C (using a scaling

factor). The best-fit parameter values of this model are given in

Supplemental Table S1. (B) Removal of signaling crosstalk does

not appreciably affect the simulated luciferase activities in fits of

the full model. The full model with signaling crosstalk was fitted to

the data from multiple starting parameter sets, and all fitting

solutions with a comparable goodness-of-fit (x2,135) were

analyzed (see Methods): The simulated luciferase levels with

signaling crosstalk were plotted against the luciferase activities of

model variants where crosstalk was eliminated (setting kC,1 and

kC,2 in Eq. S3.1 to zero). The luciferase activities are essentially

unaffected by the deletion of crosstalk.

(JPG)

Figure S6 Buffering of BRE2 and STATBS single deletions.

Systematic analysis of transcription factor binding site deletion

effects confirms buffering of BRE2 and STATBS single deletions.

The impact of binding site deletions was calculated by taking the

luciferase activity ratios of different promoters (indicated at the

bottom) and expressed as a log10-fold change (y axis). The fold-

change upon a combined deletion of BRE2 and STATBS (red) is

higher than the product of the single deletion fold-changes (green

and blue) at high BMP stimulation. This indicates promoter

saturation (see main text). Data points are mean and standard

deviation, and model predictions represent the range of measure-

ment-compliant parameter sets, as derived from a parameter

identifiability analysis (see Methods). Co-stimulation conditions

were considered to ensure that BRE2 and STATBS both

contribute to expression.

(JPG)

Figure S7 Integration of BMP and IL6 signals at the level of

hepcidin expression. (A) The WT hepcidin promoter integrates

BMP and IL6 signals in a sub-multiplicative manner, while

mutants show multiplicative behavior. The x dimension shows the

experimentally observed fold-expression-change over basal upon

co-stimulation with BMP and IL6. The y dimension shows the

product mono-stimulation responses over basal with the same

doses of BMP and IL6, respectively. Each data point represents

one co-stimulation condition (different concentrations of BMP and

IL6 and/or different promoter constructs). The colors of the data

points correspond to different promoter constructs (legend). The

bisectrix (solid line) marks the expectation for a multiplicative

system (Co-stimulation fold-change over basal equals the product

of the mono-stimulation fold-changes). (B) Basal BMP signaling

pathway activity is required for optimal IL6 responsiveness of the

hepcidin promoter. The fold expression change in response to very

strong IL6 mono-stimulation is shown as a function of the basal
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phospho-SMAD level (using the parameters of the best-fit WT

model). Basal BMP signaling is required for optimal IL6

responsiveness of the promoter, indicating that both stimuli

synergistically regulate hepcidin expression (i.e., in a more than

multiplicative manner) in this regime of weak BMP signaling. This

model prediction is supported by experiments in HuH7 cells

showing that SMAD4 siRNA lowers the IL6 inducibility of the

hepcidin promoter ([46]; unpublished observation), and with data

in hepatocyte-specific SMAD4 knockout mice [52].

(JPG)

File S1 Matlab code of the hepcidin expression model. The file

comprises the signaling model describing SMAD and STAT

phosphorylation, and the thermodynamic model describing

hepcidin promoter regulation. The simulation results (cf. Figs. 2C

and D) are plotted together with mean and error in the

experimental data (cf. Figs. 1C and D).

(TXT)

Protocol S1 Comparison of luciferase signals with endogenous

hepcidin mRNA expression.

(PDF)

Protocol S2 Model implementation, model fitting and model

selection.

(PDF)

Table S1 Best-fit model parameters. Best-fit parameters for the

models with and without signaling crosstalk (Figs. 2C/D and

Supplemental Fig. S5, respectively). The parameters 1–9 belong to

the signaling module of the model, while the remaining ones

describe promoter regulation. Each parameter was constrained to

a physiologically feasible range during fitting. The Hill coefficients

of the signaling module (parameters 3 and 7) were restricted to

values typical for biochemical response curves. The other

parameters of the signaling module (ymax, EC50) represent a

combination of multiple signaling reaction constants, and were

thus constrained such that they match the experimental measure-

ments of transcription factor phosphorylation (Fig. 1D). Most

parameter ranges of the promoter module were taken from the

literature. Some were allowed to vary over a broad range to

accommodate different kinds of qualitative behavior. For example,

the wide range of half-maximal promoter saturation constants (KP;

parameter 10) allows for promoter saturation to occur upon

stimulation. Likewise, the KD values of transcription factor binding

to cognate promoter sites (parameters 11–13) were allowed to vary

over a broad range to accommodate weak and strong binding.

The parameter ranges for the constants describing protein-protein

interactions on the promoter (parameters 14–19) represent the

typical interaction energies of 1–5 kcal/mol reported in the

literature [29]. The exponents nSM and nST reflect transcription

factor dimerization and trimerization, implying that values of up

to 3 can be expected.

(PDF)

Text S1 Conceptual model of systemic iron homeostasis.

(PDF)

Text S2 Derivation of a thermodynamic model for the hepcidin

promoter.

(PDF)

Text S3 Modeling the dose-response behavior of signaling

pathways.

(PDF)

Text S4 Detailed model of systemic iron homeostasis.

(PDF)
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