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Abstract

Correlated neuronal activity is a natural consequence of network connectivity and shared inputs to pairs of neurons, but the
task-dependent modulation of correlations in relation to behavior also hints at a functional role. Correlations influence the
gain of postsynaptic neurons, the amount of information encoded in the population activity and decoded by readout
neurons, and synaptic plasticity. Further, it affects the power and spatial reach of extracellular signals like the local-field
potential. A theory of correlated neuronal activity accounting for recurrent connectivity as well as fluctuating external
sources is currently lacking. In particular, it is unclear how the recently found mechanism of active decorrelation by negative
feedback on the population level affects the network response to externally applied correlated stimuli. Here, we present
such an extension of the theory of correlations in stochastic binary networks. We show that (1) for homogeneous external
input, the structure of correlations is mainly determined by the local recurrent connectivity, (2) homogeneous external
inputs provide an additive, unspecific contribution to the correlations, (3) inhibitory feedback effectively decorrelates
neuronal activity, even if neurons receive identical external inputs, and (4) identical synaptic input statistics to excitatory and
to inhibitory cells increases intrinsically generated fluctuations and pairwise correlations. We further demonstrate how the
accuracy of mean-field predictions can be improved by self-consistently including correlations. As a byproduct, we show
that the cancellation of correlations between the summed inputs to pairs of neurons does not originate from the fast
tracking of external input, but from the suppression of fluctuations on the population level by the local network. This
suppression is a necessary constraint, but not sufficient to determine the structure of correlations; specifically, the structure
observed at finite network size differs from the prediction based on perfect tracking, even though perfect tracking implies
suppression of population fluctuations.
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Introduction

The spatio-temporal structure and magnitude of correlations in

cortical neural activity have been subject of research for a variety of

reasons: the experimentally observed task-dependent modulation of

correlations points at a potential functional role. In the motor cortex

of behaving monkeys, for example, synchronous action potentials

appear at behaviorally relevant time points [1]. The degree of

synchrony is modulated by task performance, and the precise timing

of synchronous events follows a change of the behavioral protocol

after a phase of re-learning. In primary visual cortex, saccades (eye

movements) are followed by brief periods of synchronized neural

firing [2,3]. Further, correlations and fluctuations depend on the

attentive state of the animal [4], with higher correlations and slow

fluctuations observed during quiet wakefulness, and faster, uncor-

related fluctuations in the active state [5]. It is still unclear whether

the observed modulation of correlations is in fact employed by the

brain, or whether it is merely an epiphenomenon. Theoretical

studies have suggested a number of interpretations and mechanisms

of how correlated firing could be exploited: Correlations in afferent

spike-train ensembles may provide a gating mechanism by

modulating the gain of postsynaptic cells (for a review, see [6]).

Synchrony in afferent spikes (or, more generally, synchrony in spike

arrival) can enhance the reliability of postsynaptic responses and,

hence, may serve as a mechanism for a reliable activation and

propagation of precise spatio-temporal spike patterns [7,8,9,10].

Further, it has been argued that synchronous firing could be

employed to combine elementary representations into larger

percepts [11,12,7,13,14]. While correlated firing may constitute

the substrate for some en- and decoding schemes, it can be highly

disadvantageous for others: The number of response patterns which

can be triggered by a given afferent spike-train ensemble becomes

maximal if these spike trains are uncorrelated [15]. In addition,

correlations in the ensemble impair the ability of readout neurons to

decode information reliably in the presence of noise (see e.g.

[16,15,17]). Recent studies have indeed shown that biological

neural networks implement a number of mechanisms which can

efficiently decorrelate neural activity, such as the nonlinearity of

spike generation [18], synaptic-transmission variability and failure

[19,20], short-term synaptic depression [20], heterogeneity in

network connectivity [21] and neuron properties [22] and the

recurrent network dynamics [23,24,17]. To study the significance of

experimentally observed task-dependent correlations, it is essential

to provide adequate null hypotheses: Which level and structure of
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correlations is to be expected in the absence of any task-related

stimulus or behavior? Even in the simplest network models without

time varying input, correlations in the neural activity emerge as a

consequence of shared input [25,26,27] and recurrent connectivity

[24,28,17,29,30]. Irrespective of the functional aspect, the spatio-

temporal structure and magnitude of correlations between spike

trains or membrane potentials carry valuable information about the

properties of the underlying network generating these signals

[26,28,31,29,30] and could therefore help constraining models of

cortical networks. Further, the quantification of spike-train corre-

lations is a prerequisite to understand how correlation sensitive

synaptic plasticity rules, such as spike-timing dependent plasticity

[32], interact with the recurrent network dynamics [33]. Finally,

knowledge of the expected level of correlations between synaptic

inputs is crucial for the correct interpretation of extracellular signals

like the local-field potential (LFP) [34].

Previous theoretical studies on correlations in local cortical

networks provide analytical expressions for the magnitude

[27,24,17] and the temporal shape [35,36,29,30] of average

pairwise correlations, capture the influence of the connectivity on

correlations [37,38,28,31,29,39], and connect oscillatory network

states emerging from delayed negative feedback [40] to the shape

of correlation functions [30]. In particular we have shown recently

that negative feedback loops, abundant in cortical networks,

constitute an efficient decorrelation mechanism and therefore

allow neurons to fire nearly independently despite substantial

shared presynaptic input [17] (see also [37,24,41]). We further

pointed out that in networks of excitatory (E) and inhibitory (I)

neurons, the correlations between neurons of different cell type

(EE, EI, II) differ in both magnitude and temporal shape, even if

excitatory and inhibitory neurons have identical properties and

input statistics [17,30]. It remains unclear, however, how this cell-

type specificity of correlations is affected by the connectivity of the

network.

The majority of previous theoretical studies on cortical circuits is

restricted to local networks driven by external sources representing

thalamo-cortical or cortico-cortical inputs (e.g. [42,43,44]). Most of

these studies emphasize the role of the local network connectivity

(e.g. [45]). Despite the fact that inputs from remote (external) areas

constitute a substantial fraction of all excitatory inputs (about 50%
[7], see also [46,47]), their spatio-temporal structure is often

abstracted by assuming that neurons in the local network are

independently driven by external sources. A priori, this assumption

can hardly be justified: neurons belonging to the local cortical

network receive, at least to some extent, inputs from identical or

overlapping remote areas, for example due to patchy (clustered)

horizontal connectivity [48,49]. Hence, shared-input correlations

are likely to play a role not only for local but also for external inputs.

Coherent activation of neurons in remote presynaptic areas

constitutes another source of correlated external input, in particular

for sensory areas [50,5,51,4]. So far, it is largely unknown how

correlated external input affects the dynamics of local cortical

networks and alters correlations in their neural activity.

In this article, we investigate how the magnitude and the cell-

type specificity of correlations depend on i) the connectivity in

local cortical networks of finite size and ii) the level of correlations

in external inputs. Existing theories of correlations in cortical

networks are not sufficient to address these questions as they either

do not incorporate correlated external input [35,17,29,28,31] or

assume infinitely large networks [24]. Lindner et al. [37] studied

the responses of finite populations of spiking neurons receiving

correlated external input, but described inhibitory feedback by a

global compound process.

Our work builds on the existing theory of correlations in

stochastic binary networks [35], a well-established model in the

neuroscientific community [42,24]. This model has the advantage

of requiring for its analytical treatment elementary mathematical

methods only. We employ the same network structure used in the

work by Renart et al. [24] which relates the mechanism of

recurrent decorrelation to the fast tracking of external signals (see

[52] for a recent review). This choice enables us to reconsider the

explanation of decorrelation by negative feedback [17], originally

shown for networks of leaky integrate-and-fire neurons, and to

compare it to the findings of Renart et al. In fact, the motivation

for the choice of the model arose from the review process of [17],

during which both the reviewers and the editors encouraged us to

elucidate the relation of our work to the one of Renart et al. in a

separate subsequent manuscript. The present work delivers this

comparison.

We show here that the results presented in [17] for the leaky

integrate-and-fire model are in qualitative agreement with those in

networks of binary neurons. The formal relationship between

spiking models and the binary neuron model is established in [53].

In particular, for weak correlations it can be shown that both

models map to the Ornstein-Uhlenbeck process with one

important difference: The location of the effective white noise

for spiking neurons is additive in the output, while for binary

neurons the effective noise is low-pass filtered, or equivalently

additive on the input side of the neuron.

The remainder of the manuscript is organized as follows: In

‘‘Methods’’, in recurrent random networks of excitatory and

inhibitory cells driven by fluctuating input from an external

population of finite size. We account for the fluctuations in the

synaptic input to each cell, which effectively linearize the hard

threshold of the neurons [54,24]. We further include the resulting

finite-size correlations into the established mean-field description

[42,54] to increase the accuracy of the theory. In ‘‘Results’’, we

first show in ‘‘Correlations are driven by intrinsic and
external fluctuations’’ that correlations in recurrent networks

are not only caused by the externally imposed correlated input, but

also by intrinsically generated fluctuations of the local populations.

We demonstrate that the external drive causes an overall shift of

Author Summary

The co-occurrence of action potentials of pairs of neurons
within short time intervals has been known for a long time.
Such synchronous events can appear time-locked to the
behavior of an animal, and also theoretical considerations
argue for a functional role of synchrony. Early theoretical
work tried to explain correlated activity by neurons
transmitting common fluctuations due to shared inputs.
This, however, overestimates correlations. Recently, the
recurrent connectivity of cortical networks was shown
responsible for the observed low baseline correlations.
Two different explanations were given: One argues that
excitatory and inhibitory population activities closely
follow the external inputs to the network, so that their
effects on a pair of cells mutually cancel. Another
explanation relies on negative recurrent feedback to
suppress fluctuations in the population activity, equivalent
to small correlations. In a biological neuronal network one
expects both, external inputs and recurrence, to affect
correlated activity. The present work extends the theoret-
ical framework of correlations to include both contribu-
tions and explains their qualitative differences. Moreover,
the study shows that the arguments of fast tracking and
recurrent feedback are not equivalent, only the latter
correctly predicts the cell-type specific correlations.

Correlation Structure Is Intrinsic
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the correlations, but that their relative magnitude is mainly

determined by the intrinsically generated fluctuations. In ‘‘Can-
cellation of input correlations’’, we revisit the earlier reported

phenomenon of the suppression of correlations between input

currents to pairs of cells [24] and show that it is a direct

consequence of the suppression of fluctuations on the population

level [17]. In ‘‘Limit of infinite network size’’ we consider the

strong coupling limit of the theory, where the network size goes to

infinity to recover earlier results for inhomogeneous connectivity

[24] and to extend these results to homogeneous connectivity.

Subsequently, in ‘‘Influence of connectivity on the correla-
tion structure’’, we investigate in how far the reported structure

of correlations is a generic feature of balanced networks and isolate

parameters of the connectivity determining this structure. Finally,

in ‘‘Discussion’’, we summarize our results and their implica-

tions for the interpretation of experimental data, discuss the

limitations of the theory, and provide an outlook of how the

improved theory may serve as a further building block to

understand processing of correlated activity.

Methods

Networks of binary neurons
We denote the activity of neuron i as ni(t). The state ni(t) of a

binary neuron is either 0 or 1, where 1 indicates activity, 0
inactivity [35,55,24]. The state of the network of N such neurons

is described by a binary vector n~(n1, . . . ,nN )[f0,1gN
. We

denote the mean activity as mi~Sni(t)Tt, the (zero time lag)

covariance of the activities of a pair (i,j) of neurons is defined as

cij~Sdni(t)dnj(t)Tt, where dni(t)~ni(t){mi is the deviation of

neuron i’s activity from expectation and the average STt is over

time and realizations of the stochastic activity.

The neuron model shows stochastic transitions (at random

points in time) between the two states 0 and 1 controlled by

transition probabilities, as illustrated in Figure 1. Using asynchro-

nous update [56], in each infinitesimal interval ½t,tzdt) each

neuron in the network has the probability
1

t
dt to be chosen for

update [57], where t is the time constant of the neuronal

dynamics. An equivalent implementation draws the time points of

update independently for all neurons. For a particular neuron, the

sequence of update points has exponentially distributed intervals

with mean duration t, i.e. update times form a Poisson process

with rate t{1. We employ the latter implementation in the globally

time-driven [58] spiking simulator NEST [59], and use a discrete

time resolution dt~0:1ms for the intervals. The stochastic update

constitutes a source of noise in the system. Given the i-th neuron is

selected for update, the probability to end in the up-state (ni~1) is

determined by the gain function Fi(n) which possibly depends on

the activity n of all other neurons. The probability to end in the

down state (ni~0) is 1{Fi(n). This model has been considered

earlier [60,35,55], and here we follow the notation introduced in

the latter work.

The stochastic system is completely characterized by the joint

probability distribution p(n) in all N binary variables n. An example

is the recurrent random network considered here (Figure 2).

Knowing the joint probability distribution, arbitrary moments can

be calculated, among them pairwise correlations. Here we are only

concerned with the stationary state of the network. A stationary

solution of p(n) implies that for each state a balance condition holds,

so that the incoming and outgoing probability fluxes sum up to zero.

The occupation probability of the state is then constant. We denote

as niz~(n1, . . . ,ni{1,1,niz1, . . . ,nN ) the state, where the i-th
neuron is active (ni~1), and ni{ where neuron i is inactive (ni~0).

Since in each infinitesimal time interval at most one neuron can

change state, for each given state n there are N possible transitions

(each corresponding to one of the N neurons changing state). The

sum of the probability fluxes into the state and out of the state must

compensate to zero [61], so

0~t
Lp(n)

Lt
~
XN

i~1

(2ni{1)|fflfflfflffl{zfflfflfflffl}
direction of flux

p(ni{)Fi(ni{)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
neuron i transition up

{ p(niz)(1{Fi(niz))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
neuron i transition down

0
B@

1
CA V n[f0,1gN :

ð1Þ

From this equation we derive expressions for the first SnkT and

second moments SnknlT by multiplying with nknl and summing

over all possible states n[f0,1gN
, which leads to

0~
X

n[f0,1gN

XN

i~1

nknl(2ni{1)

p(ni{)Fi(ni{){p(niz)(1{Fi(niz))ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:Gi (n\ni )

:

Note that the term denoted Gi(n\ni) does not depend on the state

of neuron i. We use the notation n\ni for the state of the network

excluding neuron i, i.e. n\ni~(n1, . . . ,ni{1,niz1, . . . ,nN ). Sepa-

rating the terms in the sum over i into those with i=k,l and the

two terms with i~k and i~l, we obtain

0~
X

n

XN

i~1,i=k,l

nknl(2ni{1)Gi(n\ni)z

nknl(2nk{1)Gk(n\nk)znknl(2nl{1)Gl(n\nl)

~
XN

i~1,i=k,l

X
n\ni

nknl(Gi(n\ni){Gi(n\ni))z

X
n

nknl Gk(n\nk)z
X

n

nknl Gl(n\nl),

where we obtained the first term by explicitly summing over state

ni[f0,1g (i.e. using
P

n[f0,1gN ~
P

n\ni[f0,1gN{1

P1
ni~0 and eval-

uating the sum
P1

ni~0). This first sum obviously vanishes. The

remaining terms are of identical form with the roles of k and l

interchanged. We hence only consider the first of them and obtain

the other by symmetry. The first term simplifies to

X
n

nknl Gk(n\nk) ~
nk~1X

n\nk

nl Gk(n\nk)

~
def :Gk

P
n\nk

p(nk{)Fk(nk{)zp(nkz)Fk(nkz){p(nkz) for k~lP
n\nk

p(nk{)nl Fk(nk{)zp(nkz)nl Fk(nkz){nl p(nkz) for k=l

8<
:

~
SFk(n)T{SnkT for k~l

SFk(n)nlT{SnknlT for k=l

(
,

where we denote as Sf (n)T~
P

n[f0,1gN p(n)f (n) the average of a

function f (n) with respect to the distribution p(n). Taken together

with the mirror term k<l, we arrive at two conditions, one for the

first (k~l, Sn2
kT~SnkT) and one for the second (k=l) moment

Correlation Structure Is Intrinsic
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2SnknlT~
2SFk(n)T for k~l

SFk(n)nlTzSFl(n)nkT for k=l

(
:

ð2Þ

Considering the covariance ckl~SdnkdnlT with centralized

variables dnk~nk{SnkT, for k=l one arrives at

2ckl~SFk(n)dnlTzSFl(n)dnkT: ð3Þ

This equation is identical to eq. 3.9 in [35], to eqs. 3.12 and 3.13

in [55], and to eqs. (19)–(22) in [24, supplement].

Mean-field solution

Starting from (1) for the general case
Lp(n,t)

Lt
=0, a similar

calculation as the one resulting in (2) for k~l leads to

t
L
Lt

SnkT~SFk(n)T{SnkT,

where we used Sn2
kT~SnkT, valid for binary variables. As in [24]

we now assume a particular form for the gain function and for the

coupling between neurons by specifying

Fk(n)~H hk{hð Þ

hk~
XN

l~1

Jklnl

H(x)~
1 if x§0

0 if xv0

�
,

where Jkl is the incoming synaptic weight from neuron l to neuron

k, H is the Heaviside function, and h is the threshold of the

activation function. For positive h the neuron gets activated only if

sufficient excitatory input is present and for negative h the neuron

is intrinsically active even in the absence of excitatory input. We

Figure 1. State transitions of a binary neuron. Each neuron is updated at random time points, intervals are i.i.d. exponential with mean duration
t, so the rate of updates per neuron i is t{1. The probability of neuron i to end in the up-state (1) is determined by the gain function Fi(n) which
potentially depends on the states n of all neurons in the network. The up-transitions are indicated by black arrows. The probability for the down state
(0) is given by the complementary probability 1{Fi(n), indicated by gray arrows.
doi:10.1371/journal.pcbi.1003428.g001

Figure 2. Recurrent local network of two populations of
excitatory (E) and inhibitory (I) neurons driven by a common
external population (X ). The external population X delivers
stochastic activity to the local network. The local network is a recurrent
Erdös-Rényi random network with homogeneous synaptic weights Jab

coupling neurons in population b to neurons in population a, for
a,b[fE,Ig and same parameters for all neurons. There are N~8192
neurons in both the excitatory and the inhibitory population. The
connection probability is p~0:2, and each neuron in population a
receives the same number K~pN of excitatory and inhibitory
synapses. The size NX of the external population determines the
amount of shared input received by each pair of cells in the local
network. The neurons are modeled as binary units with a hard threshold
h.
doi:10.1371/journal.pcbi.1003428.g002

Correlation Structure Is Intrinsic
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denote by hk the summed synaptic input to the neuron, sometimes

also called the ‘‘field’’. Because n2
k~nk, the variance ak of a binary

variable is ak:Sn2
kT{SnkT2~(1{SnkT)SnkT. We now aim to

solve (2) for the case k~l, i.e. the equation SnkT~SFkT. In

general, the right hand side depends on the fluctuations of all

neurons projecting to neuron k. An exact solution is therefore

complicated. However, for sufficiently irregular activity in the

network we assume the neurons to be approximately independent.

Further assume that in a network of homogeneous populations a
(same parameters t, h and same statistics of the incoming

connections for all neurons, i.e. same number Kab and strength

Jab of incoming connections from neurons in a given population b)

the mean activity of an individual neuron can be represented by

the population mean ma~S
1

Na

X
i[a

niT. The mean input to a

neuron in population a then is

ShaT~
X

b

KabJabmb:ma: ð4Þ

We assumed in the last step identical synaptic amplitudes Jab for a

synapse from a neuron in population b to a neuron in population

a. So the input to each neuron has the same mean ShaT. As a first

approximation, if the mean activity in the network is not saturated,

i.e. neither 0 nor 1, mapping this activity back by the inverse gain

function to the input, ha must be close to the threshold value, so

ShaT^h: ð5Þ

This relation may be solved for mE and mI to obtain a coarse

estimate of the activity in the network [42,54]. In mean-field

approximation we assume that the fluctuations of the fields of

individual neurons ha around their mean are mutually indepen-

dent, so that the fluctuations dha~ha{ShaT of ha are, in turn,

caused by a sum of independent random variables and hence the

variances add up to the variance s2
a of the field

Sdh2
aT~

X
b

KabJ2
abmb(1{mb):s2

a: ð6Þ

As ha is a sum of typically thousands of synaptic inputs, it

approaches a Gaussian distribution ha*N (ma,s2
a) with mean ma

and variance s2
a. In this approximation the mean activity in the

network is the solution of

t
L
Lt

mazma~SFa(mE ,mI ,mx)T V a[fE,Ig

^
ð?

{?
H(x{h)N (ma,s2

a,x)dx

~

ð?
h

N (ma,s2
a,x)dx

~
1

2
erfc

h{maffiffiffi
2
p

sa

� �
:

ð7Þ

This equation needs to be self-consistently solved with
Lma

Lt
~0 by

numerical or graphical methods in order to obtain the stationary

activity, because ma(mE ,mI ,mx) and sa(mE ,mI ,mx) depend on

maVa[fE,I ,Xg themselves. We here employ the algorithm hybrd

and hybrj from the MINPACK package, implemented in scipy

(version 0.9.0) [62] as the function scipy:optimize:fsolve.

Linearized equation for correlations and susceptibility
In general, the term SFk(n)dnlT in (3) couples moments of

arbitrary order, resulting in a moment hierarchy [55]. Here we

only determine an approximate solution. Since the single synaptic

amplitudes Jki are small, we linearize the effect of a single synaptic

input. We apply the linearization to the two terms of the form

SFk(n)dnlT on the right hand side of (3). In the recurrent network,

the activity of each neuron in the vector n may be correlated to the

activity of any other neuron ni. Therefore, the input hk sensed by

neuron k not only depends on nl directly, but also indirectly

through the correlations of nl with any of the other neurons ni that

project to neuron k. We need to take this dependence into account

in the linearization. Considering the effect of one particular input

ni explicitly one gets

SFk(n)dnlT~SH(hk{h)dnlT

~SH(hk\ni
zJki{h)nidnlzH(hk\ni

{h) (1{ni)dnlT

~S(H(hk\ni
zJki{h){H(hk\ni

{h))nidnlTz

SH(hk\ni
{h)dnlT:

The first term S(H(hk\ni
zJki{h){H(hk\ni

{h))nidnlT already

contains two factors ni and dnl , so it takes into account second

order moments. Performing the expansion for the next input

would yield terms corresponding to correlations of higher order,

which are neglected here. This amounts to the assumption that the

remaining fluctuations in hk\ni
are independent of ni and nl , and

we again approximate them by a Gaussian random variable

x*N (mk,sk) with mean mk~ShkT and variance s2
k~Sdh2

kT, so

S(H(xzJki{h){H(x{h))TxSnidnlTn^S(mk,sk)Jki SnidnlTnz

O(J2
ki). Here we used the smallness of the synaptic weight Jki

and replaced the difference by the derivative S(mk,sk)~
LSH(xzJ)Tx*N (mk ,sk)

LJ

����
J~0

, which has the form of a susceptibil-

ity. Using the explicit expression for the Gaussian integral (7), the

susceptibility is exactly

S(mk,sk)~
1ffiffiffiffiffiffi

2p
p

sk

e
{

(mk{h)2

2s2
k : ð8Þ

The same expansion holds for the remaining inputs to cell k. With

SnidnlT~
ai for i ~l

cil for i =l

�
, the equation for the pairwise correla-

tions (3) in linear approximation takes the form

2ckl~S(mk,sk)
X

j

JkjcjlzJklal

 !
z

S(ml ,sl)
X

j

JljcjkzJlkak

 !
,

ð9Þ

corresponding to eq. (6.8) in [35] and eqs. (31)–(33) in [24,

supplement]. Note, however, that the linearization used in [35]

relies on the smoothness of the gain function due to additional

local noise, whereas here and in [24, supplement] a Heaviside gain

function is used and only the existence of noise generated by the

Correlation Structure Is Intrinsic
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network itself justifies the linearization. If the input to each neuron

is homogeneous, i.e. mk~ma and sk~sa for all neurons k in

population a, a structurally similar equation connects the

correlations cab~
1

NaNb

X
k[a,l[b,k=l

ckl averaged over disjoint

pairs of neurons belonging to two (possibly identical) populations

a, b with the population averaged variances aa~
1

Na

X
k[a

ak

2cab~
X

c[fE,I ,Xg
wacccbzwbccca

� 	
zwab

ab

Nb
zwba

aa

Na

with wab~S(ma,sa)Jab Kab:

ð10Þ

In deriving the last expression, we replaced variances of individual

neurons and correlations between individual pairs by their

respective population averages and counted the number of

connections. This equation corresponds to eqs. (9.14)–(9.16) in

[35] (which lack, however, the external population X , and note the

typo in the first term in line 2 of eq. (9.16), which should read

{
1

2
�JJEI CII (0)) and eqs. (36) in [24, supplement]. Written in

matrix form (10) takes the form (24) stated in the results sections of

the present article, where we defined

A~

2{2wEE {2wEI 0

{wIE 2{ wEEzwIIð Þ {wEI

0 {2wIE 2{2wII

0
BB@

1
CCA

B~

2wEE 0

wIE wEI

0 2wII

0
BB@

1
CCA C~

2wEX 0

wIX wEX

0 2wIX

0
BB@

1
CCA

D~
2{wEE {wEI

{wIE 2{wII

 !
E~

wEX

wIX

 !
:

ð11Þ

The explicit solution of the system of equations in the second line

of (24) is

cXE

cXI

 !
~

1

(2{wEE)(2{wII ){wEI wIE

(2{wII )wEX zwEI wIX

(2{wEE)wIX zwIEwEX

 !
aX

NX

:

ð12Þ

Mean-field theory including finite-size correlations
The mean-field solution presented in ‘‘Mean-field solution’’

assumes that correlations among the neurons in the network are

negligible. This assumption enters the expression (6) for the variance

of the input to a neuron. Having determined the actual magnitude

of the correlations in (24), we are now able to state a more accurate

approximation in which we take these correlations into account,

modifying the expression for the variance of the field ha

s2
a~

X
b[fE,I ,Xg

KabJ2
abmb(1{mb)z

X
b,c[fE,I ,Xg

(KJ)ab(KJ)accbc

with (KJ)ab:KabJab:

ð13Þ

This correction suggests an iterative scheme: Initially we solve the

mean-field equation (7) assuming cab~0 (hence sa given by (6)). In

each step of the iteration we then calculate the correlations by (24),

compute the mean-field solution of (7) and the susceptibility

S(ma,sa) (8), taking into account the correlations (13) determined

in the previous step. These steps are iterated until the solution

(ma,cab Va,b) converges. We use this approach to determine the

correlation structure in Figure 3, where we iterated until the solution

became invariant up to a residual absolute difference of 10{15. A

comparison of the distribution of the total synaptic input hE at the

end of the iteration with a Gaussian distribution with parameters mE

and sE is shown in Figure 3D.

Influence of inhomogeneity of in-degrees
In the previous sections we assumed the number of incoming

connections to be the same for all neurons. Studying a random

network in its original Erdös-Rényi [63] sense, the number of

synaptic inputs Kib to a neuron i[a from population b is a

binomially distributed random number. As a consequence, the

time-averaged activity differs among neurons. Since each neuron

i[a samples a random subset of inputs from a given population b,

we can assume that the realization of Kib is independent of the

realization of the time-averaged activity of the inputs from

population b. So these two contributions to the variability of the

mean input dm2
a add up. The number of incoming connections to a

neuron in population i[a follows a binomial distribution

Kib*B(Nb,p),

where p is the connection probability and Nb the size of the

sending population. The mean value is as before Kab~

½ 1
Na

P
i[a Kib�~pNb, where we denote the expectation value with

respect to the realization of the connectivity as ½�. The variance of the

in-degree is hence

dK2
ab~

1

Na

X
i[a

Kib{Kab

� 	2

" #
~Nbp(1{p)~Kab(1{p):

In the following we adapt the results from [54,24] to the present

notation. The contribution of the variability of the number of

synapses to the variance of the mean input is
P

b J2
abdK2

abm2
b. The

contribution from the distribution of the mean activities can be

expressed by the variance of the mean activity defined as

dm2
a:

1

Na

X
i[a

m2
i

" #
{m2

a

:qa{m2
a:

The Kab independently drawn inputs hence contributeP
b J2

abKabdm2
b, as the variances of the Kab terms add up. So

together we have [54, eq. 5.5–5.6]

dm2
a~

X
b

J2
ab(dK2

abm2
bzKabdm2

b):

Using Kab~Nbp we obtain

dm2
a~

X
b

J2
ab dK2

abmb
2zKabdm2

b


 �

~
X

b

J2
abKab (1{p)m2

bzqb{m2
b


 �

~
X

b

J2
abKab qb{pm2

b


 �
:

ð14Þ
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The latter expression differs from [54, eq. 5.7] only in the term

{pm2
b that is absent in the work of van Vreeswijk and Sompolinsky,

because they assumed the number of synapses to be Poisson

distributed in the limit of sparse connectivity [54, Appendix, (A.6)]

(also note that their Jkl corresponds to our
ffiffiffiffiffiffiffiffi
Kab

p
Jab). The

expression (14) is identical to [24, supplement, eq. (25)].

Since the variance of a binary signal with time-averaged activity

mi is mi(1{mi), the population-averaged variance is hence

aa~
1

Na

X
i[a

½mi(1{mi)�~ma{qa: ð15Þ

So the sum of Kab such (uncorrelated) signals contributes to the

fluctuation of the input as

s2
a~½dh2

a�~
X

b

J2
abKab(mb{qa): ð16Þ

The contribution due to the variability of the number of synapses

dK2
ab can be neglected in the limit of large networks [24]. With the

time-averaged activity of a single cell with mean input mi and

variance s2
i given by (7) mi~W(mi,si) the distribution of activity in

the population is

p(m)~

ð?
{?

d(m{W(x,sa))N (ma,dm2
a,x)dx

~ W
0
 �{1

(W{1(m))N (ma,dm2
a,W{1(m)):

ð17Þ

The mean activity of the whole population is

ma~

ð?
{?
N (ma,dm2

a,y)W(y,s2
a)dy

~

ð?
{?
N (ma,dm2

a,y)

ð?
h

N (y,s2
a,x)dxdy

~

ð?
h

ð?
{?
N (ma,dm2

a,y)N (y,s2
a,x)dydx

~W(ma,s2
azdm2

a),

ð18Þ

Figure 3. Correlations in a network of three populations as illustrated in Figure 2 in dependence of the size Nx of the external

population. Each neuron in population a[fE,Ig receives pN randomly drawn excitatory inputs with weight JaE~
5ffiffiffiffiffi
N
p , pN randomly drawn

inhibitory inputs of weight JaI~{
10ffiffiffiffiffi
N
p and pN external inputs of weight JaX ~

5ffiffiffiffiffi
N
p (homogeneous random network with fixed in-degree,

connection probability p~0:2). A Correlations averaged over pairs of neurons within the local network (22). Dots indicate results of direct simulation

over T~30s averaged over (N=2)2 pairs of neurons. Curves show the analytical result (24). The point ‘‘DC’’ shows the correlation structure emerging
if the drive from the external population is replaced by a constant value KJaX mX , which provides the same mean input as the original external drive.
B Correlations between neurons within the local network and the external population averaged over pairs of neurons (same labeling as in A).
C Correlation between the inputs to a pair of cells in the network decomposed into the contributions due to shared inputs cshared (gray, eq. 25) and
due to correlations ccorr in the presynaptic activity (light gray, eq. 26). Dashed curves and St. Andrew’s Crosses show the contribution due to external
inputs, solid curves and dots show the contribution from local inputs. The sum of all components is shown by black dots and curve. Curves are
theoretical results based on (24), (25), and (26), symbols are obtained from simulation. D Probability distribution of the fluctuating input hE to a single
neuron in the excitatory population. Dots show the histogram obtained from simulation binned over the interval ½min(hE),max(hE )� with a bin size of
{2JaI . The gray curve is the prediction of a Gaussian distribution obtained from mean-field theory neglecting correlations, with mean and variance
given by (4) and (6), respectively. The black curve takes correlations in the afferent signals into account and has a variance given by (13). Other
parameters: simulation resolution Dt~0:1 ms, synaptic delay d~Dt, activity measurement in intervals of 1 ms. Threshold of the neurons h~1, time
constant of inter-update intervals t~10 ms. The average activity in the network is mE^mI^mX ~0:5.
doi:10.1371/journal.pcbi.1003428.g003
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because the penultimate line is a convolution of two Gaussian

distributions, so the means and variances add up. The second

moment of the population activity is

qa~

ð?
{?
N (ma,dm2

a,x)W2(x,s2
a)dx: ð19Þ

These expressions are identical to [24, supplement, eqs. (26),

(27)]. The system of equations (4), (14), (16), (18), and (19) can

be solved self-consistently. We use the algorithm hybrd and

hybrj of the MINPACK package, implemented in scipy (version

0.9.0) [62] as the function scipy:optimize:fsolve. This yields the

self-consistent solutions for ma and qa and hence the distribu-

tion of time averaged activity (17) can be obtained, shown in

Figure 4F.

Results

Our aim is to investigate the effect of recurrence and external

input on the magnitude and structure of cross-correlations

between the activities in a recurrent random network, as defined

in ‘‘Networks of binary neurons’’. We employ the established

recurrent neuronal network model of binary neurons in the

balanced regime [42]. The binary dynamics has the advantage to

be more easily amendable to analytical treatment than spiking

dynamics and a method to calculate the pairwise correlations

exists [35]. The choice of binary dynamics moreover renders our

results directly comparable to the recent findings on decorrelation

in such networks [24]. Our model consists of three populations of

neurons, one excitatory and one inhibitory population which

together represent the local network, and an external population

providing additional excitatory drive to the local network, as

illustrated in Figure 2. The external population may either be

conceived as representing input into the local circuit from remote

areas or as representing sensory input. The external population

contains NX neurons, which are pairwise uncorrelated and have a

stochastic activity with mean mX . Each neuron in population

a[fE,Ig within the local network draws K~pN connections

randomly from the finite pool of NX external neurons. NX

therefore determines the number of shared afferents received by

each pair of cells from the external population with on average

K2=NX common synapses. In the extreme cases NX ~K all

neurons receive exactly the same input, whereas for large NX??
the fraction of shared external input approaches 0. The common

fluctuating input received from the finite-sized external population

hence provides a signal imposing pairwise correlations, the amount

of which is controlled by the parameter NX .

Correlations are driven by intrinsic and external
fluctuations

To explain the correlation structure observed in a network with

external inputs (Figure 2), we extend the existing theory of pairwise

correlations [35] to include the effect of externally imposed

correlations. The global behavior of the network can be studied

with the help of the mean-field equation (7) for the population-

averaged mean activity ma~N{1
a

P
i[a SniT

ma~
1

2
erfc

h{maffiffiffi
2
p

sa

� �
~W(ma,sa), ð20Þ

where the fluctuations of the input ha to a neuron in population a
are to good approximation Gaussian with the moments

ma~ShaT~
X

b

KabJabmb ð21Þ

s2
a~Sdh2

aT~
X

b

KabJ2
abmb(1{mb):

To determine the average activities in the network, the mean-field

equation (20) needs to be solved self-consistently, as the right-hand

side depends on the mean activities ma through (21), as explained in

‘‘Mean-field theory including finite-size correlations’’.
Here Kab denotes the number of connections from population b to

a, and Jab their average synaptic amplitude. Once the mean activity

in the network has been found, we can determine the structure of

correlations. For simplicity we focus on the zero time lag correlation,

cij~Sdni(t)dnj(t)Tt, where dni(t)~ni(t){SniTt is the deflection of

neuron i’s activity from baseline and ai~Sdn2
i (t)Tt~

SniTt(1{SniTt) is the variance of neuron i’s activity. Starting from

the master equation for the network of binary neurons, in

‘‘Methods’’ for completeness and consistency in notation we re-

derive the self-consistent equation that connects the cross covariances

cab averaged over pairs of neurons from population a and b and the

variances aa averaged over neurons from population a

cab~
1

NaNb

X
k[a,l[b,k=l

ckl ð22Þ

aa~
1

Na

X
k[a

ak:

The obtained inhomogeneous system of linear equations (24) reads

[35]

2cab~
1

Nb
wababz

X
c[fE,I ,xg

wacccbztranspose(a<b): ð23Þ

Here wab~S(ma,sa)Kab Jab measures the effective linearized

coupling strength from population b to population a. It depends

on the number of connections Kab from population b to a, their

average synaptic amplitude Jab and the susceptibility Sa of neurons

in population a. The susceptibility S(ma,sa) given by (8) quantifies

the influence of fluctuation in the input to a neuron in population a
on the output. S depends on the working point (ma,sa) of the

neurons in population a. The autocorrelations aE , aI and aX are

the inhomogeneity in the system of equations, so they drive the

correlations, as pointed out earlier [35]. This is in line with the

linear theories [17,30] for leaky integrate-and-fire model neurons,

where cross-correlations are proportional to the auto-correlations;

the system of equations (23) is identical to [35, eqs. (9.14)–(9.16)].

Note that this description holds for finite-sized networks. With the

symmetry cEI~cIE , (23) can be written in matrix form as

A

cEE

cEI

cII

0
BB@

1
CCA~B

aE
NE

aI
NI

0
@

1
AzC

cEX

cIX

 !

D
cEX

cIX

 !
~E

aX

NX

:

ð24Þ
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The explicit forms of the matrices A, . . . ,E are given in (11). This

system of linear equations can be solved by elementary methods.

From the structure of the equations it follows, that the correlations

between the external input and the activity in the network, cEX and

cIX , are independent of the other correlations in the network. They

are solely determined by the solution of the system of equations in the

second line of (24), driven by the fluctuations of the external drive

aX=NX . The correlations among the neurons within the network are

given by the solution of the first system in (24). They are hence driven

by two terms, the fluctuations of the neurons within the network

proportional to aE=NE and aI=NI and the correlations between the

external population and the neurons in the network, cEX and cIX .

The second line of (24) shows that all correlations depend on the

size NX of the external population. Since the number K~pN of

randomly drawn afferents per neuron from this population is

constant, the mean number of shared inputs to a pair of neurons

Figure 4. Activity in a network of 3N~3|8192 binary neurons as described in [24, their Fig. 2], with JEE~5=
ffiffiffiffiffi
N
p

, JEI~{10=
ffiffiffiffiffi
N
p

,

JIE~5=
ffiffiffiffiffi
N
p

, JII ~{9=
ffiffiffiffiffi
N
p

, JEX ~5=
ffiffiffiffiffi
N
p

, JIX ~4=
ffiffiffiffiffi
N
p

. Number K of synaptic inputs binomially distributed as K*B(N,p), with connection
probability p~0:2. A Population averaged activity (black E, gray I , light gray X ). Analytical prediction (5) for the mean activities mE~mI (dashed
horizontal line) and numerical solution of mean field equation (7) (solid horizontal line). B Cross correlation between excitatory neurons (black curve),
between inhibitory neurons (gray curve), and between excitatory and inhibitory neurons (light gray curve) obtained from simulation. St. Andrew’s
Crosses show the theoretical prediction from [24, supplement, eqs. 38,39] (prediction yields cEE^cII^{2 10{7 , so only one cross is visible). Dots
show the theoretical prediction (24). The plus symbol shows the prediction for the correlation cEI when terms proportional to aE and aI are set to
zero. C Correlation between the input currents to a pair of excitatory neurons. Contribution due to pairwise correlations ccorr,E (black curve) and due
to shared input cshared,E (gray curve). Symbols show the theoretical predictions based on [24] (crosses) and based on (24) (dots). D Similar to B, but
showing the correlations between external neurons and neurons in the excitatory and inhibitory population. E Fluctuating input hE averaged over
the excitatory population (black), separated into contributions from excitatory synapses hEE (gray) and from inhibitory synapses hEI (light gray).
F Distribution of time averaged activity obtained by direct simulation (symbols) and analytical prediction (17) using the numerically evaluated self-
consistent solution for the first mE^mI^0:11 and second moments qE^0:019, qI^0:018 (19). Duration of simulation T~100s, mean activity
mX ~0:1, other parameters as in Figure 3.
doi:10.1371/journal.pcbi.1003428.g004
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is K2=NX . In the extreme case NX ~K on the left of Figure 3 all

neurons receive exactly identical input. If the recurrent

connectivity would be absent, we would hence have perfectly

correlated activity within the local network, the covariance

between two neurons would be equal to their variance

aa~ma(1{ma), in this particular network aa^0:25. Figure 3A

shows that the covariance in the recurrent network is much

smaller; on the order of 10{4. The reason is the recently

reported mechanism of decorrelation [24], explained by the

negative feedback in inhibition-dominated networks [17].

Increasing the size of the external population decreases the

amount of shared input, as shown in Figure 3C. In the limit

where the external drive is replaced by a constant value

(visualized as point ‘‘DC’’), the external drive does consequently

not contribute to correlations in the network. Figure 3A shows

that the relative position of the three curves does not change with

NX . The overall offset, however, changes. This can be

understood by inspecting the analytical result (24): The solution

of this system of linear equations is a superposition of two

contributions. One is due to the externally imposed fluctuations,

proportional to aX=NX , the other is due to fluctuations

generated within the local network, proportional to aE=NE and

aI=NI . Varying the size of the external population only changes

the external contribution, causing the variation in the offset,

while the internal contribution, causing the splitting between the

three curves, remains constant. In the extreme case aX ~0
(DC input), we still observe a similar structure. The slightly

larger splitting is due to the reduced variance s2
a in the single neuron

input, which consequently increases the susceptibility Sa (8).

Figure 3D shows the probability distribution of the input ha to a

neuron in population a~E. The histogram is well approximated

by a Gaussian. The first two moments of this Gaussian are ma and

s2
a given by (21), if correlations among the afferents are neglected.

This approximation deviates from the result of direct simulation.

Taking the correlations among the afferents into account affects

the variance in the input according to (13). The latter approxi-

mation is a better estimate of the input statistics, as shown in

Figure 3D. This improved estimate can be accounted for in the

solution of the mean-field equation (20), which in turn affects the

correlations via the susceptibility Sa. Iterating this procedure until

convergence, as explained in ‘‘Mean-field theory including
finite-size correlations’’, yields the semi-analytical results

presented in Figure 3.

Cancellation of input correlations
For strongly coupled networks in the limit of large network size,

previous work [24,52] derived a balance equation for the

correlations between pairs of neurons. The expressions for the

correlations are approximate at finite network size and become

exact for infinitely large networks. The authors show that the

resulting structure of correlations amounts to a suppression of the

correlations between the input currents to a pair of cells and that

the population-averaged activity closely follows the fluctuations

imposed by the external drive, known as fast tracking [42]. Here

we revisit these three observations - the correlation structure, the

input correlation, and fast tracking - from a different view point,

providing an explanation based on the suppression of population

rate fluctuations by negative feedback [17].

Figure 4A shows the population activities in a network of three

populations for fixed numbers of neurons Nx~NE~NI~N and

otherwise identical parameters as in [24, their Fig. 2]. Moreover,

we distributed the number of incoming connections K per neuron

according to a binomial distribution as in the original publication.

The deflections of the excitatory and the inhibitory population

partly resemble those of the external drive to the network, but

partly the fluctuations are independent. Our theoretical result for

the correlation structure (24) is in line with this observation: the

fluctuations in the network are not only driven by external input

(proportional to aX ), but also by the fluctuations generated within

the local populations (proportional to aE and aI ), so the tracking

cannot be perfect in finite-sized networks.

We now consider the fluctuations in the input averaged over all

neurons i belonging to a particular population a, ha~
1

Na

X
i[a

hi.

We can decompose the input ha to the population a into

contributions from excitatory (local and external) and from inhibitory

cells, haE~(KJ)aEnEz(KJ)aX nX and haI~(KJ)aI nI , respectively,

where we used the short hand (KJ)ab~KabJab. As shown in

Figure 4E, the contributions of excitation and inhibition cancel each

other so that the total input fluctuates close to the threshold (h~1) of

the neurons: the network is in the balanced state [42]. Moreover, this

cancellation not only holds for the mean value, but also for fast

fluctuations, which are consequently reduced in the sum ha compared

to the individual components haE and haI (Figure 4E).

We next show that this suppression of fluctuations directly

implies a relation for the correlation SdhidhjT between the inputs

to a pair (i,j) of individual neurons. There are two distinct

contributions to this correlation SdhidhjT~cshared,azccorr,a, one

due to common inputs shared by the pair of neurons (both neurons

i,j assumed to belong to population a)

cshared,a~
X

b[fE,I ,Xg
(KJ)2

ab

ab

Nb
ð25Þ

and one due to the correlations between afferents

ccorr,a~
X

b,c[fE,I ,Xg
(KJ)ab(KJ)accbc: ð26Þ

Figure 4C shows these two contributions to be of opposite sign but

approximately same magnitude, as already shown in [24,

supplement] and in [17]. Figure 3C shows a further decomposition

of the input correlation into contributions due to the external

sources and due to connections from within the local network. The

sum of all components is much smaller than each individual

component. This cancellation is equivalent to small fluctuations in

the population-averaged input Sdh2
aT^0, because

0^Sdh2
aT ~S X

b[fE,I ,Xg
(KJ)abdnb

0
@

1
A2

T
~

X
b,c[fE,I ,Xg

(KJ)ab(KJ)acSdnbdncT

~
X

b[fE,I ,Xg
(KJ)2

ab

ab

Nb
z

X
b,c[fE,I ,Xg

(KJ)ab(KJ)ac cbc

~cshared, azccorr, a,

ð27Þ

where in the second step we used the general relation between the

covariance SdnbdncT among two population averaged signals nb

and nc, the population-averaged variance ab, and the pairwise
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averaged covariances cbc, which reads [17, cf. eq. (1)]

SdnbdncT~S 1

NbNc

X
i[b,j[c

dnidnjT

~dbc
1

N2
b

X
i[b

Sdn2
i Tz

1

NbNc

X
i[b,j[c,i=j

SdnidnjT

~dbc
1

Nb
abzcbc:

ð28Þ

We have therefore shown that the cancellation of the contribution

of shared input cshared,a with the contribution due to the

correlations among cells ccorr, a is equivalent to a suppression of

the fluctuations in the population-averaged input signal to the

population a.

This suppression of fluctuations in the population-averaged

input is a consequence of the overall negative feedback in these

networks [17]: a fluctuation dha of the population averaged input

ha causes a response in network activity which is coupled back with

a negative sign, counteracting its own cause and hence suppressing

the fluctuation dha. Expression (27) is an algebraic identity

showing that hence also correlations between the total inputs to a

pair of cells must be suppressed. Qualitatively this property can be

understood by inspecting the mean-field equation (7) for the

population-averaged activities, where we linearized the gain

function W around the stationary mean-field solution to obtain

t
d

dt

dnE

dnI

 !
{

dnE

dnI

 !
~

wEE wEI

wIE wII

 !
dnE

dnI

 !
znoise

with wab~S(ma,sa)(KJ)ab

and S(ma,sa)~
LW(ma,sa)

Lma

:

ð29Þ

Here the noise term qualitatively describes the fluctuations caused

by the stochastic update process and the external drive (see [53] for

the appropriate treatment of the noise). After transformation into

the coordinate system of eigenvectors ui (with eigenvalue li) of the

effective connectivity matrix W, each component fulfills the

differential equation

t
d

dt
dui(t)zdui(t)~lidui(t)zprojection of noise on direction ui:

For stability the eigenvalues must satisfy <(li)v1. In the example

of the E{I network shown in Figure 4 we have the two

eigenvalues

l1,2~eig fwabg
� 	

~
wEEzwII

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wEE{wII

2


 �2

zwEI wIE

r
,

ð30Þ

which in the case of identical susceptibility S for all populations

can be expressed in terms of the synaptic weights

l1,2

S(m,s)K
~

JEEzJII

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JEE{JII

2

� �2

zJEI JIE

s

~
1ffiffiffiffiffi
N
p ({2+i),

ð31Þ

where in the second line we inserted the numerical values of

Figure 4. The fluctuations du1,2 are hence suppressed so the

contributions dh1,2~Wdu1,2 to the fluctuations on the input side are

small. This explains why fluctuations of dha are small in networks

stabilized by negative feedback. This argument also shows why the

suppression of input-correlations does not rely on a balance between

excitation and inhibition; it is as well observed in purely inhibitory

networks of leaky integrate-and-fire neurons [17, cf. text following

eq. (21) therein] and of binary neurons [52, eq. (30)], where the

overall negative feedback suppresses population fluctuations dha in

exactly the same manner, as the only appearing eigenvalue in this

case is negative. Figure 5 shows the correlations in a purely inhibitory

network without any external fluctuating drive. In this network the

neurons are autonomously active due to a negative threshold h,

which, by the cancellation argument ShT^h, was chosen to obtain a

mean activity of about 0:1. Pairwise correlations in the finite-sized

network follow from (23) to be negative,

c~
w

1{w

a

N
v0 ð32Þ

and approach c~{
a

N
in the limit of strong coupling, as also shown

in [52, eq. 30]. The contributions to the input correlation follow

from (25) and (26) as

ccorr~(K J)2c~(K J)2 w

1{w

a

N

cshared~(K J)2 a

N
,

ð33Þ

so that for strong negative feedback DwD&1 the contribution due to

correlations approaches ccorr?{(K J)2 a

N
~{cshared. In this limit

the two contributions cancel each other as in the inhibition-

dominated network with excitation and inhibition. Note, however,

that the presence of externally imposed fluctuations is not required

for the mechanism of cancellation by negative feedback. The

negative feedback suppresses also purely network generated

fluctuations. For finite coupling we have DcsharedDwDccorrD, so the

total currents are always positively correlated.

An interesting special case is a network with homogeneous

connectivity, as studied in ‘‘Correlations are driven by
intrinsic and external fluctuations’’, where JEE~JIE~J
and JII~JEI~{gJ, shown in Figure 6. In this symmetric case

there is only one negative eigenvalue l2~S K J(1{g)v0. The

other eigenvalue is l1~0, so fluctuations are only mildly

suppressed in direction du1. However, on the input side of the

neurons, these fluctuations are not seen, since their contribution to

the input field is by the vanishing eigenvalue dh1~Wdu1~0.

Another consequence of the vanishing eigenvalue is that the

system can freely fluctuate along the eigendirection du1. Conse-

quently the tracking of the external signal is much weaker in this

case, as evidenced in Figure 6A.

It is easy to see that the cancellation condition (27) does not

uniquely determine the structure of correlations in an E{I
network, i.e. the structure of correlations in a finite network is not

uniquely determined by SdhT~0. This is shown in Figure 4B,

illustrating as an example the correlation structure predicted in the

limit of infinite network size and perfect tracking [24, supplement,

eqs. 38–39], which fulfills SdhT~0 exactly, because this correla-

tion structure can alternatively be derived starting from the

condition for perfect tracking SdhT~0. The predicted structure

does not coincide with the results obtained by direct simulation of

the finite network. By construction and by virtue of (27) this

Correlation Structure Is Intrinsic
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correlation structure, however, still fulfills the cancellation

condition on the input side, as visualized in Figure 4C. We show

in ‘‘Limit of infinite network size’’ below that the deviations

from direct simulation are due to the theory being strictly valid

only in the limit of infinite network size, neglecting the

contribution of fluctuations of the local populations (E,I ), as they

appear in (24). Formally this is apparent from [24, eq. (2)] and [24,

supplement eq. (40–41)], stating that the solution for correlations is

equivalent to the network fluctuations predominantly caused by

the external input, also reflected in the expression cEI!aX [24,

supplement eq. (38–39)]. This can be demonstrated explicitly by

setting aE~0 and aI~0 in (24), resulting in a similar prediction

for cEI , as shown in Figure 4B (plus symbol). The remaining

deviation between the theories is due to the different susceptibil-

ities S used by the two approaches. The full theory (24) predicts

the correct correlation structure independent of the connectivity

matrix. In summary, the cancellation condition imposes a

constraint on the structure of correlations but is not sufficient as

a unique determinant.

The distribution of the in-degree in Figure 4 is an additional

source of variability compared to the case of fixed in-degree. It

causes a distribution of the mean activity of the neurons in the

network, as shown in Figure 4F. The shape of the distribution

can be assessed analytically by self-consistently solving a system

of equations for the first ma (18) and second moment qa (19) of

the rate distribution [54], as described in ‘‘Influence of
inhomogeneity of in-degrees’’. The resulting second

moments qE^0:0185 (0:0175 by simulation) and qI^0:0184
(0:0180 by simulation) are small compared to the mean activity

mE^mI^0:11%1. For the prediction of the covariances shown

in Figure 4B–D we employed the semi-analytical self-consistent

solution to determine the variances aa~ma{qa. The difference

to the approximate value aa^ma(1{ma)wma{qa is, however,

small for low mean activity.

Limit of infinite network size
To relate the finite-size correlations presented in the previous

sections to earlier studies on the dominant contribution to

correlations in the limit of infinitely large networks [24], we here

take the limit N??. For non-homogeneous connectivity, we

recover the earlier result [24] in ‘‘Inhomogeneous connectiv-
ity’’. In ‘‘Homogeneous connectivity’’ we show that the

correlations converge to a different limit than what would be

expected from the idea of fast tracking.

Starting from (10) we follow [24, supplement] and introduce the

covariances between population-averaged activities as

rab~cabzdab
aa

Na
, which leads to

Figure 5. Suppression of correlations by purely inhibitory feedback in absence of external fluctuations. Activity in a network of

N~1000 binary inhibitory neurons with synaptic amplitudes J~{
8ffiffiffiffiffi
N
p . Each neuron receives K~pN randomly drawn inputs (fixed in-degree) with

p~0:1. A Population averaged activity. Numerical solution of mean field equation (7) (solid horizontal line). B Cross covariance between inhibitory

neurons. Theoretical result (32) shown as dot. St. Andrew’s Cross indicates the leading order term c~{
a

N
. C Correlation between the input currents

to a pair of excitatory neurons. The black curve is the contribution due to pairwise correlations ccorr, the gray curve is the contribution of shared input
cshared. The dot symbols show the theoretical expectations (33) based on the leading order (crosses) and based on the full solution (32) (dot).

Threshold of neurons h~
1

10
pNJz

1

2
J .

doi:10.1371/journal.pcbi.1003428.g005
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2(rab{dab
aa

Na
)~

X
c[fE,I ,Xg

wacrcbzwbcrca

� 	

X
c[fE,I ,Xg

(dac{wac)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
:mac

rcbz (dbc{wbc)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
:mbc

rca

0
BB@

1
CCA

~2dab
aa

Na

MRz(MR)T~2diag(faa

Na
g):

ð34Þ

The general solution of the continuous Lyapunov equation

stated in the last line can be obtained by projecting onto the set

of left-sided eigenvectors of M (see e.g. [35] eq. 6.14).

Alternatively the system of linear equations (34) may be written

explicitly as

2{2wEE {2wEI 0

{wIE 2{ wEEzwIIð Þ {wEI

0 {2wIE 2{2wII

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
: ~MM

rEE

rEI

rII

0
BB@

1
CCA~

2wEX 0

wIX wEX

0 2wIX

0
BB@

1
CCA rEX

rIX

 !
z2

aE
NE

0

aI
NI

0
BBB@

1
CCCA

2{wEE {wEI

wIE 2{wII

 !
rEX

rIX

 !
~

wEX

wIX

 !
aX

NX

:

ð35Þ

The solution of the latter equation is given by (12), so raX!
aX

NX

.

We observe that the right hand side of the first line in (35) contains

again two source terms, those corresponding to fluctuations

caused by the external drive (proportional to raX!
aX

NX

) and those

due to fluctuations generated within the network (proportional to aE

or aI ). This motivates our definition of the two contributions rext:
ab and

rint:
ab as

~MM

rext:
EE

rext:
EI

rext:
II

0
B@

1
CA~

2wEX 0

wIX wEX

0 2wIX

0
B@

1
CA rEX

rIX

� �
ð36Þ

~MM

rint:
EE

rint:
EI

rint:
II

0
B@

1
CA~2

aE
NE

0
aI
NI

0
BB@

1
CCA, ð37Þ

which allows us to write the full solution of (35) as rab~rext:
ab zrint:

ab .

We use the superscripts ext: and int: to distinguish the driving

sources of the fluctuations coming from outside the network (ext:
driven by aX ) and coming from within the network (int: driven by aE

and aI ).

Inhomogeneous connectivity. In the following we

assume inhomogeneous connectivity, meaning that the synaptic

amplitudes not only depend on the type of the sending neuron but

also on the receiving neuron, such that the matrix fJabg is

invertible. In the limit of large networks with DwabD&1 the solution

(12) can be approximated as

cEX

cIX

� �
~

rEX

rIX

� �
^

wEE wEI

wIE wII

� �{1
wEX

wIX

� �
aX

NX

:
AE

AI

� �
ax

Nx

,

where the definitions of AE and AI correspond to the ones of [24]

if the susceptibility S is the same for all populations. Solving the

first system of equations (36) leads to

rext:
ab ^AaAb

aX

NX

,

where we again assumed that DwabD&1 and therefore neglected the

2 in the sums on the diagonal of the matrix ~MM (35). Hence the

covariance due to rext:
ab is

cext:
ab ~rext:

cb {dab
aa

Na

^AaAb
aX

NX

{dab
aa

Na
!N{1:

ð38Þ

The latter equation is the solution given in [24, supplement, eqs.

(38)–(39)]. The form of the equation shows that this contribution

is due to fluctuations of the population activity driven by the

external input, exhibited by the factor aX driving rext:
ab , where the

intrinsic contribution of the single cell autocorrelations is

subtracted. The quantities AE and AI contain the effect of the

recurrence on these externally applied fluctuations and are

independent of network size, so cext: decays with N{1 as shown in

Figure 7A (dashed curve).

The second contribution rint: given by the solution of (37) is

driven by the intrinsically generated fluctuations. As the network

tends to infinity, this contribution vanishes faster than rext:,

because the coupling matrix grows as ~MM!w!
ffiffiffiffiffi
N
p

. So the term

rint: is a correction to (38) of the order N{3
2. This faster decay can

be observed at large network sizes in Figure 7A (dotted curve). For

finite networks of natural size, however, this term determines the

structure of the correlations. Specifically, for the parameters

chosen in [24], the contribution rint: dominates in networks up to

about 107 neurons (Figure 7A).

Homogeneous connectivity. In the previous section we

showed that in agreement with [24] the leading order term !N{1

dominates the limit of infinitely large networks and yields

practically useful results for random networks of N *> 108 neurons.

In the following we will extend the theory to homogeneous

connectivity, where the synaptic weights only depend on the type

of the sending neuron, i.e. all JaE~JaX ~J and JaI~{gJ are the

same for all a. The matrix

J
1 {g

1 {g

� �
ð39Þ

is hence not invertible and the theory in ‘‘Inhomogeneous
connectivity’’ not directly applicable. Note that assuming fast

tracking in this situation, which for inhomogeneous connectivity

is a consequence of the correlation structure in the N?? limit

[24, eq. (2)], due to the degenerate rows of the connectivity here

yields
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mE(t)~mI (t)~AmX (t)

A~
1

g{1
:

ð40Þ

Here the assumption leads to a wrong result, if A is naively

inserted into equation (38) or equivalently into [24, supplement,

eqs. (38)–(39)]. In particular, for the given parameters g{1~1
and with homogeneous activity (and ax~aE~aI ) the cross

covariances caa are predicted to approximately vanish caa^0.

This failure could have been anticipated based on the observation

that the tracking does not hold in this case, as observed in

Figure 6A. We therefore need to extend the theory for the N??
limit of networks with homogeneous connectivity.

To this end we write out (24) explicitly for the homogeneous

network using aE~aI~a~(1{m)m. In (24) we observe that

cEX ~cIX and cEI~cIE~
1

2
(cEEzcII ) and introduce waE~w,

waI~{gw, NE~NI~N to obtain

Figure 6. Activity in a network of 3N~3|8192 binary neurons with synaptic amplitudes JaE~JaX ~5=
ffiffiffiffiffi
N
p

, JaI ~{10=
ffiffiffiffiffi
N
p

depending
exclusively on the type of the sending neuron (E or I). Each neuron receives K~pN randomly drawn inputs (fixed in-degree, p~0:2). A
Population averaged activity (black E, gray I , light gray X ). Analytical prediction (5) for the mean activities mE~mI (dashed horizontal line) and
numerical solution of mean field equation (7) (solid horizontal line). B Cross covariance between excitatory neurons (black), between inhibitory
neurons (gray), and between excitatory and inhibitory neurons (light gray). Theoretical results (24) shown as dots. St. Andrew’s Crosses indicate the
theoretical prediction of leading order in N{1 (43). C Correlation between the input currents to a pair of excitatory neurons. The black curve is the
contribution due to pairwise correlations ccorr, the gray curve is the contribution of shared input cshared. The symbols show the theoretical expectation
(25) and (26) based on (43) (crosses) and based on (24) (dots). D Similar to B, but showing the correlations between external neurons and neurons in
the excitatory and inhibitory population. Note that both theories yield cEX ~cIX , so for each theory ((43) crosses, (24) dots) only the symbol for cEX is
visible. E Contributions hEE (gray) due to excitatory synapses and hEI (light gray) due to inhibitory synapses to the input hE averaged over all
excitatory neurons. Duration of simulation T~100s, mean activity mX ~0:1, mE^mI^0:11, other parameters as in Figure 3.
doi:10.1371/journal.pcbi.1003428.g006
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2{w(1{g)ð ÞcEX ~w
aX

NX

cEX ~
1

2zw(g{1)
w

aX

NX

ð41Þ

2{w
2{g {g

1 1{2g

 !" #
cEE

cII

 !

~2
w

N
a

1

{g

 !
z2wcEX

1

1

 !

w~K J S(m,s):

ð42Þ

For sufficiently large networks, we can neglect a 2%w on the left

hand side of (41) to obtain

cEX ~cIX ~
1

g{1

aX

NX

and hence the second equation, again neglecting the 2%w on the

left hand side, leads to

cEE

cII

 !
~

c0
EE

c0
II

 !
z

c1
EE

c1
II

 !

c0
EE~c0

II^
1

g{1

aX

NX

c1
EE

c1
II

 !
^

1

(g{1)2

{1z2gzg2

1z2g{g2

 !
a

N
:

ð43Þ

This result shows explicitly the two contributions to the

correlations due to external fluctuations (c0) and due to intrinsic

fluctuations (c1), respectively. In contrast to the case of

inhomogeneous connectivity, both contributions decay as

N{1, so the external drive does not provide the leading

contribution even in the limit N??. Note also that we may

write this result in a similar form as for the inhomogeneous

connectivity, as

cext:
ab ^c0

ab{dab
aa

Na

~A
aX

NX

{dab
aa

Na

ð44Þ

rint:
ab ^c1

abzdab
aa

Na

rint:
EE

rint:
II

 !
~

2

(g{1)2

g2

1

 !
a

N
,

with A given by (40). Here, cext:!N{1 has the same form as the

solution [24, eqs. (38)–(39)] originating from external fluctuations,

but rint:!N{1 is still a contribution of same order of magnitude.

The susceptibility S has been eliminated from these expressions and

hence only structural parameters remain, analogous to the solution

[24, eqs. (38)–(39)]. The two contributions cext:~rext:{dab
aa

Na
and

rint: given by the non-approximate solution of (36) and (37),

respectively, are shown together with their sum and with results of

direct simulations in Figure 7B. For the given network parameters,

the contribution of intrinsic correlations dominates across all

network sizes, because cext:
aa ^0, as A~1, and all Na and aa are

approximately identical for a[fE,I ,Xg. The splitting between the

covariances of different types scales proportional to the absolute

Figure 7. Scaling the network size to infinity. Comparison of the solution of (24) (solid) to the contribution of the leading order in 1=N (dashed).
Gray coded are the different pairs of covariances, black (cEE ), mid gray (cII ), light gray (cEI ). A Network as in [24] with non-homogeneous synaptic

coupling as in Figure 4. The dashed curve is given by the leading order term cext:
ab ~rext:

ab {dab
aa

Na
!N{1 (38) and [24, eqs. (38)–(39)] driven by external

fluctuations, the dotted curve is the next order term rintr:!N{3
2 (37), driven by intrinsic fluctuations generated by the excitatory and inhibitory

population. The dashed curve is not shown for networks smaller than *106 neurons as it assumes negative values. Relative error of the theory with

respect to simulation at 100,000 neurons is 73 percent. The solid curve is the full solution of (24) cab~rext:
ab zrintr:

ab {dab
aa

Na
. The relative error at 100,000

neurons is 16 percent. Symbols show direct simulations. B Network with homogeneous connectivity, as in Figure 6. Same symbol code as in A. Both

contributions cext:
ab !N{1 (36) and rintr:!N{1 (37) show the same scaling (44). Note that for the parameters here cext:

aa ^0, so the only dashed curve

shown is cext:
EI . Symbols indicate the results of direct simulations; vertical lines are included to guide the eye.

doi:10.1371/journal.pcbi.1003428.g007
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value !N{1, so even at infinite network size the relative differences

between the covariances stay the same.

The underlying reason for the qualitatively different scaling

of the intrinsically generated correlations cint:!N{1 for

homogeneous connectivity compared to cint:!N{3
2 for inho-

mogeneous connectivity is related to the vanishing eigenvalue of

the effective connectivity matrix (39). The zero eigenvalue

belongs to the eigenvector (g,1)T , meaning excitation and

inhibition may freely fluctuate in this eigendirection without

sensing any negative feedback through the connectivity, as

reflected in the last line in (44). These fluctuations are driven

by the intrinsically generated noise of the stochastic update

process and hence contribute notably to the correlations in the

network.

In summary, the two examples ‘‘Inhomogeneous connec-
tivity’’ and ‘‘Homogeneous connectivity’’ are both inhibi-

tion-dominated (gw1) networks that exhibit small correlations

on the order
a

N
at finite size N. Only in the limit of infinitely

large networks with inhomogeneous connectivity is cext: the

dominant contribution that can be related to fast and perfect

tracking of the external drive. At finite network sizes, the

contribution cint: is generally not negligible and may be

dominant. Therefore fast tracking cannot be the explanation of

small correlations in these networks. Note that there is a

difference in the line of argument used in the main text of [24]

and its mathematical supplement: While the main text advocates

fast tracking as the underlying mechanism explaining small

correlations, in the mathematical supplement fast tracking is

found as a consequence of the theory of correlations in the limit

of infinite network size and under the stated prerequisites, in line

with the calculation presented above.

Influence of connectivity on the correlation structure
Comparing Figure 6B and Figure 4B, the structure of

correlations is obviously different. In Figure 6B, the structure is

cEEwcEIwcII , whereas in Figure 4B the relation is

cEI^cEEwcII . The only difference between these two networks

is in the coupling strengths JII and JIX . In the following we

derive a more complete picture of the determinants of the

correlation structure. In order to identify the parameters that

influence the fluctuations in these networks, it is instructive to

study the mean-field equation for the population-averaged

activities. Linearizing (20) for small deviations dna~na{ma of

the population-averaged activity na from the fixed point ma, for

large networks with NwKab&1 the dominant term is propor-

tional to the change of the mean dma~
P

b (JK)abdnb, because

the standard deviation dsa is only proportional to
ffiffiffiffiffiffiffiffi
Kab

p
. To

linear order we hence have a coupled set of two differential

equations (29). The dynamics of this coupled set of linear

differential equations is determined by the two eigenvalues of the

effective connectivity (30). Due to the presence of the leak term

on the left hand side of (29), the fixed point rate is stable only if

the real parts of the eigenvalues l1,2 are both smaller than 1. In

the network with identical input statistics for all neurons the

fluctuating input is characterized by the same mean and

variance (m,s2) for each neuron. For homogeneous neuron

parameters the susceptibility Sa~S is hence the same for both

populations a [ fE,Ig. If further the number of synaptic

afferents is the same Kab~K for all populations, the eigenvalues

can be expressed by those of the original connectivity matrix as

(31)

l1,2

S(m,s)K
~

JEEzJII

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JEE{JII

2

� �2

zJEI JIE

s

:c1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2zJEI JIE

q
,

where we defined the two parameters c1 and c2 which control

the location of the eigenvalues. In the left column of Figure 8 we

keep JEI , JIE , and c2 constant and vary

c1 [ ½{c2,{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2zJEI JIE

q
�, where we choose the maximum

value by the condition l1v0 and the minimum value by the

condition that JEE§0 and JIIƒ0, leading to c1zc2§0 and

c1{c2ƒ0, both fulfilled if {c2ƒc1ƒc2. Varying c2 in the right

column of Figure 8, the bounds are given by the same condition

that JEE§0 and JIIƒ0, so c2§0, and the condition for the

larger eigenvalue to stay below or equal 0, so

c2 [ ½0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1{JEI JIE

q
�. In order for the network to maintain

similar mean activity, we choose the threshold of the neurons

such that the cancellation condition 0~
P

b[fE,I ,Xg (KJ)abmb{h

is fulfilled for mb~0:1. The resulting average activity is close to

this desired value of 0:1 and agrees well to the analytical

prediction (20), as shown in Figure 8 A, B.

The right-most point in both columns of Figure 8 where one

eigenvalue vanishes l1~0, results in the same connectivity

structure. This is the case for the connectivity with the symmetry

JEE~JIE~J and JII~JEI~{gJ (cf. Figure 6), because in this

case the population averaged connectivity matrix has two linearly

dependent rows, hence a vanishing determinant and thus an

eigenvalue 0. As observed in Figure 8C,D at this point the absolute

magnitude of correlations is largest. This is intuitively clear as the

network has a degree of freedom in the direction of the eigenvector

v1~(g,1)T belonging to the vanishing eigenvalue l1~0. In this

direction the system effectively does not feel any negative feedback,

so the evolution is as if the connectivity would be absent.

Fluctuations in this direction are large and are only damped by

the exponential relaxation of the neuronal dynamics, given by the

left hand side of (29). The time constant of these fluctuations is then

solely determined by the time constant of the single neurons, as seen

in Figure 6B. From the coefficients of the eigenvector we can further

conclude that the fluctuations of the excitatory population are

stronger by a factor g than those of the inhibitory population,

explaining why cEEwcII , and that both populations fluctuate in-

phase, so cEIw0, (Figure 8C,D, right most point). Moving away

from this point, panels C,D in Figure 8 both show that the

magnitude of correlations decreases. Comparing the temporal

structures of Figure 6B and Figure 4B shows that also the time scale

of fluctuations decreases. The two structural parameters c1 and c2

affect the eigenvalues of the connectivity in a distinct manner.

Changing c1 merely shifts the real part of both eigenvalues, but

leaves their relative distance constant, as seen in Figure 8E. For

smaller values of c1 the coupling among excitatory neurons becomes

weaker, so their correlations are reduced. At the left most point in

Figure 8C the coupling within the excitatory population vanishes,

JEE~0. Changing the parameter c2 has a qualitatively different

effect on the eigenvalues, as seen in Figure 8F. At c2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DJEI JIE D
p

,

the two real eigenvalues merge and for smaller c2 they turn into a

conjugate complex pair. At the left-most point JEE{JII~0, so both

couplings within the populations vanish JEE~JII~0. The system

then only has coupling from E to I and vice versa. The conjugate

complex eigenvalues show that the population activity of the system

has oscillatory solutions. This is also called the PING (pyramidal
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- inhibitory - gamma) mechanism of oscillations in the gamma-

range [64]. Panels C,D in Figure 8 show that for most connectivity

structures the correlation structure is cEIwcEEwcII , in contrast to

our previous finding [17], where we studied only the symmetric case

(the right-most point), at which the correlation structure is

cEEwcEIwcII . The comparison of the direct simulation to the

theoretical prediction (24) in Figure 8C,D shows that the theory

yields an accurate prediction of the correlation structure for all

connectivity structures considered here.

Discussion

The present work explains the observed pairwise correlations in a

homogeneous random network of excitatory and inhibitory binary

model neurons driven by an external population of finite size.

On the methodological side the work is similar to the approach

taken in the work of Renart et al. [24], that starts from the

microscopic Glauber dynamics of binary networks with dense and

strong synaptic coupling J!N{1
2 and derives a set of self-

consistent equations for the second moment of the fluctuations in

the network. As in the earlier work [24], we take into account the

fluctuations due to the balanced synaptic noise in the linearization

of the neuronal response [24,65] rather than relying on noise

intrinsic to each neuron, as in the work by Ginzburg and

Sompolinsky [35]. Although the theory by Ginzburg and

Sompolinsky [35] was explicitly derived for binary networks that

are densely, but weakly coupled, i.e. the number of synapses per

neuron is !N and synaptic amplitudes scale as J!N{1, identical

equations result for the case of strong coupling, where the synaptic

amplitudes decay slower than N{1 [24]. The reason for both

weakly and strongly coupled networks to be describable by the

same equations lies in the self-regulating property of binary

neurons: Their susceptibility (called S in the present work)

Figure 8. Connectivity structure determines correlation structure. In the left column (A,C,E) c1~(JEEzJII )=2 is the independent variable, in
the right column (B,D,F) c2~(JEE{JII )=2. A,B Mean activity in the network as a function of the structural parameters c1 and c2 , respectively. C,D
Correlations averaged over pairs of neurons. Dots obtained from direct simulation, solid curves given by theory (24) E,F Eigenvalues (30) of the
population-averaged connectivity matrix; solid curves show the real part, dashed curves the imaginary part.
doi:10.1371/journal.pcbi.1003428.g008
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inversely scales with the fluctuations in the input, S!s{1!J{1,

such that JS and hence correlations are independent of the

synaptic amplitude J [65]. A difference between the work of

Ginzburg and Sompolinsky [35] and the work of Renart et al. [24]

is, however, that the former authors assume all correlations to be

equally small !N{1, whereas the latter show that the distribution

of correlations is wider than their mean due to the variability in the

connectivity, in particular the varying number of common inputs.

The theory yields the dominant contribution to the mean value of

this distribution scaling as N{1 in the limit of infinite network size.

Although the asynchronous state of densely coupled networks has

been described earlier [42,54] by a mean-field theory neglecting

correlations, the main achievement of the work by Renart et al.

[24] must be seen as demonstrating that the formal structure of the

theory of correlations indeed admits a solution with low

correlations of order N{1 and that such a solution is accompanied

by the cancellation of correlations between the inputs to pairs of

neurons. In particular can this state of small correlations be

achieved although the contribution of shared afferents to the input

correlations is of order 1 in the strong coupling limit, in contrast to

the work of [35], where this contribution is of order N{1. The

authors of [24] employ an elegant scaling argument, taking the

network size and hence the coupling to infinity, to obtain their

results. In contrast, here we study these networks at finite size and

obtain a theoretical prediction in good agreement with direct

simulations in a large range of biologically relevant networks sizes.

We further extend the framework of correlations in binary

networks by an iterative procedure taking into account the

finite-size fluctuations in the mean-field solution to determine the

working point (mean activity) of the network. We find that the

iteration converges to predictions for the covariance with higher

accuracy than the previous method.

Equipped with these methods we investigate a network driven

by correlated input due to shared afferents supplied by an external

population. The analytical expressions for the covariances

averaged over pairs of neurons show that correlations have two

components that linearly superimpose, one caused by intrinsic

fluctuations generated within the local network and one caused by

fluctuations due to the external population. The size NX of the

external population controls the strength of the correlations in the

external input. We find that this external input causes an offset of

all pairwise correlations, which decreases with increasing external

population size in proportion to the strength of the external

correlations (!1=NX ). The structure of correlations within the

local network, i.e. the differences between correlations for pairs of

neurons of different types, is mostly determined by the intrinsically

generated fluctuations. These are proportional to the population-

averaged variances aE and aI of the activity of the neurons in the

local network. As a result, the structure of correlations is mostly

independent of the external drive, and hence similar to the limiting

case of an infinitely large external population NX?? or the case

where the external drive is replaced by a DC signal with the same

mean. For the other extreme, when the size of the external

population equals the number of external afferents, NX ~K , all

neurons receive an exactly identical external signal. We show that

the mechanism of decorrelation [24,17] still holds for these

strongly correlated external signals. The resulting correlation

within the network is much smaller than expected given the

amount of common input.

We proceed to re-investigate three observations in balanced

random networks: fast tracking of external input signals [42,54],

the suppression of common input correlations, and small pairwise

correlations to provide a view that is complementary to previous

reports [24,17,52]. The lines of argument on these matters

provided in the main text of [24] and in its mathematical

supplement (as well as in [52]) differ. The main text starts at the

observation that in large networks in the inhibition-dominated

regime with an invertible connectivity matrix the activity exhibits

fast-tracking [24, eq. (2)]. The authors then argue that hence

positive correlations between excitatory and inhibitory synaptic

currents are responsible for the decorrelation of network activity.

The mathematical supplement, however, first derives the leading

term of order N{1 for the pairwise correlations in the network in

the limit of infinite network size [24, supplement, eqs. 38,39] and

then shows that fast tracking and the cancellation of input

correlations are both consequences of this correlation structure.

The relation of fast tracking to the structure of correlations is a

novel finding in [24, supplement, section 1.4] and not contained in

the original report on fast tracking [42,54]. We here in addition

show that the cancellation of correlations between the inputs to

pairs of neurons is equivalent to a suppression of fluctuations of the

population-averaged input. We further demonstrate how negative

feedback suppresses these fluctuations. This argument is in line

with the earlier explanation that correlations are suppressed by

negative feedback on the population level [17]. Dominant negative

feedback is a fundamental requirement for the network to stabilize

its activity in the balanced state [42]. We further show that the

cancellation of input correlations does not uniquely determine the

structure of correlations; different structures of correlations lead to

the same cancellation of correlations between the summed inputs.

The cancellation of input correlations therefore only constitutes a

constraint for the pairwise correlations in the network. This

constraint is identically fulfilled if the network shows perfect

tracking of external input, which is equivalent to completely

vanishing input fluctuations [24]. We show that the correlation

structure compatible with perfect tracking [24, supplement, eqs.

38,39] is generally different from the structure in finite-sized

networks, although both fulfill the constraint imposed by the

cancellation of input correlations.

Performing the limit N?? we distinguish two cases. (i) For an

invertible connectivity matrix, we recover the result by [24], that

in the limit of infinite network size correlations are dominated by

tracking of the external signal and intrinsically generated

fluctuations can be neglected; the resulting expressions for the

correlations within the network [24, supplement, eqs. 38,39] are

lacking the locally generated fluctuations that decay faster than

N{1 for invertible connectivity. However, the intermediate result

[24, supplement, eqs. 31,33] is identical to [35, eq. 6.8] and to (9)

and contains both contributions. The convergence of the

correlation structure to the limiting theory appears to be slow.

For the parameters given in [24], quantitative agreement is

achieved at around 108 neurons. For the range of network sizes up

to which a random network is typically considered a good model

(ƒ105 neurons), the correlation structure is dominated by intrinsic

fluctuations. (ii) For a singular matrix, as for example resulting

from statistically identical inputs to excitatory and inhibitory

neurons, the contributions of external and intrinsic fluctuations

both scale as N{1. Hence the intrinsic contribution cannot be

neglected even in the limit N??. At finite network size the

observed structure of correlations generally contains contributions

from both intrinsic and external fluctuations, still present in the

intermediate result [24, supplement, eqs. 31, 33] and in [35, eq.

6.8] and (9). In particular, the external contribution dominating in

infinite networks with invertible connectivity may be negligible at

finite network size. We therefore conclude that the mechanism

determining the correlation structure in finite networks cannot be

deduced from the limit N?? and is not given by fast tracking of
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the external signal. Fast tracking is rather a consequence of

negative feedback.

For the common but special choice of network connectivity

where the synaptic weights depend only on the type of the source

but not the target neuron, i.e. JEE~JIE and JEI~JII [44], we

show that the locally generated fluctuations and correlations are

elevated and that the activity only loosely tracks the external

input. The resulting correlation structure is cEEwcEIwcII . To

systematically investigate the dependence of the correlation

structure on the network connectivity, it proves useful to

parameterize the structure of the network by two measures

differentially controlling the location of the eigenvalues of the

connectivity matrix. We find that for a wide parameter regime

the correlations change quantitatively, but the correlation

structure cEIwcEEwcII remains invariant. The qualitative

comparison with experimental observations of [51] hence only

constrains the connectivity to be within the one or the other

parameter regime.

The networks we study here are balanced networks in the

original sense as introduced in [42], that is to say they are

inhibition-dominated and the balance of excitatory and inhibitory

currents on the input side to a neuron arises as a dynamic

phenomenon due to dominance of negative feedback which

stabilizes the mean activity. A network with a balance of

excitation and inhibition built into the connectivity of the

network on the other hand would correspond in our notation

to setting JaE~{JaI for both receiving populations a [ fE,Ig,
assuming identical sizes for the excitatory and the inhibitory

population. The network activity is then no longer stabilized by

negative feedback, because the mean activities mE and mI can

freely co-fluctuate, mE~m0
Ezdm and mI~m0

I zdm, without

affecting the input to other cells: JaEmEzJaI mI is independent of

dm. Mathematically this amounts to a two-fold degenerate

vanishing eigenvalue of the effective connectivity matrix. The

resulting strong fluctuations would have to be treated with

different methods than presented here and would lead to strong

correlations.

The current work assumes that fluctuations are sufficiently

small, restricting the expressions to asynchronous and irregular

network states. Technically this assumption enters in form of two

approximations: First, the summed input to a cell is replaced by a

Gaussian fluctuating variable, valid only if pairwise correlations

are weak. Second, the effect of a single synapse on the outgoing

activity of a neuron is approximated to linear order allowing us to

close the hierarchy of moments, as described in [55]. Throughout

this work we show in addition to the obtained approximate

solutions the results of simulations of the full, non-linear system.

Deviations from direct simulations are stronger at lower mean

activity, when the synaptic input fluctuates in the non-linear part

of the effective transfer function. The best agreement of theory and

simulation is hence obtained for a mean population activity close

to
1

2
, where 1 means all neurons are active.

For simplicity in the major parts of this work we consider

networks where neurons have a fixed in-degree. In large

homogeneous random networks this is often a good approxima-

tion, because the mean number of connections is pN!N, and its

standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1{p)

p
!

ffiffiffiffiffi
N
p

declines relative to the

mean. Taking into account distributed synapse numbers and the

resulting distribution of the mean activity in Figure 4 and

Figure 7A shows that the results are only marginally affected for

low mean activity. The impact of the activity distribution on the

correlation structure is more pronounced at higher mean activity,

where the second moment of the activity distribution has a notable

effect on the population-averaged variance.

The presented work is closely related to our previous work on

the correlation structure in spiking neuronal networks [17] and

indeed was triggered by the review process of the latter. In [17],

we exclusively studied the symmetric connectivity structure, where

excitatory and inhibitory neurons receive the same input on

average. The results are qualitatively the same as those shown in

Figure 6. A difference though is, that the external input in [17] is

uncorrelated, whereas here it originates from a common finite

population. The cancellation condition for input correlations, also

observed in vivo [50], holds for spiking networks as well as for the

binary networks studied here. For both models, negative feedback

constitutes the essential mechanism underlying the suppression of

fluctuations at the population level. This can be explained by a

formal relationship between the two models (see [53]).

Our theory presents a step towards an understanding of how

correlated neuronal activity in local cortical circuits is shaped by

recurrence and inputs from other cortical and thalamic areas. For

example the correlation between membrane potentials of pairs of

neurons in somatosensory cortex of behaving mice is dominated

by low-frequency oscillations during quiet wakefulness. If the

animal starts whisking, these correlations significantly decrease,

even if the sensory nerve fibers are cut, suggesting an internal

change of brain state [5]. Our work suggests that such a dynamic

reduction of correlation could come about by modulating the

effective negative feedback in the network. A possible neural

implementation is the increase of tonic drive to inhibitory

interneurons. This hypothesis is in line with the observed faster

fluctuations in the whisking state [5]. Further work is needed to

verify if such a mechanism yields a quantitative explanation of the

experimental observations.

The network where the number of incoming external connec-

tions per neuron equals the size of the external population, cf.

Figure 3 Nx~K , can be regarded as a setting where all neurons

receive an identical incoming stimulus. The correlations between

this signal and the responses of neurons in the local network

(Figure 3C) are smaller than in an unconnected population

without local negative feedback. This can formally be seen from

(29), because negative eigenvalues of the recurrent coupling

dampen the population response of the system. This suppression of

correlations between stimulus and local activity hence implies

weaker responses of single neurons to the driving signal. Recent

experiments have shown that only a sparse subset of around 10

percent of the neurons in S1 of behaving mice responds to a

sensory stimulus evoked by the active touch of a whisker with an

object [4]. The subset of responding cells is determined by those

neurons in which the cell specific combination of activated

excitatory and inhibitory conductances drives the membrane

potential above threshold. Our work suggests that negative

feedback mediated among the layer 2/3 pyramidal cells, e.g.

through local interneurons, should effectively reduce their

correlated firing. In a biological network the negative feedback

arrives with a synaptic delay and effectively reduces the low-

frequency content [17]. The response of the local activity is

therefore expected to depend on the spectral properties of the

stimulus. Intuitively one expects responses to better lock to the

stimulus for fast and narrow transients with high-frequency

content. Further work is required to investigate this issue in more

detail.

A large number of previous studies on the dynamics of local

cortical networks focuses on the effect of the local connectivity, but

ignores the spatio-temporal structure of external inputs by

assuming that neurons in the local network are independently
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driven by external (often Poissonian) sources. Our study shows that

the input correlations of pairs of neurons in the local network are

only weakly affected by additional correlations caused by shared

external afferents: Even for the extreme case where all neurons in

the network receive exactly identical external input (Nx~K ), the

input correlations are small and only slightly larger than those

obtained for the case where neurons receive uncorrelated external

input (Nx~2N; black curve in Figure 8C). One may therefore

conclude that the approximation of uncorrelated external input is

justified. In general, this may however be a hasty conclusion. Tiny

changes in synaptic-input correlations have drastic effects, for

example, on the power and reach of extracellular potentials [34].

For the modeling of extracellular potentials, knowledge of the

spatio-temporal structure of inputs from remote areas is crucial.

The theory of correlations in presence of externally impinging

signals is a required building block to study correlation-sensitive

synaptic plasticity [66] in recurrent networks. Understanding the

emerging structure of correlations imposed by an external signal is

the first step in predicting the connectivity patterns resulting from

ongoing synaptic plasticity sensitive to those correlations.
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49. Voges N, Schüz A, Aertsen A, Rotter S (2010) A modeler’s view on the spatial
structure of intrinsic horizontal connectivity in the neocortex. Progress in

Neurobiology 92: 277–292.

50. Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition
during sensory-evoked activities. Nat Neurosci 11: 535–537.

Correlation Structure Is Intrinsic

PLOS Computational Biology | www.ploscompbiol.org 20 January 2014 | Volume 10 | Issue 1 | e1003428



51. Gentet L, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane

potential dynamics of GABAergic neurons in the barrel cortex of behaving mice.
Neuron 65: 422–435.

52. Parga N (2013) Towards a self-consistent description of irregular and

asynchronous cortical activity. J Stat Mech: Theory and Exp : P03010.
53. Grytskyy D, Tetzlaff T, Diesmann M, Helias M (2013) A unified view on weakly

correlated recurrent networks. Front Comput Neurosci 7.
54. Van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of

cortical circuits. Neural Comput 10: 1321–1371.

55. Buice MA, Cowan JD, Chow CC (2009) Systematic fluctuation expansion for
neural network activity equations. Neural Comput 22: 377–426.

56. Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel
Distributed Processing, Explorations in the Microstructure of Cognition:

Foundations, volume 1. Cambridge, Massachusetts: MIT Press.
57. Hopfield JJ (1982) Neural networks and physical systems with emergent

collective computational abilities. Proc Natl Acad Sci USA 79: 2554–

2558.

58. Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M (2010) A general

and efficient method for incorporating precise spike times in globally time-driven
simulations. Front Neuroinform 4: 113.

59. Gewaltig MO, Diesmann M (2007) NEST (NEural Simulation Tool).

Scholarpedia 2: 1430.
60. Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural

Computation. Perseus Books.
61. Kelly F (1979) Stochastic processes and reversibility. Wiley, Cambridge University Press.

62. Jones E, Oliphant T, Peterson P, et al. (2001). SciPy: Open source scientific tools

for Python. Http://www.scipy.org/.
63. Palmer EM (1985) Graphical Evolution. Wiley.
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