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Abstract

How the brain stores information about a sensory stimulus in working memory is not completely known. Clues about the
mechanisms responsible for working memory can be gleaned by recording from neurons during the performance of a
delayed response task. I focus on the data recorded during such an experiment, a classic tactile discrimination task. I
describe how the observed variability in the firing rate during a trial suggests that the type of attractor that is responsible
for holding the stimulus information is not a fixed-point type attractor. I propose an alternate mechanism to a line attractor
that allows the network to hold the value of an analog stimulus variable for the duration of the delay period, but rather than
maintain a constant level of activity, the cells’ firing rate varies throughout the delay period. I describe how my proposed
mechanism offers a substantial advantage over a line attractor: The tuning requirements of cell to cell connections are
greatly eased from that of a line attractor. To accommodate a change in the length of the delay period, I show that the
network can be altered by changing a single parameter - the timing of an executive signal that originates outside of the
network. To demonstrate the mechanism, as well as the tuning benefits, I use a well known model of propagation in
neuronal networks.
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Introduction

In order to survive, animals must be able to receive sensory

stimuli and hold this information in memory after the stimulus has

ceased. The ability to recall sensory information allows the animal

to process information and make decisions, such as fight or flight.

Certain areas of the brain are known to play a role in the ability to

hold sensory information, but precisely how the information is

held is not completely known. This type of memory, where the

information from a transient stimulus is stored for a short period of

time, for use in a task or recall in a decision making process, is

referred to as working memory.

In order to probe for the neuronal basis of working memory,

recordings of cellular activity are made during delayed response

tasks. In these tasks, an initial stimulus or cue is given to an animal,

and then removed. The relevant cue information is held in

memory for the duration of a delay period. At the conclusion of

the delay period the animal is asked to demonstrate memory of the

stimulus. This is generally done with a motor response (button

push, bar grab/release, eye saccade, etc.). In most delay period

studies, the cellular responses during the delay period vary widely,

both from cell to cell, and even within one cell across trials. Much

attention has been given to this variability [1–6].

The work in this paper is motivated by the experimental work

done in one such study [1,2]. In these classic experiments, an

animal was presented with a tactile stimulus, a vibration briefly

applied to a finger. After a delay (3 seconds), the animal is

presented with a second stimulus. The animals’ task is to correctly

signal which of the two frequencies was higher. Thus, for

successful completion of the task, the animal is required to hold

the frequency of the first vibration (the analog stimulus variable) in

memory for the duration of the delay period. Consequently,

recordings made during the delay period provide clues about the

mechanisms responsible for storing this stimulus variable.

The neuronal correlate of working memory is presumed to be

persistent cellular activity [7–9]: meaningful neuronal activity that

continues after the causal stimulus is removed. Often, the level of

persistent activity - the firing rate of the relevant cells - depends on

the stimulus itself, and therefore can encode information about the

stimulus identity. One example, and a focus of this paper, is the

case of monotonic encoding. This type of encoding refers to a

scenario in which the level of cellular activity depends monoton-

ically on an analog stimulus variable, such as the frequency of a

tactile vibration.

The recordings [1,2] show that there are cells in the frontal

cortex that have a monotonic relationship with the stimulus

frequency. A structure commonly used to model this type of

relationship with a continuous variable is the line attractor [10].

However, perfect line attractors are unlikely to exist in nature as

they require exact tuning. Moreover, even if a perfectly tuned line

attractor was possible, they cannot stably hold information since

they are only neutrally stable along the axis of the attractor,

allowing for corruption by noise [11].

A number of features found in the data further suggest that a

true line attractor is not the correct type of attractor. There is a lot

of variability in the data, both from cell to cell, and at the single
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cell level. The first type of variability is a large diversity of

behaviors among cells. The authors [1] divide cells into three

classes - early, persistent, and late. The classification refers to

when, during the delay period, the cell is monotonically tuned to

the stimulus variable. Early cells are those cells that encode the

stimulus during the first part of the delay period, but then lose

tuning with the stimulus. Late cells do not begin the delay period

tuned to the stimulus, but they are activated and are monoton-

ically tuned to the stimulus at the end of the delay period. The

persistent cells are monotonically tuned to the stimulus variable for

the entire delay period.

This division in behavior results in a second feature of the data -

a systematic change in the number of cells that encode the stimulus

at any given time. At the start of the delay period, both early cells

and persistent cells are tuned to the stimulus. As the early cells fall

out of tune the number of encoding cells decreases, until only

persistent cells represent the stimulus variable. As the late cells

become tuned to the stimulus, and the persistent cells remain

tuned, the total number of encoding cells grows. These changes

generate the U-shaped curve describing the number of cells

encoding the stimulus as a function of time [1].

The third important feature of the data is the variability of the

firing rates during the delay period. It is evident from the

experiments that the persistence is not a fixed-point type of

persistence, where the cell assumes an invariant firing rate. In

these persistent cells, the level of persistent activity is not generally

constant for the duration of the delay period. Rather, persistent

cells demonstrate changes in their activity level during the course

of the delay period. Still, these cells maintain a monotonic

relationship with the stimulus variable.

I will show how these observations suggest two things: First, the

changes in the number of encoding cells, and the division into

early, persistent and late, suggest that the neural representation of

the stimulus variable is held as a wave. Second, the variations

during the delay period are the result of a poorly tuned line

attractor combined with a time-aware correction mechanism to

account for the imperfections.

I aim to describe how a network of cells that are not tuned well

enough to act as a line attractor can still hold a signal for the

duration of a delay period. The key ingredient is a time aware task

input [12] that allows the network to amplify its activity, correcting

for the deviation of the tuning from that of a line attractor. I also

show how this network of cells can be tuned to delay periods of

different length by changing a single parameter - the timing of the

task input - rather than by manipulating the cell-to-cell

connectivity. This task input is assumed to be an executive input

originating from outside of the network.

Models

My goal is to describe a mechanism that can account for the

cellular activity recorded during the tactile discrimination task.

The key aspects of the mechanism are traveling wavefronts. In

choosing an illustrative model, I only require that the model admit

traveling wave solutions. I use a biologically motivated model of

propagation between cells [9,13]. This model admits traveling

wave solutions, but is otherwise generic:

t
dxi

dt
~{xiz

X
j~1::N

Ji,jw(xj)zswi(t), ð1Þ

where xi is the activity variable, swi(t) is the noise for the ith node

(modeled as a Wiener process), and J is the matrix of connection

strengths (The element Ji,j is the connection strength from node j

to node i). The function w is a response function, converting

presynaptic activity to postsynaptic input. This function is very

important for the mechanism that I propose, and is discussed in

detail below (section w and the task manipulations).

I assume feed forward, nearest neighbor connectivity, ie.

Ji,j~
1 if i~jz1

0 otherwise

�
ð2Þ

This type of connectivity is chosen for its simplicity, as well as the

existence of traveling wave fronts. The results that we obtain here

generalize to more complicated types of connectivity. Later, I will

demonstrate the mechanism for a model where the connectivity

matrix, J , is completely symmetrical.

w and the task manipulations
The function w is central to the mechanism. Manipulation of

this function is how external events (stimulus information, for

example) influence the network. In this section, the different roles

this function fills are outlined.

There are four different configurations of w. Three of these

parallel the ‘‘loading’’, ‘‘maintenance’’, and ‘‘comparison’’ task

components described by Machens et al. [7]. The fourth role of

the w function is to prevent a cell from responding to input

(‘‘quiescent’’). Figure 1 shows the four different configurations of w:

a stable equilibrium point (Row B, left), a line attractor (Row B,

center), an unstable equilibrium point (Row B, right), and a

quiescent mode (Row D, right). Each of these configurations

corresponds to a subtask of the working memory task. The first

three are implemented as Machens does [7]: The stable fixed point

is for loading the stimulus variable into the network. The

maintenance configuration is a line attractor. The comparison

configuration is an unstable fixed point.

Chronologically, the first component of the task is ‘‘loading’’ the

stimulus variable into the network. During this component of the

task, the network is exposed to a stimulus that is described by an

analog scalar variable. Here, this variable is the frequency of the

tactile vibration. Since the cells tune monotonically to the stimulus

variable, the cellular response to the stimulus will be a monotonic

function of the stimulus variable. In terms of w, this is done by

Author Summary

The ability to retain stimulus information after the stimulus
has ceased is important for survival. The term ‘‘working
memory’’ refers to storage of stimulus information for a
short period of time, so that this information can be
recalled for a decision making process. A common way to
probe for the cellular basis of working memory is
recording of neurons during a delayed response task. This
study focuses on one of these studies - the now classic
experiments of Romo et al.. This experiment demonstrates
that the frequency of a tactile vibration is held in memory
using a type of encoding where the cellular output
depends monotonically on the stimulus variable (frequen-
cy). In this paper, I develop a model that accounts for a
number of features found in the data. Using the model, I
am able to account for a diversity of cellular responses, as
well as variability during a trial. This paper builds on
previous modeling studies of this data set. The advance is
an executive input that controls the behavior of the
network, and reduces the burden of tuning compared to
previous models.

Novel Cellular Mechanism for Working Memory
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creating a stable fixed point at the desired activity level (left panel

of item C in figure 1). The activity level at this fixed point is

determined by the slope of w. Thus, the slope of w is a monotonic

function of input frequency. So, for a cell that is positively

monotonically encoding the stimulus, the slope of w is a

monotonically increasing function of frequency. The stable fixed

point draws the activity toward this frequency specific level, and

the stimulus variable is loaded into the network.

The second component of the task is ‘‘maintenance’’. This

begins once the stimulus is removed. This is the actual memory

component of the task, where the network contains information

about a stimulus that is no longer present. The information is to be

retained for the duration of the delay period. In terms of w, this

configuration is shown in the center panel of item C in figure 1. In

this configuration, the network behaves as a line attractor. The line

attractor holds the stimulus dependent values throughout the delay

period. The important result of this study is how the brain might

overcome the drift that occurs when this configuration is not

perfect - when the lines do not perfectly overlap.

The final component of the task is ‘‘comparison’’. This

component occurs at the end of the delay period. In the

experiments, a second stimulus of frequency f2 arrives and the

objective for the animal is to compare this stimulus to the original

stimulus (frequency f1). In terms of w, this configuration is shown

in the rightmost panel of item C in figure 1. There is an f2-

dependent unstable fixed point, where the slope of w is determined

by the stimulus frequency. This unstable fixed point acts as a

separatix. If the f1-dependent activity levels are above this

separatix, they will increase. Conversely, if the f1-dependent levels

are below this separatix, they will quickly decrease. So, whether

the activity level increases or decreases upon the arrival of the

second stimulus determines whether the network assessed the first

stimulus frequency (f1) to be higher or lower than the second (f2),

thus providing a comparison.

The right panel of item D in figure 1 shows the ‘‘quiescent’’

configuration. With this w, the cells do not respond meaningfully

to input. All activity will quickly decrease to zero. The usefulness of

this configuration is described in the next section.

Results

Earlier, I described three characteristics of the data recorded

during a delay response task [1,2]. These features suggest a

mechanism that the brain can employ to store an analog stimulus

variable for the duration of a delay period. These features are:

1. During the delay period, there is a diversity of behaviors

exhibited. There are cells that are monotonically tuned to the

stimulus only during the beginning of the delay period (early

cells), during the entire delay period (persistent), and only

during the end of the delay period (late cells).

2. The number of cells monotonically tuned to the stimulus

decreases during (roughly) the first half of the delay period.

Near the midpoint of the delay period, this number begins to

increase, and continues to increase until the end of the delay

period.

3. The firing rate of persistent cells during the delay period is not

constant. At the start of the delay period, the firing rate of the

persistent cells is tuned to the stimulus variable. This activity

level does not remain constant, however. During the delay

period, the firing rate varies. Though they do not maintain a

constant firing rate, persistent cells maintain a monotonic

relationship with the stimulus variable for the duration of the

delay period.

In this section, I show how each of these features shape the

proposed memory mechanism. I divide the section into three

parts, as itemized above. Though done sequentially, it will become

apparent that, in my interpretation, these features are tightly

intertwined. Once the model is built, I will show how this model is

tuned, and why this provides a substantial advantage in feasibility,

with regard to tuning, over a regular line attractor.

The keystone of the mechanism is an input that originates

externally to the population of cells that we focus on. This input is

an executive one, and provides an interpretation of time to the

network. The assumption that the timing originates externally is

supported by the data. Machens et al. [14] use principal

component analysis to show that the cellular responses to the

stimulus can be divided into two groups - those components whose

variance is due to the stimulus frequency and those components

whose variance is due to time. The authors show that the variance

due to time is external to the network. The timing of this task input

determines the behavior of the network and can be used to tune

Figure 1. Components of the proposed memory mechanism. A.
The delay tactile discrimination task. B. The time series of a persistent
cell’s activity (equations (1–2)) during the three components of the task,
as described by Machens et al. [7]: Loading, maintenance, and
comparison. Dotted lines delineate the times (stimulus off at t~20
and the comparison is made at t~80) when the network changes
between these components. C. Diagrams showing the gain function w
(bold curves) for the loading, maintenance and comparison compo-
nents of the task. Green arrows show the direction that the activity will
move, relative to the fixed point, during the respective component of
the task. Note that w is never negative, and defined as zero when x is
less than threshold. D. Shown is the time series of a cell that is held
quiescent, a component of the task where input to a cell is ignored.
Upon receipt of an external input, the cell switches to the maintenance
configuration, and assumes the activity level of the persistent cells. This
activity level is maintained until the end of the delay period, when the
network enters the comparison phase of the task.
doi:10.1371/journal.pcbi.1003437.g001

Novel Cellular Mechanism for Working Memory
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the network without changing any of the intrinsic properties of the

network (eg. connection strength between cells).

Early, persistent, and late cells
I begin by demonstrating how a traveling wave can account for

the division of the population into early, persistent, and late cells.

Figure 2 shows a solution to equations (1) (2). The array plot shows

the solution as a function of time and position in the chain. Also

shown are temporal profiles of three cells - one that loses activation

quickly (early), one that is active throughout the delay period

(persistent), and a cell that does not tune to the stimulus variable

until the end of the delay period (late).

Figure 2 demonstrates how a traveling pulse can generate a

pattern that would allow cells to be classified as early, persistent, or

late. There are actually a pair of wavefronts - a leading wave front

and a trailing wavefront. The leading wavefront tunes cells to the

stimulus variable. Cells lose their relationship with the stimulus as

the trailing wavefront passes. By definition, the arrival of the

stimulus tunes the early and persistent cells to the stimulus

variable. What separates early cells from persistent cells is the

position in the chain. Early cells are first in the chain, and the

trailing wavefront passes through these cells early in the delay

period. Persistent cells are further along in the chain, and the

trailing front does not reach these cells during the delay period.

Late cells, in this illustrative scenario, are later in the chain than

the persistent cells. They are not tuned to the stimulus initially,

rather they only become tuned as the leading wavefront reaches

them.

Of importance is that the leading and trailing wavefronts have

the same slope in the array plot of figure 2. Thus, these wavefronts

have the same speed causing the number of cells encoding the

stimulus to be constant throughout the delay period. This is not

what the experiments show. Rather, the number of cells encoding

the stimulus variable decreases at first and then, at some point near

the middle of the delay period, begins to increase. The simple

pulse described so far is not capable of this. In the next section, I

discuss a modulation of the leading wavefront that can account for

the initial decrease in the number of encoding cells.

Decreasing and increasing number of encoding cells
The second feature of the data that was identified was a

systematic decrease in the number of encoding cells during the first

half of the delay period, followed by an increase. In the previous

section, I showed how a pair of traveling wavefronts can account

for the existence of early, persistent, and late cells. The problem

remaining at the end of the section was that the trailing and

advancing wavefronts have the same speed, and so the number of

encoding cells is constant. In this section I describe how the

wavefronts can be modulated during the delay period to account

for this characteristic.

By definition, the initial decrease in the number of encoding

cells is due to the early cells losing their monotonic relationship

with the stimulus. Similarly, the subsequent increase can only be

due to the late cells assuming a stimulus dependent activity level.

Thus, the transition from decreasing to increasing number of

encoding cells is equivalent to the transition from early cell decay

to late cell activation. An important result from the experiments

[1,2] is that the transition from decreasing to increasing occurs

roughly halfway through the delay period. This is regardless of the

length of the delay period. To illustrate, the authors show what

happens when the length of the delay period is changed from

3 seconds to 6 seconds. They show that the late cell response,

which began roughly halfway through the delay period for the

3 second delay period, is stretched to roughly halfway through the

6 second delay period after a couple of trials. So, a change in the

length of the delay period modulates the time that the transition

from decreasing number of cells to an increasing number of

encoding cells occurs.

I suggest that the external executive input is responsible for the

transition in the number of encoding cells. Suppose that, prior to

the arrival of this input, the late cells are not allowed to tune the

stimulus variable. The effect of the executive input, then, is to

allow the late cells to participate in the task. Prior to the arrival of

the input, the leading wavefront is frozen. The early cells are

simultaneously falling out of tune, and so the net result is a

decreasing number of encoding cells, prior to the arrival of the

input.

To incorporate these changes into the model (1), I need to

specify w for the late cells, separately from the early and persistent

cells. I do this by designating the late cells as ‘‘quiescent’’,

(Figure 1), prior to the arrival of the executive input. When the

input arrives, its action is to shift the configuration from

‘‘quiescent’’ to the ‘‘maintenance’’ configuration (Figure 1). This

switch allows the leading wavefront to advance into the late cells,

tuning them to the stimulus variable.

Figure 3 shows the network with the late cells modulated as

above. Notice the frozen leading wavefront for the first half of the

trial. Prior to the inclusion of the late cells, The number of

encoding cells decreases. When the activity is allowed to propagate

into the late cells, they become tuned to the stimulus. A difficulty

Figure 2. A traveling pulse as a mechanism for early, persistent
and late type cells. The top panel shows three time series from
different locations on the chain. The top graph is the time series for an
early cell, or a cell that ceases to encode shortly after the delay period
has begun. Below it is a persistent cell, a cell that maintains a
relationship with the stimulus throughout the delay period. Below this
is the time series for a late cell. The array plot (bottom) shows the pulse
in space (cell number, vertically) and time (horizontal). For all panels in
this figure, Ji,i{1~1, so that the network behaves as a line attractor. To
generate the wave, the first 100 cells (out of 150) are stimulated. The
noise parameter is s~0:02.
doi:10.1371/journal.pcbi.1003437.g002
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also arises: the persistent cells are losing their monotonic

relationship with the stimulus and so there is no net gain in the

number of encoding cells. The experiments clearly show an

increase in the number of encoding cells. To account for this,

either the advancing front (the front going into the late cells) must

be faster that the trailing front, or the trailing front (the front that

causes the early cells to fall out of tune) must slow down.

Simply increasing the speed of propagation in the late

population, thus speeding up the advancing front, would

accomplish the growth in the number of encoding cells, but the

data suggests that this is not the case. Persistent cells are also

impacted by the arrival of the executive input. Many persistent

cells show a dramatic change in behavior simultaneously with the

incorporation of the late cells. It is then natural to suspect that the

executive input is involved with this change of behavior. I posit

that the late cells project back onto the persistent cells, freezing the

trailing wavefront, and allowing the number of cells that encode

the stimulus to increase. The change in the behavior of persistent

cells is the topic of the next section.

Varying firing rates for persistent cells
Persistence, as a mechanism, is a staple of working memory. It is

how cells can hold information about the past - a stimulus that is

no longer present. Persistence is often modeled as a fixed point, or

for the case studied here - monotonic encoding - a line attractor.

Each of these attractors holds a cellular variable (eg. firing rate)

constant for the duration of the delay period. However, the

persistent cells recorded in many working memory studies do not

behave as a fixed point. Rather, the firing rates of persistent cells

vary widely during the delay period. For the experiments that are

the focus of this paper, the large variation of the persistent cells is

divided into four categories - cells that initially decrease and then

increase, cells that decrease for the duration of the delay period,

and the opposite behaviors. Here, I only consider those persistent

cells that initially decrease, and after the executive input, are

amplified (a typical example is shown in Figure 2 of [1]).

A line attractor is often used to store an analog variable [7,10],

but this mechanism requires very precise tuning. However, a

network that admits a near-line attractor (a line attractor where

the tuning is not perfect) is still capable of maintaining a

monotonic relationship with the stimulus variable. That is, for

two stimuli f1wf2, and firing rates R(t,f1), R(t,f2), it may be

possible to tune the network well enough so that R(t,f1)wR(t,f2)
for all t in the delay period, even if R(t,:) is not constant. This is

possible if the tuning is close to that of a line attractor, but not

perfect. The imperfections will result in a slow drift from the

original value, as shown in [10]. If the tuning is good enough to

make this drift sufficiently slow, then a monotonic relationship

between the stimulus variable and the cellular output over the

course of the delay period can be achieved.

In the model, the cell-to-cell connections are determined by the

entries of the connectivity matrix, J (equation (1)). We are

assuming nearest neighbor, feed forward connectivity, so all non-

zero entries reside on the first sub-diagonal (equation (2)). For a

perfectly tuned line attractor, each of these entries are 1. The slow

drift is modeled by allowing these entries to be less than 1 (the slow

drift will be a decreasing one).

The change in connection strengths will cause the amplitude of

the wave to decrease slowly toward zero. If the entries of J are

close enough to 1, the exponential decay will be slow and

monotonicity will be preserved. (Note: If the initial stimuli are

very close in scalar value, and there is sufficient noise, this

monotonicity can be broken. For example, if in one trial the

stimulus is at x Hz and in another trial the stimulus is xzE Hz, for

a small value of E, one would expect the noise to destroy the

monotonicity. Accordingly, there is a minimum separation

between the frequency of the first and second stimuli in the

experiments).

In order to reflect the stimulus information, the signal must be

amplified to recover from the initial decay. The switch from

decreasing activity to increasing activity takes place at nearly the

same time the late cells begin to encode the stimulus, so it is

natural to view the late cells as implicit in this transition. I propose

that the late cells project back onto the early and persistent cells.

This feedback accomplishes two things: 1). It amplifies the decayed

signal so that the firing rate at the end of the delay period is

indicative of that at the beginning - the stimulus induced value -

and 2). it stops the trailing wave front from advancing, allowing the

total number of cells encoding the stimulus to increase. This

addresses the issue that I ended the previous section with - the

leading and trailing wavefronts no longer have the same speed.

In order for the feedback from the late cells to amplify the

signal, the strength of this feedback must be sufficiently strong. As

in [9], the solution of the kth cell in the chain, after the stimulus

has been removed, is given by

xk(t)~xk(0)e{t
t
Xk

n~0

cn

n!

t

t

n

: ð3Þ

Following Goldman [9], the late cells become part of the wave

roughly one time unit for each connection in the chain after the

initial blockade (an implicit assumption is that the time constant of

a cell is much shorter than the length of the delay period). Once

Figure 3. The modified wave. The panels describe the same things
as in figure 2, with the same parameter values. The removal of the
stimulus is given by the first dotted line. The arrival time of the task
input is represented by the second dotted line. Of note in this figure is
that the late cells are held back, and do not participate in the task until
the task input arrives.
doi:10.1371/journal.pcbi.1003437.g003

Novel Cellular Mechanism for Working Memory
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the propagation of activity is allowed to advance into the late cells,

they assume this solution as well. So, in general xlate(t)&xperst(t)

for twt�, the onset time of the task input. After the inclusion of the

late cells, we can approximate the evolution of a persistent cell

with

dxperst

dt
~{xperstzcxperstzsxlate&(czs{1)xperst: ð4Þ

where c is the strength of input from other persistent cells (the

value of Ji,i{1) and s is the strength of the feedback from the late

cells. If czsw1, there will be amplification. I will derive the

specific restraints on these parameters in the next subsection, and

their relationship to the tolerance in the timing of the executive

input.

It is my claim that the decay and amplification mechanisms can

greatly ease the cell-to-cell connectivity restrictions of a line

attractor. There is another important advantage to the proposed

mechanism - it can be used to tune the network to delay periods of

different lengths without changing any of the individual connec-

tions between cells. Figure 4 shows a demonstration of this. In the

top panel of figure 4, the network is tuned so that it successfully

stores the stimulus value for a delay period of length L. If, on the

next trial, the delay period is increased without warning or

preparation, say doubled (2L), the task input will not move,

resulting in an unreliable cellular response. However, after a

couple of trials, the timing input is shifted to a time that results in

correct trials (bottom panel of figure 4). This is consistent with the

data; as reported in [1] there is a slight increase in the error rate

directly after the switch from 3 to 6 seconds. After a few trials, the

animal’s performance improves. Moreover, raster plots show that

the onset of late-cell activity gradually adapts to the longer delay

period length, after a few trials [1].

This mechanism is further supported by the data. Brody et al.

[1] utilize a descriptive model to determine to what extent the

activity during the 6 second delay period is a stretched version of

the activity during a 3 second delay period. They show that the

early cells behave in much the same way for each delay period

length. That is, the time course for an early cell does not stretch or

contract. The model agrees with this, since an early cell for the

6 second delay period will evolve the same way as it would for a

3 second delay period. In either case, the trailing wavefront has

passed. The authors show that the timing of the late cells is

stretched by a factor of 2. This also agrees with the model, since

the timing of the task input - which determines when the late cells

become active - is roughly halfway through the delay period.

Doubling the delay period will then roughly double the time at

which the late cells begin to encode, yielding an approximate

stretch factor of 2.

At the end of the previous section, I concluded that the external

signal also causes the freezing of the trailing wavefront, so that

persistent cells can remain active. How the trailing wavefront is

frozen is interesting, and may not be immediately obvious. The

late cells feed back onto all of the early and persistent cells. The

early cells are those cells that, by definition, have lost their

monotonic relationship with the stimulus. In other words, they

have decayed below the level where signal can be differentiated

from noise.

Still, with the addition of late cell input, the noise in the early

cells’ activity is amplified and propagates through the medium.

Though it is summed noise and does not have a relationship to the

stimulus, it does generate enough activity to ‘‘prop up’’ the trailing

wavefront. This allows the persistent cells to maintain their

monotonicity with the stimulus variable, freezing the trailing

wavefront. Figure 5 shows early cells at different locations in the

chain, and how they contribute to the maintenance of a persistent

cell.

Figure 6 shows a simulation of the full network. I implement the

feedback from the late cells to the early and persistent cells as a

connection from a single late cell, though more general patterns

would work as well. As the late cells are incorporated into the

network, the persistent cells begin to increase their firing rates. The

time courses for an early, persistent, and late cell are also shown in

figure 6. The decreasing and increasing of the firing rate in a

persistent cell is clearly demonstrated, as is the match between the

initial stimulus dependent activity level and the level after

amplification. Figure 7 shows how this this tuning works for a

range of stimuli.

Comparison to a line attractor
In this section, I show that the proposed mechanism offers a

substantial advantage over a true line attractor in terms of the

tuning requirements for the connections between cells; i.e. the

closeness to the line attractor configuration in figure 1.

The first step is to determine, as a function of the decay and

amplification rates, an interval during which the executive input

Figure 4. The network is able to tune to different delay period
lengths by changing the timing of the task input signal. The top
plot shows the evolution of a properly tuned persistent cell during a
delay period of length L. The value of the stimulus variable is 0:6
(indicated by the green horizontal line). The second panel shows the
same cell, with the same task input timing as the top panel, but with a
delay period that is twice the length (2L). This results in an unreliable
representation of the stimulus variable. The bottom panel shows the
same cell when the timing of the task input is correctly tuned for the
longer delay period. In this figure, Ji,i{1~0:98, and the feedback
strength is 0:04. The noise strength is s~0:03.
doi:10.1371/journal.pcbi.1003437.g004
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must arrive to correctly amplify the cellular activity. The goal is to

determine the length of this interval as a function of the decay and

amplification rates (c and s in equation (4)). I show that, for decay

(and amplification) rates well outside those acceptable for a true

line attractor, this interval of times is within the abilities of

networks in the brain.

To quantify the tuning requirements in the context of our

model, I first establish how accurate the network needs to be. I

define Ew0 as the resolution of the network. That is, the network

has to be able to differentiate between stimulus variable values that

are separated by more than E. Frequencies closer than this are

assumed to be too close to differentiate. Therefore, it is necessary

to determine when the task input must arrive so that

x(T)[(x(0){E,x(0)zE),

where T is the length of the delay period. Assume a decay rate of

cD~1{c, and an amplification rate of cA~szc{1, where c is

the coupling strength and s is the strength of the feedback

connections, as in equation (4).

First, we derive the requirements on the coupling strengths that

are necessary so that a line attractor can hold the value of the

stimulus variable for the duration of the delay period. Following

Goldman [9], the k-th cell in a chain of cells satisfying equation (1)

has the solution

xk(t)~x(0)e{t
Xk

s~0

cs

s!
ts:

For large k, this can be approximated by

x(0)e{tect~x(0)e(c{1)t~x(0)e{cDt: ð5Þ

Figure 5. Summation of feedback to freeze the trailing wavefront. Shown are cells 2,12,17,25, and 60. The rightmost plot is the only plot of a
persistent cell. All other plots show loss of relationship with the stimulus during the delay period. The summed noise of the early cells, along with a
small amount of feedback from the late cells, freezes the trailing wavefront. In this figure, Ji,i{1~0:98, the late cell feedback has strength 0:04, and
s~0:03 (noise strength).
doi:10.1371/journal.pcbi.1003437.g005

Figure 6. The decay and correct mechanism. The figure is laid out
the same as figures 2 and 3. The top panel contains three time series
showing the behavior of the three types of cells we consider - an early
cell (top), a persistent cell, and a late cell. The panel at the bottom of
the figure is an array plot that shows the evolution of the entire
network as a function of time. This figure clearly demonstrates the
change of behavior for the network after the executive input has
arrived - the frozen wavefront prior to the executive input, the
activation of the late cells, and the freezing of the trailing wavefront. For
all panels in this figure, the feed forward connection strength is
Ji,i{1~0:98 and the feedback from the late cells has strength 0:04. The
stimulus turns off at time t~20, and the executive input occurs at
t~47. For the noise s~0:03.
doi:10.1371/journal.pcbi.1003437.g006

Figure 7. Time series showing the activity level of a persistent
cell (used is the last persistent cell in the chain) undergoing the
proposed decay-amplify mechanism. Shown are time series for
stimulus variable values ranging from 0:3 (black) to 0:8 (brown). For
each of the simulations, the stimulus was removed at t~20, and the
executive input arrives at t~65. The connection strengths are
Ji,i{1~0:98 and the feedback is 0:04. For the noise, s~0:03.
doi:10.1371/journal.pcbi.1003437.g007
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For the regular line attractor, we require that

x(0)e{cDT
wx(0){E:

Solving for cD yields

cDvCmax~{
1

T
ln 1{

E
x(0)

� �
: ð6Þ

For the proposed mechanism, the tuning requirement is on the

timing of the external task input. To determine this requirement,

we determine the allowable values of the task timing (t�) given the

rate of decay, and the amplification rate due to feedback from late

cells. With decay followed by amplification, equation (5) can be

extended to yield

x(T)~x(0)e(c{1)t�e(czs{1)(T{t�)~x(0)e{cDt�ecA(T{t�), ð7Þ

Where t� specifies the timing of the executive input. We require

x(0){Evx(T)vx(0)zE. Solving for t� gives

cAT

cDzcA

{
1

cDzcA

ln 1z
E

x(0)

� �
vt�

v

cAT

cDzcA

{
1

cDzcA

ln 1{
E

x(0)

� � ð8Þ

The length of this interval is

1

cDzcA

ln 1z~EEð Þ{ln 1{~EEð Þð Þ

where ~EE~
E

x(0)
. From this inequality, one can see that the length of

the interval scales with the sum cDzcA. In other words, doubling

the sum cDzcA will decrease the length of the interval by a factor

of 2.

Now, to show that this is advantageous over tuning a line

attractor, we consider how the bound on t� varies as the decay rate

increases past the limit allowed by a line attractor. Inserting the

bound (6) into the expression for the length of the interval, and

letting cA~Cmax gives

1

2Cmax

(ln(1zE){ln(1{E))&T

This means that for any choice of cD and cA, the length of the

timing interval will be, approximately,

2Cmax

cDzcA

T : ð9Þ

Thus, this mechanism is feasible for values of cD and cA well

outside of values that will yield an effective line attractor. As an

example, if cD~5Cmax and cA~5Cmax, then the interval where

the external signal can arrive has length T=5. As another example,

if cD~5Cmax and cA~3Cmax then the interval will have length

T=4. For a 3 second delay period, these examples give interval

lengths of 600 ms and 750 ms, respectively. Based on measured

dynamics of neural operations in the brain, these intervals are

within the limits of feasibility.

In addition to the length of the interval, equation (8) gives

where, during the delay period this interval resides. The interval is

centered at

cA

cDzcA

T :

Thus, if cA~0 the amplified network acts as a line attractor, and

so the timing input should arrive right away. Accordingly, the

interval hugs the left endpoint of the delay period. On the other

hand, if cD~0, then the network is a line attractor during decay,

and the executive input never needs to arrive. Thus, if either the

decay or the amplification meet the requirements of a line

attractor, then the network is, by default, accurate enough.

Model performance
In this section, I demonstrate the performance of the model, in

terms of accuracy (correct or not) and how this varies with the

noise level and the decay and amplification parameters. I also

show how the decay-amplify model integrates noise, and compare

to a line attractor.

First, I determine how often the mechanism results in a correct

response at the end of the delay period for different executive input

times and different levels of noise. In all of these numerical

experiments, the stimulus variable is 0:5, the delay period begins at

time t~20 and ends at time t~80. My criterion for success is that

the activity at the end of the delay period (t~80) lies between 0:4
and 0:6 (so that E in equations (6) (8) is equal to 0:1).

In figure 8, I show the accuracy (as a percentage) of the model

for three decay-amplify sets - c~a~0:01,0:02,0:03. For a delay

period of length 60, inequality (6) gives the bound on acceptable

values for a line attractor:

cv{
1

T
ln 1{

E
x(0)

� �
~{

1

60
ln 1{

0:1

0:5

� �
&0:0038

This corresponds to a coupling strength of (Ji,i{1~0:996).

Expression (9) predicts an approximate interval width of 22:3 for

J~0:99, 11:6 for J~0:98, and 7:4 for J~0:97. These are,

respectively, 37%,18%, and 12% of the delay period lengths.

Figure 8 clearly shows that the 50% correctness rate lies at values

that are consistent with this calculation. At the 50% correctness

rate, the mean (which is the trajectory discussed in the previous

section) is right on the E~0:1 boundary. The noise causes a

distribution of values for the activity level at the end point. If the

network is tuned properly, the width of this distribution (variance)

determines how reliable the recall will be. It is necessary to show

that the decay-amplify model does not suffer from a noise

integration disadvantage over a line attractor, otherwise the tuning

advantageous would be nullified.

To determine the relationship between the cellular noise

strength (the variance of the Wiener process) and the variance of

the output, I ran the simulation 200 times, recording the activity at

the end of the delay period for a single cell - the last persistent cell

in the chain (cell #100).I repeat this for three instances of the

model: A line attractor (Ji,i{1~1) and two decay-amplify models

with Ji,i{1~0:99 and Ji,i{1~0:98. I simulate each of these with

four different noise strengths (s~0:01,0:02,0:03,0:04). The results

are shown in figure 9. The figure shows that the decay-amplify

mechanism integrates noise no worse (or better) than a line

attractor. This is not surprising. During the decay phase, the effect

of noise is reduced. Conversely, during amplification the effect of

noise is also amplified. The net effect of having a decay followed

by an amplification of noise results in roughly the same
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distribution as a line attractor, where the effect of the noise

uniform throughout the delay period.

General model
I have demonstrated the decay and amplify mechanism using a

simple feed forward model of neuronal activity. The choice of

coupling was made to simplify the calculations and make the

behavior of the model as transparent as possible. In this section, I

describe a more general connectivity, where there is no bias, to

demonstrate the decay-amplify mechanism is not dependent on a

specific type of network architecture.

In place of the feed forward chain, I model the cells as

Lx(s,t)

Lt
~{x(s,t)zcp

ðB

{B

J(s{w)x(w,t)dw ð10Þ

Figure 8. Model performance. Shown are the success rates for three decay rates (c~0:01,c~0:02,c~0:03) and four different noise strengths
(s~0:01,0:02,0:03,0:04) as a function of the timing of the executive input. For each decay, noise, and input value the simulation was run 200 times.
The last 10 persistent cells in the feed forward chain were used in the calculation. The green lines show the boundaries of the timing interval
described in the previous section. The noise causes a near symmetric distribution of end of delay period activity levels centered around the mean (the
predicted value given in the previous section). At the boundaries, this distribution will be centered around the +E range required for success, and so
the success rate at these boundaries is 50% for all noise strengths.
doi:10.1371/journal.pcbi.1003437.g008

Figure 9. Distribution of end of delay period activity for a line attractor and two instances of the decay and amplify model. The first
row shows the distributions for a line attractor. The second and third rows show the distributions for models with decay rates of c~0:01 (J~0:99),
and c~0:02 (J~0:98), respectively. The corresponding amplification rates are also 0:01 and 0:02. The distributions in a single column are very similar,
demonstrating that the decay and amplify mechanism integrates noise no better or worse than a line attractor.
doi:10.1371/journal.pcbi.1003437.g009
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where x is the activity, s is location, cp is the coupling strength, and

J is a connectivity kernel. We assume that J({x)~J(x)

(symmetric), J(x)w0, and
Ð

J~1 (on an unbounded domain, I

use cp to scale for a bounded domain). For the simulations, I use

J(x)~
1

4
e
{

DxD
2

so that
Ð

J~1. If B~? then if cp~1 the networks admits a line

attractor. Because we are considering a bounded domain, the

value

cp~

Ð ?
{? J(x)dxÐ B

{B
J(x)dx

~
1Ð B

{B
J(x)dx

corresponds to the maintenance configuration in figure 1, where

cells on the interior behave as a line attractor until the arrival of

the wavefront. For simulations, the integral is discretized and 300

early/persistent cells are used.

There are countless ways to implement the late cells. I choose to

implement the late cells as a another line of cells, coupled to the

activity described by (10) according to

Ly(s,t)

Lt
~{y(s,t)zcp

ð B

{B

J(s{w)x(w,t)dw ð11Þ

and implement the feedback as one to one by rewriting equation

(10) as

Lx(s,t)

Lt
~{x(s,t)zcp

ð B

{B

J(s{w)x(w,t)dwzcry(s,t), ð12Þ

where cr is the strength of the feedback from the late cells. Here, I

have implemented the feedback from the late cells as a one to one

relationship, and the connections from the early and persistent

cells are divergent. Figure 10 shows the network schematic of this

configuration.

Simulations of the network for a range of stimulus variable

values are shown in figure 11. Shown are example time series for

an early cell, a persistent cell, and a late cell, for a range of values

of the stimulus variable. This figure demonstrates the decay-

amplify model for a network that is not a feed-forward chain.

Discussion

I demonstrate a mechanism that allows a network of cells to

store an analog stimulus variable for a delay period, greatly easing

the tuning requirements that would be necessary to accomplish the

same feat with a line attractor. Using a simple mathematical

representation of cellular activity, I demonstrate how wave fronts

can account for the different types of activity observed in the

experiments [1,2] (early, persistent, and late), the systematic

change in the number of cells encoding the stimulus, as well as the

in-trial variability of persistent cells. The keystone of the

mechanism is an external signal that is executive in nature and

provides timing to the network.

I show that the proposed mechanism eases the requirements on

cell-to-cell connections by initially allowing the cellular activity to

decrease. A subsequent amplification, initiated by the executive

input, corrects for the decay. I show that the restriction on the

timing of the executive input depends on the decay and

amplification rates in a way that is feasible for networks in the

brain, even when the decay and amplification rates are well

outside those allowable for a line attractor. The memory

mechanism that I describe has an additional advantage: It allows

the network to quickly adapt to delay periods of different lengths.

The tuning strategy involves changing the time when a wave

front is allowed to propagate into a previously response-less group

of cells, late cells, which do not encode the stimulus until the latter

half of the delay period. This strategy agrees with the data shown

in [1], where upon lengthening the delay period from 3 seconds to

6 seconds, the activation of late cells is pushed back. Importantly,

this transition is not accomplished in one step, but rather over a

series of steps. Consistent with this gradual transition is an increase

in the error rate for a few trials after the change of delay period

length takes place [1]. The mechanism that I describe suggests that

there should be an increase in the error rate upon changing the

length from 6 to 3 seconds - a testable hypothesis that is somewhat

counter-intuitive.

The analysis that I provide is for a feed forward network. This

choice for the connectivity matrix J was made so that the behavior

of the model is as transparent as possible. I make the claim that

this choice of connectivity is not crucial for the mechanism to

work, and I demonstrate the mechanism using a recurrent

network. In general, a linear filter that slowly decays the signal

(the eigenvalues of the network are negative, with a few near 0 for

slowness -ie. near a line attractor) will work for the mechanism,

since all that is needed is that monotonicity be preserved. The

evolution of early and persistent cells depends on the relative decay

rates. If the network of linear filters has a range of decay rates

which are spatially localized, then the activity level of some cells

will decay quickly, while the activity level of others will decay

slowly. Those that decay quickly are candidates to be early cells.

Those that decay slowly maintain a monotonic relationship with

the stimulus and are more likely to be persistent cells. Any such

network that is not normal can be viewed as a feed forward

network under an appropriate change of basis [9]. If the network is

normal, then the behavior can be viewed as independent modes

(the eigenvectors) and will not be, strictly speaking, feed forward.

Figure 10. Schematic for the network described by equations
(11–12). The blue circles represent the early and persistent cells
through which the traveling wave propagates. The green circles
represent the late cells. When the executive input arrives, the late cells
are activated by the persistent cells. In this instance, the connections
from the persistent to the late are divergent (black arrows). The late
cells feed back onto the early and persistent cells in a one-to-one
fashion (green arrows). This is only one of many possible implemen-
tations of the decay and amplify mechanism.
doi:10.1371/journal.pcbi.1003437.g010
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Such a network still is capable of various decay rates, and so can

admit early and persistent cells just as a feed forward network can.

I treat late cells as a distinct group, defined by the inability to

respond to input until an executive input is received. There are

many ways to implement the late cells. In the feed forward model, I

attach them to the end of the chain. In the symmetric model, I treat

them as a separate line of cells that are reciprocally connected with

the early and persistent cells. In either case, once allowed to

participate in the task, they assume the activity of the persistent cells,

and amplify the network. Any late cell configuration that does this

will work, there are no other requirements on the late cells.

A major claim of this paper is that the late cells are governed by

a timing input, executive in nature. Prior to the arrival of the

executive signal, these cells do not respond to input. There are

many plausible mechanisms for this. The most obvious to me is a

shunt, as described by Torre and Poggio [15]. If ion channels that

have a reversal potential near the membrane resting potential and

are held open, the impact of other channel openings (eg. sodium)

will be greatly reduced. So, in this scenario, the action of the

executive input would be to remove this shunt by allowing the

responsible channels to close. Another possibility is inhibition.

Inhibitory control is known to be an important element of

prefrontal function [12]. A constant inhibitory drive onto the late

cells would hold them quiescent. Removal of this inhibition would

serve the purpose of the executive input.

There have been numerous modeling studies of the delayed

discrimination experiments. When comparing and contrasting the

proposed decay-amplify mechanism with these models, I focus on

the three most important features: 1). The decay-amplify model is

an extension of a line attractor. 2). The proposed model accounts

for the division into early, persistent and late cells using a wave

front.3). An external executive input is used as a timing

mechanism for the model. This external input is independent of

the stimulus variable.

A line attractor is a natural choice to store the value of an

analog variable. Other authors have used a line attractor to model

the Romo data [7,16]. In [7], Machens et al. use the interplay

between cells that respond to the stimulus in different ways

(monotonically increasing relationship versus a decreasing rela-

tionship with the stimulus variable) and inhibition to form the

attractor. Singh and Eliasmith [17] use a ‘‘neural integrator’’,

which is similar to a line attractor in that the output of the system

does not change without a change in the input, and that the

connection strengths between cells needs to be precise. The decay-

amplify model is a novel extension of these models. Rather than

require the very tight tuning necessary for a line attractor, I allow

the cellular activity level to drift slowly. The value of the stimulus

variable is lost, but the activity of the decaying system maintains

the monotonic relationship with the stimulus variable.

It is important to note that the line attractor has not been the

only proposed means of modeling the data. Barak et al. [16]

explore two types of models, in addition to a line attractor. They

show that a network with random connectivity can perform the

task by using a linear sum over the constituent neurons. They also

demonstrate a learning model that begins like the random network

(random connections, linear readout) but then adjusts the

connection strengths between neurons based on past performance.

Each of these models are capable of the performing the task,

though none of them account for the late cells. Additionally, a

change in the length of the delay period would require a complete

recalculation of the weights applied in the linear readout scheme,

rather than changing a single parameter.

There have been studies that use completely different strategies

to store the stimulus variable. Miller et al. [18] tune a model so

Figure 11. Simulations of the non-feed-forward model. The upper left panel is an array plot showing all early and persistent cells. Of note is
the trailing wavefront that originates at the boundaries. Those cells that this wave front overtakes are the early cells. The upper right, lower left, and
lower right panels show the evolution of a persistent, early, and late cell respectively, for a range of stimulus values (the loading phase is not shown).
For all of these figures, the connection strength cp~0:98, the feedback strength is cr~0:04, and the executive input arrives at t~45.
doi:10.1371/journal.pcbi.1003437.g011
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that it approximates a line attractor near a degeneracy. The

attractor holds the memory by holding the activity level constant

for the duration of the delay period. Miller includes inhibition and

cells that encode the stimulus variable both positively and

negatively. The attractor is formed through the interplay of these

different cells. Another strategy that has been described is to store

the stimulus as a level of facilitation in the cells [19,20]. The initial

stimulus facilitates the synaptic connections between cells, and

these facilitated cells later respond to a recall signal. The

facilitation decays slowly, so that the memory is stored at the

synaptic level. Neither of these models attempt to describe the

diversity of the cellular responses, in particular the division into

early, persistent and late cells.

Barak et al. [20] show that the stimulus information is held in a

dynamic way. They quantify a population state for the recorded cells

by trends in how the cells are tuned to the stimulus. They look at two

representations of the population state, sensory and memory. The

sensory representation of the stimulus is the population state at the

beginning of the delay period. The memory representation is the

population state at the end of the delay period. The authors show

that applying the sensory representation to cells at the end of the

delay period, or applying the memory representation to the cells at

the beginning of the delay period, provides no stimulus information.

Thus, they demonstrate that the stimulus information is held in a

dynamic way, by different cells at different times. Those neurons that

are classified as sensory correspond to the early cells in the model I

propose. At the beginning of the delay period, they are tightly tuned

with the stimulus. At the end of the delay period, they are devoid of

information. Similarly, the late cells begin with no stimulus

information, but gain it later in the delay period. The authors note

that the classification of sensory or memory is only weakly correlated

with the classification of early or late. The model that I propose is too

simple to account for all of the data, but the wave front hypothesis for

diversity of responses neatly accounts for the transition from a

sensory representation to a memory one, as described.

Singh and Eliasmith [17] offer an alternative mechanism to

account for the diversity. They build a network of cells, each

having a preferred orientation to a state space variable. As the

state space variable evolves, it passes through the tuning curves of

the cells. The distribution of preferred orientations yields a diverse

array of responses including early, persistent (ramping type, as

described in [4]), and late.

The centerpiece of the decay-amplify mechanism is an executive

input that adds timing to the network. This is a novel addition to

the modeling literature, though the separation of stimulus and time

has been explored before. Use of an external executive input for

timing purposes is in agreement with other studies that separate

the stimulus component of the activity from a time component.

Machens [14] shows that there are two separate causes of variance

in the data: stimulus and time. They show that the variance

attributed to time is likely external in origin. This strongly supports

the use of an external executive input to time the network.

Singh and Eliasmith [17] also separate stimulus and time. The

state space variable that evolves through the tuning curves has two

components, the stimulus and a variable that is akin to elapsed

time. They do not implement their timing component as an

external signal. Moreover, they model it as a passive process that is

ongoing throughout the delay period. In contrast, the executive

input that I propose is external, and upon arrival the behavior of

the network drastically changes. These drastic network changes

can be seen in the data, where there is an obvious change in

behavior near the mid point of the delay period [1]. The number

Figure 12. The four different activity patterns observed in the experiments generated using the model (1). In all panels, the stimulus
was removed at t~20. In the upper panels, the entries of J are 0:98, so that there is a decline in activity following the removal of the stimulus. In the
left panel, the feedback is weak so the decrease continues after the executive input has arrived. In the right, the feedback is strong enough to
increase the activity of the persistent neuron. The lower panels have coupling strengths of 1:01, so that there is an initial increase in activity after the
stimulus is removed. The lower left panel shows a cell that gets caught by the trailing wave front. The right panel shows a cell that continues to rise
throughout the delay period because it is not caught by the front prior to the end of the delay period.
doi:10.1371/journal.pcbi.1003437.g012
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of tuned cells begins to increase, and the behavior of individual

cells changes. The tuning curves in the Singh and Eliasmith model

are monotonic along both axis (stimulus and time), and so the

activity pattern that is the focus of this paper, a decay of activity

followed by an amplification, is not possible in the Singh-Eliasmith

model without an external intervention.

The decay-amplify model is the only model that directly

addresses the two-mode behavior that Brody et al. [1] describe -

behavior that is different during the first half of the delay period

than during the second half. I focus on activity that decreases

during the beginning of the delay period and then is amplified to

recover the stimulus information. Another type of persistent

activity that occurs is ramping, where a cell either increases or

decrease for the duration of the delay period while maintaining a

monotonic relationship with the stimulus variable [3,4]. The

simple linear filter that I use is capable of generating all of these

types of behavior (figure 12), but they cannot coexist for the simple

chain of neurons that I describe.

In conclusion, this study suggests another potential means of

storing a stimulus variable as a firing rate for the duration of a

delay period. This mechanism stands apart from previous models

that do not take the variability during the delay period into

account. Moreover, this variability is revealed as part of the

solution to the memory problem, rather than a confound. The

major claim that I make is that there is an external timing signal

that causes the network to switch modes. There are many features

of the data that I do not take into account (eg. inhibition and

different monotonic encodings). These features are almost certain

to play a role in the prefrontal calculations, and figuring out how

everything works together is an ongoing process.

Supporting Information

Code S1 Implementation of the feed forward network, as

described by (3–4).) I have included the file mem_net.txt. This is

a file for use with the dynamical systems software XPPAUT [21].

(TXT)
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