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Abstract

Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently
associated with the development of various genetic diseases. Computational tools for the prediction of the effects of
mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for
experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their
comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets,
which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent
datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The
benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established
prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best
performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction
performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an
accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy
access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database
and the UniProt database. The web server and the datasets are freely available to the academic community at http://
loschmidt.chemi.muni.cz/predictsnp.
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Introduction

The single nucleotide variants (SNVs) are the most frequent

type of genetic variation in humans, responsible for almost 90% of

known sequence differences [1,2]. Although many of these

changes are neutral, some variants do affect gene expression or

the function of the translated proteins [3,4]. Such SNVs often have

dramatic phenotypic consequences leading to the development of

various diseases [5]. Approximately half of the known disease-

related mutations stems from non-synonymous SNVs, manifested

as amino acid mutations [6,7]. Although it is extremely important

to uncover the links between SNVs and associated diseases, it is

difficult to distinguish pathogenic substitutions from those that are

functionally neutral by any experimental assay due to rapid

growth of the number of known SNVs [8,9]. Therefore,

computational prediction tools became valuable for the initial

analysis of SNVs and their prioritization for experimental

characterization.

There are many computational tools for prediction of the effects

of amino acid substitution on protein function, e.g., MutPred [10],

nsSNPAnalyzer [11], PolyPhen-1 (PPH-1) [12], PolyPhen-2 (PPH-

2) [13], SNAP [14], MAPP [15], PANTHER [16], PhD-SNP [17],

SIFT [18] and SNPs&GO [19]. Most of these tools are designed to

predict whether a particular substitution is neutral or deleterious,

based on various parameters derived from the evolutionary,

physico-chemical or structural characteristics [20,21]. These tools

mainly employ machine learning methods to derive their decision
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rules based on a training datasets of annotated mutations. Since

overlaps between the training datasets of evaluated tools and the

benchmark datasets have been shown to result in illegitimately

high performance estimates of such tools [22,23], it is of the utmost

importance to carry out any comparisons on fully independent

datasets [24,25]. Variability of the training datasets utilized by

individual prediction tools coupled with the public inaccessibility

of these datasets represent a serious obstacle to unbiased

comparison of predictive power of the tools [21]. Since individual

prediction tools have been developed using different: (i) training

datasets, (ii) machine learning methods and (iii) underlying

principles, it is generally believed that some of them can be

combined to give a single consensus prediction with improved

accuracy [26]. Recent examples of consensus tools are CONDEL

[27], PON-P [28] and Meta-SNP [29], all of which reported

improved performance over individual integrated tools.

In this paper, we constructed three fully independent datasets,

one benchmark and two testing datasets, suitable for assessment of

the performance of eight selected prediction tools in an unbiased

manner. We then combined six best performing methods into a

consensus classifier PredictSNP. The developed consensus of these

prediction tools provided significant improvement in prediction

performance over the individual tools and also over three

previously developed consensus classifiers. Finally, we developed

a web interface to allow an easy access to all eight prediction tools

and consensus PredictSNP. Predictions from the computational

tools are supplemented by experimental annotations from Protein

Mutant Database [30] and UniProt database [31].

Design and Implementation

Prediction Tools
Initially, eight selected prediction tools were chosen for the

evaluation (Table 1). The tools had to satisfy following criteria: (i)

to allow submission of user-defined sequence, (ii) to be available as

a stand-alone application to allow large-scale evaluations and

provide stable service, and (iii) not to require a protein structure

for the prediction since structural information is available only for

a small portion of known sequences. Four selected tools –

nsSNPAnalyzer, PhD-SNP, PPH-2, SNAP – each use a decision

model trained by various machine-learning methods. Out of the

remaining tools, SIFT and PANTHER use solely evolutionary

information, while MAPP also considers the differences in

physicochemical properties between wild-type and mutant amino

acids. Finally, PPH-1 employs an expert set of empirical rules for

the classification [32]. All selected tools were installed on local

server and run using their default settings with the following

modifications. A pipeline developed in the framework of the

HotSpot Wizard server [33] was used for construction of multiple

sequence alignments and a phylogenetic tree for MAPP. In short,

a BLAST sequence search [34] against the non-redundant

database at NCBI [35] is performed to gather protein sequences

similar to the query. Sequences are clustered by CD-HIT 4.6 [36]

and representatives of the clusters aligned using MUSCLE 3.8

[37]. Then, a phylogenetic tree is calculated by Rate4Site 2.01

[38]. PPH-2 offers a choice from two machine-learning models

trained by Naı̈ve Bayes on different datasets – HumDiv [13] and

HumVar [13]. Only the HumDiv-trained model was employed in

this study since HumDiv dataset was constructed using additional

criteria to reduce the number of possibly erroneous annotations

[13]. SIFT can employ two sequence databases for homologues

identification: the non-redundant database at NCBI or UniProt

[31], the former being used in this study. Since the SIFT algorithm

is unable to process very long sequences, we automatically

truncated these sequences into a fragments of 700 amino acids

with analyzed mutation located in theirs centers as recommended

in the user manual. Finally, median sequence conservation of

SIFT method was set to three according to the recommended

range.

Datasets
Benchmark dataset. The benchmark dataset used for the

evaluation of the selected prediction tools and training of

consensus classifier PredictSNP was compiled from five different

sources. The first four constitute training datasets of the tools,

which were not selected for evaluation since they did not meet the

selection criteria defined in the previous section. These sources

were following: SNPs&GO [19] dataset of 58,057 mutations

compiled from SwissProt, the MutPred [10] dataset of 65,654

mutations compiled from SwissProt and HGMD [39] and the

PON-P [28] training dataset of 39,670 mutations compiled from

dbSNP, PhenCode [40], IDbases [41] and 16 individual locus-

specific databases. Since only the HumDiv-trained model of

PPH-2 was employed in this study, we could include its second

dataset HumVar containing 41,918 mutations from SwissProt

and dbSNP into the benchmark dataset. The final source was

Humsavar [42], which is a distinct unit of UniProt containing

36,994 neutral and disease-related mutations found in Uni-

protKB/SwissProt entries. Such combination of sources should

result into a large and diverse dataset. On the other hand, this

dataset will certainly contain many duplicate records as some

particular mutations are in more than one source datasets.

Table 1. Principles and training datasets of eight evaluated tools.

Tool name Version Principle Training dataset Reference

MAPP 28.6.2005 Physicochemical properties and alignment score No training dataset [15]

nsSNPAnalyzer 12.2.2004 Random forest SwissProt 3,511 neutral/502 deleterious [11]

PANTHER 1.02 Hidden Markov model and alignment score No training dataset [16,54]

PhD-SNP 2.06 Support vector machine SwissProt 17,983 neutral/16,330 deleterious [17]

PolyPhen-1 1.18 Expert set of empirical rules No training dataset [12]

PolyPhen-2 2.2.2 Naı̈ve Bayes SwissProt, dbSNP 7,070 neutral/5,322 deleterious [13]

SIFT 4.0.4 Alignment score No training dataset [59]

SNAP 1.1.30 Neural network SwissProt, Protein Mutant Database 40,830
neutral/39,987 deleterious

[14]

doi:10.1371/journal.pcbi.1003440.t001

PredictSNP: Robust Consensus Classifier
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Moreover, this dataset will definitely have large overlaps with the

training datasets of prediction tools selected for evaluation. To

resolve these issues and thus construct fully independent dataset,

we applied following procedures. Pairs of mutations with the

conflict functional annotations were purged, e.g., one particular

mutation is considered as a deleterious in one source dataset, but

neutral in another source dataset. All duplicate mutations were

excluded. The training datasets of all evaluated prediction tools

were collected and mutations overlapping between the training

datasets and our dataset were removed to create fully indepen-

dent PredictSNP benchmark dataset. All selected prediction tools

use at least some position-specific parameters derived from

evolutionary information as significant indicators of pathogenic-

ity. Therefore, we removed both directly overlapping mutations

and mutations at any overlapping positions, i.e., positions which

were mutated in the training datasets of selected prediction tools.

The positions were considered overlapping if they were located in

the fragments of two sequences aligned by BLAST search with e-

value 10210 and the aligned fragments had at least 50% identity.

Finally, all mutations at positions overlapping with testing

datasets described in the next section were removed to assure

independence between PredictSNP benchmark and the testing

datasets. As a complement to the independent PredictSNP

benchmark dataset, another dataset containing only mutations

present also in the training sets of evaluated tools (nsSNPAna-

lyzer, PhD-SNP, PolyPhen-2 and SNAP) was compiled. The

OVERFIT dataset was compiled to estimate the effect of the

overlap between the training datasets of evaluated tools and the

testing dataset on performances of these tools.

Testing datasets. Two testing datasets were prepared for

evaluation of PredictSNP performance. The Protein Mutant

Database (PMD) dataset was derived from PMD (version

07Mar26) which contains experimental information about effects

of 165,880 single point mutations on protein activity, stability and

connections to diseases; extracted from more than 10,000 articles

[30]. The records with annotations [ = ], i.e., no change of activity,

were considered as neutral, while the records with any other

annotations were considered as deleterious. All mutations with

conflicting annotations, e.g., [ = ] and [++] at the same time, were

excluded. Similar to the process employed during the preparation

of the PredictSNP benchmark dataset, all mutations at the

positions overlapping with the training datasets of the evaluated

tools were removed. The subset of PMD testing dataset containing

only the mutations associated with sequences from the UniProt

database, called PMD-UNIPROT, was prepared to enable the

evaluation by CONDEL during the comparison of PredictSNP

classifier to other consensus classifiers.

The second testing dataset was compiled from experimental

studies summarized by Yampolsky and Stoltzfus [43]. One

protein out of twelve was excluded due to very short length (30

amino acid residues). This set was complemented by mutations

gathered from two patent applications issued by Danisco Inc.

describing the effect of mutations on serine protease from Bacillus

subtilis [44] and alpha-amylase from Geobacillus stearothermophilus

[45]. This dataset of thirteen massively mutated proteins (MMP)

initially contained 16,500 mutations. For all mutations originat-

ing from experimental studies, change of activity is provided in

the form of a categorical value. In correspondence with the

construction of PMD testing dataset, only the mutations

maintaining the wild-type level of activity were considered as

neutral. In the case of patent applications, the specific ratio of

activity change for each mutation is known, and accordingly to

the information enclosed in the source materials, the mutations

with the activity changes larger than 50% were considered as

deleterious. Finally, the mutations at the positions overlapping

with training datasets of the evaluated tools or PMD testing

dataset were removed from MMP dataset.

Consensus Classifier
A key step for the development of the consensus classifier is the

design and implementation of computational framework, which

defines the way of combining the results from the individual tools.

In the previous steps, we prepared the datasets and selected the

tools suitable for their evaluation. Then, we retrieved predicted

effects of mutations together with their corresponding confidence

scores, which reflect the degree to which individual tools trust to

their predictions. With the exception of PPH-1, all of the

integrated tools classify the effect of mutation into two classes:

neutral or deleterious. PPH-1 provides extra class of possibly

deleterious, which can be considered as a deleterious class with the

confidence score equal to 0.5. Unfortunately, all integrated tools

use different scales for reporting their confidence scores, which

renders their combination and direct comparison problematic.

Therefore, we transformed the individual confidence scores to one

comparable scale in range of 0–100% using the values of their

observed accuracies, which express the fraction of correct

predictions by a given tool on the particular level of confidence.

The transformation functions defining the relationships between

the confidence score of each tool and their corresponding observed

accuracies were derived using PredictSNP benchmark dataset. For

the integrated tools providing the confidence score in a form of

categorical value (PhD-SNP, PolyPhen-1 and SNAP), the observed

accuracies were calculated as the number of correct predictions to

the number of all predictions separately for each category. For the

remaining tools, all evaluated mutations from PredictSNP dataset

were sorted by the continuous value, indicating confidence score

and consequently partitioned into 60 bins consisting of equivalent

number of members. Finally, these bins were averaged over five

neighboring bins. Since the relationship between the confidence

score and the observed accuracy can be different for deleterious

and neutral prediction classes, the transformation functions were

developed for both classes separately (Figure S1). After the overall

predictions and corresponding transformed confidence scores were

obtained, the PredictSNP consensus prediction was calculated

using the following equation:

PredictSNP score~

PN

i~1

di
:Sið Þ

PN

i~1

Si

,

where N is the number of integrated tools, di represents the overall

prediction (+1 for the deleterious prediction, 21 for the neutral

prediction) and Si expresses the transformed confidence scores.

The output value of PredictSNP score belongs to the continuous

interval ,21, +1.. The mutations are considered to be neutral

for the values in the interval ,21, 0. and deleterious for the

values in the interval (0, +1.. The absolute distance of the

PredictSNP score from zero expresses the confidence of the

consensus classifier about its prediction. For easy comparison with

the confidence scores of individual integrated tools, we trans-

formed the confidence of the PredictSNP consensus classifier to

the observed accuracy in the same way as described for confidence

scores of the integrated tools (Figure S1).

Besides implementing the advanced weighted majority vote

model, the induction of the consensus model was performed by

using six different machine learning methods of WEKA 3.75

PredictSNP: Robust Consensus Classifier
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software package [46]. The first selected method was the Naı̈ve

Bayes (weka.classifiers.bayes.NaiveBayes), representing a probabilistic

classifier based on the Bayesian theorem [47]. As a representative

of the class of regression analysis models, we used the multinomial

logistic regression model with a ridge estimator (weka.classifiers.-

functions.Logistic) [48]. Neural networks were represented by the

voted perceptron algorithm in the implementation by Freund and

Schapire (weka.classifiers.functions.VotedPerceptron) [49]. From the class

of Support Vector Machine (SVM) classifiers, the SVM with

polynomial kernel function as implemented in LIBSVM was

selected (weka.classifiers.functions.LibSVM) [50]. The K-nearest

neighbor classifier represented the class of classifiers based on

the assumption that similar cases belong to the same class

(weka.classifiers.lazy.IBk) [51]. Finally, the ensemble-based approach

– Random forest – was selected, which constructs set of decision

trees and the classification is based on the consensus of their

decisions (weka.classifiers.trees.RandomForest) [52]. All models were

derived using the default parameters.

Results

Construction of Datasets
In this study, we performed an evaluation of eight tools for

prediction of the effects of mutations on protein function and

combined six of them into the consensus classifier PredictSNP (for

explanation of employed evaluation metrics see Supporting text

S1). The proper benchmark dataset is of prime importance for the

evaluation of prediction tools since overlaps between the

composition of the benchmark dataset and the training datasets

of a tool would result into overly optimistic performance

evaluation of such tool [22,23]. These overlaps can also hinder

the construction of consensus classifier as an unwarranted degree

of significance could be given to the tools with overlap between

datasets [22]. For these reasons, we strived to secure the full

independence of the PredictSNP benchmark dataset for unbiased

evaluation of selected tools and proper training of our consensus

classifier. The same care was also taken when preparing both

Figure 1. Workflow diagram describing construction of independent datasets. The various sources of mutation data are shown in yellow,
intermediate datasets in white, Protein Mutant Database (PMD) testing dataset and the testing dataset compiled from studies on massively mutated
proteins (MMP) in blue, and PredictSNP benchmark dataset in green. The data from the original training datasets of all evaluated tools shown in red
were removed from newly constructed datasets.
doi:10.1371/journal.pcbi.1003440.g001

PredictSNP: Robust Consensus Classifier
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testing datasets for the comparison of performance of PredictSNP

consensus classifier, its constituent tools and other consensus

classifiers.

The independent benchmark dataset was combined from five

redundant datasets by removing all duplicates and subtracting all

mutations present at the positions used in the training of the

evaluated tools or in any of the two testing datasets (Figure 1). This

procedure resulted in the PredictSNP benchmark dataset of

43,882 mutations (24,082 neutral and 19,800 deleterious) in the

10,085 protein sequences (Dataset S1). Complementary OVER-

FIT dataset was compiled from mutations present in the training

sets of evaluated tools (Dataset S2). This dataset contained 32,776

mutations (15,081 neutral and 17,695 deleterious) in the 6,889

protein sequences.

Similarly, two testing datasets for evaluation of consensus

classifier were prepared from Protein Mutant Database (PMD)

and studies on massively mutated proteins (MMP) (Figure 1). The

testing datasets consisted of 3,497 mutations (1,248 neutral and

2,249 deleterious) in 1,189 protein sequences for PMD dataset

(Dataset S3) and 11,994 mutations (4,456 deleterious and

7,538neutral) in 13 protein sequences for MMP dataset (Dataset

S4). The PMD-UNIPROT subset of PMD dataset with mapping

on UniProt database was compiled from 1,430 mutations (518

neutral and 912 deleterious) in the 433 protein sequences.

The distributions of wild-type and mutant residues for all four

datasets were compared with the expected distributions (Table S1,

S2, S3, S4) and the Pearson correlation coefficients between

observed and expected distributions were calculated. This analysis

showed that all datasets are biased. Following correlation

coefficients were observed: 0.69 for OVERFIT dataset, 0.54 for

Figure 2. Distribution of amino acids in PredictSNP benchmark
dataset. Expected distributions of amino acid residues were extracted
from 105,990 sequences in the non-redundant OWL protein database
(release 26.0) [58].
doi:10.1371/journal.pcbi.1003440.g002

Table 2. Performance of individual and PredictSNP prediction tools with three independent datasets.

Performance metricsa Dataset MAPP nsSNPAnalyzer PANTHER PhD-SNP PPH-1 PPH-2 SIFT SNAP PredictSNP

Percent of evaluated
mutations

PredictSNP 87.8 33.5 54.6 100.0 98.8 100.0 97.1 99.1 100.0

PMD 81.1 63.4 38.1 100.0 97.1 98.3 77.6 95.1 100.0

MMP 99.8 91.5 61.9 100.0 97.7 97.7 95.4 100.0 100.0

Overall 89.9 47.0 55.1 100.0 98.5 99.4 95.6 99.0 100.0

Accuracyb PredictSNP 0.711 0.632 0.642 0.746 0.682 0.701 0.723 0.670 0.747

PMD 0.653 0.629 0.651 0.633 0.654 0.632 0.643 0.631 0.642

MMP 0.707 0.618 0.603 0.629 0.684 0.677 0.646 0.709 0.708

Overall 0.707 0.629 0.635 0.715 0.681 0.692 0.703 0.676 0.733

Matthews correlation
coefficientb

PredictSNP 0.423 0.219 0.296 0.494 0.364 0.407 0.447 0.346 0.492

PMD 0.327 0.243 0.303 0.258 0.299 0.289 0.312 0.253 0.281

MMP 0.400 0.228 0.227 0.255 0.357 0.359 0.308 0.406 0.408

Overall 0.413 0.223 0.282 0.432 0.358 0.390 0.411 0.353 0.463

Area under the receiver
operating characteristics
curveb

PredictSNP 0.773 0.634 0.692 0.812 0.695 0.776 0.784 0.732 0.808

PMD 0.695 0.630 0.697 0.676 0.658 0.704 0.685 0.667 0.700

MMP 0.759 0.620 0.676 0.685 0.720 0.774 0.710 0.769 0.787

Overall 0.766 0.631 0.689 0.778 0.698 0.771 0.763 0.735 0.797

PPH-1 – PolyPhen-1; PPH-2 – PolyPhen-2; PMD dataset – dataset from Protein Mutant Database; MMP – dataset of massively mutated proteins;
a– detailed evaluation is available in Tables S5, S6, S7;
b– these metrics were calculated with normalized numbers.
doi:10.1371/journal.pcbi.1003440.t002

PredictSNP: Robust Consensus Classifier
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PredictSNP benchmark dataset, 0.52 for MMP dataset and 0.21

for PMD dataset. In the case of PMD dataset, the observed bias is

largely due to fivefold overrepresentation of alanine in the mutant

distribution - an obvious consequence of the frequent use of

alanine scanning technique. Although the weak correlation

calculated for PredictSNP benchmark suggested considerable

differences between observed and expected distribution, the

individual deviations for particular amino acids are rarely extreme

(Figure 2) with the average 33% difference from the expected

numbers (Table S1). The most striking difference was observed for

arginine and cysteine, which were twice more frequently present in

the wild-type distribution, while cysteine and tryptophan were

twice more frequently present in the mutant distribution (Table

S1). Underrepresentation by more than 25% was observed for

phenylalanine, lysine and glutamine in the wild-type distribution

and alanine, glutamine, leucine and aspartic acid in the mutant

distribution (Table S1).

Evaluation of Individual Prediction Tools
The performance of individual prediction methods was

compared using the PredictSNP benchmark dataset (Table 2

and S5). The evaluation showed that the applicability of some of

the tools is limited to only a part of the dataset. 66% of the

dataset was not evaluated by nsSNPAnalyzer due to a require-

ment for the existence of a homologous protein to the

investigated sequence in the ASTRAL database [53], a condition

which was not fulfilled by many protein sequences in PredictSNP

benchmark dataset. PANTHER was not able to evaluate 45% of

the dataset mainly due to the fact that the investigated mutations

could not be found at given positions in the pre-computed

multiple sequence alignments of PANTHER library [54]. In the

case of MAPP, 12% of the PredictSNP benchmark dataset was

not evaluated due to mutations located within gaps of multiple

sequence alignments.

Concerning the overall performance of individual tools,

PANTHER and nsSNPAnalyzer exhibited significantly lower

accuracies, Matthews correlation coefficients and area under the

receiver operating characteristics curve (AUC) than other evalu-

ated tools on PredictSNP benchmark dataset (Table 2). The other

six evaluated prediction tools achieved very good performances

with the accuracy ranging from 0.68 to 0.75, and Matthews

correlation coefficient ranging from 0.35 to 0.49.

Additionally, we assessed the effect of the dataset independence

on the tool performance. The individual tools were evaluated with

OVERFIT dataset containing only the mutations from the

training datasets of the evaluated tools (Table S8). In comparison

with the independent dataset, the increase of accuracy by 5% was

observed for PPH-2 and SNAP. The most striking difference was

measured for PhD-SNP for which the accuracy increased by more

than 11%. Training dataset of PhD-SNP constituted over 94% of

the OVERFIT dataset.

The performances of individual tools observed with PredictSNP

benchmark dataset were in good correspondence with a recent

comprehensive evaluation of nine prediction methods by Thus-

berg et al. [25]. The differences in performance can be attributed

to differences in benchmark datasets, and the fact that a fully

Figure 3. Overall receiver operating characteristic curves for all
three independent datasets. Comparison of PredictSNP and its
constituent tools with PredictSNP benchmark dataset (A). Comparison
of PredictSNP and other consensus classifiers with MMP data set (B) and
PMD-UNIPROT dataset (C). The dashed line represents random ranking
with AUC equal to 0.5.
doi:10.1371/journal.pcbi.1003440.g003

PredictSNP: Robust Consensus Classifier
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independent dataset has not been used for evaluation due to the

inaccessibility of training datasets for several evaluated tools [25].

We analyzed benchmark dataset of Thusberg et al. in detail and

found out that only about 33% of mutations (13,467 cases) is

shared with our benchmark dataset and about 56% of mutations

(22,652 cases) is shared with training sets of evaluated tools, i.e.,

MutPred, nsSNPAnalyzer, PhD-SNP, PolyPhen-2 and SNAP,

SNPs&GO (Table S9). Despite of these differences in composition

of the benchmark datasets, all shared tools differ in accuracy by

less than 5% with the exception of SIFT and PANTHER. The

difference of about 7% for SIFT can be explained by different

settings or selection of different database for identification of

homologues. In the case of PANTHER, the difference of about

12% can be caused by newer version of the decision core (cSNP

1.02 instead of cSNP 1.00) and updated version of PANTHER

library (7.2 instead of 6.0).

Development of Consensus Classifier
With the exception of PANTHER and nsSNPAnalyzer, all

other six evaluated tools were selected for the development of

consensus classifier. The prediction tools employed in the

consensus system should be as accurate as possible and also have

different decision boundaries. Therefore, we verified the absence

of strong correlation between any pair of tools that could

negatively affect the consensus prediction (Table S10). To identify

the most suitable method for combining the selected tools, we

trained seven consensus classifiers on the PredictSNP benchmark

dataset using seven machine learning methods, which represent

the most important classification principles [55]. To our surprise,

none of the methods provided a clearly superior performance

despite very different level of complexity of employed model

(Table S11). The majority vote weighted by the transformed

confidence scores of the integrated tools provided the most

balanced performance over the investigated datasets. Therefore,

motivated by its good performance and small probability of over-

fitting [56,57], we utilized the majority vote weighted by the

transformed confidence scores for the development of our

consensus classifier PredictSNP. The comparison of overall

performance of the PredictSNP classifier and its integrated tools

over all three independent datasets showed that the combining

these tools into the consensus lead to significantly improved

prediction with respect to the best of the integrated tools (Table 2

and Figure 3A). Since a single tool could be the best choice for

one dataset and moderate or even a poor choice for another

dataset (Table 2), the combination of their predictions by

PredictSNP represents a robust alternative for users who are

not experts on the prediction tools or miss information about

involvement of studied protein in the training of some particular

tool.

Comparison of PredictSNP with Other Consensus
Classifiers

The performance of newly developed PredictSNP was compared

to other consensus classifiers CONDEL, PON-P and Meta-SNP

using the PMD-UNIPROT and MMP testing datasets. The nature

of these datasets is very different. While PMD-UNIPROT dataset

contains a large number of proteins with only about three mutations

per protein, MMP dataset consists of only a few proteins associated

with a very large number of mutations. CONDEL, Meta-SNP and

Table 3. Performance of consensus classifiers with PMD-UNIPROT and MMP datasets.

Performance
metricsa PMD-UNIPROT MMP

CONDEL Meta-SNP PredictSNP CONDEL Meta-SNP PredictSNP

Percent of evaluated mutations 100.0 100.0 100.0 100.0 99.7 100.0

Accuracyb 0.562 0.670 0.679 0.640 0.673 0.708

Matthews correlation coefficientb 0.202 0.343 0.366 0.349 0.351 0.433

Area under the receiver operating characteristics
curveb

0.755 0.709 0.732 0.770 0.730 0.780

a– detailed evaluation is available in Table S12;
b– these metrics were calculated with normalized numbers.
doi:10.1371/journal.pcbi.1003440.t003

Figure 4. Workflow diagram of PredictSNP. Upon submission of
the input sequence and specification of investigated mutations,
integrated predictors of pathogenicity are employed for evaluation of
the mutation and the consensus prediction is calculated. In the
meantime, UniProt and PMD databases are queried to gather the
relevant annotations.
doi:10.1371/journal.pcbi.1003440.g004
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PredictSNP consensus tools were able to evaluate almost all

mutations from both PMD-UNIPROT and MMP testing datasets

enabling their mutual comparison (Table 3, Table S12 and

Figure 3B,C). The best performing tool on PMD-UNIPROT testing

dataset varies according to the evaluation metrics. The highest

accuracy (0.679) and Matthews coefficient (0.366) was observed for

PredictSNP, while CONDEL achieved better result for AUC. For

MMP dataset, the results confirmed a significantly improved

performance of PredictSNP in all three employed metrics. Obtained

significant difference in the accuracy of Meta-SNP and CONDEL is

in good correspondence with 4% difference previously reported for

the comparison of these tools with the NSV-2012 dataset consisting

of 972 mutations from the SwissVar database [29].

The prediction by PON-P was obtained only for 62% and 58%

of PMD-UNIPROT and MMP datasets, respectively. This is

because PON-P assigns the effect of mutations as unknown for

cases with less reliable prediction. To evaluate the benefit of PON-

P approach, we compared the performance of PON-P with

modified version of PredictSNP, which returned predictions for

the same number of mutations as PON-P (Table S13). These

mutations have the highest PredictSNP score reflecting the degree

of confidence in its own decision. In the case of PMD-UNIPROT

dataset, the accuracy of modified PredictSNP predictions was

increased by 3.7% to 71.6%, compared to PON-P accuracy

72.9%. In the case of MMP dataset, the accuracy of modified

PredictSNP was increased by 7.6% to 78.4%, compared to PON-

P accuracy 75.7%. The significant reduction in the number of

evaluated mutations led to the large improvement in the

prediction accuracy.

Description of Web Server
Web interfaces are currently available for six of the tools

evaluated in our study. However, some of the interfaces allow the

input of only a single mutation. Moreover, MAPP and PPH-1

have to be installed and run locally since there are currently

no web interfaces available for these tools. To facilitate the

access of users to the predictions from all eight individual

tools and the robust consensus classifier PredictSNP, we

Figure 5. Graphic user interface of PredictSNP. The web server input (left) and output (right) page.
doi:10.1371/journal.pcbi.1003440.g005
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developed a web interface to allow comfortable submission of jobs

and retrieval of the results from the individual tools and databases

as well as the consensus classifier PredictSNP (Figure 4).

Using this web server, a user can load an amino acid sequence

of a query protein in FASTA format, select positions for mutations

and desired mutations using the input page (Figure 5). Alterna-

tively, the user can submit a list of mutations in a text format. After

all desired mutations are specified, the user can select tools to be

employed for the evaluation of selected mutations. A time estimate

is provided for each tool and a number of mutations, based on an

average evaluation time for individual tools.

The server then runs the prediction using all selected tools. In

the cases where MAPP is included in the selection, the necessary

multiple sequence alignment and phylogenetic tree are automat-

ically calculated. The confidence scores of integrated tools are

transformed to observed accuracies and together with correspond-

ing prediction combined into PredictSNP prediction using the

weighted majority vote consensus. The prediction is finalized by

calculation of the PredictSNP confidence score. To provide a full

picture about an inferred effect of mutation on protein function,

the predictions are complemented with the experimental annota-

tions. The UniProt and the Protein Mutant Databases are queried

for any annotation regarding mutated positions in closely

homologous proteins with identity over 95%, supplying informa-

tion on the importance of the given position for the protein

function, the overview of known natural variations at the position,

the experimentally characterized mutations at the position as well

as their connection to disease.

The predictions of individual tools and the consensus

prediction by PredictSNP for all selected mutations are

provided together with the confidence of these predictions on

the output page (Figure 5). If available, the experimental

annotations for studied mutations are provided along with links

to respective records in the databases to complement the

prediction. The user can download the summary of results in

the form of a comma separated values (CSV) file or the detailed

results including also the output files from individual tools as a

single zip file.

Availability and Future Directions

The PredictSNP web server is freely available to the community

at http://loschmidt.chemi.muni.cz/predictsnp. The developed

datasets (Dataset S1, S2, S3, S4), the user manual (Supporting

text S2) and standalone version of PredictSNP consensus

calculator (Software S1) are also available from the website. The

standalone version represents an alternative to web server that is

suitable for massive mutagenesis studies. In contrast to the online

version, the standalone version requires pre-calculated predictions

from all six integrated tools as an input. For the best performance,

a user should use the same version and settings of integrated tools

as described in the method section.

Concerning the future development, authors plan to assess new

emerging tools for the prediction of the effect of mutations and to

consider integrating any stand-alone tool that would provide

additional improvement in the collective prediction. Particular

attention will be focused on the tools employing principles or

attributes not considered by currently integrated tools, e.g.

mutations on the correlated positions, protein-protein interaction

sites and others.
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