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Abstract

This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of
human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished
during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear.
This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the
reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and
robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii)
parameter estimation/model selection, and (iii) experimental design optimization.
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Introduction

Spectrum diseases in psychiatry, such as schizophrenia or

depression, display profound heterogeneity with regard to the

underlying pathophysiological mechanisms, requiring the devel-

opment of models that can infer subject-specific mechanisms from

neurophysiological and/or behavioural data [1–3]. Developing

quantitative approaches that can do this will require merging

expert knowledge on neurobiology, biophysical generation of

neuroimaging signals, cognitive psychology, and statistical data

analysis, to mention but a few. Recall that most cerebral mech-

anisms can be described at two levels of abstraction:

N The cognitive or functional level is concerned with the

information processing that is needed to explain behavioural

measurements (e.g., choices, reaction times) or subjective

reports (e.g., emotions, thoughts).

N The neurobiological or physiological level is related to the

neurobiological substrate of the system. Imaging neuroscience

or neuroimaging (e.g., electroencephalography/magnetoen-

cephalography or EEG/MEG, functional Magnetic Resonance

Imaging or fMRI) is capable of observing (non-invasively)

certain biophysical characteristics of this biological substrate.

These typically map to two classes of models, i.e. (i) formal

models of perception, learning and decision making that predict

behavioural responses, and (ii) biophysically realistic models that

describe how electrophysiological activity propagate through

neural networks. The issue with such models is that they are

based upon mechanisms that are usually both hidden (they are not

directly accessible from experimental data) and nonlinear (this is

the curse of realism). As a consequence, one requires sophisticated

statistical approaches that can deal efficiently with parameter

estimation and model selection (given experimental data). If only,

these are necessary to capture the inter-individual variability of

neurophysiological and behavioural responses. More generally,

such schemes would embed the models into the data analysis and

act as a ‘‘mathematical microscope’’ that is capable of unravelling

mechanisms, which are hidden deep within experimental data [4].

This article describes a (matlab) software toolbox that is

designed to perform such model-based analyses of neuroimaging

and behavioural data. Essentially, it consists of a probabilistic

model inversion scheme that borrows from disciplines such as

inverse problems, statistical physics and machine learning. More

precisely, the toolbox implements a variational Bayesian approach

(VBA) that can deal with a very general class of generative models,

which we describe below. In brief, VBA address the following

issues:

N performing efficient and robust parameter estimation on

nonlinear models;

N providing quantitative diagnostics of model fitting (including

summary statistics that can be used for model comparison);

N optimizing the experimental design in the aim of maximizing

the statistical power of model-based data analysis;

N assessing the results reproducibility at the group level (e.g.,

between-groups and between-conditions model comparisons).

In addition, the toolbox gathers a growing number of estab-

lished and novel biophysical and cognitive models, which capture

a broad range of phenomena. Among these are deterministic and

stochastic variants of dynamic causal models for fMRI data (see,
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e.g. [5] for a recent review) and bayesian models for human

learning and decision making [6–7]. Importantly, VBA includes

diagnostic analyses that can be used directly to refine such models,

i.e. to account for yet unpredicted features of experimental data

(cf. Volterra decompositions). We will demonstrate this below. Our

ambition is twofold: (i) to disseminate models and methods that

serve experimental purposes, and (ii) to provide a flexible platform,

which modellers can easily contribute to.

This paper is organized as follows.

In the next section, we will describe the design and implemen-

tation of the toolbox. In particular, we will describe the class of

generative models that the VBA toolbox can handle, expose the

main aspects of its algorithmic treatment, and summarize the

organization of the code. In section ‘‘Results’’, we will demonstrate

its capabilities through analyses of deposited test data. In section

‘‘Availability and future directions’’, we will discuss limitations and

on-going developments of this work.

Design and Implementation

In brief, the toolbox furnishes solutions to the three canonical

problems of model-based data analysis, which relate to the

experimental cycle (cf. Figure 1). One starts with a set of

competing hypotheses, e.g.: is the incentive value discounted (or

not) by the amount of cognitive effort that is required to obtain the

reward? This question will eventually be framed in terms of a

model comparison (e.g., model 1 -with effort discounting- versus

model 2 -without effort discounting-). First, one has to be able to

predict behavioural and/or biological signals from the candidate

models. This simply means simulating, e.g. people’s choices under

model 1 and 2. Second, one may want to optimize the experi-

mental design, in the aim of best discriminating the candidate

models. In our example, this naturally involves manipulating both

the reward that is at stake and the amount of effort. However,

there might be an optimal manipulation of these two factors, such

that models 1 and 2 yield radically different predictions. Third,

one proceeds to parameter estimation and/or model selection,

given the acquired experimental data. Here, statistical inference

follows the variational Bayesian treatment of the candidate models

(see below).

Data analysis results can now serve to identify a new set of

competing hypotheses, which then triggers a new experimental

cycle…

The toolbox is designed so that data simulation, parameter

estimation, model selection and design optimization can be

handled automatically, given standardized information about the

model (see below).

Stochastic nonlinear state-space models
Any Bayesian data analysis relies upon a generative model, i.e. a

probabilistic description of the mechanisms by which observed

data are generated. Such descriptions can go from simple static

linear models to nonlinear dynamical models in continuous time.

This toolbox does not invert any generative model: it has been

developed to deal with stochastic nonlinear state-space models. As

we will see below, this class of generative models grandfathers most

models used in the literature. It is defined by a joint probability

distribution over the following set of variables:

N y: the p|nt data time-series

N x: the n|nt hidden states time-series

N x0: the n|1 initial conditions of the system

N u: the nu|nt inputs time-series

N h: the nh|1 evolution parameters

N Q: the nQ|1 observation parameters

N a: the state noise precision

N s: the measurement noise precision

Figure 1. The experimental cycle. The experimental cycle summarizes the interaction between modelling, experimental work and statistical data
analysis. One starts with new competing hypotheses about a system of interest. These are then embodied into a set of candidate models that are to
be compared with each other given empirical data. One then designs an experiment that is maximally discriminative with respect to the candidate
models. Data acquisition and analysis then proceed, the conclusion of which serves to generate a new set of competing hypotheses, etc… Adapted
from [14].
doi:10.1371/journal.pcbi.1003441.g001
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These variables are assumed to obey the following evolution and

observation equations:

xt~f xt{1,h,uð Þzgt

yt~g xt,Q,uð Þzet

�
ð1Þ

where f (resp. g) is the evolution (resp. observation) mapping, and

gt (resp. et) is the state (resp. measurement) noise. As we will see

later, continuous dynamical systems can, in principle, be reduced

to Equation 1 (cf. Text S3 in the supplementary information).

Equation 1 is then augmented with Gaussian prior assumptions

regarding the statistical behaviour of initial conditions, evolution/

observation parameters and state/measurement noise:

h m*j N m0
h,S0

h

� �
Q mj *N m0

Q,S0
Q

� �
x0 mj *N m0

x0
,S0

x0

� �
gt mj *N 0,Qt

x

� �
et mj *N 0,Qt

y

� �
ð2Þ

where m (resp. S) denotes the mean (resp. covariance matrix) of the

Gaussian density. Setting the prior variance of a given variable to

zero simply means fixing its value to its prior mean. In addition,

we use Gamma priors on precision hyperparameters:

a mj *Ga a0
a,b0

a

� �
s mj *Ga a0

s,b0
s

� � ð3Þ

where a (resp. b) denotes the shape (resp. rate) parameter of

the Gamma distribution, which control the first two moments

of the Gamma density, as follows: E a mj½ �~a0
a

�
b0

a, and

E a{E a mj½ �ð Þ2 mj
h i

~E a mj½ �
�

b0
a. Given priors in Equations 2–3,

the first line of Equation 1 induces a (so-called Markovian) prior

density on the trajectory of hidden state x. Similarly, the second line

of Equation 1 now yields a likelihood function, which measures how

plausible is any value that experimental measurement y can take,

under the assumptions (Equations 1–3) of the generative model m.

The class of generative models that the toolbox handles is in fact

slightly more general than can be inferred from Equation 1. In

particular, the observation mapping can be modified to deal with

categorical (e.g. multinomial) data. Equation 1 defines a (potentially

nonlinear) state-space model, which grand-fathers many generative

models used in the statistics literature. We will come back to this

later on. At this point, suffices to say that one’s model can be defined

simply in terms of the evolution and observation functions. This

means that data simulation, parameter estimation, model selection

and design optimization only require the specification of these two

functions.

VB approach to parameter estimation and model
selection

Inverting the above generative model m means (i) approximat-

ing the conditional density p q y,mjð Þ of unknown variables

q~ x,h,Q,s,af g given the set of sampled measurements y and (ii)

quantifying the model evidence p y mjð Þ. Nonlinearities in the

generative model eschew exact analytical solutions to this problem,

which is finessed using variational approaches that rest on optimizing

a free-energy lower bound F qð Þ to the model evidence, with respect

to an approximate conditional density q qð Þ [8]:

F qð Þ~Sln p q mjð Þzln p y q,mjð Þ{ln q qð ÞTq,

~ln p y mjð Þ{DKL q qð Þ; p q y,mjð Þð Þ
ð4Þ

where DKL is the Kullback-Leibler divergence and the expectation

STq is taken under q. From Equation 4, maximizing the functional

F qð Þ with respect to q minimizes the Kullback-Leibler divergence

between q qð Þ and the exact posterior p q y,mjð Þ. This decomposition

is complete in the sense that if q qð Þ~p q y,mjð Þ, then F qð Þ~
ln p y mjð Þ. This means that the free energy F qð Þ can serve as an

analytical approximation to the log model evidence.

Here, the iterative maximization of free energy proceeds under

the Laplace approximation, where the approximate posterior

q qð Þ&p q y,mjð Þ is assumed to have a Gaussian form (except for

the precision hyperparameters a and s, which have Gamma

posterior densities; cf. Figure 2). Thus, the variational Bayesian

(VB) updates reduce to a regularized Gauss-Newton optimization

scheme [9]. This dramatically decreases the computational

complexity of the scheme. The second-order moments of the

approximate posterior densities are then simply related to the

curvature of local cost functions:

dF

dq
~0[q qið Þ!exp I qið Þð Þ

I qið Þ~Slog p y,q mjð ÞT
q q

\i

� �
mi&arg max

h
I qið Þ

Si&{
L2I

Lqi
2

����
mi

" #{1

ð5Þ

where q~ x,x0,h,Q,a,sf g is the set of all unknown model variables,

which is partitioned into subsets qi and q\i (cf. ‘‘mean-field’’

assumption). Here, the notation ‘‘\i’’ refers to the complement of the

Figure 2. The mean-field/Laplace approximation. The variational
Bayesian approach furnishes an approximation to the marginal
posterior densities of subsets of unknown model parameters q. Here,
the 2D landscape depicts a (true) joint posterior density p q y,mjð Þ and
the two black lines are the subsequent marginal posterior densities of
q1 and q2 , respectively. The mean-field approximation basically
describes the joint posterior density as the product of the two marginal
densities (black profiles). In turn, stochastic dependencies between
parameter subsets are replaced by deterministic dependencies
between their posterior sufficient statistics. The Laplace approximation
further assumes that the marginal densities can be described by
Gaussian densities (red profiles).
doi:10.1371/journal.pcbi.1003441.g002
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subset indexed by i. We refer to [9] for computational details about

the VB algorithm. Note that the VB update of the hidden states is

very similar in form to a Kalman filter/smoother [10]. More

precisely, the scheme derives an approximation to the lagged

posterior density p xt y1:tzk,mjð Þ, where k is the lag (see [11] for the

derivation of the lagged forward pass). This lag can be chosen

arbitrarily (see below), which allows one to infer on hidden states,

whose changes impact observed data a few time samples later in

time (e.g. due to some form of convolution operation). The main

effect of increasing the lag is to average across more data points

when deriving the hidden states, hence improving the precision (and

the temporal smoothness) of the estimate. The ensuing computa-

tional cost scales with k2.

In brief, the core of the toolbox consists of a generic VB treatment

of the above class of generative models. Given experimental data y,

system’s input u (if any), evolution/observation mappings and

priors, it recovers an approximation to both the posterior density on

unknown variables and the model evidence (which is used for model

comparison). Practical guidance on the software implementation

can be found on this wiki page: http://code.google.com/p/mbb-

vb-toolbox/. In particular, we have implemented a lot of examples

and demonstration scripts, in the aim of accelerating users’ learning

(cf. ‘‘getting started’’ section of the wiki pages: http://code.google.

com/p/mbb-vb-toolbox/wiki/getting_started).

Optimization of the experimental design
Optimizing the design in the context of, e.g., experimental

psychology studies, amounts to identifying the subset of conditions

and stimuli (u) that yields the highest statistical power, under a

variety of practical constraints. From a modelling perspective, this

essentially requires predicting experimental data (y) under models’

assumptions (m), including potential confounds that may mask the

effects of interest. Design optimization can become a difficult issue

whenever the impact of experimental factors onto measurements

(through the model) is non-trivial and/or uncertain (cf. unknown

model parameters). This motivates the use of automatic design

optimization.

The toolbox can handle two classes of problems, namely

optimizing the system’s input u with respect to either parameter

estimation or model selection. These two problems correspond to

two different objectives, which can be formalized in terms of

statistical loss functions [12]. For parameter estimation, one

usually minimizes the trace of the expected posterior matrix (cf. so-

called ‘‘A-optimality’’ [13]). For model selection, one chooses the

input u that minimizes the so-called ‘‘Laplace-Chernoff risk’’

bLC uð Þ, which is an analytical approximation to the model selec-

tion error rate [14]. For example, with two models and assuming

that (i) both models are a priori equally likely, and (ii) both prior

predictive densities have similar variances ~QQ uð Þ, the Laplace-

Chernoff risk is given by:

bLC uð Þ&1{
1

2
log

Dg uð Þ2

4 ~QQ uð Þ
z1

 !
ð6Þ

where Dg uð Þ is the difference in the first-order moment of the data

predictions under model 1 and model 2, respectively (cf. Figure 3).

Optimizing bLC uð Þ with respect to the design u thus reduces to

discriminating the predictions under the candidate models, either

by increasing the distance between their first-order moments, and/

or by decreasing their second-order moments ~QQ uð Þ. The latter

derives from the gradient of the observation function with respect

to model parameters.

Critically, optimizing the classical efficiency of the design (i.e.

statistical power) minimizes the Laplace-Chernoff risk for the

equivalent Bayesian model comparison. This is important, since it

allows one to generalise established experimental design rules to a

data analysis. We refer the interested reader to [14].

Critically, the optimality of the design relates to the experi-

mental question. In our example, the best design for assessing

whether effort devaluates incentive value may not be the same as

the best design for identifying the precise way in which this

devaluation occurs. In addition, one might want to exploit the

real-time accumulation of information to perform on-line design

optimization. The toolbox is equipped to address such problems

(see, e.g., section ‘‘Dynamic causal modelling of fMRI data’’ below).

Organization of the toolbox
The toolbox is organized as follows:

N The root folder (/DAVB) contains a core set of (matlab)

routines that implement the VB approach to stochastic

nonlinear state-space models [15]. The main inversion routine

is ‘VBA_NLStateSpaceModel.m’, which is described in more

details below. The root folder also contains group-level

inference schemes (cf. ‘VBA_groupBMS.m’, [16]) and post-

hoc model selection tools (cf. ‘VBA_SavageDickey.m’, [17]), as

well as routines for model simulation (cf. ‘simulateNLSS.m’)

and results visualization (cf. ‘VBA_ReDisplay.m’,

‘VBA_PPM.m’). Functions that perform post-hoc inversion

diagnostics (such as Volterra kernel estimation, cf. ‘VBA_

VolterraKernels.m’) are stored in this folder. Finally, this folder

gathers routines that can be used to evaluate and optimize the

efficiency of the experimental design, with respect to either

model comparison or parameter estimation (cf. ‘VBA_

designEfficiency.m’, [14]).

Figure 3. Selection error rate and the Laplace-Chernoff risk. The
(univariate) prior predictive density of two generative models m1 (blue)
and m2 (green) are plotted as a function of data y, given an arbitrary
design u. The dashed grey line shows the marginal predictive density
p y ujð Þ that captures the probabilistic prediction of the whole
comparison set M~ m1,m2f g. The area under the curve (red) measures
the model selection error rate p êe~1 ujð Þ, which depends upon the
discriminability between the two prior predictive density p y m1,ujð Þ and
p y m2,ujð Þ. This is precisely what the Laplace-Chernoff risk bLC uð Þ is a
measure of. Adapted from [14].
doi:10.1371/journal.pcbi.1003441.g003
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N The subfolder ‘/DAVB/stats&plots’ contains non-specific

routines that deal with either statistical and/or display issues,

example of which include general linear model and classical

contrast inference (‘GLM_contrast.m’), 3D visualization of

time-dependant probability density functions (‘plotDensity.m’),

or receiver operating characteristic analysis (‘doROC.m’)…

N The subfolder ‘/DAVB/subfunctions’ contains all sorts of

example evolution and observation functions, as well as

demonstration scripts. A selection of the latter will be described

in the next section. This is where demonstration scripts, as well

as evolution and observation functions of models for behaviour

and neuroimaging data are stored (see examples in section

‘‘Results’’ below).

From a practical viewpoint, inserting a model into the toolbox

only requires the specification of the observation and evolution

functions (see below). In the next section, we will highlight a few

example applications, in order to demonstrate the capabilities of

the toolbox. Note that a link to an interactive graphical summary

of the toolbox can be found on the toolbox’s internet wiki pages

(http://code.google.com/p/mbb-vb-toolbox/).

Summary of the input/output format of the main
functions

Most importantly, evolution and observation functions have to

conform to a standardized I/O form: [fx,dfdx,dfdP] = fname(x,P,u,in),

where:

N x: current hidden state value

N P: evolution/observation parameter value

N u: current input value

N in: this is an arbitrary variable that can contain any additional

information that has to be passed to evolution/observation

functions

N fx: the current evaluation of the evolution/observation function

N dfdx/dfdP: these are optional output arguments, which quantify

the gradients of the evolution/observation function w.r.t. to

hidden states and parameters, respectively. The main inversion

routine automatically detects whether these are returned by

the evolution/observation function (if not, numerical deriva-

tion is used internally).

In addition, the main inversion routine (‘VBA_NLStateSpace

Model.m’) has the following I/O form: [posterior,out] = VBA_NL

StateSpaceModel(y,u,f_fname,g_fname,dim,options), where:

N y/u: these are the observed data and controlled input to the

system (see above).

N f_fname (resp. g_fname): name/handle of the function that

returns the evolution (resp. observation) of the hidden states.

N dim: a structure variable containing the dimensions of the 3 sets

of the model’s unknown variables (n, n_theta and n_phi).

N options: an optional structure containing specific information

regarding the model, i.e.: prior sufficient statistics on model

parameters, mircrotime resolution (see below), additional

information that may have to be passed to evolution/

observation functions, lag k for the VBA-Kalman forward

pass, VB convergence variables (e.g. maximum number of

iterations, minimum increment in free energy), delay matrix

(see below), flag for continuous/categorical data (see below),

etc…

N posterior: a structure variable whose fields contain the sufficient

statistics (typically first and second order moments) of the VB

approximation to the posterior densities over the observation/

evolution/precision parameters and hidden-states time series.

N out: a structure variable that recapitulates the optional argu-

ments (in case defaults were used) and provides supplementary

information regarding the VB model inversion (e.g., model

diagnostics: free energy, percentage of variance explained,

Volterra kernels, etc…).

We refer the interested reader to the header of ‘VBA_NLState

SpaceModel.m’, as well as to example scripts described in the next

section. In addition to matlab workspace variables, the main inver-

sion routine returns a graphical summary of the VB inversion (this

can be retrieved using VBA_ReDisplay(posterior,out)). This summary is

organized in tabs, which are described on the toolbox’s wiki page

(http://code.google.com/p/mbb-vb-toolbox/wiki/Results).

Results

We will first expose a couple of examples of standard models for

behavioural and neuroimaging data, respectively. This will serve

to demonstrate the capabilities of the toolbox. We will then focus

on a few special cases of the broad class of generative models

defined above. We believe these examples deserve special atten-

tion, given their relevance in the context of models for behavioural

and neurobiological data. Finally, we will focus on the more

specific issues of (i) performing model selection at the group level

(given that the best model may differ across subjects), and (ii) using

data-driven stochastic system identification together with inversion

diagnostics to constrain and/or improve computational models of

neurobiological and/or behavioural data.

Subject-level analyses: Examples
Reinforcement learning models of choice data. In

psychological terms, motivation can be defined as the set of

processes that generate goals and thus determine behaviour. A

goal is nothing else than a ‘‘state of affairs’’, to which people

attribute (subjective) value. Empirically speaking, one can access

these values by many means, including subjective verbal report or

decision making. Biological signals such as vegetative responses

(e.g., skin conductance or pupil dilation) have also been linked to

value, through its effect on arousal [18]. These measures have

been used to demonstrate how value changes as people learn a

new operant response [19]. This is predicted by reinforcement

learning theories, which essentially relate behavioural response

frequency to reward [20]. In this context, value is expected

reward, and it changes in proportion to the agent’s prediction

error, i.e. the difference between actual and expected reward [21].

In the form of Equation 1 (first line), this learning rule can be

captured by the following evolution function (in this case, the

system is deterministic, cf. section ‘‘What about deterministic

systems?’’):

f x,h,uð Þ~xza bu{xð Þ ð7Þ

where x denotes value, u is the environmental feedback and a is the

learning rate. In this notation, experienced reward depends upon

the environmental feedback through some arbitrary scaling

parameter b. For example, one may consider the possibility of

some asymmetry in the relative weight of, e.g., financial gains and

losses [22]. This could be captured by letting b depend upon

whether the feedback is positive (bgain) or negative (bloss).

Alternatively, one may assume that asymmetry in the behavioural

response to gains and losses may be due to different learning rates,

(a? again,aloss

� �
).

VBA-Toolbox
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The script ‘demo_asymRW.m’ simulates an experiment that

aims at discriminating between these hypotheses. We consider a

go/no-go choice design, whereby the (artificial) subject decides, at

each trial, whether to gamble or not. On the one hand, if he

gambles (y~1), he receives either a positive, negative or neutral

feedback (e.g., 1J, 21J, 0J). On the other hand, if he chooses the

‘no-go’ option (y~0), he receives nothing (neutral feedback). The

decision to gamble or not can be thought as an economic choice,

which is driven by the learned value of the ‘go’ option. Here, we

model the likelihood P y~1 x,Qjð Þ of choosing the ‘go’ option using

the following softmax mapping of the ‘go’ value x:

P y~1 x,Qjð Þ~ 1

1zexp{ x{Qð Þ ð8Þ

where Q captures a potential bias toward the ‘no-go’ option.

Mathematical details regarding the definition of such categorical

(Bernouilli) likelihood function are given in section ‘‘Handling

categorical observations’’ below. Learning occurs after each ‘go’

trial, given the choice outcome u (cf. equation 7). In this example,

the feedbacks u for each ‘go’ trial were randomly sampled

following the relative frequencies: 2/5 positive, 2/5 negative, 1/5

neutral.

We then performed a Bayesian model comparison of four

models (m1: asymmetric utility, m2: asymmetric learning, m3: both

types of asymmetry, and m4: no asymmetry), given either observed

choices (categorical data) or vegetative responses (continuous data).

Here, the latter type of data is simply simulated by adding random

noise to the true value time series (SNR = 1 dB). The ensuing

likelihood function has the Gaussian form given in the second line

of Equation 1, where the observation function g has been set to the

identity mapping. Importantly, both types of data are simulated

under model m1. Figure 4 summarizes the results of this

simulation.

Not surprisingly, one can see that the value data is much more

informative than the choice data. Overall, there is hardly any

statistical evidence in favour of any form of asymmetry in the

choice data. In contradistinction, Bayesian model comparison

based upon value data correctly identifies the presence of

asymmetry in the experienced reward (model ‘asymmetric utility’).

We also performed family-inference, which consists in partitioning

model space into subsets of models [23]. Here, we chose two

orthogonal partitions, which induce two pairs of model families: (i)

f
(utility)

1 ~ m1,m3f g versus f
(utility)

0 ~ m2,m4f g, and (ii) f
(learning)
1 ~

m2,m3f g versus f
(learning)

0 ~ m1,m4f g. The first (resp. second)

family comparison pools evidence for or against utility (resp.

learning) asymmetry. Results of the family comparisons confirm

the model comparisons, demonstrating that no dimension of the

model space is strongly informed by choice data. In contradis-

tinction, family inference given continuous value data (correctly)

provides evidence for utility asymmetry, and against learning

asymmetry.

Dynamic causal modelling of fMRI data. Decomposing

the relation existing between cognitive functions and their

neurobiological ‘‘signature’’ (the spatio-temporal properties of

brain activity) requires an understanding of how information is

transmitted through brain networks [24]. The ambition here is to

ask questions such as: ‘‘what is the nature of the information that

region A passes on to region B’’? This stems from the notion of

functional integration [25], which views function as an emergent

property of brain networks. Dynamic causal modelling –DCM-

has been specifically developed to address this question (see the

seminal DCM work in [26], and a recent review in [5]). In DCM,

hemodynamic (fMRI) signals arise from a network of functionally

segregated sources; i.e., brain regions or neuronal sources. First,

DCM describes how experimental manipulations (u) influence the

dynamics of hidden neuronal states of the system (x). This is

typically written in the form of Equation 1 (first line), where the

neural evolution function is given by [27]:

f x,h,uð Þ~xzDt _xx

_xx~ Az
X

j

ujB
(j)z

X
i

xi
(n)D(i)

 !
xzCu

ð9Þ

where Dt is the discretization time step, and the parameters h of

this neural evolution function include a between-region coupling

(matrix A), input-dependent coupling modulation (matrices B(i)),

input driving gains (matrix C) and gating effects (matrices D(j)).

DCM also includes the effect of the hemodynamic response

function, which effectively performs a temporal convolution

operation on neural states [28].

An exhaustive assessment of the properties of DCM simulation

and VB model inversion can be found elsewhere [29–30,12]. In

this section, we will focus on the issue of online design optimi-

zation. We refer the interested reader to the script ‘demo_

dcmonline.m’. This demo simplifies the network identification of

[26]. In brief, photic input enters V1, which is reciprocally

connected to V5. The goal of the experiment is to assess whether

attention modulates the feedforward connection from V1 to V5.

This is addressed using Bayesian model comparison given fMRI

data (i.e. model 1: attention modulates the V1RV5 connection;

model 2: no modulatory effect). Within the session, each block

consists of 16 seconds of stimulation and 16 of rest. The on-line

design optimization consists in deciding, before each block,

whether we modulate subjects’ attention. This is done by com-

paring the design efficiency (i.e. –minus- the Laplace-Chernoff risk

that is induced by the comparison of the two models) of two

canonical block designs, i.e. photic stimulation with and without

attentional modulation. Then, the fMRI response to the chosen

stimulation is simulated under the true (but unknown) model.

Critically, the evaluation of the design efficiency changes as the

experiment unfolds, because both models are inverted given each

new block dataset, yielding increasingly precise model predictions.

In brief, the on-line design optimization procedure implements the

experimental cycle of Figure 1, keeping the set of alternative

hypotheses unchanged. Figure 5 summarizes the results of this on-

line design optimization.

First, one can see that the design efficiency increases with time,

as we expected. Second, the most efficient design alternates across

blocks. Eventually, the best design (identified by the on-line

procedure) is such that an attentional manipulation is performed

each two blocks. It turns out that this is the maximally orthogonal

design (correlation between uphotic and uattention = 0.6), under the

constraint that photic stimulation is always on. Interestingly, this

reproduces the design chosen in the original fMRI experimental

study [31]. In addition, one can see that the posterior credible

interval of the attentional modulatory effect converges toward the

true (simulated) value. Lastly, the log Bayes factor (as derived from

VB free energies) increases with time. This indicates that there is

increasing evidence in favour of the true model, as the experiment

unfolds.

Special cases
What about deterministic systems? Deterministic systems

can be understood as a particular case of stochastic nonlinear

VBA-Toolbox
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state-space models. They arise at the infinite state noise precision

limit (a??). Such limit follow from setting the Gamma priors

accordingly, i.e. a0
a?? and b0

a~0. The hidden states trajectory x

then becomes an implicit function of the evolution parameters h,

the initial conditions x0 and the system’s input u (if any). This

implies that the identification of such deterministic systems can be

treated like a static model (see below) of the form y~
g h,Q,x0,uð Þze. This simply means that, holding the evolution/

observation parameters and initial conditions fixed, one invariably

obtains the exact same deterministic predictions of the experi-

mental data (up to measurement errors or residuals).

Note that the VB treatment of stochastic state-space models is

systematically initialized by identifying the deterministic variant of

the dynamical system. We invite the reader interested in the

comparison of stochastic and deterministic model inversions to run

demos such as ‘demo_Lorenz.m’, ‘demo_VanDerPol.m’ or

‘demo_doubleWell.m’, which reproduce the exemplar analyses

in [15].

Figure 6 summarizes the comparison of the VB inversion of

deterministic and stochastic variants of the Lorenz system (this

Figure can be reproduced from the script ‘demo_Lorenz.m’). One

can see the profound impact of state noise, both on hidden states

trajectories and on the structure of model residuals (estimated

measurement noise). More precisely, model inversion under the

‘no state-noise’ assumption leaves a lot of unexplained variance in

the data. Critically, model residuals exhibit strong temporal

structure (cf. lobes in the temporal autocorrelation). In addition,

the magnitude of model residuals seems to depend upon the model

predictions. Such structured model residuals typically signal under-

fitting. In contradistinction, the stochastic model inversion produces

Figure 4. Comparison of asymmetric utility and asymmetric learning rate. This figure summarizes the analysis of choice and value data
using models that assume asymmetric utility, asymmetric learning rate, both asymmetries or none. Upper left: Trial-by-trial feedback history (either
negative, neutral or positive). Grey neutral feedbacks correspond to ‘no-go’ choices. Upper right: Trial-by-trial dynamics of true value (red),
measured value (black) and agent’s binary go(1)/no-go(0) choices (black dots). Middle-left: posterior probability of the four models given simulated
choice data. Middle-right: same format, given value data. Lower left: family posterior probabilities for both model spaces partitions, given choice
data (left: family ‘yes’ = {‘utility’, ‘both’} vs family ‘no’ = {‘learning’, ‘none’}, right: family ‘yes’ = {‘learning’, ‘both’} vs family ‘no’ = {‘utility’, none’}. Lower
left: same format, given value data.
doi:10.1371/journal.pcbi.1003441.g004
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residuals that have no particular structure (they seem to be equally

distributed around model predictions and have no temporal

autocorrelation). In this example, Bayesian model comparison based

upon the VB free energy correctly favours the stochastic model.

Dealing with delays. Delayed dynamical systems are gener-

ally non-Markovian, in their native form. Consider, for example, a

system whose evolution is given by: xtz1~xtzxt{1 (cf. sequence

of Fibonacci numbers). Here, one needs to know both its current

and delayed (one step back in time) state to predict the system’s

next state. VBA can deal with certain forms of delays by

embedding the state space x into an augmented (Markovian)

state-space X, where Xt~ xt,xt{1,:::,xt{Dð Þ. Here, D is the

maximum delay considered. The dimension of the embedded

state space is now nD, which can be considerably high. The script

‘demo_delays.m’ provides a demonstration of the inversion of a

delayed stochastic dynamical system. The demo first sets up priors

and optional arguments, which include the delay matrix D. In this

case, the system is a two-dimensional linear system with (delayed)

feedback.

Figure 7 summarizes the comparison of the ensuing VB

inversions of (deterministic) delayed and non-delayed variants of

the system. One can see the profound impact of delays, both on

hidden states trajectories and on the structure of model residuals.

In addition, the incorrect (non-delayed) model yields residuals with

striking structure (cf. model fit and temporal autocorrelation). In

comparison, the delayed (correct) model inversion displays rather

weak residual structure. Here again, VB model comparison favours

the correct model.

Alternatively, one may construct a corrected evolution function,

using a first-order Taylor expansion around zero-delays. We refer

the interested reader to the Text S1 in the supplementary

information (see also the appendix in [32]).

Considering serially correlated noise. The toolbox can

deal with most forms of auto-regressive or state-dependant noises

(both at the level of hidden states and observations). It suffices to

construct an augmented state space X, where Xt~ xt,ztð Þ, and

appropriately modify the evolution and observation functions, as

well as the priors. For example, the evolution of a stochastic system

Figure 5. Online design optimization for DCM comparison. This figure summarizes the simulation of online design optimization, in the aim of
best discriminating between two brain network models (m1 and m2) given fMRI data time series. In this case, the problem reduces to deciding
whether or not to introduce the second experimental factor (here, u2 = attentional modulation), on top of the first factor (u1 = photic stimulation).
Upper left: the two network models to be compared given fMRI data (top/bottom: with/without attentional modulation of the V1RV5 connection).
Upper middle: block-by-block temporal dynamics of design efficiency of both types of blocks. Green (resp. blue) dots correspond to blocks with
(resp. without.) attentional modulation. Upper right: scan-by-scan temporal dynamics of the optimized (on-line) design. Lower left: scan-by-scan
temporal dynamics of the simulated fMRI signal (blue: V1, green: V5). Lower middle: block-by-block temporal dynamics of 95% posterior confidence
intervals on the estimated modulatory effect (under model m2). The green line depicts the strength of the simulated effect. Lower right: block-by-
block temporal dynamics of log Bayes factors log p y m1jð Þ{log p y m2jð Þ.
doi:10.1371/journal.pcbi.1003441.g005
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driven with AR(1) noise could be modelled as follows:

Xtz1~~ff Xtð Þzgt

~ff Xtð Þ~
f xtð Þzzt

zt

" # ð10Þ

where f is the evolution function on the original state space x, and
~ff is its modification on the augmented state space X. Importantly,

under Equation 6, both AR(1) and white noise (respectively zt and

gt) can drive the system. To ensure that z is the most likely driving

force, one can set the augmented state noise (gt) covariance matrix

Qt
x, such that its upper-left half block is close to zero. In addition,

one may have to increase the lag k. This is because the effect of the

AR(1) delayed state noise on the hidden states is maximal one

sample ahead in time. On thus need to look one step back in time

to infer on the delayed state noise.

Figure 8 summarizes the comparison of the VB inversion of a

simple linear stochastic system with AR(1) state noise, having

assumed AR(1) noise or not (cf. script ‘demo_AR1.m’). One can

see the impact of correlation in state noise, both on hidden states

trajectories and on the structure of model residuals. More

precisely, residuals of the ‘white state-noise’ model exhibit a clear

(negative) peak in their autocorrelation function, at lag one. This is

due to the model’s inability to capture AR(1) state noise. In

contradistinction, the AR(1) model inversion show no temporal

structure in its residuals. Interestingly, the AR(1) model yields

residuals with a higher magnitude than the ‘‘white state-noise’’

model. This is because the AR(1) model imposed (correct)

smoothness constraints on hidden states trajectories. This eventu-

ally prevented the model from overfitting the data, which seems to

have occurred for the ‘white state-noise’ model.

Autoregressive processes of any order can be obtained by augment-

ing the state space with delayed state noise zt,zt{1,:::,zt{Dð Þ, where

D is the order of the autoregressive process. This is basically using

the above delay embedding trick (and requires an appropriate

increase of the lag k). In fact, almost all forms of state-dependent

noise can be modeled using essentially the same strategy. It suffices

to replace the last term in the right-hand side of equation 10 (second

line) with any non-linear function of the augmented states

(e.g.:f xtð Þzzt?f xtð Þzh xtð Þzt, where h xtð Þ plays the role of the

state-dependent noise standard deviation).

Getting closer to continuous dynamical systems. The

evolution equation of Equation 1 is discrete in time. If one directly

uses this as an approximation to a continuous dynamical system,

then the approximation’s accuracy strongly depends on the data

sampling frequency (c.f. Text S3 in the supplementary informa-

tion). However, the toolbox allows one to specify a ‘‘microtime’’

resolution, which is used to recursively apply the evolution

function between two time samples. This can be useful to control

the time discretization errors introduced when approximating the

original continuous dynamical system. For example, let us assume

that the system obeys the following ODE: _xx~f xð Þ. We wish to

derive a prediction from x tð Þ to the next time sample, x tzDtð Þ,
where Dt is the time lag between two data samples. One can do

this by recursively applying the time discretization scheme on a

smaller time grid. For example, if one uses an Euler discretization

Figure 6. Comparison of deterministic and stochastic dynamical systems. This figure summarizes the VB comparison of deterministic (upper
row) and stochastic (lower row) variants of a Lorenz dynamical system, given data simulated under the stochastic variant of the model. Upper left: fitted
data (x-axis) is plotted against simulated data (y-axis), for the deterministic case. Perfect model fit would align all points on the red line. Lower left: same
format, for the stochastic case. Upper middle: 95% posterior confidence intervals on hidden-states dynamics. Recall that for deterministic systems,
uncertainty in the hidden states arises from evolution parameters’ uncertainty. Lower middle: same format, stochastic system. Upper right: residuals’
empirical autocorrelation (y-axis) as a function of temporal lag (x-axis), for the deterministic system. Lower right: same format, stochastic system.
doi:10.1371/journal.pcbi.1003441.g006
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Figure 8. Comparison of white and auto-correlated state-noise. This figure summarizes the VB comparison of stochastic systems driven with
either white (upper row) or auto-correlated (lower row) state noise. This figure uses the same format as Figure 6.
doi:10.1371/journal.pcbi.1003441.g008

Figure 7. Comparison of delayed and non-delayed dynamical systems. This figure summarizes the VB comparison of non-delayed (upper
row) and delayed (lower row) variants of a linear deterministic dynamical system, given data simulated under the delayed variant of the model. This
figure uses the same format as Figure 6.
doi:10.1371/journal.pcbi.1003441.g007
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scheme (cf. Text S3 in the supplementary information):

x tzdð Þ~F x tð Þð Þ

F x tð Þð Þ~x tð Þzdf x tð Þð Þ
ð11Þ

where d is a small integration step (d%Dt). Then the recursive

application of the Euler evolution function F yields:

x tzDtð Þ~ F0F0 � � � 0F|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dt=d times

x tð Þð Þ ð12Þ

where the function F is evaluated recursively (Dt=d times) between

two time samples. Here, d induces a ‘‘microtime’’ resolution grid.

Note that this procedure does not allow state noise to enter

anywhere else than at the times where data are sampled. This

means that the impact of state noise will be somehow underes-

timated. However, in the context of deterministic systems,

increasing the microtime resolution eventually yields very accurate

approximations to continuous dynamics.

Figure 9 summarizes the impact of reducing the microtime

resolution on the VB inversion of a model of the hemodynamic

response function (cf. script ‘demo_HRF.m’). In this example, the

structure of model residuals does not discriminate between the two

variants of the model. However, one can see how different the

estimated states’ trajectories are. In addition, the impact of

unknown model parameters on the model predictions depends

upon the microtime resolution. This can be seen in the structure of

the posterior correlation matrix. In this particular example,

decreasing the microtime resolution eventually compromises para-

meter identifiability. In other words, the information that can be

retrieved on the evolution/observation parameters is degraded

when reducing the microtime resolution.

Handling categorical observations. Strictly speaking, the

generative model of Equations 1–3 copes with continuous data, for

which there is a natural distance metric. Now if the data is

categorical, there is no such natural metric, and one has to resort

to probability distributions dealing with discrete events. For

example, binary data can be treated as binomial (Bernouilli)

samples, whose sufficient statistic (first-order moment) is given by

the observation function. This means that the observation

equation (second line of Equation 1) is replaced by the following

binomial likelihood function:

p yt xt,Q,mjð Þ~g xt,Qð Þyt 1{g xt,Qð Þð Þ1{yt ð13Þ

where g xt,Qð Þ~P yt~1 xt,Q,mjð Þ~E yt xt,Q,mjð Þ, by definition.

Here, the measurement noise precision s and covariance

components Qt
y are irrelevant. It turns out that this does not

induce any major change in the VB inversion scheme under the

Laplace approximation. We refer the interested reader to the Text

S2 in the supplementary information. In fact, when the dimension

of the data is high enough (pnt&1), the empirical distribution of

the ‘residuals’ et~yt{g xt,Qð Þ will tend to a Gaussian density.

Figure 9. Effect of the micro-time resolution. This figure summarizes the effect of relying on either a slow (upper row) or fast (lower row) micro-
time resolution, when inverting nonlinear dynamical systems. Left: same format as Figure 6. Upper middle: estimated hidden-states dynamics at
low micro-time resolution (data samples are depicted using dots). Lower middle: same format, fast micro-time resolution. Upper right:
parameters’ posterior correlation matrix, at low micro-time resolution. Lower middle: same format, fast micro-time resolution.
doi:10.1371/journal.pcbi.1003441.g009
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This means that one can then approximate the above likelihood with

a Gaussian density with mean g xt,Qð Þ and (unknown) precision s.

An interesting application is binary data classification, which

can be understood as a special case of Equation 13. In the linear

case, the observation mapping reduces to a linear mixture passed

through a sigmoid mapping, i.e.: g Qð Þ~ 1
1zexp {AT uzbð Þ, where u is

an arbitrary vector of explanatory variables (i.e. features), and A

(resp. b) is an unknown vector (resp. scalar) that encodes the linear

mapping (Q~ A,bf g).
Figure 10 (script ‘demo_bin.m’) summarizes the statistical

performance of the VB approach to data classification. In brief,

we have simulated categorical data under two different models,

namely: H0 (no systematic link between features u and data y, i.e.

A~0) and H1 (which posits an arbitrary but non-zero mapping A).

Both H0 and H1 were then inverted given either the first half (to

perform classical cross-validation on test-data) or the full dataset (to

perform Bayesian model comparison). This procedure was repeated

256 times, in order to derive average performance measures.

One can see how Bayesian model comparison replicates the

generalizability measure of standard cross-validation procedures,

provided the inference is based upon the whole dataset (rather

than splat into two train/test halves). More precisely, one can see

that classification performance reaches statistical significance when

the data are simulated under H1, but not under H0. This falls

from the predictive density over ‘test’ data obtained after the VB

inversion of the H1 model given ‘train’ data. Equivalently, VB

model comparison of H1 and H0 correctly identifies the true

model, with greater confidence when the whole dataset is used for

deriving the free energy.

Inverting static (hierarchical) models. Static models are

simplifications of the above class of generative models, where the

dimension of the hidden states and the evolution parameters tend

to zero (nt~1, n~0 and nh~0). In this case, the generative model

reduces to a nonlinear observation equation, i.e.: y~g Qð Þze, with

fixed priors on the observation parameters.

Alternatively, a simple (two-levels) hierarchical extension of this

static model (whereby the priors are also learned) can easily be

derived by actually removing the evolution/observation parame-

ters, but retaining the initial conditions and the first hidden states,

with, e.g., identity evolution function, i.e.:

x1~x0zg1

y1~g x1ð Þze1

�
ð14Þ

where x0, x1, a and s are estimated. This is the typical structure

for so-called ‘‘mixed-effects’’ models for analysis at the group level.

Critically, estimating the ‘‘initial conditions’’ x0 as well as the

‘‘state noise’’ precision a enables one to infer on the group mean

and variance.

Figure 11 (script ‘demo_RFX.m’) summarizes the statistical

performance of the VB treatment of mixed-effect models (cf.

Equation 14). One can see that both the estimated group mean

and the Bayesian model comparison are coherent, in terms of

inferring whether there is a non-zero group-mean (second level

effect). More precisely, the posterior estimate of the group mean is

different from zero when the data are simulated under H1 (which

posits an arbitrary but non-zero group mean), but not under H0

(zero group mean). Equivalently, the VB model comparison

correctly identifies H1 from H0, across Monte-Carlo simulations.

Group-level Bayesian model selection
The issue of performing random effects Bayesian model

selection (BMS) at the group level was originally addressed in

[16]. In this work, models were treated as random effects that

could differ between subjects and have a fixed (unknown) distri-

bution in the population. Here, this hierarchical model is inverted

Figure 10. Binary data classification. This figure exemplifies a
classification analysis, which is used to infer on the link between a
continuous variable X and a binary data y. The analysis is conducted on
data simulated under either a null model (H0: no link) or a sigmoid
mapping (H1). Upper left: the classification accuracy, in terms of the
Monte-Carlo average probability of correct prediction under both types
of data (left: H1, right: H0), for the training dataset. The green dots show
the expected classification accuracy, using the true values of each
model’s set of parameters. The dotted red line depicts chance level.
Upper right: same format, test dataset (no model fitting). Lower left:
same format, for the log Bayes factor log p y H1jð Þ{log p y H0jð Þ, given
the training dataset. Lower right: same format, given the full
(train+test) dataset.
doi:10.1371/journal.pcbi.1003441.g010

Figure 11. Random-effect analysis. This figure exemplifies a
random-effect GLM analysis, which is used to infer on the group mean
of an effect of interest. The analysis is conducted on data simulated
under either a null model (H0: group mean is zero) or a non-zero RFX
model (H1). Left: Monte-Carlo average of the VB-estimated group mean
under H1, given both types of data (left: H1, right: H0). Left: same
format, for the log Bayes factor log p y H1jð Þ{log p y H0jð Þ.
doi:10.1371/journal.pcbi.1003441.g011
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using a VB scheme, to provide conditional estimates of the fre-

quency with which any model prevails in the population. This

random effects BMS procedure complements fixed effects pro-

cedures that assume subjects are sampled from a homogenous

population with one (unknown) model (cf. the log group Bayes

factor that sums log-evidences over subjects). [16] also introduced

the notion of exceedance probability, which measures how likely it

is that any given model is more frequent than all other models in

the comparison set. These two summary statistics typically con-

stitute the results of random effects BMS (see, e.g., [33]). In addition,

the toolbox also returns the model attributions, i.e. the posterior

probability, for each subject, of being best described by each model.

Figure 12 (script ‘demo_bmc4glm.m’) demonstrates the ran-

dom-effect group BMS approach, in the context of a simple static

general linear model (GLM). In brief, we simulated two groups of

32 subjects (under arbitrary subject-specific GLMs), one of which

only expressing half of the (four) factors. This allows us to derive

the Monte-Carlo distribution of within-subjects’ data under both a

‘full’ and a ‘reduced’ model. One can see the quality of the fit for a

typical simulated dataset (SNR = 0 dB). The log-model evidence of

both models was derived for each data (here, at the frequentist

limit, cf. ‘lev_GLM.m’). First, observe that the Monte-Carlo

histograms of the log-Bayes factors under each model are only

partially separated. This is due to the amount of measurement

noise. However, despite the relatively weak identifiability of the

two models, the model attributions exhibit almost no uncertainty,

and the exceedance probabilities clearly identify the underlying

model.

Improving computational models using inversion
diagnostics

Identifying relevant mechanisms is arguably the most difficult

task in modelling complex behavioural and/or biological data. In

fact, one may not in a position to suggest an informed model for

the data before the experiment. For example, when modelling how

subjects update the value of alternative options given the feedback

they receive, one may assume that the learning rate may change

over trials. However, one may not know what the determinants of

learning rate adaptation are. A practical solution to this problem is

to first treat the learning rate as a stochastic hidden state, whose

random walk dynamics cannot be a priori predicted. One would

then use the VBA inversion of such a model to estimate the

learning rate dynamics from, e.g., observed people’s choices.

Finally, one could then perform a Volterra decomposition of

hidden states dynamics onto a set of appropriately chosen basis

functions. This diagnostic analysis allows one to identify the

hidden states’ impulse response to experimentally controlled inputs

to the system. We refer the interested reader to Text S3 in the

supplementary information for mathematical details regarding

Volterra decompositions.

Figure 13 (script ‘‘demo_dynLearningRate.m’’) demonstrates

the above procedure, in the context of the two-armed bandit

problem [34]. In brief, an agent has to choose between two

alternative actions, each of which may yield positive or negative

feedbacks. In our case, we reversed the action-outcome contin-

gency every fifty trials. First, a series of choices are simulated,

Figure 12. Random-effect group-BMS. This figure exemplifies a random-effect group-BMS analysis, which is used to infer on the best model at
the group level. The analysis is conducted on two groups of 32 subjects, whose data were simulated under either a ‘full’ (m1 , group 1) or a ‘reduced’
(m2 , group 2) model. Upper left: simulated data (y-axis) plotted against fitted data (x-axis), for a typical simulation. Lower left: histograms of log
Bayes factor log p y m1jð Þ{log p y m2jð Þ, for both groups (red: group 1, blue: group 2). Upper middle: model attributions, for group 1. The posterior
probability p m1=2 yj

� �
for each subject is coded on a black-and-white colour scale (black = 1, white = 0). Lower middle: same format, group 2. Upper

right: exceedance probabilities, for group 1. The red line indicates the usual 95% threshold. Lower right: same format, group 2.
doi:10.1371/journal.pcbi.1003441.g012
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under an agent model that learns both the evolving action-

outcome probabilities and their volatility [7]. The agent’s inferred

volatility increases after each contingency reversal, and then

decays back to steady-state (cf. upper-left panel in Figure 13). The

VBA toolbox is then used to invert a ‘‘dynamical’’ variant of the

Q-learning model (cf. section ‘‘Reinforcement learning models of

choice data’’), given the agent’s sequence of choices. More

precisely, the state-space was augmented with the learning rate,

whose state-noise precision was set hundred time smaller than that

of action values. This is to ensure that stochastic deviations from

deterministic learning dynamics originate from changes in

learning rate. One can see (cf. lower-left panel in Figure 13) that

the estimated learning rate dynamics strongly correlates with the

simulated agent’s inferred volatility (classical test: F = 176.1, p,1028).

The ensuing Volterra decomposition was performed w.r.t. three

input basis functions, namely: the agent’s chosen action, the winning

action (which might not be the chosen action), and the winning

action instability. The latter input is one when the winning action

has changed between the previous and the current trial, and is zero

otherwise. The Q-learner’s choice behaviour is driven by the

difference in action values, which mainly responds to the history of

winning actions (not shown). In contradistinction, the learning rate

exhibits a stereotypical response to winning action instability (cf.

middle panels in Figure 13). This diagnosis can then be used to

augment Q-learning models with deterministic learning rate

dynamics, whose impulse response mimic the estimated Volterra

kernel. An example of the evolution function of such an augmented

Q-learning model is given by (cf. Text S3 in the supplementary

information):

f x,h,uð Þ~

x1zs x3ð Þ u2{x1ð Þu1

x2zs x3ð Þ u2{x2ð Þ 1{u1ð Þ
x3zx4

x4zh1h2u3{2h2x4{h2
2x3

2
6664

3
7775 ð15Þ

where s is the sigmoid mapping, u1 is the agent’s previous choice, u2

is the previous feedback, u3 is the winning action instability, x1 (resp.

x2) is the value of the first (resp. second) action, x3 is the (inverse-

sigmoid transformed) learning rate and x4 is its discrete temporal

derivative. Here, h1 weighs the impact of u3 onto the learning rate,

and h2 controls the decay rate of the impulse response. Such

augmented Q-learning model predicts a transient acceleration of

the learning rate following changes in the winning action whenever

h1=0. This is confirmed by the VBA inversion of this model (cf.

right panels in Figure 13). Finally, Bayesian model comparison yields

overwhelming evidence in favour of the augmented Q-learning

model, when compared to the standard Q-learning model (VBA free

energies were: Fstandard~{336:6 and Faugmented~{132:1).

Figure 13. Improving Q-learning models with inversion diagnostics. This figure demonstrates the added-value of Volterra decompositions,
when deriving learning models with changing learning rates. Upper left: simulated belief (blue/red: outcome probability for the first/second action,
green/magenta: volatility of the outcome contingency for the first/second action) of the Bayesian volatile learner (y-axis) plotted against trials (x-axis).
Lower left: estimated hidden states of the deterministic variant of the dynamic learning rate model (blue/green: first/second action value, red:
learning rate). This model corresponds to the standard Q-learning model (the learning rate is constant over time). Upper middle: estimated hidden
states of the stochastic variant of the dynamic learning rate model (same format). Note the wide posterior uncertainty around the learning rate
estimates. Lower middle: Volterra decomposition of the stochastic learning rate (blue: agent’s chosen action, green: winning action, red: winning
action instability). Upper right: estimated hidden states of the augmented Q-learning model (same format as before). Lower right: Volterra
decomposition of the augmented Q-learning model’s learning rate (same format as before).
doi:10.1371/journal.pcbi.1003441.g013
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This concludes the demonstration of the VBA toolbox.

Availability and Future Directions

In this paper, we have exposed the main algorithmic

components of the VBA toolbox, which implements a probabilistic

treatment of nonlinear models for neurobiological and behavioural

data. This toolbox aims at disseminating models and methods that

serve experimental purposes, and providing a flexible platform,

which modellers can easily contribute to.

VBA is under intense development as we speak. More precisely,

the following additions to the current toolbox’s version are under

test:

N Between-conditions and between-groups second-level Bayesian

model selection. This rests on quantifying the evidence for a

difference in model labels (resp. frequencies) across conditions

(resp. groups). We refer the interested reader to [35].

N Dual categorical/continuous data analysis. In particular, this is

necessary for inverting models that aim at explaining

concurrent neuroimaging time series and trial-by-trial behav-

ioural observations such as choices.

N VB inversion of mixture models (e.g., mixtures of gaussians

and binomials). The objective here is to handle data-driven

probabilistic clustering approaches, that can serve as reference

points for model-based data analyses.

N Extension of the nonlinear state-space model to arbitrary

variance components. This is most useful when dealing with

data pooled from qualitatively different sources with poten-

tially very different SNRs (e.g., neuroimaging and skin

conductance time series).

N Higher-level functionalities that allow to handle multiple

sessions, parameter mappings (e.g., for positivity constraints),

factorial family partitioning of model space, etc … The need

for such extensions increases as the diversity of VBA users’

interests steadily grows.

N Library of observation/evolution functions of models for

behavioural and neuroimaging data. These include, but are

not limited to: learning rules (e.g., bayesian belief updates with

different forms of priors [5–7], deterministic exploration,

cognitive dissonance effects [36], …), canonical utility

functions (e.g., delay discounting [37], effort devaluation

[38], risk attitude, …), neural spiking dynamics (e.g. Hodg-

kin-Huxley [39], Fitz-Hugh-Nagumo [40], …), neural meso-

scale networks (e.g., Jansen-Ritt [41], neural fields [42], …),

etc…

Some of these extensions are already available from the current

code distribution. We encourage the interested reader to look for

appropriate key words in the demonstration scripts.

VBA’s code is under open-source GNU General Public Licence

(v2), and is freely downloadable from the toolbox’s internet wiki

pages (http://code.google.com/p/mbb-vb-toolbox/wiki/Installing

TheToolbox). These wiki pages expose a lot of user-oriented

information, as well as detailed examples and screen captures. The

wiki also serves to gather comments, criticism, suggestions and

contribution of VBA users.

Supporting Information

Software S1 VBA source code. Note that an interactive

graphical summary of the toolbox can be found on the toolbox’s

internet wiki pages (http://code.google.com/p/mbb-vb-toolbox/).

(ZIP)

Text S1 Dealing with unknown delays in systems’ dynamics.

(DOCX)

Text S2 VB-Laplace inversion of models for categorical (binary)

data.

(DOCX)

Text S3 Mathematical details regarding the relationship be-

tween integral and differential forms, the transition from

continuous to discrete time formulations and Volterra decompo-

sitions of systems’ dynamics.

(DOCX)
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