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Abstract

As scientific advances in perturbing biological systems and technological advances in data acquisition allow the large-scale
quantitative analysis of biological function, the robustness of organisms to both transient environmental stresses and inter-
generational genetic changes is a fundamental impediment to the identifiability of mathematical models of these functions.
An approach to overcoming this impediment is to reduce the space of possible models to take into account both types of
robustness. However, the relationship between the two is still controversial. This work uncovers a network characteristic,
transient responsiveness, for a specific function that correlates environmental imperturbability and genetic robustness. We
test this characteristic extensively for dynamic networks of ordinary differential equations ranging up to 30 interacting
nodes and find that there is a power-law relating environmental imperturbability and genetic robustness that tends to
linearity as the number of nodes increases. Using our methods, we refine the classification of known 3-node motifs in terms
of their environmental and genetic robustness. We demonstrate our approach by applying it to the chemotaxis signaling
network. In particular, we investigate plausible models for the role of CheV protein in biochemical adaptation via a
phosphorylation pathway, testing modifications that could improve the robustness of the system to environmental and/or
genetic perturbation.
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Introduction

Biological systems in general show various types and degrees of

robustness to environmental changes, meaning that they continue

to function even when changes in the environment occur. This

imperturbability is often accompanied by robustness to genetic

perturbations, meaning that progeny function even though their

genotype is not identical to the parent genotype [1–4]. Both

features play an important role in evolutionary biology. While the

former is a direct outcome of selection, the relationship between

evolution and genetic robustness is likely to be indirect for low

functional mutation rates [5–7] since selection acts only on the

phenotype of an organism and not its genotype [8].

It has been argued that the ability of an organism to withstand

genetic mutations improves its ability to evolve [8–11]. However,

the rationale for selection for genetic robustness is still controver-

sial [5–8,12–14]. A correlation between the evolution of environ-

mental and genetic robustness has been proposed [1,8,15,16]

based on examples observed in many biological systems such as in

yeast [1], bacterial sncRNAs [2], segment polarity in the fruit-fly

[3], bacterial chemotaxis [4,17–24], heat-shock proteins [25,26],

and miRNA stem-loop structures in various species [27] and based

on numerical models of evolution under varying fitness conditions

[15,16]. Similarly, it has been shown that metabolic networks

evolving under fluctuating environments acquire robustness to the

loss of certain genes as well, while those evolving under stable

environments do not [28]. However, there is no general

mathematical proof for this correlation [8].

In this study, we develop a computational experiment to

investigate the plausibility of this hypothesis, that there is a general

correlation between environmental and genetic robustness, and

provide a quantitative measure of the degree of correlation, if any.

In more detail, we shall show that the presence of a specific

dynamic network characteristic in networks is associated with a

better correlation between genetic and environmental robustness

than found in networks where it is absent. Rather than focusing on

a particular system in a specific organism, we choose one function

of interest: The ability to attain steady state output for constant

input. If a network capable of carrying out this function is robust to

external environmental perturbations, what is the probability that

it is also robust to internal (e.g., genetic) disruption? To be specific,

we define environmental robustness of a biological network as the

ability to maintain an output in the face of input perturbations.

Genetic robustness is defined as the ability of a biochemical system

to maintain the same output in the face of genetic mutations

represented as rate constant changes in the equations representing

it. This representation of a mutation as a jump from one set of

parameters to another is a standard assumption [29].

For mathematical convenience, we restrict our discussion to

Michaelis-Menten type networks as they are likely to reach a

steady state under constant inputs relative to general networks

without sigmoidal saturation. Such networks were also used in the
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analysis of three node biochemically adaptable networks by Ma et

al. [30]. The sensitivity of biochemical kinetic models to parameter

perturbations has been intensively investigated [29,31–35] as a

mathematical model of a biological system should be able to

reproduce the function of interest or fit experimental data with a

minimal need for parameter fine-tuning [35,36]. Systems of

biochemical adaptation [30,37–40] have been of interest in

particular.

Defining a topology to be a graph of interactions independent of

parameter values, we test a large number of random N-node

topologies for networks capable of reaching a steady state both

under constant input concentrations and after a persistent step

change in these input concentrations. We define a network as a

topology with a specific set of parameters. Each network is given a

numerical value for its level of robustness to input and parameter

perturbations. The level of robustness of the topology is

determined by averaging over this value obtained from its

corresponding networks. In particular, we differentiate between

networks that show a transient response to a step change in input

and those that do not. We find that there is a statistically significant

model II regression between the level of robustness to input of a

topology and its level of robustness to parameter perturbations that

has a steeper slope in networks with a transient response. Our

results may be relevant to the discussion about the relationship

between the need to survive in a constantly changing environment

and the evolution of genetic robustness.

There is a large literature on functional motifs that are necessary

for a biological system to carry out specific tasks [30,41–49]. Here,

we test all possible 3-node topologies to find the particular motifs

that are of use in achieving both robustness to input and

parameters. Having established the correlation between environ-

mental and genetic robustness, we ask if there are topologies

sharing certain sets of motifs/architectures that show stronger

correlations than others. Ma et al [30] computationally explored

all possible topologies of 3-node Michaelis-Menten enzymatic

networks for motifs that can best accomplish biochemical

adaptation. Using our results on this correlation between different

sets of architectures we refine the list of motifs of biochemical

adaptations previously published [30].

Our approach can be used to select/reject plausible/improb-

able models of a system of interest. We demonstrate this via a

comparative study of bacterial chemotaxis signaling systems.

Chemotaxis is a process generally used by bacteria to sense

changes in their chemical environment [4,17–24]. Chemotactic

signaling is a well-studied system, but most of the focus has been

on the chemotaxis network of the Escherichia coli (E. coli)

bacterium [4,17–20] despite the fact that chemotactic signaling

pathways differ between species [21–24]. For instance, CheV is a

chemotaxis protein found in many bacteria but not in E. coli. In

many species, it was shown that CheV, or a variant of it, plays a

role in biochemical adaptation during chemotaxis via its

phosphorylatable receiver domain [24,50,51]. However, the exact

mechanism is still not known [24]. Here, we compare the coarse-

grained network of E. coli chemotaxis with several others involving

CheV phosphorylation. We draw conclusions based on the

resultant values of robustness to both input and parameter

perturbations and the correlation between them.

In summary, we provide extensive evidence for a mathematical

principle stating that, statistically speaking, dynamical systems that

are biochemically adaptable are also genetically robust. We apply

this knowledge to search for topological categories and subcate-

gories within 3-node networks that show a particularly strong

correlation and a linear relationship between their robustness to

input and to parameter perturbations, and to shed more light on

the chemotactic signaling pathways in bacteria. This method of

searching for motifs can be extended to other functions and to

bigger networks in order to find motifs that combine more

complex functions necessitating larger numbers of nodes.

Results

In the current work, we sample over 50,000 topologies each of

5-node, 10-node, 15-node, and 30-node networks, and over all 39

possible topologies of 3-node networks. For each topology j, we

average over a large number of randomly chosen parameter sets.

The parameters are chosen from a uniform distribution within

fixed ranges as described in the Methods section. For each network

defined by topology j and parameter set P
I

, we compute two

values: EI j,P
I

� �
which is a measure of the robustness of the

network to a persistent step change in input, and Ep j,P
I

� �
which

is a measure of the robustness of the network to perturbations in its

set of parameters P
I

. We take the geometric averages of EI j,P
I

� �
and Ep j,P

I
� �

over the whole parameter space as a quantitative

evaluation of the robustness of topology j to a step change in input

and to parameter perturbations respectively (Fig. 1).

In previous work on biochemical adaptability, it was assumed

that networks that quickly respond to input change are better

adapted than those with slower response [30,37]. In this work, we

take a qualitative approach to avoid a bias towards larger or faster

transients. A biochemically adaptable network is defined as one

that is both robust to input perturbations and has a transient

response to a persistent step change in input, independent of the

magnitude of the transient. A step change in input (Fig. 2A)

induces three possible responses from the output dynamics

(assuming a steady state can be reached): No response (Fig. 2B),

a monotonic response (Fig. 2C), or a transient response (Fig. 2D).

Due to possible computational noise in the time-course of the

output concentration, we need an objective way to distinguish

between a network with a small transient and a non-responsive or

monotonically responsive one (e.g., Fig. 2E,F). To this end, we

evaluate the Pearson shape correlation between the network’s

time-course and two model time-courses representing the dynam-

ics of a network characterized by perfect biochemical adaptation

(the red time-courses in Fig. 2E–H) and that of a monotonically

responsive one (the green time-courses in Fig. 2E–H). Here, the

Author Summary

Advances in the ways that living systems can be perturbed
in order to study how they function and sharp reductions
in the cost of computer resources have allowed the
collection of large amounts of data. The aim of biological
system modeling is to analyze this data in order to pin
down the precise interactions of molecules that underlie
the observed functions. This is made difficult due to two
features of biological systems: (1) Living things do not
show an appreciable loss of function across large ranges of
environmental factors. (2) Their function is inherited from
parent to child more or less unchanged in spite of random
mutations in genetic sequences. We find that these two
features are more correlated in a specific subset of
networks and show how to use this observation to find
networks in which these two features appear together.
Working within this smaller space of networks may make it
easier to find suitable underlying models from data.

Environmental & Genetic Robustness Are Correlated
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time-course represents the dynamics of the concentration of the

output node from one steady state (before the change in input

concentration) to a new steady state (after a persistent change in

input concentration). In summary, we use the term ‘‘transiently-

responsive’’ (TR) for a network that responds to a persistent step

change in input and then returns to a new steady state different

than the peak response regardless of whether it is also robust

(Fig. 2H) or not (Fig. 2G). Any network that does not pass the

Pearson test, whether it shows no response or a monotonic one, is

termed Non-Pearson (NP). A perfectly biochemically adaptable

network is one that is both transiently-responsive and perfectly

robust to input perturbations (Fig. 2H).

Correlation between Robustness to Input and Parameter
Perturbations

We define and derive (see Methods) two quantitative measures of

input and parameter robustness for each topology j: GTR
I jð Þ,

GNP
I jð Þ, GTR

p jð Þ, and GNP
p jð Þ. GTR

I jð Þ and GTR
p jð Þ are the values

of input and parameter robustness of TR networks (networks that

passed the Pearson test) while GNP
I jð Þ and GNP

p jð Þ are the values

of input and parameter robustness of NP networks (networks that

did not pass the Pearson test). A topology j is perfectly robust to

input perturbations if log10 GTR
I jð Þ

� �
is very small, and similarly j

is perfectly robust to parameter perturbations if log10 GTR
p jð Þ

� �
is

very small (i.e., has a very large negative value).

For topologies with more than 3 nodes we sample over at least

50000 different ones of each size (5, 10, 15, and 30-node

topologies) while 3-node topologies are exhaustively sampled. The

different topologies (that have more than 3-nodes) are sampled

randomly as described in Selection Criteria in the Methods section.

We reject topologies with a low fraction of TR networks

(Fsuccv2:3%, where Fsucc is the ratio of the number of TR

networks to the total number of networks) and exclude them from

any further analysis. We chose 2.3% to be the cutoff on Fsucc as it

is the minimal value of Fsucc that removes clusters and outliers (Fig.

S1). With this, we are left with 2445, 7847, 18300, 19264, and

16589 3-node, 5-node, 10-node, 15-node, and 30-node topologies

respectively. The networks sampled from each of these topologies

are qualified as TR (Fig. 3) or NP (Fig. 4) and separated

accordingly.

We find that over the parameter space of a topology j, EI j,P
I

� �
and Ep j,P

I
� �

can span a wide range of values. Within both TR

and NP networks, we find a significant (p>0.0) linear correlation

between log10 GI jð Þð Þ and log10 Gp jð Þ
� �

. A comparison of the

slope of the linear regression (using model II regression, in

particular the ordinary least square bisector method described in

[52]) shows a clear and systematic pattern between topologies of

different sizes and TR and NP networks of the same size. We find

that the slope increases as the size of the network increases:

slope = 0.6260.09 for 3-node (Fig. 3A), 0.6460.05 for 5-node

(Fig. 3B), 0.7660.04 for 10-node (Fig. 3C) 0.8060.05 for 15-node

(Fig. 3D), and 0.9660.13 for 30-node topologies (Fig. 3E). The

marginal error is taken as the 95% confidence interval where the

variance of the slope is calculated using its estimate for OLS

bisector regression derived by Isobe et al [52]. Similarly, for NP

networks we obtain: slope = 0.5060.04 for 3-node (Fig. 4A),

0.4460.02 for 5-node (Fig. 4B), 0.5460.02 for 10-node (Fig. 4C),

0.5960.02 for 15-node (Fig. 4D), and 0.7060.03 for 30-node

topologies (Fig. 4E). As above, the marginal error here is taken as

the 95% confidence interval. The confidence intervals show that,

for all sizes, the values of slopes for TR networks are consistently

higher than that for NP networks of the same size and that the

difference between the two slopes is significant.

The values of the Pearson correlations within TR and NP

networks show no clear pattern. This is mainly due to the

variability introduced by parameters whose robustness stays

invariant and reducible topologies within N.3 N-node networks

(see Text S1 and Discussion). Due to these caveats we are cautious

about drawing conclusions based on the values of the Pearson

correlation.

3-Node Correlations within TR Topologies and
Corresponding Motifs

Sampling over all 39 possible topologies, our results show only

4153 topologies have associated TR networks. Within these

topologies we find a significant linear correlation before (Fig. S2 A)

and after (Fig. 3 A) introducing the cutoff, as discussed in the

previous section. In what follows we show how we can extract

motifs (i.e., basic topologies that may be more likely to appear in

biological systems) by examining the slope of the linear regression

between log10 GTR
I

� �
and log10 GTR

p

� �
. Here, we show that motifs

can be extracted from topologies representing the basic backbones

shared by a set of topologies showing a stronger relation between

environmental and genetic robustness as follows.

We first consider two known motifs, the incoherent feedfor-

ward motif (IFF) and the negative feedback loop motif (NFL) and

examine their corresponding relations. IFF (Fig. 5A) is a topology

wherein the output node is affected by the input receiving node

via two paths, one direct and the other indirect, such that,

collectively, one path is activating and the other is deactivating.

This implies four subcategories denoted IFF1–IFF4. NFL (Fig. 5A)

is a topology wherein a node i is activated/deactivated by

another node j, and node j is deactivated/activated back by node

i either directly (NFL1, NFL2) or indirectly (NFL3–NFL10). We

find that the majority of TR topologies have IFF, NFL, or both

IFF and NFL motifs. Only a few have neither IFF nor NFL; these

are, however, robust to neither input nor parameter perturba-

tions (Fig. 6A) and they all have low fractions of successful trials,

indicating that TR networks generated from these topologies are

sparse. All 4 subcategories of IFF are fairly robust to both input

and parameter perturbations (results not shown). Though NFL

only topologies are generally less robust than those containing

IFF, a small group of them (green cluster at the bottom left of

Fig. 6A) have low numbers of successful trials but are highly

robust within their small TR space. When not coexisting with

other robust motifs, only 4 out of the 10 categories of NFL

(NFL1, NFL2, NFL4, and NFL6) are robust to both input and

parameter perturbations (Fig. 6B). Seeing how NFL1 topologies

show separate groups in Fig. 6B, we examine the distribution of

all topologies containing NFL1 according to its 8 types (Fig. 5B).

We find that NFL1 type1 topologies are strongly correlated

(r = 0.92, p>0) while NFL1 type2 show separate clustering

Figure 1. Flowchart for our methodology. Nt = the total number of tested random topologies. ~NNs = the total number of trials, i.e., different sets
of parameters tested. *(1) for the 3-node networks the topologies are not randomly generated, rather sequentially in order to test all 39 possible

combinations. *(2) if the network takes too long to reach equilibrium or the Jacobean matrix J
I
I

x (Eq. A4) is invertible, then the network is rejected.
doi:10.1371/journal.pcbi.1003474.g001

Environmental & Genetic Robustness Are Correlated
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Figure 2. Illustrating the criterion for selecting for transiently responsive networks. The Pearson test is performed to decide whether a
network (a particular choice of a set of parameters for a particular topology) shows a transient response to a step change in input or not. The starting
point is at steady state under a constant input concentration I1. At time tc the input concentration is changed from I1 to I2 via a step function (A).
Consequently the output will either (B) not sense the change and maintain the same steady state O2~O1, (C) change monotonically to a new steady
state O2=O1, or (D) show a transient response followed by a relaxation to a new steady state O2 that might or might not be equal to the pre-step
change steady state O1 . A network passes the test only if it is transiently responsive. (E–H) Fad (red) is a perfectly biochemically adaptable function
and Fnad (green) is a monotonically changing function. If The Pearson shape correlation between the computed time course (blue) and Fad , r1 , is
bigger than that between it and Fnad , r2, then the test is passed (E, G, H) and the network is termed a Transiently- Responsive (TR) network, otherwise
the test is failed (F) and the network is termed Non-Pearson (NP). In (E) and (F), we show two cases where a biased visual inspection would deem both

Environmental & Genetic Robustness Are Correlated
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networks looking similar, but in reality they are distinguished by the Pearson test. A biochemically adaptable network is one that is both transiently
responsive and returns to a new steady state very close to the pre-step change steady state. For example, (G) is not biochemically adaptable as there
is a large difference between the pre-step change steady state and the new one. On the other hand, (H) is perfectly biochemically adaptable as it is
both transiently responsive and perfectly robust, i.e. it returns exactly to its pre-step change steady state.
doi:10.1371/journal.pcbi.1003474.g002

Figure 3. Correlation between robustness to input and parameter perturbations within 3-node, 5-node, 15-node, and 30-node TR
networks. log10 GTR

I jð Þ
� �

and log10 GTR
p jð Þ

� �
are measures of robustness of a topology j to input and parameter perturbations, respectively,

computed from the average over TR networks. Topologies with a low fraction of TR networks (less than 2.3%) are not included. The linear regression

for all sizes (3-node, 5-node, 15-node, and 30-node) shows a significant (p,0.0001) correlation between log10 GTR
I

� �
and log10 GTR

p

� �
. (A) 3-node

topologies: slope = 0.62 (N = 2445, r = 0.57). (B) 5-node topologies: slope = 0.64 (N = 7847, r = 0.40). (C) 10-node topologies: slope = 0.76 (N = 18300,
r = 0.33). (D) 15-node topologies: slope = 0.80 (N = 19264, r = 0.35). (E) 30-node topologies: slope = 0.96 (N = 16587, r = 0.41).
doi:10.1371/journal.pcbi.1003474.g003

Environmental & Genetic Robustness Are Correlated
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(Fig. 6C). Thus, we further divide NFL1 type2 into two subtypes

(Fig. 5C), type2a (the output node deactivates itself) and type2b

(all others). While both subtypes show strong correlation between

their log10 GTR
I

� �
and log10 GTR

p

� �
values (Fig. 6D, type2a:

r = 0.97 and p = 10228, type2b: r = 0.97 and p = 10251), type2b

shows a much steeper slope (1.12 for type2b, 0.33 for type2a,

ttest = 3.8 and p = 0.0002). This steeper slope may be advanta-

geous for specific biological functions, though both types show

strong correlation between the two types of robustness. In the

presence of IFF, the two types show no correlation (p = 0.14 and

0.20 for type2a and type2b respectively).

Figure 4. Correlation between robustness to input and parameter perturbations within 3-node, 5-node, 15-node, and 30-node NP
networks. log10 GNP

I jð Þ
� �

and log10 GNP
p jð Þ

� �
are measures of robustness of a topology j to input and parameter perturbations, respectively,

computed from the average over NP networks. The linear regression for all sizes (3-node, 5-node, 15-node, and 30-node) shows a significant

(p,0.0001) correlation between log10 GNP
I

� �
and log10 GNP

p

� �
. (A) 3-node topologies: slope = 0.50 (N = 2445, r = 0.61). (B) 5-node topologies:

slope = 0.44 (N = 7847, r = 0.47). (C) 10-node topologies: slope = 0.54 (N = 18300, r = 0.39). (D) 15-node topologies: slope = 0.59 (N = 19264, r = 0.39). (E)
30-node topologies: slope = 0.70 (N = 16168, r = 0.30).
doi:10.1371/journal.pcbi.1003474.g004

Environmental & Genetic Robustness Are Correlated
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Fine-Grained Analysis within 3-Node Topologies
In this section, we answer the following questions: (1) What is

the reason for the large variation around the regression lines in

Figs. 3 and 4? (2) How does the distribution of log10 GTR
I

� �
and

log10 GTR
p

� �
values and their correlation relate to correlations in

EI and Ep values of the networks within the individual topologies?

To answer the first question, we speculated that since clearly

each of the parameters in a topology will have different robustness

values, we might be able to separate the parameters into different

categories such that the regression along each category leads to

different slope values. If we show this to be true, then as the

number of possible categories increases, one expects larger

variation in the value of log10 GTR
p

� �
for a given log10 GTR

I

� �
value. If, in addition, the number of categories is proportional to

the number of nodes, then the observed variation would increase

for a bigger network, as evident in Fig. 3. In what follows, we

investigate this possibility within 3-node networks.

Consistent with the 5-, 10- 15-, 30-node analysis above, we

remove topologies with a low fraction of TR networks

(Fsuccv2:3%) and are left with 2534 topologies to work with..

Next, we separate the parameters of each topology into 7

categories (Fig. 7). Parameters belonging to categories 1 or 2 are

those associated with links affecting (i.e., directed towards) the

input receiving node, node 1. Those belonging to categories 3 or 5

are associated with links affecting the buffer node, node 2. The rest

(in categories 4, 6, 7) are associated with links affecting the output

node, node 3. Then, for each category j of a network j,P
I

� �
, we

evaluate the value Ep j,P
I

,j
� �

which takes into consideration only

robustness to perturbations in parameters belonging to category j

(Eq. 26 in Methods). The corresponding value for the topology j, is

GTR
p j,jð Þ (Eq. 28 in Methods). We find that indeed the regression on

each of the 7 categories results in a different slope and different

correlation strengths. The results of the overall linear regression

are shown in Fig. 8A. For the separate categories, we find that the

strongest correlation is between log10 GTR
I jð Þ

� �
and robustness to

perturbations in parameters belonging to category 1,

log10 GTR
p j,1ð Þ

� �
(Fig. 8B, slope = 0.97, r = 0.97, p = 0), followed

by category 2 (Fig. 8C, slope = 1.01, r = 0.78, p = 0). Conversely,

log10 GTR
I jð Þ

� �
and log10 GTR

p j,7ð Þ
� �

show no correlation

(Fig. 8H, slope = 1.0, r = 0.01, p = 0.81). In fact, the strength of

the correlation between log10 GTR
I jð Þ

� �
and log10 GTR

p j,jð Þ
� �

decreases in the following order: j = 1 (r = 0.97), 2 (r = 0.78), 3

(r = 0.44), 5 (r = 0.42), 4 (r = 0.32), 6 (r = 0.12), and 7 (r = 0.01).

The second question is related to whether within each topology

the parameter subspace corresponding to input robustness is

positively correlated with that corresponding to parameter

robustness. If they are not correlated, then the two subspaces

could be disjoint and the collective/coarse-grained correlation

(i.e., the correlation between the log10 GTR
I

� �
and log10 GTR

p

� �
)

does not support our hypothesis.

We follow the same procedure as above and separate the

parameters into the 7 categories depicted in Fig. 7. The aim is to

be able to compare the results with those in Fig. 8. For each

topology j, we perform a linear regression on the relationship

between EI j,P
I

� �
and Ep j,P

I
,j

� �
for each category j. The results

of the correlation strength and slopes are represented by their

corresponding square of the Pearson correlations r2 j,jð Þ and

Figure 5. Illustrating the different types of tested motifs. The
red, green, and gray arrows indicate deactivation, activation, or either
activation or deactivation through a direct or indirect path, respectively.
We test two known general motifs, the incoherent feedforward loop
(IFF) and the negative feedback loop (NFL). (A) All possible IFF and NFL
motifs. (B) All 8 possibilities (types) each for the NFL1 and NFL2 motifs.
(C) NFL1 Type2 subtypes.
doi:10.1371/journal.pcbi.1003474.g005

Environmental & Genetic Robustness Are Correlated
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slopes Slope j,jð Þ, for j~1,2,:::7. The relationship between

log10 GTR
p j,jð Þ

� �
and r2 j,jð Þ is shown in Fig. 9 while that between

log10 GTR
p j,jð Þ

� �
and Slope j,jð Þ is shown in Fig. 10. As above, the

strongest correlations and steepest slopes are found between EI

and Ep of parameters belonging to category 1, Ep j,P
I

,1
� �

. For all

the topologies, r2 j,jð Þ remains $0.9 (Fig. 9A) and Slope j,jð Þ$0.8

(Fig. 10A). A weaker fine-grained correlation indicates a less

collective robustness as indicated by the increase in

log10 GTR
p j,jð Þ

� �
(i.e., decrease in parameter robustness) as

r2 j,jð Þ decreases, for j~1,2,3,5 (Fig. 9A,B,C,E). This pattern

does not appear for j~4,6,7 (Fig. 9D,F,G), which is consistent

with the results in Fig. 8 where categories 4, 6, and 7 show the

weakest correlations between log10 GTR
I jð Þ

� �
and

log10 GTR
p j,jð Þ

� �
compared to the other categories. In particular,

most of the r2 j,7ð Þ values are very small, less than 0.2, which is

consistent with the results in Fig. 8H where no correlation is found

(as indicated by the high p value). Furthermore, one can map the

different clusters appearing in Fig. 8B–H into the clusters that

appear in Fig. 10A–G. For example, the set of topologies showing

a log10 GTR
p j,7ð Þ

� �
&{2 can be mapped to the cluster in Fig. 9G

with r2 j,7ð Þ ranging between 0 and 0.4 and that in Fig. 10G with

Slope j,7ð Þ ranging between 1.0 and 1.5. Similarly, in Fig. 8D, the

separate two sets of topologies showing a low parameter robustness

value (log10 GTR
p j,3ð Þ

� �
between 20.2 and 0) can be mapped to

the two clusters in Fig. 9C on the top left side with r2 j,3ð Þ ranging

between 0 and 0.3 for one, and between 0.2 and 0.4 for the other,

and the two clusters in Fig. 10C with negative values of

Slope j,3ð Þ. Further investigation of the set of topologies corre-

sponding to the different clusters goes beyond the scope of the

work presented here.

Plausible Models of the Role of CheV-P in Bacterial
Chemotaxis

The main proteins/receptors involved in E. coli chemotaxis are

CheA, CheW, CheB, CheR, CheZ, and CheY. E. coli uses an

anticlockwise rotation of its flagella to move forward. A decrease

or increase in the concentration of nutrients (chemo-attractants) or

harmful chemicals (chemo-repellents), respectively, provokes a

change to a clockwise rotation which causes the E. coli to tumble

and thus change direction. This signal to the flagella is controlled

Figure 6. Correlations within 3-node motifs/motif subcategories. Topologies are divided according to the motifs they contain. All the
regressions are significant with p,0.0001). (A) Linear regression is applied for each category. IFF_only (red): y = 0.74x+0.66 (N = 609, r = 0.60). NFL_only
(green): y = 0.56x+0.20 (N = 1397, r = 0.64). IFF_NFL (blue): y = 0.51x+0.23 (N = 2100, r = 0.63). (B) NFL subcategories excluding topologies that contain
more than one motif/type of motif. (C) NFL1 types including those containing additional motifs. (D) Type2a (blue and red)) type 2 with X3 auto-
deactivation, Type2b (green and black))type 2 without X3 auto-deactivation. Type2a without IFF (red): y = 0.33x–0.38 (N = 45, r = 0.97). Type2b
without IFF (green): y = 1.12x+0.29 (N = 77, r = 0.97).
doi:10.1371/journal.pcbi.1003474.g006
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by the chemotaxis protein CheY. A stimulus (i.e., a change in the

chemical concentration in the environment) is sensed by periplas-

mic binding proteins which couple to CheA in the inner

membrane with the help of CheW. An increase in chemo-

attractant concentrations inhibits the phosphorylation of the

receptor complex CheA-CheW (RC-P) (Fig. 11A) while a

chemo-repellent enhances it (Fig. 11B). RC-P gives its phosphate

group to both CheY and CheB (CheY-P, CheB-P). CheB-P

demethylates glutamate residues while CheR enhances methyla-

tion. In turn, methylated glutamate (M) enhances the phosphor-

ylation of the receptor complex. The chemotaxis protein CheZ

helps speeding the autodephosphorylation of CheY-P [19–21]

(Fig. 11A–B). For simplicity, we further coarse-grain this network

such that M and RC-P interact via a negative feedback loop

(Fig. 11C–D). In the supplementary material (Fig. S3), we

demonstrate that there is no significant difference in the results

between the topologies shown in Fig. 11A and its coarse-grained

equivalent shown in Fig. 11C (slope = 0.79 and 0.77, respectively),

though coarse-graining improves the Pearson correlation as it

removes the redundant link leading to additional variability. The

topology under the influence of a chemo-repellent has a much

lower fraction of TR networks and shows no correlation

(r = 20.01, p = 0.85) in its un-coarse-grained form (Fig. 11B). It

was important to remove the redundancy to obtain a significant

correlation (Fig. 11D, slope = 0.37, r = 0.45, p = 10214).

Chemotaxis in many other bacteria is more complex and

involves more proteins. One such protein is CheV which generally

contains a phosphorylatable domain [24]. Here we consider all

possible coarse-grained interactions between phosphorylated

CheV (CheV-P), RC-P, and M. The only assumption we make

is that RC-P gives its phosphate group to CheV in addition to

CheB and CheY (Fig. 11E–F). With this, we obtain 33 possible sets

of signed directed edges as listed in table 1, where we are

considering all 3 possibilities (i.e., activation, deactivation, or no

link) for the 3 suggested links.

For each of the 27 topologies, we compute the GTR
I and GTR

p

values (Figs. 12, 13) and the slopes of the regression between EI

and Ep values of their corresponding TR networks (Figs. 12B,

13B). We compare the results with that of the E. coli topology both

under positive (Fig. 12) and negative (Fig. 13) stimuli. Topologies

Figures 7. Illustrating the different parameter categories. The links of each topology (and thus their corresponding parameters) are divided
into 7 categories:

kji,k
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ji

n o
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j~input or basal enzyme

�

kji,k
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ji

n o
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ji

n o
[category 3<

i~2

j~1 or 2 or 3

�

kji,k
m
ji

n o
[category 4<

i~3

j~1 or 2

�

kji,k
m
ji

n o
[category 5<

i~2

j~basal enzyme

�

kji,k
m
ji

n o
[category 6<

i~3

j~basal enzyme

�

kji,k
m
ji

n o
[category 7<

i~3

j~3

�

doi:10.1371/journal.pcbi.1003474.g007
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1–3, 5–7, 10–12, 16, and 19 are highly improbable as they have no

significant number of TR networks within the sampled parameter

space when chemo-repellents are the stimulus (Fig. 13). Topologies

4, 8, 18, 25–27 are also eliminated as they either show either a

negative or no correlation (Fig. 12C–D, 13C–D) under either a

chemo-attractant or a chemo-repellent. Topologies 9, 14, 18, 21,

23 are less likely than the rest (13, 15, 20, 22, 24) as they have a

weaker correlation between EI and Ep than E. coli as deduced

from the lower p values (Fig. 12C, 13C). Topologies 20 and 22 are

less robust to input perturbation than Ecoli when chemo-repellents

are the stimulus (Fig. 13), and 24 has a significantly smaller slope.

Finally 13 is more robust to parameter perturbations than 15. The

distributions of EI , Ep for each topology are shown in Figs. S4, S5,

S6.

Discussion

In this work, we demonstrated that there is a general positive

power-law correlation between environmental and genetic robust-

ness in TR networks, and a statistically significant trend to a

Figures 8. Correlation between robustness to input and parameter perturbations of different categories within 3-node TR
networks. log10 GP

p j,jð Þ
� �

is a measure of robustness of topology j to perturbation in parameters [ category j. Topologies with a low fraction of TR
networks (less than 2.3%) are not excluded. We show the linear regression between robustness to perturbations in input and in (A) all parameters, (B)
parameters [ category 1, (C) [ category 2, (D) [ category 3, (E) [ category 4, (F) [ category 5, (G) [ category 6, (H) [ category 7. The linear regression
results are shown on the Figure. All linear correlations are significant (p,0.0001) except for category 7 (H) slope = 1.0 but r = 0.001 and p = 0.81.
doi:10.1371/journal.pcbi.1003474.g008
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directly proportional linear relationship between the two in the

limit of large networks. Conversely, monotonically responsive and

non-responsive (NP) networks show a weaker relationship than TR

ones. Furthermore, this distinction between the two classes

becomes more prominent as the size of the networks increases.

Therefore, this relationship associated with TR may be relevant to

the evolution of biochemical networks. While other factors have

played a role in the evolution of genetic robustness, our results

show that, for TR networks, as the system evolves to withstand

external environmental perturbations, it will, with high probabil-

ity, concomitantly become robust to certain genetic perturbations.

We speculated that the inverse of the slope is proportional to

N{3=4 where N is the number of nodes. We performed the

corresponding regression and obtained 1=slope Nð Þ~aN{3=4zb

for a~1:53+0:31 and b~1:01+0:08 (r = 0.9439, p = 0.008 (1-

tailed), p = 0.016 (2-tailed)). To confirm our results, we performed

a Bayesian analysis for the model slope Nð Þ~1=1zkN{a with a

uninformative flat prior on the parameters and obtained

k~1:73+0:31 and a~0:731+0:087 from the second moments

of the posterior. Thus the Bayesian analysis confirms the linear

regression. For NP networks, the same regression gives

Figure 9. r2 within the networks of each 3-node topology divided into 7 categories. Within each topology j, the overall robustness to

parameters in category j~1,2, � � � 7 is shown versus r2 j,jð Þ, the r2 of the correlation (i.e., square of the Pearson correlation) between log10 EI j,~PP
� �� �

and log10 Ep j,~PP,j
� �� �

, for j = 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), and 7 (G).

doi:10.1371/journal.pcbi.1003474.g009
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1=slope Nð Þ~aN{3=4zb for a~1:66+0:82 and b~1:47+0:21
(r = 0.7608, p = 0.07 (1-tailed), p = 0.13 (2-tailed)). The value of

slope Nð Þ for TR networks in the limit of N large is thus 0.9960.08

while that of NP networks is 0.6860.21. While the latter’s

regression is not significant at the p = 0.05 level, the value of the

intercept did not significantly change for different power values

(we tried N{0:64 and N{0:48). The statistically significant

regression for TR networks implies that as a network evolves to

be more robust to input perturbations it will also evolve to be

robust to parameter perturbation (and vice versa) at a faster rate.

Most importantly, as the size of TR networks becomes larger, the

linear relationship between the logarithms quantifying robustness

to input and that to parameter perturbations implies that for larger

TR networks, GTR
P jð Þis, with statistical significance, and within the

computed uncertainty, proportional to GTR
I jð Þ while for larger NP

networks, GNP
P jð Þ tends to be proportional to GNP

I jð Þ
� �0:68

. As

standard in the analysis of power-law relationships, we computed

the regression using logarithms. For specific biological situations, it

may be conceptually more appropriate to compute a direct fit, but

for general random networks, we know of no such principle. An

exponential fit between GTR
P jð Þ and GTR

I jð Þ for different numbers

Figure 10. The slopes within the networks of each 3-node topology divided into 7 categories. Within each topology j, the overall

robustness to parameters in category j~1,2, � � � 7 is shown versus slope j,jð Þ, the slope of the regression line between log10 EI j,~PP
� �� �

and

log10 Ep j,~PP,j
� �� �

, for j = 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), and 7 (G).

doi:10.1371/journal.pcbi.1003474.g010
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of nodes would be difficult to interpret as the power-law is

changing with the number of nodes, tending to a constant only as

the number of nodes becomes large.

A drawback of our method is that the random generation of

large networks does not account for reducible topologies which

can introduce more variability and thus more error and a lower

correlation between the two robustness measures. This makes a

comparison between the correlation coefficients of topologies of

different sizes a trifle problematic. However, the space of

topologies grows so rapidly with the number of nodes that the

likelihood of randomly selecting a reducible network decreases

precipitously. Similarly, the averaging method does not distinguish

between links contributing to the robustness of either input or

parameters and those that do not. A method that could pinpoint

such links would be useful in this context.

Our results on the adaptability of 3-node motifs differ somewhat

from Ref [30] due to our use of a qualitative test, the Pearson

shape correlation, for assessing the transient response property of a

network. We are not aware of a biologically plausible rationale for

an explicit cutoff on the size or speed of a response as biological

examples can exhibit both extremes of size or duration of

transients. The general motifs shown in the literature [30] need

further qualification to be deemed biochemically adaptable. For

example, many topologies containing NFL are nonresponsive.

Conversely, we show that a subcategory of NFL, NFL1 type2b is

particularly robust and exhibits a strong correlation between

robustness to input and parameter perturbations (Fig. 6D).

Our results are consistent with biological networks described in

the literature. For example, we show that the coarse-grained

network topology of E. coli chemotaxis, as described in the

literature [17–21], is NFL1 type2b (Fig. S7C), as follows. When

the receptor complex is activated, it causes the phosphorylation of

the response regulator CheY leading to increased probability of

tumbling. An increase in the chemo-attractant level (I) suppresses

the activity of the complex and, in turn, the phosphorylation of

CheY (Fig. S7A). If I is the input (which we set to always activate

the input-receiving node in our computations, for consistency),

then we can define the concentration of the input-receiving node

as that of the deactivated complex, X1 (i.e., the activated complex

represent X1 in its deactivated form). In this case, X1 deactivates

CheB which inhibits methylation (M). M activates the complex

which is equivalent to deactivating X1. The latter inhibits the

phosphorylation of CheY (the output) and thus decreases the

probability of tumbling (Fig. S7B).

An example of IFF is the Ras model of MAPK cascades

discussed in Ref [53]. The input simultaneously activates two

factors, SOS and RasGAP which activate and deactivate Ras,

respectively and simultaneously. The model is shown [53] to be

responsive only when the activation of SOS is faster than that of

RasGAP. Thus, one can further coarse-grain it by removing the

intermediate node between Ras and the input node (Fig. S8). This

reduces to an IFF1 topology.

In Ref [30], all NFL topologies wherein the output node directly

affects the input receiving node were found to be not robust or

transiently responsive. While consistent with our results showing

that NFL7–NFL10 are not robust, note that when the negative

feedback loop has a direct and an indirect path, the outgoing and

incoming links of the input receiving node must have the same sign

for adaptability and parameter robustness to be achieved (see

NFL4 and NFL6 as opposed to NFL3 and NFL5 in Fig. 6B). Our

work goes beyond pointing out general motifs. We refine

subcategories within these motifs and show that, in fact, they do

vary in their biochemical adaptation properties.

Traditionally, network motifs represent subgraph topologies

that appear in biological networks much more often than one

would expect in a randomly constructed network [49], and specific

functions were assigned to different types of motifs [41,46–48].

The validity of this approach has been questioned as the frequency

of occurrence of these motifs was not statistically significant when

compared with corresponding (i.e. same degree) randomly

constructed networks [54]. It was argued that one cannot analyze

subgraphs independently of the rest of the network as interactions

will drastically change the functions assigned to the particular

topology [55]. In our work, a motif does not represent a subgraph,

rather the topology of the backbone of (possibly much) bigger

networks.

Figure 11. Chemotaxis biochemical adaption networks. (A) and (B) are the original networks of E. coli chemotactic adaptation as described in
the literature [17–21] under positive (A) and negative (B) stimuli. (C) and (D) are their respective coarse-grained topologies. (E) and (F) are the coarse-
grained networks involving phosphorylated CheV. The grey edges (a, b, c) are putative additional interactions. They can be activating (+1),
deactivating (21), or have no effect (0) as listed in table 1.
doi:10.1371/journal.pcbi.1003474.g011

Table 1. All possible sets of interactions for links a, b, c in
Fig. 11.

Index a b c

1 1 1 1

2 1 1 0

3 1 1 21

4 1 0 1

5 1 0 0

6 1 0 21

7 1 21 1

8 1 21 0

9 1 21 21

10 0 1 1

11 0 1 0

12 0 1 21

13 0 0 1

14 0 0 0

15 0 0 21

16 0 21 1

17 0 21 0

18 0 21 21

19 21 1 1

20 21 1 0

21 21 1 21

22 21 0 1

23 21 0 0

24 21 0 21

25 21 21 1

26 21 21 0

27 21 21 21

doi:10.1371/journal.pcbi.1003474.t001
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We use our approach to differentiate between plausible models

of the role of the CheV-P protein in bacterial chemotaxis. We find

that there are only a few possible ways that CheV-P can be linked

to RC-P and M. We suggest that while there are at most 9 possible

topologies, the most plausible one has M enhancing the

phosphorylation of both CheV and the receptor complex.

Some specific network features have been associated with

robustness to environmental variation in bacterial gene expression.

Insulating gene expression by different modes of control, from

activation to repression depending on the required high or low

activity, has been suggested as a general control feature [56].

Our approach to motif discovery can be extended to networks

with backbones with more than 3 nodes. While exhaustive

enumeration of small motifs with desired functions is fascinating

[30,41–43], it is neither immediately evident nor has it been

demonstrated in any context that such motifs could be put together

to make systems with multiple functions while preserving the

robustness or responsiveness properties of the separate motifs. To

get to the point where we can plausibly discuss architectural

principles in biology, it seems necessary to find general character-

istics of classes of networks of all sizes that could perform functions of

biological interest. Our work is a step towards this goal.

Methods

Notations
Following the same initial setup as in Ref [30], a biochemical

network is represented with a directed signed graph S wherein the

nodes of the network represent the enzymes. The latter can either

be active or inactive and are able to interconvert between the two

states. Thus, the elements of the corresponding adjacency matrix

A Sð Þ can take the values aij~{1,0,or1, implying that node i

deactivates node j, has no effect on j, or activates j, respectively.

No parallel links going in the same direction are allowed, i.e., aij

cannot be .1. We divide the nodes into two types, varying nodes

and fixed nodes. The latter correspond to inputs and basal

enzymes which are added to each network to ensure that each

node has at least one activating and one deactivating link. Thus,

for an N-node network with NI inputs and NE basal enzymes,

A Sð Þ is an n|n matrix where n~NzNIzNE . These concen-

tration values are represented by an n{dimensional vector

Y
I

tð Þ~ X
I

tð Þ,X
II

,X
II

n o
, ð1Þ

Figure 12. Chemotaxis networks responding to a change in a chemo-attractant. Each blue circle represents a topology responding to
change in the concentration chemo-attractants in the environment. The index of each topology is given inside the circle. The blue circle highlighted
in red represent two topologies, 14 and 15, whose positions overlap. The corresponding values of the fraction of TR networks (A), slopes of the linear
regression of their EI , Ep values (B), p (C), and r (D) values of the regression are shown next to the blue circle.
doi:10.1371/journal.pcbi.1003474.g012
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where X
I

tð Þ is the concentration of the active form of the N
enzymes at time t,

X
I

~ X1,X2, . . . XNf g, ð2Þ

X
II

~ X I
1 ,X I

2 , . . . X I
NI

n o
and X

IE
~ X E

1 ,X E
2 , . . . X E

NE

n o
are the

time-independent concentrations of the NI inputs and NE basal

enzymes, respectively.

Assuming that the enzymes are non-cooperative and hence that

they obey the Michaelis-Menten kinetics, the rate equations

governing the dynamics of the network take the following compact

form

Fj~
dXj

dt
~
Xn

i~1

Yikij

1{Xj

� �
1{Xj

� �
zkm

ij

h aij

� �
{

Xj

Xjzkm
ij

h {aij

� �( )
ð3Þ

where h is a unit step function defined as

h xð Þ~
1 when xw0

0 otherwise

�
ð4Þ

kij and km
ij are the catalytic and Michaelis-Menten rate constants for

the regulation of enzyme j by enzyme i, for j~1, . . . N and i~1, . . . n.

In equation (3), the total concentration of each enzyme is kept

constant and normalized (i.e., the concentration of the active form

of an enzyme plus that of its inactive form is always equal to one).

Thus, 0ƒXiƒ1 for i~1, . . . N. For all simulations presented here

we use only one input, X I
1 ~0:5. This particular choice of input

concentration should not have a significant effect on our

qualitative results, as we have checked explicitly while formulating

our hypothesis. Networks are allowed to reach steady state before

the concentration of the input is perturbed. We are only concerned

with the relative change in steady state concentrations.

Experimental Setup
N-node networks are identified with directed signed graphs Sj

representing their topology and a set of parameters

P
I
~ kij

� �
, km

ij

n on o
, for j~1, . . . ~NNt, where ~NNt is the total number

of sampled topologies, excluding those wherein one or more nodes

have a total degree of zero or the output node cannot be reached

from the input receiving node (Fig. 1). Each topology, in turn, is

sampled over a large number of random networks, i.e., a large

number of randomly chosen parameter sets P
I

j,b, for

b~1, . . . ~NNs jð Þ, where ~NNs jð Þ is the total number of sampled

networks (sets of parameters) for topology j. The total number of

parameters in each set Np jð Þ (i.e., length of the vector P
I

j,b) varies

depending on the topology. The order of magnitude of Np jð Þ

Figure 13. Chemotaxis networks responding to a change in a chemo-repellent. Each blue circle represents a topology responding to
change in the concentration of chemo-repellents in the environment. The index of each topology is given inside the circle. The blue circle highlighted
in red represent three topologies, 14, 15, and 17, whose positions overlap. Their corresponding values of fraction of TR network (A), slopes of the
linear regression of their EI , Ep values (B), p (C) and r (D) values of the regression are shown next to the blue circle.
doi:10.1371/journal.pcbi.1003474.g013
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increases exponentially with the size of the networks. For example,

Np values for N~3 are around 20, around 40 for N~5, and 500

for N~30. Similarly, the number of iterations (i.e., number of

sampled networks ~NNs jð Þ) required (see Selection Criterion below) also

increases with N . For example, forN~3 ~NNs jð Þ values range

between 104 and 105, while for N~30, ~NNs jð Þ values range

between 106 and 107. Typically, an iteration takes less than

1023 seconds of CPU time for small networks (N~3), thus 1 to

2 minutes to test each topology. On the other hand, for large

networks (N~30), an iteration typically takes around 0.04 seconds

of CPU time, 3 to 5 days for testing each topology.

Pearson Test
We define a TR network as one whose output dynamics has a

non-monotonic transient between two steady states as a response

to input change (i.e., the steady state values before input

perturbation and that after input perturbation). We find the

transition time (i.e., the time at which the concentration is

maximal/minimal before it starts decreasing/increasing again)

and enzyme concentrations, tm and X
I

m~ X m
1 ,X m

2 , � � �X m
N

� �
(i.e.,

concentrations at tm), by solving for the turning point

LXN tmð Þ
Lt

~

XN

k~1

LFN

LXk

				
X
I�

, X
II

, P
I

Xk tmð Þ{X �k
� �

z
XNI

k~1

LFN

LX I
k

				
X
I�

, X
II

, P
I
DX I

k ~0,

ð5Þ

where X �k is the concentration of node k at steady state.

We use a Pearson test to determine if a given network is TR.

First, we define two functions Fad tð Þ and Fnad tð Þ as model

functions of perfect adaptability and non-adaptability (a mono-

tonically changing network), respectively (Fig. 2):

Fad~
X �Nz X m

N {X �N
� �

1{ t{tmð Þ=tm½ �2
� �

for tƒ2tm

X �N otherwise

(
ð6Þ

Fnad~
X �Nz X m

N {X �N
� �

1{ t{tmð Þ=tm½ �2
� �

for tƒtm

X m
N otherwise

(
: ð7Þ

Define corresponding Pearson shape correlations rad and rnad as

rad~

P
t

XN tð Þ{ �XX Nð Þ Fad tð Þ{�FFadð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t

XN tð Þ{ �XX Nð Þ2 Fad tð Þ{�FFadð Þ2
r ð8Þ

rnad~

P
t

XN tð Þ{ �XX Nð Þ Fnad tð Þ{�FFnadð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t

XN tð Þ{ �XX Nð Þ2 Fnad tð Þ{�FFnadð Þ2
r , ð9Þ

where �XXN , �FFad and �FFnad are the mean values of XN , Fad and Fnad .

With this, a network is deemed TR if radj jw rnadj j. Comparing the

absolute values or rad and rnad instead of the actual values is

necessary. Even though our definitions of Fad and Fnad will most

likely lead to positive values, this is not always the case. The reason

is that eq. (6) and (7) assume the perfect case where the differences

in the concentrations from the initial steady state have always the

same sign (as in Fig. 2 E and F). If instead the difference in

concentrations at the transition point is smaller than that at the

final steady state (i.e., post-perturbation steady state), then rad

and/or rnad will have negative values. However, that does not

matter since we are only interested in the shape of the time-course

(see Fig. 2G, for example).

Note that the mean values are taken as the average over all the

discretized time-steps; for example, �XXN~
1

nt

Xnt

t~0

XN tð Þ for nt time

steps. The size of the time-step, dt, is the same for all networks

(dt~0:1), but this is not the case for the number of time steps, nt,

as the length of the time-course of each network varies depending

on how long the network needs to reach a new steady-state (i.e.,

the rate equations in eq. (3) for all nodes reach zero again after

input perturbation. Of course, computationally, the run will stop

when the rate equation for all nodes is less than 10210). For

example, in Fig. 14A and 14B we show the time-courses (in blue)

of two different networks. The network in Fig. 14A needed around

130 seconds (nt~1300) to reach a steady state, while that shown in

Fig. 14B needed around 150 seconds (nt~1500). Simulations that

take too long to reach a steady state (ntw2000) are thrown away

and not considered in the analysis (i.e., are thrown away without

performing the Pearson test). This cutoff on the maximal number

of time-steps allowed is chosen for computational efficiency.

Preliminary results showed that for most networks, if a steady state

was not reached within 2000 time-steps, it is unlikely it will be

reached for a long time. Since we are only interested in the

statistical results and since networks are chosen randomly, there is

no reason to insist on including a network that takes a lot

computational time to reach a steady state. We chose dt~0:1
because we were looking for the largest time-step (to improve

computational time) that does not change the statistical results. In

preliminary runs, we compared the results of 3-node networks

when using dt~0:01 and dt~0:1. The finer time-step allowed

more topologies to pass as TR. However, these topologies had very

low fraction of TR networks and were removed after the cutoff.

Moreover, the statistical results were the same both before and

after the cutoff. As mentioned in Experimental Setup above, large

networks (30-node) take 3 to 5 days of CPU time for each

topology. Using dt~0:01 would increase this simulation time to

over a month for each topology which is impractical.

Robustness of the Pearson Test
We test the robustness of the Pearson test described above by

comparing the results from the 3-node simulations to those

employing instead the Spearman correlation using the same

definition of Fad tð Þ and Fnad tð Þ (Fig. S9A). Both are also compared

to simulations using a different definition,F
0

ad tð Þ and F
0

nad tð Þ as

follows:

F
0
ad~

X �Nz X m
N {X �N

� �
sin 0:5p 1{ t{tmð Þ=tm½ �2

� �h i
for tƒtm

X �Nz X m
N {X �N

� �
tanh a t{tmð Þ=tm½ �2

� �
otherwise

8><
>:

ð10Þ

F
0
nad~

F
0
ad for tƒtm

X m
N otherwise

(
, ð11Þ

where a is chosen here to be a~0:3. This new definition allows

Environmental & Genetic Robustness Are Correlated

PLOS Computational Biology | www.ploscompbiol.org 18 February 2014 | Volume 10 | Issue 2 | e1003474



F
0
ad and F

0
nad to get to the transition concentration, X m

N , at a slower

rate, then after the transition point, tm, F
0
nad coincides with Fnad

while F
0
ad relaxes back to the pre-perturbation steady state, X �N at

a much slower rate (Fig. 14A,B). In all cases we find no significant

difference between the results for 3-node simulations (Fig. S9).

This does not mean that there are no variations within individual

networks. For example, in Fig. 14, we show the rad and rnad values

of the Pearson test for all the networks corresponding to a typical

3-node topology using both definitions (Fig. 14C). We find that

there are 90 out of 21579 networks that were deemed TR in one

but NP in the other. A typical time-course where the outcome of

the Pearson tests differ or agree are shown in Fig. 14A and

Fig. 14B, respectively. In general, most networks do not fall into

this category where the values of rad and rnad are very close such

that different definitions of Fad and Fnad lead to different

outcomes. In Fig. S9, we verify that this change does not affect

any statistical observations.

Quantitative Measure of Network Robustness
To quantify the degree of robustness to input and parameter

perturbations of a particular network, we calculate the relative

change in the steady state concentrations of the output node due to

perturbing the input and parameter values, respectively. Let EI

and Ep be the average of the sensitivity of the steady state

concentration of the output to each input and each parameter,

respectively. Then,

EI j,X
II

,P
I� �

~
1

NI

XNI

a~1

L ln X �N
L ln X I

a

				
				, ð12Þ

Ep j,X
II

,P
I� �

~
1

Np

XNp

a~1

L ln X �N
L ln Pa

				
				, ð13Þ

where the N th node is the output node, P
I

is the set of kij and km
ij

corresponding to each reaction/link (i.e, the non-zero values),

P
I

~ P1, . . . PNp

n o
, Np

�
2 is the total number of links, and

X �N X
II

,P
I� �

is the set of steady state concentrations of the output

node for input X
II

and parameter set P
I

.

Figure 14. Variations in the Pearson test within individual networks. When the Pearson test is performed using two different definitions of
Fad and Fnad , small variations can be observed within individual networks. In (A) we show an example where a network’s time-course (blue) is

deemed TR when the definition, Fad (red) and Fnad (green) of equations (6) and (7) is used (r1wr2), but NP when the definition, F
0

ad (pink) and F
0

nad

(gray) of equations (10) and (11) is used instead (r
0

1vr
0

2). (B) is an example where the two tests agree (r1wr2 and r
0

1wr
0

2). In (C) we show all r1 (red), r2

(green), r
0

1 (pink), and r
0

2 (gray) values over the space of networks. Networks where the two tests (i.e., Pearson test using the two different definitions)
differ are shown in black (note that only their r1 values are colored in black to avoid showing the same network 4 times).
doi:10.1371/journal.pcbi.1003474.g014
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Defining the degree of input and parameter robustness of a

network j,X
I I

,P
I

� �
as inversely proportional to the values of

EI j,X
I I

,P
I

� �
and Ep j,X

I I
,P
I

� �
ensures all the inputs and

parameters of the network are taken into consideration. Analyzing

the rate functions of equation (3) (see Steady State Analysis in the Text

S1 for the detailed derivation), we obtain

EI j,X
II

,P
I

� 
~

1

NI

XNI

k~1

{ J
I
I

{1

x J
I
I

I

 !
Nk

X I
k

X �N

										

										
, ð14Þ

Ep j,X
II

,P
I� �

~
1

Np

XNp

k~1

{ J
I
I

{1

x J
I
I

p

 !
Nk

Pk

X �N

										

										
, ð15Þ

where J
I
I

x, J
I
I

I , and J
I
I

p are the Jacobians with respect to the node

concentrations, input, and parameters, respectively.

Quantitative Measures of Robustness of TR Topologies
A robust topology is one that gives rise to robust networks

with a higher probability when tested with a large number of

parameter sets. Quantitatively, the degree of robustness to input

perturbations of a given topology is taken to be the geometric

average of EI j,X
I I

,P
I

� �
over all P

I

. Similarly, the degree of

parameter robustness is the geometric average of Ep j,X
I I

,P
I

� �
.

A TR topology is one that has a statistically significant number

of TR networks. Topologies that do not have enough TR

networks are rejected and excluded from any further analysis.

With this, we are left with Nt topologies out of the ~NNt sampled

ones. For each topology j~1,2, � � �Nt, we define two quanti-

tative measures each for input (GTR
I jð Þ and GNP

I jð Þ) and

parameter (GTR
p jð Þ and GNP

p jð Þ) robustness. GTR
I jð Þ and

GTR
p jð Þ are the values of input and parameter robustness of

TR networks

log10 GTR
I jð Þ

� �
~
X

P
I

log10 EI j,X
II

,P
I� �� �

hTR j,P
I� �,

Ns jð Þ, ð16Þ

log10 GTR
p jð Þ

� �
~
X

P
I

log10 Ep j,X
II

,P
I� �� �

hTR j,P
I� �,

Ns jð Þ, ð17Þ

Ns jð Þ~
X

P
I

hTR j,P
I� �

ð18Þ

where hTR j,P
I� �

~1 if network j,P
I� �

passes the Pearson test

and zero otherwise.

GNP
I jð Þ and GNP

p jð Þ are the values of input and parameter

robustness of NP networks (networks that did not pass the Pearson

test)

log10 GNP
I jð Þ

� �
~
X

P
I

log10 EI j,X
II

,P
I� �� �

hNP j,P
I� �,

NNP jð Þ, ð19Þ

log10 GNP
p jð Þ

� �
~
X

P
I

log10 Ep j,X
II

,P
I� �� �

hNP j,P
I� �,

NNP jð Þ, ð20Þ

NNP jð Þ~
X

P
I

hNP j,P
I� �

ð21Þ

where hNP j,P
I� �

~1 if network j,P
I� �

reaches a steady state (see

Selection Criterion below) but it does not pass the Pearson test and

zero otherwise.

We choose the geometric average as more suitable than the

arithmetic average as a conservative approach to detecting a

possible correlation, as the latter gives too much weight to much

larger outliers.

Selection Criterion
A trial is rejected if it takes too long to reach equilibrium, or

its corresponding Jacobian with respect to the node concentra-

tions is singular (i.e., J
I
I

x is noninvertible). With this, we obtain

Nt|Ns matrices for the relative errors EI j,X
I I

,P
I

� �
and

Ep j,X
I I

,P
I

� �
for j~1, . . . Nt and b~1, . . . Ns jð Þ. ~NNs jð Þ and

thus Ns jð Þ are determined when log GTR
I jð Þ

� �
, log GTR

p jð Þ
� �

,

and the fraction of successful trials, Fsucc jð Þ~Ns jð Þ
�

~NNs jð Þ,
reach equilibrium values. We reject a topology if Ns jð Þ is

obviously too small to be statistically significant or Fsucc jð Þ takes

too long to reach equilibrium (see below), indicating that the

parameter space leading to TR networks for that topology is too

small.

We sample over 50,000 different topologies for each Nw3
and all possible 3-node topologies (19683), and for each we

randomly sample over a large number of parameter sets from

a uniform distribution within the ranges kij[ 0:1{10½ �
and km

ij [ 0:001{100½ � (whenever a link exists between

vertices i and j). For Nw3 the topologies were randomly

generated such that the value of each aij in the corresponding

adjacency matrix can take the values 21 or 1 with probability p=2
each, and a value 0 with probability 1{p. We generated different

set of topologies with p~0:1,0:15,0:2,0:3,0:4,0:5. We found no

significant difference in the distributions of GI and Gp values

depending on p. The results shown here represent the collection of

all the sets.

We automatically reject trials wherein
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X m
N X

II?X
II

zDX
II

� �
{X �N X

II
� �� ��

X �N X
II
� �

ƒ10{4

X m
N X

II?X
II

zDX
II

� �
{X �N X

II
zDX

II
� �� ��

X �N X
II

zDX
II

� �
ƒ10{4

We investigate the effect of the choice of the ranges above by
running two separate 3-node simulation. In the first, the
parameters are chosen from a uniform distribution in the ranges
kij[ 0:001{2½ � and km

ij [ 0:001{100½ �, while in the second, the

parameters are chosen from a uniform distribution in the ranges
kij[ 5:0{15½ � and km

ij [ 0:001{100½ �. For both ranges we find a

significant correlation between robustness to input and parameter

perturbations (Fig. S10). For range1 and range2 we obtain the

respective values 0.38 and 0.54 for the slopes and 0.73 and 0.68

for the Pearson correlation (Fig. S10A). Furthermore the

difference in the slopes becomes insignificant when only

networks appearing in both ranges are taken into consideration

(Fig. S10B).

Sensitivity Analysis
As discussed above, the degree of input and parameter

robustness is seen as inversely proportional to the average of the

sensitivity of the steady state concentration of the output to each

input and each parameter, respectively. Then,

EI j,X
II

,P
I� �

~
1

NI

XNI

a~1

L ln X �N
L ln X I

a

				
				~ 1

NI

XNI

a~1

LX �N
LX I

a

: X I
a

X �N

				
				: ð22Þ

d~XX � ~
~~VV~VVI d~XX I[dX �N~~VVI

NI :d~XX I~
XNI

a~1

VNadX I
a[

LX �N
LX I

a

~VI
Na:

Inserting (22) in (23), we obtain

EI j,X
II

,P
I� �

~
1

NI

XNI

a~1

VI
Na

X I
a

X �N

				
				: ð24Þ

Similarly, for parameter perturbations,
LX �N
LPa

~VP
Na and

Ep j,X
II

,P
I� �

~
1

Np

XNp

a~1

VP
Na

Pa

X �N

				
				: ð25Þ

Fine-Grained Analysis
In this section we analyze the parameter robustness of different

types of parameters. Thus, the Np jð Þ parameters of a topology j

are now divided into Nc categories. Their corresponding measures

of robustness Ep j,X
I I

,P
I

,j
� �

are now defined as

Ep j,X
II

,P
I

,j
� �

~
1PNp

a~1

hj að Þ

XNp

a~1

VP
Na

Pa

X �N

				
				hj að ÞEp j,X

II
,P
I� �

ð26Þ

hj að Þ~
1 if parameter a [ category j

0 otherwise

�
ð27Þ

for j~1,2, � � �Nc.

Thus, the measure of robustness of a topology j to perturbations

in its parameters of category j takes the form

log10 GTR
p j,jð Þ

� �
~
X

P
I

log10 Ep j,X
II

,P
I

,j
� �� �

hTR j,P
I� �,

Ns jð Þ: ð28Þ

Note that a topology does not have to have parameters belonging

to all the defined categories.

Next, to obtain an idea about how robustness to input and

parameter perturbations correlate within the networks of each

individual topology, we calculate the value Slope j,jð Þ which is the

value of the slope obtained from the linear regression on

EI j,X
I I

,P
I

� �
vs Ep j,X

I I
,P
I

,j
� �

for topology j~1,2, � � �Nt and

category j~1,2, � � �Nc.

Supporting Information

Figure S1 Distribution of the topologies with different
fractions of TR networks, Fsucc. Linear regression results for

3-node topologies (A): slopes = 0.63, 0.59, 0.53, 0.52, 0.67, and

r = 0.67, 0.52, 0.65, 0.67, 0.54 for Fsucc,0.8%, 0.8%#Fsucc,2.3%,

2.3%#Fsucc,3.3%, 3.3%#Fsucc,4.8%, Fsucc$4.8%, respectively.

For 5-node topologies (B): slopes = 0.56, 0.47, 0.54, 0.63, 0.69, and

r = 0.52, 0.53, 0.53, 0.45, 0.36 for Fsucc,0.8%, 0.8%#Fsucc,2.3%,

2.3%#Fsucc,3.3%, 3.3%#Fsucc,4.8%, Fsucc$4.8%, respectively.

For 10-node topologies (C): slopes = 0.57, 0.68, 0.72, 0.81, 0.77,

and r = 0.35, 0.37, 0.36, 0.34, 0.38 for Fsucc,0.8%,

0.8%#Fsucc,2.3%, 2.3%#Fsucc,3.3%, 3.3%#Fsucc,4.8%,

Fsucc$4.8%, respectively. For 15-node topologies (D):

slopes = 0.80, 0.84, 0.86, 0.87, 0.81, and r = 0.21, 0.38, 0.42,

0.39, 0.35 for Fsucc,0.8%, 0.8%#Fsucc,2.3%, 2.3%#Fsucc,3.3%,

3.3%#Fsucc,4.8%, Fsucc$4.8%, respectively. For 30-node topol-

ogies (E): slopes = 1.09, 1.09, 1.12, 1.10, 0.91 and r = 0.37, 0.40,

0.42, 0.42, 0.43 for Fsucc,0.8%, 0.8%#Fsucc,2.3%,

2.3%#Fsucc,3.3%, 3.3%#Fsucc,4.8%, Fsucc$4.8%, respectively.

(TIF)

Figure S2 Correlation between robustness to input and
parameter perturbations within TR and NP networks
before the cutoff. Correlation between log10 GI jð Þð Þ and

log10 Gp jð Þ
� �

for all topologies showing any number of TR

network. log10 GI jð Þð Þ and log10 Gp jð Þ
� �

are either computed

from the average over TR networks (blue) or from the average

over NP networks (green). The linear regression for all sizes (3-

node, 5-node, 10-node, 15-node, and 30-node) shows a significant

(p,0.0001) correlation between log10 GIð Þ and log10 Gp

� �
. (A) 3-

node topologies: Within TR networks, slope = 0.50 (red line:

N = 4213, r = 0.75). Within NP networks, slope = 0.48 (black line:

N = 4213, r = 0.60). (B) 5-node topologies: Within TR networks,

slope = 0.50 (red line: N = 15756, r = 0.56). Within NP networks,

slope = 0.39 (black line: N = 15756, r = 0.48). (C) 10-node
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topologies: Within TR networks, slope = 0.66 (red line: N = 35522,

r = 0.34). Within NP networks, slope = 0.46 (black line: N = 35522,

r = 0.38). (D) 15-node topologies: Within TR networks,

slope = 0.84 (red line: N = 39976, r = 0.22). Within NP networks,

slope = 0.51 (black line: N = 39976, r = 0.36). (E) 30-node topolo-

gies: Within TR networks, slope = 0.95 (red line: N = 57777,

r = 0.35). Within NP networks, slope = 0.54 (black line: N = 57301,

r = 0.42).

(TIF)

Figure S3 Distribution of EI, Ep in the original and
coarse-grained Ecoli topologies. (A) Ecoli1 is the topology

shown in Fig.11A and Ecoli2 is its coarse-grained equivalent shown

in Fig. 11C. Their corresponding slopes are 0.79 (r = 0.73) and

0.77 (r = 0.86) respectively. (B) Ecoli1 is the topology shown in

Fig. 11B and Ecoli2 is its coarse-grained equivalent shown in

Fig. 11D. Their corresponding slopes are 20.98 (r = 20.01,

p = 0.85) and 0.37 (r = 0.45, p = 10214) respectively. Here we see

more variation in the slope than in (A) as the fraction of TR

networks is too low for accurate results.

(TIF)

Figure S4 Distribution of EI, Ep for topologies number
1–3, 5–7, 10–12, 16, 19 when the input is a chemo-
attractant. These are the topologies that show no TR networks

within the sampled parameter space when the input is a chemo-

repellent. The corresponding slopes, r, and P_values are shown in

Fig. 12.

(TIF)

Figure S5 Distribution of EI, Ep for topologies number
4, 8–9, 13–15, 17–18, 20–27 when the input is a chemo-
attractant. The corresponding slopes, r, and P_values are shown

in Fig. 12.

(TIF)

Figure S6 Distribution of EI, Ep for topologies number
4, 8–9, 13–15, 17–18, 20–27 when the input is a chemo-
repellent. The corresponding slopes, r, and P_values are shown

in Fig. 13.

(TIF)

Figure S7 Coarse-graining E. coli chemotaxis adapta-
tion network. (A) Our graphical depiction of the original

network of E coli Chemotaxis biochemical adaptation as described

in [17–21]. (B) E coli Chemotaxis adaptation network after

redefining the input receiving node. (C) The coarse-grained

network.

(TIF)

Figure S8 Coarse-graining of the Ras model of MAPK
cascades. (A) Our graphical depiction of the original model as

described in [53]. (B) Our coarse-grained model.

(TIF)

Figure S9 Effect of using different criteria for selecting
for transiently responsive networks. Here, four simulations

of 3-node topologies are performed using either the Pearson

(Pearson1 and Pearson2) or the Spearman (Spearman1 and

Spearman2) test. In each case, we use either the definition of Fad

and Fnad in equations (6) and (7) (Pearson1 and Spearman1) or that

in equations (10) and (11) (Pearson2 and Spearman2). All

simulations resulted in approximately the same results of the

slope of the linear regression. (A) compares Pearson1 (red) and

Spearman1 (blue). Both resulted in a significant linear correlation

(r = 0.72 and r = 0.68, respectively) and no significant difference

between the two slopes (0.49 and 0.48, respectively): ttest = 0.18

and p = 0.86. Similarly, Pearson2 and Spearman2 (B) resulted in a

significant linear correlation (r = 0.60 for both) and no significant

difference between the two slopes (0.51 and 0.47, repectively):

ttest = 1.71 and p = 0.09. Comparing the slopes of Pearson1 and

Pearson2 (C), we obtain: ttest = 0.86 and p = 0.36. Comparing

those of Spearman1 and Spearman2 (D), we obtain: ttest = 0.75

and p = 0.46.

(TIF)

Figure S10 Effect of sampling parameter values from
different distributions. Two simulations are performed where

we sample over all 3-node topologies. In both simulations, we

sample over parameters sets chosen from a uniform distribution

within fixed ranges. In the first (Range1), we set kij[ 0:001{2:0½ �
and km

ij [ 0:001{100½ � while in the second (Range2), we set

kij[ 5:0{15:0½ � and km
ij [ 0:001{100½ �. Some topologies only have

TR networks within one range but not the other, leading to the

different number of topologies in (A). Range1 (red): slope = 0.38

(N = 4587, r = 0.73), Range2 (blue): slope = 0.54 (N = 3371,

r = 0.68), p,0.0001 for both. If only topologies shared between

the two are taken into consideration (B), the linear regression

shows no significant difference in the slopes (slopes = 0.52 and 0.54

respectively, ttest = 0.57, p = 0.57).

(TIF)

Figure S11 Heat maps of the correlations within TR
networks. These are the heat maps corresponding to Fig. 3B (A),

Fig. 3C (B), and Fig. 3D (C).

(TIF)

Figure S12 Heat maps of the correlations within NP
networks. These are the heat maps corresponding to Fig. 4B (A),

Fig. 4C (B), and Fig. 4D (C).

(TIF)

Figure S13 r2 within the networks of each 3-node
topology divided into 7 categories. Within each topology

j, the overall robustness to input perturbations is shown versus

r2 j,jð Þ for j = 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), and 7 (G).

(TIF)

Figure S14 The slopes within the networks of each 3-
node topology divided into 7 categories. Within each

topology j, the overall robustness to input perturbations is shown

versus slope j,jð Þ for j = 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), and 7

(G).

(TIF)

Text S1 S1 Pearson Correlations within TR and NP networks.

S2 Steady state analysis.

(DOCX)
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