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Abstract

We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that
are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a
nonparametric and universal method for processing per-base sequencing read count data called FIXSEQ. We demonstrate
that FIXSEQ substantially improves the performance of existing RNA-seq, DNase-seq, and ChIP-seq analysis tools when
compared with existing alternatives.
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Introduction

High-throughput sequencing is used in a variety of molecular

counting assays [1] to study protein-DNA binding, transcription,

and the dynamics of chromatin occupancy. ChIP-seq [2], used to

study protein binding to the genome, captures short DNA

fragments that are attached to a protein of interest after a

chemical treatment that affixes proteins to nearby DNA molecules.

High-throughput sequencing of these DNA fragments, followed by

identifying their originating location in the genome, allows for the

identification of read-enriched areas. These enriched regions

correspond to locations where the protein of interest was bound,

perhaps indirectly, to the DNA. RNA-seq [3,4], used to study gene

expression, requires isolating the RNA content of a sample,

converting it to DNA, and sequencing the resulting DNA library.

Mapping or assembling the DNA reads and assigning them to

exons or transcripts enables the genome-wide quantification of

gene expression. DNase-seq [5,6] identifies regions of open

chromatin and patterns of transcription factor binding by

employing an enzyme that preferentially cuts DNA in accessible

positions. Retrieving and sequencing the resulting library of DNA

fragments, followed by identification of the originating locations,

allows for a genome-wide characterization of chromatin occupan-

cy. A unifying task in these analyses is comparing read count

profiles, obtained from read mapping results, across varying

biological samples or experimental conditions.

Although a myriad of specialized methods exist for analyzing

read count data, it is frequently assumed (implicitly or explicitly)

that read counts are generated according to a Poisson distribution

with a local mean. The assumption is explicitly introduced by

using the Poisson density directly as well as implicitly by relying on

binned per-base counts in ranking and statistical testing (see Text

S1). When read count data exhibit overdispersed per-base read

distributions, a Poisson model may produce erroneous or noisy

results. This occurs because the data are not matched to the

modeling assumption, resulting in incorrect assessments of

statistical significance. While it is well known that the distribution

of per-base counts within a single experiment is in fact typically

overdispersed, there has not been a precise characterization of the

degree of overdispersion and its effects on downstream analysis for

general sequencing data.

We introduce a general and asymptotically correct preprocess-

ing technique called FIXSEQ for correcting per-base and per-

experiment read counts. FIXSEQ reduces noise and increases

stability in subsequent inference procedures and complements

existing literature on applications of heavy-tailed distributions [7–

9]. Existing literature for preprocessing focuses on either de-

duplication, which removes all but one read per base, or

normalization techniques for RNA-seq data, which generally

operate over exon-level counts. We have previously dealt with

these problems when developing a ChIP-seq caller with adaptive

count truncation [10] and found that this was effective in practice

(see Text S1 and Table S1), but this work aims to construct a more

general preprocessing scheme that works for any method and

sequencing assay.

The normalization strategy of de-duplication is prevalent in

multiple ChIP-seq peak callers [11], but less common in RNA-seq

data analysis where highly-expressed transcripts may be expected

to have many duplicate reads. However, a handful of RNA-seq

processing algorithms remove duplicates as a conservative choice

to avoid nonlinear PCR amplification errors [12,13].

Existing RNA-seq normalization techniques work at a higher

conceptual level than FIXSEQ, using information from a local

sequence context to correct exon- or transcript-level sums and

reduce the impact of confounding noise covariates [7,14–18]. In

our RNA-seq results we show that FIXSEQ can enhance the results

of methods such as DEseq that already account for exon-level
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overdispersion as well as provide complementary information to

methods that correct for mappability and GC content (see Figure

S2). While these methods are valuable for RNA-seq and binned

count statistics, they are less applicable to other sequencing data

types and often have specific modeling assumptions that rely on

the mechanisms of transcription, cDNA library preparation, and

DNA sequencing. Covariate-based normalization techniques

designed for other assays, like ChIP-seq, require identified binding

sites as a prerequisite and are designed to correct only windowed

read counts [19], rendering them unusable as preprocessing tools

for algorithms which require per-base count data. Other assay-

specific normalization tools (e.g. [20–23]) require extensive

domain knowledge and application-specific modeling strategies

and, while valuable, must be developed independently for each

new assay.

In contrast to most of these existing strategies, FIXSEQ works at a

lower and more general level, the per-base count, and attempts to

decrease the false positive rate rather than recover lost signal

caused by sequencing artifacts. This approach is applicable to

many types of sequencing assays and downstream processing

algorithms, without additional assumptions. This universal nature

allows for FIXSEQ to be applied to any type of sequencing count

data, without training phases or specialized model-building.

However, in cases where applicable covariate-based or assay-

specific normalization tools exist, they may be used in addition to

FIXSEQ in order to leverage complementary gains (as in Figure S2).

One additional consequence of our work is a generalization of the

de-duplication heuristic into a broader and asymptotically correct

preprocessing technique.

Results

Read counts in sequencing data are highly overdispersed
The distributions of per-base mapped read counts in all ChIP-

seq and RNA-seq runs for the human embryonic stem cell type

(H1-hESC or ES cells) in the ENCODE project and a set of K562

cell line DNase-seq experiments (see Text S1) show evidence of

consistent and significant overdispersion (Figures 1, 2, and 3). This

extra variation arises from a myriad of biological and technical

sources, including true variation in factor binding signal or

expression levels genome-wide, variation in molecular sequencing

affinity, and variation in read mapping accuracy. The over-

dispersion we find is complex and cannot be directly categorized as

the result of a well-known parametric distribution such as gamma-

Poisson [24,25] or log-normal-Poisson [26] (Figures 1 and 2).

We quantified the degree of overdispersion with respect to a

distribution by comparing per-base empirical log-likelihoods

against the per-base maximum log-likelihood distributions for

the Poisson, negative binomial, and log-normal Poisson, where the

per-base rates of the Poisson are assumed to be drawn from a log-

normal distribution. For the negative binomial and log-normal

Poisson, maximum likelihood distributions were found via

numerical optimization with randomized restarts.

The deviation from Poisson is consistent across experiment and

assay type, as shown in the left column of Figure 3. We would

expect a completely linear histogram of log-counts but actually

observe significant overdispersion, shown by large number of high-

count bases.

Figure 1 shows that none of the parametric distributions we

tested fit the observed counts well. The Poisson significantly

underestimates the number of bases with more than one read, with

the probability of having ten counts land on the same base

estimated to be e40 times less than the observed number of counts.

The negative binomial has previously been shown to be effective

for modeling exon-level RNA-seq data, and we confirm that

negative binomial fits per-base RNA-seq data well. However, we

find that it fails to capture the wide variation in overdispersion for

ChIP-seq, underestimating the high count bases by at most a

factor of e7. The log-normal Poisson fit shows that real-world

sequencing data is not simply heavy-tailed; it has heavy tails whose

shapes are dependent on the assay type. The log-normal Poisson is

traditionally considered an extremely heavy-tailed distribution,

and while it is relatively correct for ChIP-seq, it significantly

overestimates the tail mass for DNase-seq experiments.

The wide variation in overdispersion level and type suggests that

any single parametric approach is unlikely to be effective for

all assay types. Instead of attempting to model each assay type

with a separate parametric family, we will use nonparametric

distributions that are flexible enough to fit all observed assay types

well.

Count correction via data transformation
While we have already seen that the Poisson assumption fails for

most of the assay types we consider, it is not feasible or necessary

to modify every analysis algorithm to use overdispersed distribu-

tions. Instead, for the class of inference algorithms which implicitly

or explicitly assume Poisson counts and independent bases, such as

most ChIP-seq callers, DNase-binding identifiers, and RNA-seq

exon read counting methods, we can construct improved datasets

with transformed counts that correct for overdispersion.

The two major nonparametric approaches to data transforma-

tion are quantile normalization, which matches input samples to a

reference sample via their quantiles, and distribution matching,

which fits a distribution to both the input and reference and

constructs a mapping function between them.

Quantile normalization, which is a popular approach in the

microarray literature, cannot easily be adapted to sequencing data,

due to the large number of bases with equal counts. In order to

rank normalize our observed counts to a Poisson, we would have

to arbitrarily break ties between bases with equal reads, which

could lead to spurious inference as well as force bases with non-

zero counts to be discarded.

Instead of breaking ties, we employ a different approach to

distribution mapping: given a distribution f over counts, we find

the mapping which makes the density of the Poisson equal to that

of the given distribution f . By fitting a distribution f to the

observed counts, we avoid the problem of tied counts and allow for

a continuous mapping. One advantage of viewing this approach

under a distribution mapping framework is that it allows us to

understand the theoretical basis of the de-duplication heuristic that

is a popular preprocessing method for ChIP-seq data.

Author Summary

High-throughput DNA sequencing has been adapted to
measure diverse biological state information including
RNA expression, chromatin accessibility, and transcription
factor binding to the genome. The accurate inference of
biological mechanism from sequence counts requires a
model of how sequence counts are distributed. We show
that presently used sequence count distribution models
are typically inaccurate and present a new method called
FIXSEQ to process counts to more closely follow existing
count models. On typical datasets FIXSEQ improves the
performance of existing tools for RNA-seq, DNase-seq, and
ChIP-seq, while yielding complementary additional gains
in cases where domain-specific tools are available.

Universal Count Correction
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Our approach transforms the non-Poisson, curved count

histogram on the left column of Figure 3 into the Poisson-like

linear count histogram on the right column of Figure 3.

De-duplication acts as a degenerate data transform
De-duplication, or removal of all but one read at each base

position, has gained adoption in the ChIP-seq analysis literature as

an effective way of reducing noise and improving replicate

consistency [27,28]. ChIP-seq event callers such as MACS [29]

and SPP [30] either de-duplicate by default or strongly suggest

enabling de-duplication.

The heuristic of de-duplication can be derived as a distribution

mapping data transformation by assuming that the read counts

arise from a degenerate count distribution, where the number of

bases with non-zero reads is drawn from a binomial, and the

number of reads at non-zero bases is drawn from a uniform noise

component over ½1,?). In this case, the probability of all non-zero

counts are equal, and they should be mapped to the same value

Figure 1. Log-likelihood difference between maximum likelihood and observed distributions. Differences in log-likelihood per base
between the fitted model and the empirical distribution, also interpreted as the log-difference between observed and fitted counts. This error metric
represents the error when calculating p-values or significance tests using a Poisson assumption. Three assay types are shown in each panel, analyzed
by three models: (a) Poisson. (b) Negative binomial. (c) Log-normal Poisson. A model that fits the data would have points along the x~0 line.
Consistent deviation from zero by all distributions show that none of the distributions fit all assays well.
doi:10.1371/journal.pcbi.1003494.g001
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Figure 2. Log-likelihood errors for ENCODE ChIP-seq data. The distribution described as log-concave is the statistical model used in FIXSEQ.
Subfigure (a) shows that de-duplication Poisson can control high per-base errors much like overdispersed models, but Subfigure (b) shows that de-
duplication error rises rapidly as sequencing depth increases.
doi:10.1371/journal.pcbi.1003494.g002
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after the transform. Conversely, any data transform preserving

rank order will not fully de-duplicate but will instead monoton-

ically re-weight counts.

De-duplication works well in practice by drastically reducing the

error and additional variance from overdispersion, despite

assuming that the data follow a degenerate distribution.

Figure 2a shows the performance of various overdispersion

correction methods using the per-base log-likelihood error for

the Poisson, de-duplicated Poisson, negative binomial, and the log-

concave Poisson distribution, which we use in FIXSEQ. These per-

base errors reflect the expected error in statistical significance

testing under window-based DNase-seq and ChIP-seq callers, as

errors in the log-likelihood propagate directly into error in the

Poisson test statistic.

Preprocessing by de-duplication does not continue to reduce

per-base errors as sequencing depth increases. Figure 2b shows

that the log-likelihood error per-base increases rapidly as a

function of the total sequencing depth. The Poisson and de-

duplicated Poisson both have average per-base error which

increases similarly as a function of sequencing depth. This

confirms the observation that as sequencing depth increases, more

of the mappable genome will have at least one mapped read,

leading to a loss of predictive power.

Therefore while de-duplication may be effective at lower

sequencing depths, it relies upon a limited heuristic justification

and will not remain effective as sequencing depths increase. On

the other hand, FIXSEQ significantly outperforms de-duplication at

modeling the observed data distribution as sequencing depth

grows (Figure 2b) and is asymptotically consistent under relatively

weak assumptions.

We compared three methods of count preprocessing: original

(raw) counts, removal of all duplicates (de-duplication), and our

novel preprocessing technique (FIXSEQ). These preprocessing

schemes are compared across three assay types and in multiple

experiments and in multiple contexts. We show that FIXSEQ

consistently improves performance, with substantial improvements

obtained in certain cases.

DNase-seq
We evaluate our model on the ability to identify transcription

factor binding sites based upon DNase-seq counts on the ENCODE

human K562 DNase-seq data using two different methods: an

unsupervised task using the CENTIPEDE binding site caller [31]

and a supervised task using a linear classifier. The binding site

predictions are compared against all matching ChIP-seq calls for the

same factor on a matched cell type, and we evaluate the algorithm

on the fraction of ChIP-seq calls we are able to recover. The details

of the comparison, such as the PWM matching and cutoffs, follow

the techniques used by CENTIPEDE.

In the unsupervised task shown in Figure 4, FIXSEQ shows small

but consistent improvements on nearly all runs and all methods,

and on many factors we show improvements up to a 0.3 increase

in area under the curve (AUC), a metric of accuracy. These large

performance increases indicate that FIXSEQ rescued an otherwise

failed run.

ChIP-seq
We tested FIXSEQ on 87 ES cell ChIP-seq experiments from the

ENCODE project [32], using the ChIP-seq callers MACS [29]

and PeakSeq [33] on original counts, de-duplicated counts, and

FIXSEQ processed counts with rounding (see Text S1). Following

prior work in evaluating ChIP-seq caller accuracy [28,34],

we selected two evaluation criteria: replicate consistency of q-

values and the number of overlapping ChIP-seq events across

replicates.

We evaluate quantile-quantile correlation for replicate consis-

tency, as this allows us to evaluate the distribution of q-values

generated by each method without pairing binding sites explicitly.

The quantile-quantile (QQ) correlations are an effective means of

detecting not only whether we call similar numbers of binding sites

across replicates, but also whether our ChIP-seq call confidence

is consistent across replicates. The quantile-quantile correlations

across all analyzed ENCODE ChIP-seq experiments shown

in Figure 5a strongly suggest that FIXSEQ stabilizes the

distribution of q-values from PeakSeq and MACS. FIXSEQ

outperforms both raw counts and de-duplication for PeakSeq

and improves on de-duplication significantly for MACS

(pv3:1:10{5).

An alternative measure of ChIP-seq experiment quality is the

number and size of overlapping sites across replicates. FIXSEQ

increases the number of overlapping sites in both methods,

showing that FIXSEQ improves consistency of localization of sites as

well as the ranking of ChIP-sites (Figure 5b).

RNA-seq
We ran FIXSEQ on all 23 ES cell RNA-seq datasets from

ENCODE and evaluated the replicate consistency of the original

read counts, de-duplication, and FIXSEQ. Using the ENCODE

alignments, we followed the analysis technique suggested by

DEseq [7] and mapped reads and adjusted counts to exons and

generated exon-level counts.

Replicate consistency was measured in two ways: Spearman’s

rank correlation and the number of false positive differential

expression events called by DEseq [7] across replicates. Spear-

man’s rank correlation on exon counts was chosen to characterize

the run-to-run variability between replicates, while DEseq was

chosen to represent FIXSEQ’s ability to enhance existing techniques

that attempt to handle exon-level overdispersion.

The rank correlation between replicates shown in Figure 6 is

significantly higher for FIXSEQ processed counts than for both raw

counts and de-duplication (pv1:1:10{11). We make even greater

improvements in the 75-bp single-end RNA-seq datasets, where it

is possible that difficulty or ambiguity in read mapping causes

single-base spikes that adversely affect replicate consistency. The

RNA-seq correlations also support our earlier claims that de-

duplication performance will begin to degrade as sequencing

depth increases. In both the paired-end Caltech and Cold Spring

Harbor Laboratory (CSHL) experiments we find that the original

counts are on average better than the de-duplicated counts due to

the higher coverage per base.

Our DEseq results in Table 1 are consistent with the correlation

results, with FIXSEQ calling fewer differential exons across

replicates despite being a less aggressive truncation scheme than

de-duplication. Following the DEseq analysis pipeline, we used

replicates to estimate exon-level overdispersion and identified

exons differential across replicates at 0.05% FDR. The number of

exons called differential across replicates in Table 1 are

consistently the lowest for FIXSEQ out of all methods tested. Since

Figure 3. Distribution of counts for 14 DNase-seq experiments, 23 RNA-seq experiments and 87 ChIP-seq experiments. The left panel
shows uncorrected counts, and the right shows counts after correction. Poisson distributed counts would follow a straight line; all experiments show
significant deviation from linearity that is corrected by FIXSEQ.
doi:10.1371/journal.pcbi.1003494.g003
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FIXSEQ is a shrinkage method, we would expect there to be fewer

false positives between replicates under FIXSEQ than the original

counts. For example, if we preprocess by deleting all counts, we

would have a trivial zero false positive rate. However, this is likely

not the method by which FIXSEQ decreases false positive rate since

we outperform de-duplication, which is an even more aggressive

shrinkage method. This suggests that the counts we retain are

consistent between replicates.

Discussion

We have shown that per-base count overdispersion is a

widespread and consistent phenomenon in high-throughput

sequencing experiments. While correcting for exon-level over-

dispersion has been studied in RNA-seq, per-base methods and

corresponding tools for ChIP-seq and DNase-seq have largely

been unexplored outside of aggressive count truncation methods

particular to individual algorithms. One reason for the slow

adoption of overdispersed models has been the empirical success of

the de-duplication heuristic as a preprocessing scheme. However,

we show that de-duplication assumes the data arise from a

degenerate distribution, and that the performance of de-duplica-

tion will degrade as sequencing depth increases.

FIXSEQ corrects overdispersed sequence count data by assuming

that the data arise from a flexible class of log-concave distributions.

We designed a novel and fast inference algorithm for the class of

Poisson log-concave distributions as well as effective rounding

schemes. In a diverse array of validation tasks, including DNase-

seq binding site identification, ChIP-seq peak calling, and RNA-

seq self-consistency, FIXSEQ consistently increased performance

compared to both original counts and de-duplication. In cases

where domain-specific correction schemes exist, FIXSEQ can

operate in conjunction with them to yield complementary gains.

While not replacing other sophisticated methods that can model

the intricate biological realities of a new sequencing assay, FIXSEQ

aims to provide a useful solution for all count-based sequencing

assays without modification for new protocols.

The FIXSEQ method has the potential of broadly improving

inference for high-throughput sequencing by bringing sophisticat-

ed overdispersion correction to a large number of existing analysis

pipelines, while being applicable to future assays without lengthy

development and modeling cycles. Additionally, the modeling and

inference results we presented can be used in new flexible analysis

procedures for count data.

Methods

Our count preprocessing method, FIXSEQ, consists of three

components:

1. Parameter inference for a novel class of distributions called log-

concave Poisson distributions.

2. A probability integral transform method to map counts

generated under log-concave Poisson to a Poisson distribution.

3. Rounding techniques to adapt datasets to methods that utilize

only integral counts.

In the case that the algorithm downstream of our method is able

to take weighted counts, FIXSEQ inherits all the favorable

properties of the maximum likelihood estimator (MLE) and can

guarantee unbiased and asymptotically consistent inference under

the assumptions of per-base independence and log-concave count

distributions.

Poisson log-concave distributions
The challenge of constructing a universal preprocessor is finding

a class of count distributions that is flexible enough to model a

variety of assay types while remaining non-degenerate. We achieve

this goal by letting the per-base rates of a Poisson distribution be

drawn from a nonparametric class of distributions called log-

concave. Log-concave distributions are a family of distributions f
for which the log-density is a concave function. This allows us to

write any log-concave function in terms of w, a concave function:

p(xjw)! exp (w(x)):

The log-concave family includes a large family of unimodal

distributions, such as most of the exponential family (including

Figure 4. AUC comparisons for baseline methods compared to FIXSEQ. Boxplots depicting AUC improvement across multiple factors (boxes
above zero represent improvement due to FIXSEQ). Variance was estimated using one thousand bootstrap replicates each. Transcription factors with
no significant difference across methods (p = 0.05) are not shown. Of the 301 factors tested, 90 could be predicted nontrivially (AUCw0:55) via
CENTIPEDE. Of these, 51 show significant differences.
doi:10.1371/journal.pcbi.1003494.g004
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common cases such as the normal, gamma with shape parameter

greater than one, Dirichlet) [35]. Important exceptions include all

multi-modal distributions and distributions with super-exponential

tails such as the t-distribution or the Cauchy.

In sequencing experiments log-concave Poisson families are

capable of modeling zero-inflation as well as mixtures induced by

copy number variation for low Poisson rates with lv1, where the

overall distribution remains unimodal. If such distributions are

needed, straightforward extensions for mixtures of log-concave

distribution are well known [36].

Our algorithmic contribution is the use of compound log-

concave distributions, where we use latent log-concave distribu-

tions which generate Poisson counts along the genome. Inference

for latent log-concave distributions does not follow directly from

recent results in log-concave density estimation because of the

ambiguity of parameters in the latent space.

The full model is as follows: per-base counts ci are generated by

per-base log-rates gi, which are drawn from a log-concave

distribution with density exp (w(gi)):

Ci*Pois( exp (gi))

P(gi)! exp (w(gi)):

Note that the two exponential operators above are intentional: g
is a log-rate and therefore is exponentiated to become the Poisson

rate, while w is a log-density and therefore is exponentiated to

create an unnormalized density exp (w(x)).

The form of this model naturally suggests an expectation-

maximization strategy, which has been shown to be effective for

clustering tasks [37]. However, while we can perform expectation

maximization using numerical quadrature, we find in practice that

the algorithm is unstable and converges extremely slowly.

Instead we propose an inference technique based upon

accelerated proximal gradient descent. The marginal likelihood

for counts can be written as:

Figure 5. Event reproducibility for ChIP replicates. Subfigure (a) shows that FIXSEQ increases the q-value correlation between replicates.
Subfigure (b) shows the increase in the log number of bases overlapping between calls on replicates due to FIXSEQ. FIXSEQ calls have consistently higher
peak overlaps between replicates for both MACS and PeakSeq.
doi:10.1371/journal.pcbi.1003494.g005
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P(c)~

Ð?
{? Pois(c; exp (g)) exp (w(g))dgP?

k~0

Ð?
{? Pois(k; exp (g)) exp (w(g))dg

:

The bottom term normalizes the log-concave distribution.

Approximating the integral with a sum over N quadrature points

gi we obtain:

P(c)~

PN
i~1 Pois(c; exp (gi)) exp (w(gi))P?

k~0

PN
i~1 Pois(k; exp (gi)) exp (w(gi))

:

Since w is always evaluated at the fixed points gi, we can use the

shorthand wi~w(gi) and let ck be the number of bases with k

counts. Then the maximum likelihood estimator for the observed

data is given by:

ŵw~argmaxw[fconcave functionsg
X?
k~1

ck log

PN
i~1 Pois(k; exp (gi)) exp (wi)P?

j~0

PN
i~1 Pois(j; exp (gi)) exp (wi)

 !
:

Both the objective function and constraints are concave, and

therefore we can use accelerated gradient descent to quickly find

the global optimum [38]. In particular, we use a method called

proximal gradient descent, which optimizes a objective function of

Figure 6. Bootstrapped differences in Spearman’s rank correlation coefficient for ENCODE RNA-seq experiments. Higher rank
correlations across exon expression measurements between replicates indicate greater data quality and reproducibility. FIXSEQ increases the rank
correlation coefficient for almost all experiments, though the improvements compared to de-duplication for the CSHL 75bp align and splice
experiments are minimal.
doi:10.1371/journal.pcbi.1003494.g006

Table 1. Differential expression results across replicate experiments.

Caltech Align 75 Caltech Splice 75 Caltech Align 75x2 Caltech Splice 75x2 CSHL polyA- CSHL polyA+

Original 2903 1454 5719 2748 8403 6955

De-duplication 2559 1033 4951 2027 6640 5253

FIXSEQ 2213 944 4230 1989 5319 4374

Number of exons falsely called differentially expressed between biological replicates by DEseq at 5% FDR level; entries with the fewest false calls are bolded. There are
256324 total exons in the annotation set.
doi:10.1371/journal.pcbi.1003494.t001
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the form maxx[Q llh(x) by repeatedly applying:

xtz1~ProjQ(xtz+llh(x)):

ProjQ(x) is defined as the projection of x onto Q.

Our gradient,
dllh(w)

dwi

, is easily written in terms of the shorthand,

g(k,gijw)~Pois(k; exp (gi)) exp (wi), as:

dllh(w)

wi

~
X?
k~0

ck
g(k,gijw)PN

i~1 g(k,gijw)

 !
{

P?
k~0 ck

� � P?
k~0 g(k,gijw)

� �
P?

k~0

PN
i~1 g(k,gijw)

:

This gradient has a straightforward interpretation: the first term

is the distribution of gi when observing the counts ck and the

second term is the distribution of gi predicted from the prior w
alone. The gradient works to minimize the difference between

these observed and prior terms.

The projection operator ProjQ(x) taking (gi,wi) and producing

the closest concave wi is the well-known concave regression

algorithm [39].

The inference algorithm is guaranteed to converge to a global

optima of the quadrature approximation, which as the number of

quadrature points increase will converge to the global optima. If

there are sufficiently many quadrature points, Fixseq will converge

to the log-concave distribution closest to the data-generating

distribution in the KL-divergence sense [37]. For the results, we

use one million quadrature points throughout.

When compared to the naive expectation maximization based

method, our algorithm converges more quickly, with average

runtime on our DNase datasets reducing from 1:2+0:4 hours per

dataset for EM down to 23+10 minutes for the gradient based

method on a standard laptop with Intel i7 2.5ghz, with a slight

increase in goodness of fit for the gradient approach.

Count adjustment via probability integral transform
Once we fit a log-concave distribution w, we need to be able to

convert counts generated under the log-concave Poisson into those

generated by the continuous extension of the Poisson. We will

define the transformation from raw counts to processed counts via

the probability integral transform.

Throughout this section, we will use the continuous extension of

the Poisson PDF, CDF and the analogous densities for the log-

concave compound distributions, defined below as:

P(cijg)~
gci exp ({g)

C(ciz1)

F (cijg)~

ðci

0

P(tjg)dt~
C(ciz1,g)

C(ciz1)

Q(cijw)~

ð?
0

P(cijg) exp (w(g))dg

H(cijw)~

ðci

0

ð?
0

P(tjg) exp (w(g))dgdt:

Given the continuous extensions, we can apply the probability

integral transform directly. Given x*Q(cijw), we can generate a

uniform random variable y*H(xjw), from which we define the

Poissonization transform, F{1(H(xjw)jg)*P(cijg). Since we are

applying the probability integral transform to the continuous

extensions of the Poisson, we are not guaranteed integral counts or

consistency properties generally implied by the probability integral

transform. However, for our purposes it is sufficient that the

quantiles and densities are matched.

Our preprocessing function G(x,g)~F{1(H(xjw)jg) takes any

x distributed as Poisson-log concave with latent distribution

exp (w) and returns adjusted counts distributed as Poisson. This

operation preserves all of the joint structure of x and acts as a

black box which exchanges the Poisson assumption used in a

method for a compound Poisson log-concave distribution

assumption. Alternatively, one can consider using G(x,g) to be a

re-weighting operation, which ‘fixes’ the underestimated tail

density of the Poisson.

Examples of the G function for various ENCODE assays are

shown as Figure S1.

Finally, G(x,g) contains a free parameter g which we can

choose freely. While any g would be essentially equivalent, we

choose to set g to be the median of the latent density throughout

our results.

Rounding schemes
While some algorithms, such as CENTIPEDE [31] for DNase-

seq binding, can take weighted (fractional) read counts, many

existing algorithms will only accept integral counts. We therefore

develop two rounding schemes that can improve performance

while providing integral counts.

The straightforward count flooring schemes, where G(x,ĝg)?
tG(x,ĝg)s can be thought of as generalizations of de-duplication. In

a typical DNase-seq experiment with 100 million reads, we find

that flooring results in bases with 5 counts or less being de-

duplicated, and those with 6 or more being reduced to two reads per

base. While in the low-count cases, flooring is nearly identical to de-

duplication, as sequencing depth increases, we expect our floored

preprocessor to begin strongly outperforming de-duplication.

We also propose a more sophisticated randomized rounding

scheme, where we take G(x,ĝg) and let I(p) be a Bernoulli random

variable with probability p, then the randomized round scheme

generates simulated datasets whose counts round either up or down

by the proximity of the adjusted count to its neighboring integers:

g0~tG(x,ĝg)szI(G(x,ĝg){tG(x,ĝg)s): ð%Þ

We compared these schemes on DNase data, where the

unsupervised classifier, CENTIPEDE, was capable of accepting

weighted counts, allowing us to compare various rounding

schemes to the direct weighting scheme using the same compar-

ison method as our DNase-seq results. The results in Figure 7

show that floored counts provides a statistically significant, but

similar, performance to de-duplication and randomized rounding

strictly improves upon both schemes. Rounding is relatively

dependent on the number of randomly-sampled replicates, with

around thirty samples needed to achieve its peak performance.

Universal Count Correction
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The peak performance achieved by weighted counts is not

achievable by any rounding scheme, but we find randomized

rounding comes relatively close.

Availability
FIXSEQ is freely available for download at http://cgs.csail.mit.

edu/fixseq.

Supporting Information

Figure S1 Examples of latent l distributions and
mapping function. Panel (a) shows the latent distribution of

log-lambdas for various assays, while panel (b) plots the mapping

function for various assays.

(EPS)

Figure S2 Comparison to a covariate-based correction
method. A comparison of rank correlation between replicate

experiments is plotted for FIXSEQ, BEADS, and the two methods

run in series. Measurements within each boxplot are computed via

bootstrapping.

(EPS)

Table S1 Comparison to a specialized ChIP-seq event
caller. Correlation in q-value across replicates is shown for a set

of hESC CTCF ChIP-seq experiments, with varying count

preprocessing schemes.

(PDF)

Table S2 Analyzed ChIP-seq experiments. Accession

numbers and details for ChIP-seq experiments.

(PDF)

Figure 7. Performance comparison of rounding schemes on unsupervised DNase binding prediction. All rounding schemes outperform
baseline methods (bottom left) but only randomized rounding approaches performance of the weighted counts (top right).
doi:10.1371/journal.pcbi.1003494.g007
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Table S3 Analyzed RNA-seq experiments. Accession

numbers and details for RNA-seq experiments.

(PDF)

Table S4 Analyzed DNase-seq experiments. Accession

numbers and details for DNase-seq experiments.

(PDF)

Text S1 Supplementary methods. Supplementary results

and a description of data sources and processing.

(PDF)

Dataset S1 Software. Code, documentation, and test data

implementing the FIXSEQ method.

(ZIP)
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