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Abstract
Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based
upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence
homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an
HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This
paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random
Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient
ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model
very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information
for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be
much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several
popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that
MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for
homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level,
and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins
at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for
sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A 
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Introduction

Sequence-based protein alignment and homology detection has

been extensively studied and widely applied to many biological

problems such as homology modeling [1–4], phylogeny inference

[5–7] and protein function prediction [8–10]. Although exten-

sively studied, remote homology detection still remains very

challenging, especially for homologs with divergent sequences. So

far the most sensitive method for homology detection is based

upon comparison of protein sequence profiles, which are usually

derived from multiple sequence alignment (MSA) of sequence

homologs in a protein family. That is, instead of aligning two

primary sequences, homologs can be detected by aligning protein

sequence profiles. To facilitate comparison and alignment, an

MSA is usually represented as a position-specific scoring matrix

(PSSM) [11] or an HMM (Hidden Markov Model) [12,13]. HMM

is more sensitive than PSSM because 1) HMM contains position-

specific gap information; and 2) HMM also takes into account

correlation among sequentially adjacent residues. Sequence

signature libraries [14] and intermediate sequence based methods

[15,16] are also developed to make use of evolutionary informa-

tion of a protein. All these methods are sensitive to close homologs,

but not good enough for remote homologs. The main issue of

existing profile-based methods lies in that they make use of only

position-specific amino acid mutation patterns and very short-

range residue correlation, but not long-range residue interaction.

However, remote homologs may have very divergent sequences

and are only similar at the level of (long-range) residue interaction

pattern, which is not encoded in current popular PSSM or HMM

models.

To significantly advance homology detection, this paper

presents a Markov Random Fields (MRFs) modeling of a multiple

sequence alignment (MSA). Compared to HMM, MRFs can

model long-range residue interactions and thus, encodes informa-

tion for the global 3D structure of a protein family. In particular,

MRF is a graphical model encoding a probability distribution over

the MSA by a graph and a set of preset statistical functions. A node

in the MRF corresponds to one column in the MSA and one edge

specifies correlation between two columns. Each node is associated

with a function describing position-specific amino acid mutation

pattern. Similarly, each edge is associated with a function

describing correlated mutation statistics between two columns.

With MRF representation, alignment of two proteins or protein

families becomes that of two MRFs. To align two MRFs, a scoring
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function or alignment potential is needed to measure the similarity

of two MRFs. We use a scoring function consists of both node

alignment potential and edge alignment potential, which measure

the node (i.e., amino acid) similarity and edge (i.e., interaction

pattern) similarity, respectively.

It is computationally challenging to optimize a scoring function

containing edge alignment potential. To deal with this, we

formulate the MRF-MRF alignment problem as an integer

programming problem and then develop an ADMM (Alternative

Direction Method of Multipliers) algorithm to solve it efficiently to

a suboptimal solution. ADMM divides the MRF alignment

problem into two tractable sub-problems and then iteratively

solve them until they reach consistent solutions.

Experiments show that our MRF-MRF alignment method,

denoted as MRFalign, can generate more accurate alignments and

is also much more sensitive than others in detecting remote

homologs. MRFalign works particularly well on mainly-beta

proteins.

Related work
Cowen has developed a program SMURFLite for fold

recognition based upon the MRF representation of a protein

family [17]. Nevertheless, our MRFalign method is significantly

different from SMURFLite in a couple of aspects: 1) SMURLite

builds an MRF based upon multiple structure alignment instead of

multiple sequence alignment (MSA). As such, it cannot apply to

sequence-based homology detection in the absence of native

structures. In contrast, our method builds MRFs purely based

upon MSA and thus, applies to sequence-based protein alignment

and homology detection; and 2) SMURLite can only align a single

primary sequence to an MRF, while our method aligns two MRFs

to yield higher sensitivity. This difference requires us to develop

totally new methods to build MRFs from MSA, measure similarity

of two MRFs, and optimize the MRF-MRF alignment potential.

Quite a few PSSM-based profile comparison methods for

homology detection have been developed, including [11,18–23].

Some studies such as [20] also combine phylogeny information

with PSSM-based profile comparison. Homology detection can

also be done without aligning proteins. For example, we can

represent a protein sequence or profile as a feature vector and

then search for homologs by comparing feature vectors. Early

methods such as [24] usually conduct straightforward compar-

ison of feature vectors, but are not very sensitive [25].

Improvement in these alignment-free methods results from the

application of discriminative learning approaches such as SVM–

Fisher [26], SVM-pairwise [27], SVM with the spectrum kernel

[28] and SVM with the mismatch kernel [29]. These SVM-

based methods are reported to outperform the simple feature

comparison methods. Comparing to alignment-based homology

detection, alignment-free methods are usually faster but less

sensitive.

Results

Training and validation data
To train the node alignment potential, we constructed the

training and validation data from SCOP70. The sequence identity

of all the training and validation protein pairs is uniformly

distributed between 20% and 70%. Further, two proteins in any

pair are similar at superfamily or fold level. In total we use a set of

1400 protein pairs as the training and validation data, which covers

458 SCOP folds [30]. Five-fold cross validation is used to choose the

hyper-parameter in our machine learning model. In particular,

every time we choose 1000 out of the 1400 protein pairs as the

training data and the remaining 400 pairs as the validation data

such that there is no fold-level redundancy between the training and

validation data. A training or validation protein has less than 400

residues and contains less than 10% of residues without 3D

coordinates. The reference alignment for a protein pair is generated

by a structure alignment tool DeepAlign [31]. Each reference

alignment has fewer than 50 gap positions in the middle and the

number of terminal gaps is less than 20% of the alignment length.

Test data
The data used to test alignment accuracy has no fold-level

overlap with the training and validation data. In particular, we use

the following three datasets to test the alignment accuracy, which

are subsets of the test data used in [4] to benchmark protein

modeling methods.

1. Set3.6K: a set of 3617 non-redundant protein pairs. Two

proteins in a pair share ,40% sequence identity and have

small length difference. By ‘‘non-redundant’’ we mean that in

any two protein pairs, there are at least two proteins (one from

each pair) sharing less than 25% sequence identity.

2. Set2.6K: a set of 2633 non-redundant protein pairs. Two

proteins in a pair share ,25% sequence identity and have

length difference larger than 30%. This set is mainly used to

test the performance of one method in handling with domain

boundary.

3. Set60K: a very large set of 60929 protein pairs, in most of

which two proteins share less than 40% sequence identity.

Meanwhile, 846, 40902, and 19181 pairs are similar at the

SCOP family, superfamily and fold level, respectively, and 151,

2691 and 2218 pairs consist of only all-beta proteins,

respectively.

We use the following benchmarks to test remote homology

detection success rate.

Author Summary

Sequence-based protein homology detection has been
extensively studied, but it remains very challenging for
remote homologs with divergent sequences. So far the
most sensitive methods employ HMM-HMM comparison,
which models a protein family using HMM (Hidden Markov
Model) and then detects homologs using HMM-HMM
alignment. HMM cannot model long-range residue inter-
action patterns and thus, carries very little information
regarding the global 3D structure of a protein family. As
such, HMM comparison is not sensitive enough for
distantly-related homologs. In this paper, we present an
MRF-MRF comparison method for homology detection. In
particular, we model a protein family using Markov
Random Fields (MRF) and then detect homologs by MRF-
MRF alignment. Compared to HMM, MRFs are able to
model long-range residue interaction pattern and thus,
contains information for the overall 3D structure of a
protein family. Consequently, MRF-MRF comparison is
much more sensitive than HMM-HMM comparison. To
implement MRF-MRF comparison, we have developed a
new scoring function to measure the similarity of two
MRFs and also an efficient ADMM algorithm to optimize
the scoring function. Experiments confirm that MRF-MRF
comparison indeed outperforms HMM-HMM comparison
in terms of both alignment accuracy and remote homol-
ogy detection, especially for mainly beta proteins.

Protein Homology Detection Using MRF-MRF Alignment
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1. SCOP20, SCOP40 and SCOP80, which are used by Söding

group to study context-specific mutation score [32]. They are

constructed by filtering the SCOP database with a maximum

sequence identity of 20%, 40% and 80%, respectively. In total

they have 4884, 7088, and 9867 proteins, respectively, and

1281, 1806, and 2734 beta proteins, respectively.

We run PSI-BLAST with 5 iterations to detect sequence

homologs and generate MSAs for the first three datasets. The

MSA files for the three SCOP benchmarks are downloaded from

the HHpred website (ftp://toolkit.genzentrum.lmu.de/pub/).

Pseudocounts are used in building sequence profiles. Real

secondary structure information is not used since this paper

focuses on sequence-based homology detection.

Programs to compare
To evaluate alignment accuracy, we compare our method,

denoted as MRFalign, with sequence-HMM alignment method

HMMER [12] and HMM-HMM alignment method HHalign

[13]. HHMER is run with a default E-value threshold (10.0).

HHalign is run with the option ‘‘-mact 0.1’’. To evaluate the

performance of homology detection, we compare MRFalign, with

FFAS [11] (PSSM-PSSM comparison), hmmscan (sequence-

HMM comparison) and HHsearch and HHblits [33] (HMM-

HMM comparison). HHsearch and hmmscan use HHalign and

HMMER, respectively, for protein alignment.

Evaluation criteria
Three performance metrics are used including reference-

dependent alignment precision, alignment recall and homology

detection success rate. Alignment precision is defined as the

fraction of aligned positions that are correctly aligned. Alignment

recall is the fraction of alignable residues that are correctly aligned.

Reference alignments are used to judge if one residue is correctly

aligned or alignable. To reduce bias, we use three very different

structure alignment tools to generate reference alignments,

including TM-align [34], Matt [35], and DeepAlign [31].

Reference-dependent alignment recall
As shown in Tables 1 and 2, our method MRFalign exceeds all

the others regardless of the reference alignments on both dataset

Set3.6K and Set2.6K. MRFalign outperforms HHalign by ,10%

on both datasets, and HHMER by ,23% and ,24%, respec-

tively. If 4-position off the exact match is allowed in calculating

alignment recall, MRFalign outperforms HHalign by ,11% on

both datasets, and HHMER by ,25% and ,33%, respectively.

On the very large set Set60K, as shown in Table 3, our method

outperforms the other two in each SCOP classification regardless

of the reference alignments used. MRFalign is only slightly better

than HHalign at the family level, which is not surprising since it is

easy to align two closely-related proteins. At the superfamily level,

our method outperforms HHalign and HMMER by ,6% and

,18%, respectively. At the fold level, our method outperforms

HHalign and HHMER by ,7% and ,14%, respectively.

Alignment recall for beta proteins. Our method outper-

forms HHalign and HMMER by ,3% and ,12%, respectively,

at the family level; ,7% and ,19%, respectively, at the

superfamily level; and ,10% and ,16%, respectively, at the fold

level, regardless of reference alignments.

Reference-dependent alignment precision
As shown in Tables 4 and 5, our method MRFalign exceeds all

the others regardless of the reference alignments on both data sets

Set3.6K and Set2.6K. MRFalign outperforms HHalign by ,8%

and ,5%, respectively, and HMMER by ,15% and ,13%,

respectively. If 4-position off the exact match is allowed in

calculating alignment precision, MRFalign outperforms HHalign

by ,8% and ,9%, and HMMER by ,14% and ,18% on

Set3.6K and Set2.6K, respectively.

On the very large set Set60K, as shown in Table 6, our method

outperforms the other two in each SCOP classification regardless

of the reference alignments used. At the family level, our method

outperforms HHalign and HMMER by ,3% and ,4%,

respectively. At the superfamily level, our method outperforms

HHalign and HMMER by ,4% and ,5%, respectively. At the

fold level, our method outperforms HHalign and HHMER by

,5% and ,8%, respectively.

Homology detection success rate
To evaluate homology detection rate, we employ three

benchmarks SCOP20, SCOP40 and SCOP80 introduced in

[32]. For each protein sequence in one benchmark, we treat it as a

query, align it to all the other proteins in the same benchmark and

then examine if those with the best alignment scores are similar to

the query or not. We also conducted homology detection

experiments using hmmscan, FFAS, HHsearch and HHblits with

default options. The success rate is measured at the superfamily

and fold levels, respectively. When evaluating the success rate at

the superfamily (fold) level, we exclude those proteins similar to the

query at least at the family (superfamily) level. For each query

protein, we examine the top 1-, 5- and 10-ranked proteins,

respectively.

As shown in Table 7, tested on SCOP20, SCOP40 and

SCOP80 at the superfamily level, our method MRFalign succeeds

on ,6%, ,4% and ,4% more query proteins than HHsearch,

respectively, when only the first-ranked proteins are considered. As

shown in Table 8, at the fold level, MRFalign succeeds on ,11%,

,11% and ,12% more proteins than HHsearch, respectively,

Table 1. Reference-dependent alignment recall on Set3.6K.

TMalign Matt DeepAlign

Exact
match 4-offset

Exact
match 4-offset

Exact
match 4-offset

HMMER 22.9% 26.5% 24.1% 27.4% 25.5% 28.1%

HHalign 36.3% 39.1% 37.0% 42.1% 38.4% 42.8%

MRFalign 47.4% 51.0% 47.5% 52.6% 49.2% 53.5%

Three structure alignment tools (TMalign, Matt and DeepAlign) are used to
generate reference alignments. ‘‘4-offset’’ means that 4-position off the exact
match is allowed. The bold indicates the best results.
doi:10.1371/journal.pcbi.1003500.t001

Table 2. Reference-dependent alignment recall on Set2.6K.

TMalign Matt DeepAlign

Exact
match 4-offset

Exact
match 4-offset

Exact
match 4-offset

HMMER 36.5% 42.6% 38.6% 44.0% 40.4% 45.0%

HHalign 62.5% 66.1% 63.2% 66.2% 64.0% 66.7%

MRFalign 72.8% 76.2% 73.5% 76.7% 74.2% 77.8%

See Table 1 for explanation.
doi:10.1371/journal.pcbi.1003500.t002

Protein Homology Detection Using MRF-MRF Alignment
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when only the first-ranked proteins are evaluated. At the

superfamily level, SCOP20 is more challenging than the other

two benchmarks because it contains fewer proteins similar at this

level. Nevertheless, at the fold level, SCOP80 is slightly more

challenging than the other two benchmarks maybe because it

contains many more irrelevant proteins and thus, the chance of

ranking false positives at top is higher.

Similar to alignment accuracy, our method for homology

detection also has a larger advantage on the beta proteins. In

particular, as shown in Table 9, tested on SCOP20, SCOP40 and

SCOP80 at the superfamily level, MRFalign succeeds on ,7%,

,5% and ,7% more proteins than HHsearch, respectively, when

only the first-ranked proteins are evaluated. As shown in Table 10,

at the fold level, MRFalign succeeds on ,13%, ,16% and ,17%

more proteins than HHsearch, respectively, when only the first-

ranked proteins are evaluated. Note that in this experiment, only

the query proteins are mainly-beta proteins, the subject proteins

can be of any types. If we restrict the subject proteins to only beta

proteins, the success rate increases further due to the reduction of

false positives.

Contribution of edge alignment potential and mutual
information

To evaluate the contribution of our edge alignment potential,

we calculate the alignment recall improvement resulting from

using edge alignment potential on two benchmarks Set3.6K and

Set2.6K. As shown in Table 11, our edge alignment potential can

improve alignment recall by 3.4% and 3.7%, respectively. When

mutual information is used, we can further improve alignment

recall by 1.1% and 1.9% on these two sets, respectively. Mutual

information is mainly useful for proteins with many sequence

homologs since it is close to 0 when there are few sequence

homologs. As shown in Table 11, if only those proteins with at

least 256 non-redundant sequence homologs are considered, the

improvement resulting from mutual information is ,3%.

Running time
Figure 1 shows the running time of MRFalign with respect to

protein length. As a control, we also show the running time of the

Viterbi algorithm, which is used by our ADMM algorithm to

generate alignment at each iteration. As shown in this figure,

MRFalign is no more than 10 times slower than the Viterbi

algorithm. To speed up homology detection, we first use the

Viterbi algorithm to perform an initial search without considering

edge alignment potential and keep only top 200 proteins, which

are then subject to realignment and rerank by our MRFalign

method. Therefore, although MRFalign may be very slow

compared to the Viterbi algorithm, empirically we can do

homology search only slightly slower than the Viterbi algorithm.

Is our MRFalign method overtrained?
We conducted two experiments to show that our MRFalign is

not overtrained. In the first experiment, we used 36 CASP10 hard

targets as the test data. Our training set was built before CASP10

started, so there is no redundancy between the CASP10 hard

targets and our training data. Using MRFalign and HHpred,

respectively, we search each of these 36 test targets against PDB25

to find the best match. Since PDB25 does not contain proteins

very similar to many of the test targets, we built a 3D model using

MODELLER from the alignment between a test target and its

best match and then measure the quality of the model. As shown

in Figure 2, MRFalign can yield much better 3D models than

Table 3. Reference-dependent alignment recall (exact match) on the large benchmark Set60K.

TMalign Matt DeepAlign

HMMER HHalign MRFalign HMMER HHalign MRFalign HMMER HHalign MRFalign

Family 57.4% 69.2% 71.0% 59.1% 70.5% 74.5% 63.2% 72.6% 75.5%

Superfamily 31.2% 42.0% 48.1% 32.3% 42.4% 51.7% 32.8% 49.4% 55.6%

Fold 1.3% 7.0% 14.2% 1.6% 8.0% 15.5% 2.0% 8.7% 18.4%

Family (beta) 60.9% 69.9% 73.1% 64.0% 75.1% 78.4% 68.4% 79.0% 82.9%

Superfamily (beta) 35.0% 47.2% 52.1% 37.0% 50.2% 55.8% 39.1% 52.9% 60.7%

Fold (beta) 2.5% 8.3% 17.3% 3.0% 9.1% 17.1% 4.0% 10.1% 21.8%

The protein pairs are divided into 3 groups based upon the SCOP classification. The bold indicates the best results.
doi:10.1371/journal.pcbi.1003500.t003

Table 4. Reference-dependent alignment precision on
Se3.6K.

TMalign Matt DeepAlign

Exact
match 4-offset

Exact
match 4-offset

Exact
match 4-offset

HMMER 29.3% 34.1% 29.6% 34.7% 31.5% 35.6%

HHalign 35.9% 39.4% 36.2% 39.4% 37.2% 41.7%

MRFalign 43.2% 47.4% 44.1% 48.5% 46.1% 50.4%

Three structure alignment tools (TMalign, Matt and DeepAlign) are used to
generate reference alignments. ‘‘4-offset’’ means that 4-position off the exact
match is allowed. The bold indicates the best results.
doi:10.1371/journal.pcbi.1003500.t004

Table 5. Reference-dependent alignment precision on
Set2.6K.

TMalign Matt DeepAlign

Exact
match 4-offset

Exact
match 4-offset

Exact
match 4-offset

HMMER 48.0% 50.1% 48.2% 50.3% 51.4% 54.8%

HHalign 57.1% 59.9% 57.3% 60.0% 58.3% 61.4%

MRFalign 62.5% 69.1% 62.7% 69.6% 63.2% 70.0%

See Table 4 for explanation.
doi:10.1371/journal.pcbi.1003500.t005

Protein Homology Detection Using MRF-MRF Alignment
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HHsearch for most of the targets. This implies that our method

can generalize well to the test data not similar to the training data.

In the second experiment, we divide the proteins in SCOP40

into three subsets according their similarity with all the training

data. We measure the similarity of one test protein with all the

training data by its best BLAST E-value. We used two values

1e-2 and 1e-35 as the E-value cutoff so that the three subsets

have roughly the same size. As shown in Table 12, the

advantage of our method in remote homology detection over

HHpred is roughly same across the three subsets. Since HHpred

is an unsupervised algorithm, this implies that the performance

of our method is not correlated to the test-training similarity.

Therefore, it is unlikely that our method is overfit by the

training data.

Discussion

This paper has presented a new method for sequence-based

protein homology detection that compares two protein sequenc-

es or families through alignment of two Markov Random Fields

(MRFs), which model the multiple sequence alignment (MSA) of

a protein family using an undirected general graph in a

probabilistic way. The MRF representation is better than the

extensively-used PSSM and HMM representations in that the

former can capture long-range residue interaction pattern,

which reflects the overall 3D structure of a protein family. As

such, MRF comparison is much more sensitive than HMM

comparison in detecting remote homologs. This is validated by

our large-scale experimental tests showing that MRF-MRF

comparison can greatly improve alignment accuracy and remote

homology detection over currently popular sequence-HMM,

PSSM-PSSM, and HMM-HMM comparison methods. Our

method also has a larger advantage over the others on mainly-

beta proteins.

We build our MRF model of a protein family based upon

multiple sequence alignment (MSA) in the absence of native

structures. The accuracy of the MRF model depends on the

accuracy of an MSA. Currently we rely on the MSA generated

by PSI-BLAST. In the future, we may explore better

alignment methods for MSA building or even utilize solved

structures of one or two protein sequences to improve MSA.

The accuracy of the MRF model parameter usually increases

with respect to the number of non-redundant sequence

homologs in the MSA. Along with more and more protein

sequences are generated by a variety of sequencing projects, we

shall be able to build accurate MRFs for more and more protein

families and thus, detect their homologous relationship more

accurately.

An accurate scoring function is essential to MRF-MRF

comparison. Many different methods can be used to measure

node and edge similarity of two MRFs, just like many different

scoring functions can be used to measure the similarity of two

PSSMs or HMMs. This paper presents only one of them. In the

future we may explore more possibilities. It is computationally

intractable to find the best alignment between two MRFs when

edge similarity is taken into consideration. This paper presents

an ADMM algorithm that can efficiently solve the MRF-MRF

alignment problem to suboptimal. However, this algorithm

currently is about 10 times slower than the Viterbi

algorithm for PSSM-PSSM alignment. Further tuning of this

ADMM algorithm is needed for very large-scale homology

detection.

Table 6. Reference-dependent alignment precision (exact match) on the large benchmark Set60K.

TMalign Matt DeepAlign

HMMER HHalign MRFalign HMMER HHalign MRFalign HMMER HHalign MRFalign

Family 63.1% 63.9% 67.3% 64.3% 65.4% 68.0% 68.4% 69.2% 71.4%

Superfamily 38.7% 39.5% 42.8% 40.5% 41.3% 44.9% 43.2% 44.3% 48.7%

Fold 4.2% 7.4% 11.5% 4.7% 8.0% 12.3% 5.4% 8.2% 14.5%

Family (beta) 66.4% 65.8% 69.5% 67.4% 68.1% 72.3% 70.8% 72.4% 77.9%

Superfamily (beta) 44.2% 44.9% 48.8% 45.4% 46.2% 49.4% 46.6% 48.4% 53.7%

Fold (beta) 6.1% 9.3% 14.1% 6.7% 9.2% 14.5% 7.9% 8.6% 17.8%

The protein pairs are divided into 3 groups based upon the SCOP classification. The bold indicates the best results.
doi:10.1371/journal.pcbi.1003500.t006

Table 7. Homology detection performance at the superfamily level.

Scop20 Scop40 Scop80

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

hmmscan 35.2% 36.5% 36.5% 40.2% 41.7% 41.8% 43.9% 45.2% 45.3%

FFAS 48.6% 54.4% 55.6% 52.1% 56.3% 57.1% 49.8% 53.0% 53.7%

HHsearch 51.6% 57.3% 59.2% 55.8% 60.8% 62.4% 56.1% 60.1% 61.8%

HHblits 51.9% 56.3% 57.5% 56.0% 59.8% 60.9% 59.2% 62.5% 63.3%

MRFalign 58.2% 61.7% 63.4% 59.3% 63.6% 65.8% 60.4% 64.7% 66.1%

doi:10.1371/journal.pcbi.1003500.t007

Protein Homology Detection Using MRF-MRF Alignment
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Methods

Modeling Multiple Sequence Alignment (MSA) using
Markov Random Fields (MRF)

Given a protein primary sequence, we run PSI-BLAST [36]

with 5 iterations and E-value cutoff 0.001 to find its sequence

homologs. PSI-BLAST also generates an MSA of the sequence

homologs. Let Xi be a finite discrete random variable representing

the amino acid at column i in the MSA, taking values from 1 to 21,

corresponding to 20 amino acids and gap. Then we can use a

multivariate random variable X~fX1,X2, . . . ,XNg, where N is

the number of columns, to model the MSA. We use an MRF to

define the probability distribution of X. MRF is an undirected

graph that can be used to model a set of correlated random

variables. As shown in Fig. 3, an MRF node represents one

column in the MSA and an edge represents the correlation

between two columns i and k when Di{jD§6. We ignore very

short-range correlation (i.e., Di{jDv6) since it is not very

informative. The MRF consists of two types of functions: w(Xi)
and y(Xi,Xk), where w(Xi) is an amino acid preference function

for node i and y(Xi,Xk) is a pairwise amino acid preference

function for edge (i, k) that reflects interaction between two nodes.

Then, the probability of observing a particular protein sequence X

can be calculated as follows.

P Xð Þ~ 1

Z
Pi w(Xi)P(i,k) y(Xi,Xk) ð1Þ

where Z is the normalization factor.

We use two kinds of information in MRFs for their alignment.

One is the occurring probability of 20 amino acids and gap at each

node (i.e., each column in MSA), which can also be interpreted as

the marginal probability at each node. The other is the correlation

between two nodes, which can be interpreted as interaction strength

of two MSA columns and calculated by several different ways. For

example, we can use a contact prediction program such as PSICOV

[37] and PhyCMAP [38] for this purpose. PSICOV assumes that

P(X ) is a Gaussian distribution function and calculates the

correlation between two columns by inverse covariance matrix.

PhyCMAP takes sequence information (including mutual informa-

tion) as input and predicts the probability of two residues forming a

contact, which can be used to indicate the interaction strength of

two columns. However, it takes time to run these programs, in

current implementation we calculate the mutual information (MI)

and its power series of two columns as interaction strength. That is,

we use MI, MI2, …, MI11 to quantify all the pairwise interaction

strength where MI is the mutual information matrix. The MI power

series are much more informative than the MI alone, as tested in our

contact prediction program PhyCMAP.

Scoring function for the alignment of two Markov
Random Fields (MRFs)

Our scoring function for MRF-MRF alignment is a linear

combination of node alignment potential and edge alignment

potential with equal weight. Let T and S denote two MRFs for

the two proteins under consideration. There are three possible

alignment states M, It and Is where M represents two nodes

being aligned, It denotes an insertion in T (i.e., one node in T is

not aligned), and Is denotes an insertion in S (i.e., one node in S

is not aligned). As shown in Fig. 4, each alignment can be

represented as a path in an alignment matrix, in which each

vertex can be exactly determined by its position in the matrix

and its state. For example, the first vertex in the path can be

written as (0, 0, dummy), the 2nd vertex as (1,1,M) and the 3rd

vertex as (2,1,Is). Therefore, we can write an alignment as a set

of triples, each of which has a form like (i,j,u) where (i,j)
represents the position and u the state.

Table 8. Homology detection performance at the fold level.

Scop20 Scop40 Scop80

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

hmmscan 5.2% 6.1% 6.1% 6.2% 6.9% 6.9% 5.9% 6.5% 6.6%

FFAS 13.1% 18.7% 20.0% 10.4% 14.5% 15.4% 9.1% 11.9% 12.6%

HHsearch 16.3% 24.7% 28.6% 17.6% 25.3% 29.1% 15.4% 21.9% 25.0%

HHblits 17.4% 25.2% 27.2% 19.1% 26.0% 28.2% 18.4% 25.0% 27.0%

MRFalign 27.2% 36.8% 41.2% 28.3% 37.9% 42.4% 27.0% 38.1% 41.6%

doi:10.1371/journal.pcbi.1003500.t008

Table 9. Homology detection performance for mainly beta proteins at the superfamily level.

Scop20 Scop40 Scop80

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

hmmscan 29.1% 29.4% 29.4% 34.7% 35.1% 35.1% 43.7% 44.0% 44.1%

FFAS 43.6% 49.9% 51.9% 48.2% 52.4% 53.5% 43.7% 46.3% 47.2%

HHsearch 48.2% 54.6% 56.9% 52.0% 56.9% 59.1% 47.7% 51.8% 53.7%

HHblits 47.5% 52.1% 53.7% 51.4% 54.8% 56.6% 52.9% 54.6% 57.8%

MRFalign 55.4% 61.7% 65.9% 57.3% 63.5% 66.8% 54.2% 59.7% 64.2%

doi:10.1371/journal.pcbi.1003500.t009
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Node alignment potential. Given an alignment path, its

node alignment potential is the accumulative potential of all the

vertices in the path. We use a Conditional Neural Fields (CNF)

[39] method, which is very similar to what is described in the

protein threading paper [40], to estimate the occurring

probability of an alignment and then derive node alignment

potential from this CNF. Briefly speaking, we estimate the

occurring probability of an alignment A between T and S as

follows.

P(ADT ,S)~e

P
(i,j,u)[A

Eu(Ti ,Sj )
=Z(T ,S) ð2Þ

where Z(T ,S) is a normalization factor summarizing all the

possible alignments between T and S, and Eu(Ti,Sj) is a neural

network with one hidden layer that calculates the log-likelihood

of a vertex (i,j,u) in the alignment path, where i is a node in T, j

a node in S, and u a state. When u is a match state, Eu takes as

input the sequence profile context of two nodes i and j, denoted

as Ti and Sj , respectively, and yields the log-likelihood of these

two nodes being matched. When u is an insertion state, it takes as

input at the sequence profile context of one node and yields the

log-likelihood of this node being an insertion. The sequence

profile context of node i is a 21|(2wz1) matrix where w~5,

consisting of the marginal probability of 20 amino acids and gap at

2wz1 nodes indexed by i{w, i{wz1, . . . ,i,iz1, . . . izw In

case that one column does not exist (when iƒw or izwwN),

zero is used. We train the parameters in Eu by maximizing

the occurring probability of a set of reference alignments,

which are generated by a structure alignment tool DeepAlign

[31]. That is, we optimize the model parameters so that the

structure alignment of one training protein pair has the largest

probability among all possible alignments. A L2-norm regular-

ization factor, which is determined by 5-fold cross validation, is

used to restrict the search space of model parameters to avoid

over-fitting. See the paper [40] for more technical details.

Let hu
i,j denote the potential of a vertex (i,j,u) in the alignment

path. We calculate hu
i,j from Eu as follows.

hu
i,j~Eu(Ti,Sj){Exp(Eu) ð3Þ

where Exp(Eu) is the expected value of Eu. It is used to offset the

effect of the background, which is the log-likelihood yielded by

Eu for any randomly-chosen node pairs (or nodes). Once Eu is

determined, we can approximate its expected value by

sampling. That is, we sample ten thousands of node pairs (or

nodes) from the training data, feed their sequence information

into Eu and then calculate the average output of Eu as its

expected value.

Table 10. Homology detection performance for mainly beta proteins at the fold level.

Scop20 Scop40 Scop80

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

hmmscan 6.9% 7.6% 7.6% 8.0% 8.6% 8.6% 7.0% 7.4% 7.4%

FFAS 22.7% 30.1% 31.8% 15.2% 20.4% 21.7% 11.8% 15.3% 16.1%

HHsearch 24.4% 34.7% 38.8% 26.8% 37.7% 41.6% 19.1% 26.8% 29.5%

HHblits 24.1% 33.3% 34.8% 26.9% 35.3% 37.1% 24.7% 34.1% 35.5%

MRFalign 37.4% 55.0% 61.4% 42.5% 51.1% 54.6% 36.4% 48.0% 55.9%

doi:10.1371/journal.pcbi.1003500.t010

Table 11. Contribution of edge alignment potential and mutual information, measured by alignment recall improvement on two
benchmarks Set3.6K and Set2.6K.

Alignment recall for the whole test sets

Set3.6K Set2.6K

Exact Match 4-position offset Exact Match 4-position offset

Only with node potential 44.7% 48.6% 68.6% 71.8%

Node + edge potential, no MI 48.1% 52.2% 72.3% 75.2%

Node + edge potential with MI 49.2% 53.5% 74.2% 77.8%

Alignment recall on proteins with at least 256 non-redundant sequence homologs

391 pairs in Set3.6K 509 pairs in Set2.6K

Only with node potential 59.5% 63.4% 71.3% 75.8%

Node + edge potential, no MI 62.1% 66.7% 73.5% 78.1%

Node + edge potential with MI 65.2% 69.8% 76.6% 81.0%

The structure alignments generated by DeepAlign are used as reference alignments.
doi:10.1371/journal.pcbi.1003500.t011
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Edge alignment potential. It calculates the similarity of two

edges, one from each MRF, based upon the interaction strength of

two ends in one edge. We can derive interaction strength from the

parameters of the MRF model, but it is hard to validate if this

interaction strength (or mutual information) is accurate or not even

in the presence of native structures since we cannot directly measure

interaction strength in a protein. Here we use inter-residue

Euclidean distance, which can be measured more easily, to reflect

interaction strength of two residues. Later in this section we will

describe how to derive the distance probability distribution from the

Figure 1. Running time of the Viterbi algorithm and our ADMM algorithm. The X-axis is the geometric mean of the two protein lengths in a
protein pair. The Y-axis is the running time in seconds.
doi:10.1371/journal.pcbi.1003500.g001

Figure 2. The model quality, measured by TM-score, of our method and HHpred for the 36 CASP10 hard targets. One point represents
two models generated by our method (x-axis) and HHpred (y-axis).
doi:10.1371/journal.pcbi.1003500.g002
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information (e.g., interaction strength) encoded in MRFs. Let dT
ik

denote the Euclidean distance between two residues at i and k and

dS
jl is defined similarly. Note that dT

ik and dS
jl

are unknown since

this paper studies sequence-based homology detection in the

absence of native structures. Let hi,k,j,l denote the alignment

potential between edge (i,k) in T and edge (j,l) in S. We calculate

hi,k,j,l as follows.

hi,k,j,l~

X
dT
ik ,dS

jl

p(dT
ik jci,ck,mik)p(dS

jl jcj ,cl ,mjl )log
p(dT

ik ,dS
jl )

pref (dT
ik

)pref (dS
jl

)

ð4Þ

where p(dT
ik

Dci,ck,mik) is the probability of two nodes i and k in T

interacting at distance dT
ik

; p(dS
jl

Dcj ,cl ,mjl ) is the probability of two

nodes j and l in S interacting at distance dS
jl

; p(dT
ik

,dS
jl

) is the

probability of one distance dT
ik

being aligned to another distance dS
jl

in reference alignments; and pref (dT
ik

)(pref (dS
jl

)) is the background

probability of observing dT
ik

(dS
jl

) in a protein structure.

Now we explain how to calculate each term in Eq. (4).

pref (dT
ik

)(pref (dS
jl

)) can be calculated by simple counting on a set

of non-redundant protein structures, e.g., PDB25. Similar to

pref (dT
ik

), p(dT
ik

,dS
jl

) can also be calculated by simple counting on

a set of non-redundant reference alignments. That is, we randomly

choose a set of protein pairs such that two proteins in each pair are

similar at least at the fold level. Then we generate their reference

alignment (i.e., structure alignments) using a structure alignment

tool DeepAlign [31] and finally do simple counting to estimate

p(dT
ik

,dS
jl

). In order to use simple counting, we discretize inter-

residue distance into 12 intervals: ,4 Å, 4–5 Å, 5–6 Å, …, 14–

15 Å, and .15 Å.

In Eq. (4), p(dT
ik

Dci,ck,mik) is the probability of two nodes i and

k interacting at distance dT
ik

, conditioned on information derived

from the MRF. p(dS
jl

Dcj ,cl ,mjl ) is defined similarly. Meanwhile, ci

and ck are the sequence profile contexts of two nodes i and k,

respectively, and mik represents the mutual information and its

power series (or interaction strength) between these two nodes.

The sequence profile context of node i is a 21|(2wz1) matrix

where w~7, consisting of the occurring probability of 20 amino

acids and gap at 2wz1 nodes indexed by

i{w,i{wz1, . . . ,i,iz1, . . . izw. In case that one column does

not exist (when iƒw or izwwN), zero is used. We predict

p(dT
ik

Dci,ck,mik) using a probabilistic neural network (PNN)

implemented in our context-specific distance-dependent statistical

potential package EPAD [41]. EPAD takes as input sequence

contexts and mutual information and then yields inter-residue

Table 12. Fold recognition rate of our method on SCOP40, with respect to the similarity (measured by E-value) between the test
data and the training data.

E-value,1e-35 1e-35,E-value,1e-2 E-value.1e-2

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

hmmscan 5.0% 5.6% 5.6% 7.3% 7.9% 7.9% 6.4% 7.3% 7.4%

10.3% 14.5% 15.8% 9.7% 12.9% 13.5% 11.6% 16.5% 17.5%

HHsearch 16.0% 23.2% 26.5% 18.5% 26.2% 30.3% 18.9% 27.2% 31.7%

HHblits 16.9% 23.1% 25.5% 20.8% 27.4% 28.9% 20.2% 28.3% 31.1%

MRFalign 25.5% 35.9% 39.4% 29.7% 39.5% 43.3% 29.4% 39.0% 43.6%

doi:10.1371/journal.pcbi.1003500.t012

Figure 3. Model a multiple sequence alignment (left) by a Markov Random Fields (right).
doi:10.1371/journal.pcbi.1003500.g003
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distance probability distribution. Compared to contact informa-

tion, here we use interaction at a given distance to obtain a

higher-resolution description of the residue interaction pattern.

Therefore, our scoring function contains more information and

thus, may yield better alignment accuracy and homology detection

rate.

Aligning two MRFs by ADMM (Alternating Direction
Method of Multipliers)

As mentioned before, an alignment can be represented as a path

in the alignment matrix, which encodes an exponential number of

paths. We can use a set of 3N1N2 binary variables

fzu
i,j D1ƒiƒN1,1ƒiƒN2,u[fM,Is,Itgg to indicate which path is

chosen, where N1 and N2 are the lengths of the two MSAs, (i,j) is

an entry in the alignment matrix and u is the associated state. zu
i,j is

equal to 1 if the alignment path passes (i,j) with state u. Therefore,

the problem of finding the best alignment between two MRFs

can be formulated as the following quadratic optimization

problem.

maxz

X
i,j,u

hu
i,jz

u
i,jz

1

L

X
i,j,k,l,u,v

huv
i,j,k,lz

u
i,jz

v
k,l ðP1Þ

where hu
i,j and huv

i,j,k,l are node and edge alignment potentials as

described in previous section. Meanwhile, huv
i,j,k,l is equal to 0 if

either u or v is not a match state. L is the alignment length and 1=L
is used to make the accumulative node and edge potential have

similar scale. Note that L is unknown and we will describe how to

determine it later in this section. Finally, the solution of P1 shall be

subject to the constraint that all those zu
i,j with value 1 shall form a

valid alignment path. This constraint shall also be enforced to all

the optimization problems described in this section.

It is computationally intractable to find the optimal solution of

P1. Below we present an ADMM (Alternating Direction Method

of Multipliers) method that can efficiently solve this problem to

suboptimal. See [42] for a tutorial of the ADMM method. To use

ADMM, we rewrite P1 as follows by making a copy of z to y, but

without changing the solution space.

maxz,y

X
i,j,u

hu
i,jz

u
i,jz

1

L

X
i,j,k,l,u,v

huv
i,j,k,lz

u
i,jy

v
k,l

s:t: Vk,l,v, zv
k,l~yv

k,l

ðP2Þ

Problem P2 can be augmented by adding a term to penalize the

difference between z and y.

maxz,y

X
i,j,u

hu
i,j z

u
i,jz

1

L

X
i,j,k,l,u,v

huv
i,j,k,l z

u
i,jy

v
k,l{

r

2

X
i,j,u

(zu
i,j{yu

i,j)
2

s:t: Vi,j,u, zu
i,j~yu

i,j

ðP3Þ

P3 is equivalent to P2 and P1, but converges faster due to the

penalty term. Here r is a hyper-parameter influencing the

convergence rate of the algorithm. Some heuristics algorithms

were proposed for choosing r at each iteration, such as [43,44].

Empirically, setting r to a constant ( = 0.5) enables our algorithm

to converge within 10 iterations for most protein pairs.

Adding the constraint zu
i,j~yu

i,j using a Lagrange multiplier l to

Eq. (7), we have the following Lagrangian dual problem:

minlmaxz,y

X
i,j,u

hu
i,jz

u
i,jz

1

L

X
i,j,k,l,u,v

huv
i,j,k,l z

u
i,jy

v
k,lz

X
i,j,u

lu
i,j(z

u
i,j{yu

i,j){
r

2

X
i,j,u

(zu
i,j{yu

i,j)
2

ðP4Þ

Figure 4. Representation of protein alignment. (A) Represented as a sequence of states. (B) Each alignment is a path in the alignment matrix.
doi:10.1371/journal.pcbi.1003500.g004
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It is easy to prove that P3 is upper bounded by P4. Now we will

solve P4 and use its solution to approximate P3 and thus, P1.

Since both z and y are binary variables, the last term in (P4) can

be expanded as follows.

r

2

X
i,j,u

(zu
i,j{yu

i,j)
2~

r

2

X
i,j,u

(zu
i,jzyu

i,j{2zu
i,jy

u
i,j)

2 ð5Þ

For a fixed l, we can split P4 into the following two sub-problems.

y�~arg maxf
X

k,l,v
yv

k,lC
v
k,lg, ðSP1Þ

where Cv
k,l~

1

L

X
i,j,u

huv
i,j,k,lz

u
i,j{lv

k,l{
r

2
(1{2zv

k,l)

z�~arg maxf
X

i,j,u
zu

i,jD
u
i,jg, ðSP2Þ

where Du
i,j~hu

i,jz
1

L

X
k,l,v

huv
i,j,k,ly

v�
k,lzlu

i,j{
r

2
(1{yu�

i,j )

The sub-problem SP1 optimizes the objective function with

respect to y while fixing z, and the sub-problem SP2 optimizes the

objective function with respect to z while fixing y. SP1 and SP2 do

not contain any quadratic term, so they can be efficiently solved

using the classical dynamic programming algorithm for sequence

or HMM-HMM alignment.

In summary, we solve P4 using the following procedure.

1) Initialize z by aligning the two MRFs without the edge

alignment potential, which can be done by dynamic

programming. Accordingly, initialize L as the length of the

initial alignment.

2) Solve (SP1) first and then (SP2) using dynamic programming,

each generating a feasible alignment.

3) If the algorithm converges, i.e., the difference between z and y

is very small or zero, stop here. Otherwise, we update the

alignment length L as the length of the alignment just

generated and the Lagrange multiplier l using subgradient

descent as in Eq. (6), and then go back to Step 2).

lnz1~ln{r(z�{y�) ð6Þ

Due to the quadratic penalty term in P3 this ADMM algorithm

usually converges much faster and also yields better solutions than

without this term. Empirically, it converges within 10 iterations for

most protein pairs. See [42] for the convergence proof of a general

ADMM algorithm.
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