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Abstract

Current practice in the normalization of microbiome count data is inefficient in the statistical sense. For apparently historical
reasons, the common approach is either to use simple proportions (which does not address heteroscedasticity) or to use
rarefying of counts, even though both of these approaches are inappropriate for detection of differentially abundant
species. Well-established statistical theory is available that simultaneously accounts for library size differences and biological
variability using an appropriate mixture model. Moreover, specific implementations for DNA sequencing read count data
(based on a Negative Binomial model for instance) are already available in RNA-Seq focused R packages such as edgeR and
DESeq. Here we summarize the supporting statistical theory and use simulations and empirical data to demonstrate
substantial improvements provided by a relevant mixture model framework over simple proportions or rarefying. We show
how both proportions and rarefied counts result in a high rate of false positives in tests for species that are differentially
abundant across sample classes. Regarding microbiome sample-wise clustering, we also show that the rarefying procedure
often discards samples that can be accurately clustered by alternative methods. We further compare different Negative
Binomial methods with a recently-described zero-inflated Gaussian mixture, implemented in a package called
metagenomeSeq. We find that metagenomeSeq performs well when there is an adequate number of biological replicates,
but it nevertheless tends toward a higher false positive rate. Based on these results and well-established statistical theory,
we advocate that investigators avoid rarefying altogether. We have provided microbiome-specific extensions to these tools
in the R package, phyloseq.
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Introduction

Modern, massively parallel DNA sequencing technologies have

changed the scope and technique of investigations across many

fields of biology [1,2]. In gene expression studies the standard

measurement technique has shifted away from microarray

hybridization to direct sequencing of cDNA, a technique often

referred to as RNA-Seq [3]. Analogously, culture independent [4]

microbiome research has migrated away from detection of species

through microarray hybridization of small subunit rRNA gene

PCR amplicons [5] to direct sequencing of highly-variable regions

of these amplicons [6], or even direct shotgun sequencing of

microbiome metagenomic DNA [7]. Even though the statistical

methods available for analyzing microarray data have matured to

a high level of sophistication [8], these methods are not directly

applicable because DNA sequencing data consists of discrete

counts of sequence reads rather than continuous values derived

from the fluorescence intensity of hybridized probes. In recent

generation DNA sequencing the total reads per sample (library size;

sometimes referred to as depths of coverage) can vary by orders of

magnitude within a single sequencing run. Comparison across

samples with different library sizes requires more than a simple

linear or logarithmic scaling adjustment because it also implies

different levels of uncertainty, as measured by the sampling

variance of the proportion estimate for each feature (a feature is a

gene in the RNA-Seq context, and is a species or Operational

Taxonomic Unit, OTU, in the context of microbiome sequenc-

ing). In this article we are primarily concerned with optimal

methods for addressing differences in library sizes from micro-

biome sequencing data.

Variation in the read counts of features between technical

replicates have been adequately modeled by Poisson random

variables [9]. However, we are usually interested in understand-

ing the variation of features among biological replicates in order

to make inferences that are relevant to the corresponding

population; in which case a mixture model is necessary to

account for the added uncertainty [10]. Taking a hierarchical

model approach with the Gamma-Poisson has provided a

satisfactory fit to RNA-Seq data [11], as well as a valid regression

framework that leverages the power of generalized linear models

[12]. A Gamma mixture of Poisson variables gives the negative

binomial (NB) distribution [10,11] and several RNA-Seq analysis

packages now model the counts, K, for gene i, in sample j

according to:

Kij*NB(sjmi,wi) ð1Þ
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where sj is a linear scaling factor for sample j that accounts for its

library size, mi is the mean proportion for gene i, and wi is the

dispersion parameter for gene i. The variance is ni~sjmizwis
2
j m2

i ,

with the NB distribution becoming Poisson when w = 0.

Recognizing that w.0 and estimating its value is necessary in

gene-level tests in order to control the rate of false positive genes.

Many false positive genes appear significantly differentially

expressed between experimental conditions under the assumption

of a Poisson distribution, but are nevertheless not-significant in

tests that account for the larger variance that results from non-

zero dispersion.

The uncertainty in estimating wi for every gene when there is a

small number of samples — or a small number of biological

replicates — can be mitigated by sharing information across the

thousands of genes in an experiment, leveraging a systematic trend

in the mean-dispersion relationship [11]. This approach substan-

tially increases the power to detect differences in proportions

(differential expression) while still adequately controlling for false

positives [13]. Many R packages implementing this model of

RNA-Seq data are now available, differing mainly in their

approach to modeling dispersion across genes [14]. Although

DNA sequencing-based microbiome investigations use the same

sequencing machines and represent the processed sequence data in

the same manner — a feature-by-sample contingency table where

the features are OTUs instead of genes — to our knowledge the

modeling and normalization methods currently used in RNA-Seq

analysis have not been transferred to microbiome research [15–

17].

Instead, microbiome analysis workflows often begin with an ad

hoc library size normalization by random subsampling without

replacement, or so-called rarefying [17–19]. There is confusion in

the literature regarding terminology, and sometimes this normal-

ization approach is conflated with a non-parametric resampling

technique — called rarefaction [20], or individual-based taxon re-

sampling curves [21] — that can be justified for coverage analysis or

species richness estimation in some settings [21], though in other

settings it can perform worse than parametric methods [22]. Here

we emphasize the distinction between taxon re-sampling curves

and normalization by strictly adhering to the terms rarefying or

rarefied counts when referring to the normalization procedure,

respecting the original definition for rarefaction. Rarefying is most

often defined by the following steps [18].

1. Select a minimum library size, NL,min. This has also been called

the rarefaction level [17], though we will not use the term here.

2. Discard libraries (microbiome samples) that have fewer reads

than NL,min.

3. Subsample the remaining libraries without replacement such

that they all have size NL,min.

Often NL,min is chosen to be equal to the size of the smallest

library that is not considered defective, and the process of

identifying defective samples comes with a risk of subjectivity

and bias. In many cases researchers have also failed to repeat

the random subsampling step (3) or record the pseudorandom

number generation seed/process — both of which are essential

for reproducibility. To our knowledge, rarefying was first

recommended for microbiome counts in order to moderate the

sensitivity of the UniFrac distance [23] to library size,

especially differences in the presence of rare OTUs [24]. In

these and similar studies the principal objective is an

exploratory/descriptive comparison of microbiome samples,

often from different environmental/biological sources; a

research task that is becoming increasingly accessible with

declining sequencing costs and the ability to sequence many

samples in parallel using barcoded primers [25,26]. Rarefying

is now an exceedingly common precursor to microbiome

multivariate workflows that seek to relate sample covariates to

sample-wise distance matrices [19,27,28]; for example, inte-

grated as a recommended option in QIIME’s [29] beta_di-
versity_through_plots.py workflow, in Sub.sample in

the mothur software library [30], in daisychopper.pl [31],

and is even supported in phyloseq’s rarefy_even_depth
function [32] (though not recommended in its documentation).

The perception in the microbiome literature of ‘‘rarefying to even

sampling depth’’ as a standard normalization procedure appears to

explain why rarefied counts are also used in studies that attempt to

detect differential abundance of OTUs between predefined classes of

samples [33–37], in addition to studies that use proportions directly

[38]. It should be noted that we have adopted the recently coined

term differential abundance [39,40] as a direct analogy to differential

expression from RNA-Seq. Like differentially expressed genes, a

species/OTU is considered differentially abundant if its mean

proportion is significantly different between two or more sample

classes in the experimental design.

Statistical motivation
Despite its current popularity in microbiome analyses rarefy-

ing biological count data is statistically inadmissible
because it requires the omission of available valid data. This holds

even if repeated rarefying trials are compared for stability as

previously suggested [17]. In this article we demonstrate the

applicability of a variance stabilization technique based on a

mixture model of microbiome count data. This approach

simultaneously addresses both problems of (1) DNA sequencing

libraries of widely different sizes, and (2) OTU (feature) count

proportions that vary more than expected under a Poisson model.

We utilize the most popular implementations of this approach

currently used in RNA-Seq analysis, namely edgeR [41] and

DESeq [13], adapted here for microbiome data. This approach

allows valid comparison across OTUs while substantially improv-

ing both power and accuracy in the detection of differential

Author Summary

The term microbiome refers to the ecosystem of microbes
that live in a defined environment. The decreasing cost
and increasing speed of DNA sequencing technology has
recently provided scientists with affordable and timely
access to the genes and genomes of microbiomes that
inhabit our planet and even our own bodies. In these
investigations many microbiome samples are sequenced
at the same time on the same DNA sequencing machine,
but often result in total numbers of sequences per sample
that are vastly different. The common procedure for
addressing this difference in sequencing effort across
samples – different library sizes – is to either (1) base
analyses on the proportional abundance of each species in
a library, or (2) rarefy, throw away sequences from the
larger libraries so that all have the same, smallest size. We
show that both of these normalization methods can work
when comparing obviously-different whole microbiomes,
but that neither method works well when comparing the
relative proportions of each bacterial species across
microbiome samples. We show that alternative methods
based on a statistical mixture model perform much better
and can be easily adapted from a separate biological sub-
discipline, called RNA-Seq analysis.

Rarefying Microbiome Data Is Inadmissible
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abundance. We also compare the performance of the Gamma-

Poisson mixture model against a method that models OTU

proportions using a zero-inflated Gaussian distribution, imple-

mented in a recently-released package called metagenomeSeq

[40].

A mathematical proof of the sub-optimality of the rarefying

approach is presented in the supplementary material (Text S1).

To help explain why rarefying is statistically inadmissible,

especially with regards to variance stabilization, we start with

the following minimal example. Suppose we want to compare

two different samples, called A and B, comprised of 100 and

1000 DNA sequencing reads, respectively. In statistical terms,

these library sizes are also equivalent to the number of trials in

a sampling experiment. In practice, the library size associated

with each biological sample is a random number generated by

the technology, often varying from hundreds to millions. For

our example, we imagine the simplest possible case where the

samples can only contain two types of microbes, called OTU1

and OTU2. The results of this hypothetical experiment are

represented in the Original Abundance section of Figure 1.

Formally comparing the two proportions according to a

standard test could technically be done either using a x2 test

(equivalent to a two sample proportion test here) or a Fisher

exact test. By first rarefying (Figure 1, Rarefied Abundance

section) so that both samples have the same library size before

doing the tests, we are no longer able to differentiate the

samples (Figure 1, tests). This loss of power is completely

attributable to reducing the size of B by a factor of 10, which

also increases the width of the confidence intervals corre-

sponding to each proportion such that they are no longer

distinguishable from those in A even though they are

distinguishable in the original data.

The variance of the proportion’s estimate p̂p is multiplied

by 10 when the total count is divided by 10. In this

binomial example the variance of the proportion estimate is

Var(
X

n
)~

pq

n
~

q

n
E(

X

n
), a function of the mean. This is a

common occurrence and one that is traditionally dealt with in

statistics by applying variance-stabilizing transformations. We

show in Text S1 that the relation between the variance and the

mean for microbiome count data can be estimated and the

model used to find the optimal variance-stabilizing transfor-

mation. As illustrated by this simple example, it is inappropri-

ate to compare the proportions of OTU i, pi~Kij=sj , without

accounting for differences in the denominator value (the

library size, sj) because they have unequal variances. This

problem of unequal variances is called heteroscedasticity. In other

words, the uncertainty associated with each value in the table is

fundamentally linked to the total number of observations (or

reads), which can vary even more widely than a 10-fold

difference. In practice we will be observing hundreds of

different OTUs instead of two, often with dependendency

between the counts. Nevertheless, the difficulty caused by

unequal library sizes still pertains.

The uncertainty with which each proportion is estimated

must be considered when testing for a difference between

proportions (one OTU), or sets of proportions (a microbial

community). Although rarefying does equalize variances, it

does so only by inflating the variances in all samples to the

largest (worst) value among them at the cost of discriminating

power (increased uncertainty). Rarefying also adds artificial

uncertainty through the random subsampling step, such that

Figure 1 shows the best-case, achieved only with a sufficient

number of repeated rarefying trials (See Protocol S1, minimal

example). In this sense alone, the random step in rarefying is

unnecessary. Each count value could be transformed to a

common-scale by rounding Kijsmin=sj . Although this common-

scale approach is an improvement over the rarefying method

here defined, both methods suffer from the same problems

related to lost data.

Figure 1. A minimal example of the effect of rarefying on statistical power. Hypothetical abundance data in its original (Top-Left) and
rarefied (Top-Right) form, with corresponding formal test results for differentiation (Bottom).
doi:10.1371/journal.pcbi.1003531.g001
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Methods

In order to quantify the relative statistical costs of rarefying,

and to illustrate the relative benefits of an appropriate mixture

model, we created two microbiome simulation workflows based

on repeated subsampling from empirical data. These work-

flows were organized according to Figure 2. Because the

correct answer in every simulation is known, we were able to

evaluate the resulting power and accuracy of each statistical

method, and thus quantify the improvements one method

provided over another under a given set of conditions. In both

simulation types we varied the library size and effect size across

a range of values that are relevant for recently-published

microbiome investigations, and followed with commonly used

statistical analyses from the microbiome and/or RNA-Seq

literature.

Simulation A
Simulation A is a simple example of a descriptive experiment

in which the main goal is to distinguish patterns of relationships

between whole microbiome samples through normalization

followed by the calculation of sample-wise distances. Many early

microbiome investigations are variants of Simulation A, and also

used rarefying prior to calculating UniFrac distances [27].

Microbiome studies often graphically represent the results of

their pairwise sample distances using multidimensional scaling

[42] (also called Principal Coordinate Analysis, PCoA), which is

useful if the desired effects are clearly evident among the first

two or three ordination axes. In some cases, formal testing of

sample covariates is also done using a permutation MANOVA

(e.g. vegan::adonis in R [43]) with the (squared) distances

and covariates as response and linear predictors, respectively

[44]. However, in this case we are not interested in creating

summary graphics or testing the explanatory power of sample

covariates, but rather we are interested in precisely evaluating

the relative discriminating capability of each combination of

normalization method and distance measure. We will use

clustering results as a quantitative proxy for the broad

spectrum of approaches taken to interpret microbiome sample

distances.

Figure 2. Graphical summary of the two simulation frameworks. Both Simulation A (clustering) and Simulation B (differential abundance) are
represented. All simulations begin with real microbiome count data from a survey experiment referred to here as ‘‘the Global Patterns dataset’’ [48].
Tables of integers with multiple columns represent an abundance count matrix (‘‘OTU table’’), while a single-column of integers represents a
multinomial of OTU counts/proportions. In both simulation illustrations an effect size is explained and given an example value of 10 for easy mental
computation, but its meaning is different for each simulation. Note that effect size is altogether different than library size, the latter being equivalent
to both the column sums and the number of reads per sample. A grey highlight indicates count values for which an effect has been applied in
Simulation B. Protocol S1 includes the complete source code used to compute the example values shown here, as well as the full simulations
discussed below.
doi:10.1371/journal.pcbi.1003531.g002
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Normalizations in Simulation A. For each simulated

experiment we used the following normalization methods prior

to calculating sample-wise distances.

1. DESeqVS. Variance Stabilization implemented in the DESeq

package [13].

2. None. Counts not transformed. Differences in total library size

could affect the values of some distance metrics.

3. Proportion. Counts are divided by total library size.

4. Rarefy. Rarefying is performed as defined in the introduction,

using rarefy_even_depth implemented in the phyloseq

package [32], with NL,min set to the 15th-percentile of library

sizes within each simulated experiment.

5. UQ-logFC. The Upper-Quartile Log-Fold Change normalization

implemented in the edgeR package [41], coupled with the top-

MSD distance (see below).

Distances in Simulation A. For each of the previous

normalizations we calculated sample-wise distance/dissimilarity

matrices using the following methods, if applicable.

1. Bray-Curtis. The Bray-Curtis dissimilarity first defined in

1957 for forest ecology [45].

2. Euclidean. The euclidean distance treating each OTU as a

dimension. This has the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (Ki1{Ki2)2

q
, for the

distance between samples 1 and 2, with K and i as defined in

the Introduction and n the number of distinct OTUs.

3. PoissonDist. Our abbreviation of PoissonDistance, a

sample-wise distance implemented in the PoiClaClu package

[46].

4. top-MSD. The mean squared difference of top OTUs, as

implemented in edgeR [41].

5. UniFrac-u. The Unweighted UniFrac distance [23].

6. UniFrac-w. The Weighted UniFrac distance [47].

In order to consistently evaluate performance in this regard,

we generated microbiome counts by sampling from two

different multinomials that were based on either the Ocean or

Feces microbiomes of the Global Patterns empirical dataset [48].

An equal number of simulated microbiome samples was

generated from each multinomial for each simulated experi-

ment. The Ocean and Feces sample classes were chosen because

they have negligible overlapping OTUs, and mixing them by a

defined proportion allows arbitrary control over the difficulty

of the subsequent sample clustering task from trivial (no

mixing) to impossible (both multinomials evenly mixed). See

Figure 2 for a simplified example of a single simulated

experiment, generated using a small subset of the empirical

data with corresponding simplified code provided in the

simulation-design section of Protocol S1.

Clustering was performed independently for each combination

of simulated experiment, normalization method, and distance

measure using partitioning around medoids (PAM [49,50], an

alternative to k-means that is considered more robust) with the

number of clusters fixed at two. The accuracy in the clustering

results was defined as the fraction of simulated samples correctly

clustered; with the worst possible accuracy being 50% if all

samples are clustered. Note that the rarefying procedure omits

samples, so its accuracy can be below 50% under this definition.

Alternative clustering methods, hierarchical clustering and k-

means, were also performed and their results are included in

Protocol S1.

The number of samples (40) to include for each template in

Simulation A was chosen arbitrarily after some exploration of

preliminary simulations. It was apparent that the classification

results from Simulation A were most informative when we

included enough samples per simulated experiment to

achieve stable results, but not so many that it was

experimentally unrealistic and prohibitively slow to

compute. Conversely, preliminary trials of Simulation A that

included only a few samples per experiment resulted in a large

variance on each performance measure that was difficult to

interpret.

Simulation B
Simulation B is a simple example of microbiome experiments in

which the goal is to detect microbes that are differentially

abundant between two pre-determined classes of samples. This

experimental design appears in many clinical settings (health/

disease, target/control, etc.), and other settings for which there is

sufficient a priori knowledge about the microbiological conditions,

and we want to enumerate the OTUs that are different between

these microbiomes, along with a measure of confidence that the

proportions differ. For this form of analysis, the microbiome

counts for each simulated experiment are generated by sampling

from a single multinomial derived from the OTU proportions

observed in one environment of the Global Patterns dataset. To

create an effect, the simulated samples of an experiment were

divided into two equally-sized classes, test and null, and a

perturbation was applied (multiplication by a defined value) to

the count values of a random subset of OTUs in the test class only.

See part B of Figure 2 for a simple example. Each of the randomly

perturbed OTUs is differentially abundant between the classes,

and the performance of downstream tests can be evaluated on how

well these OTUs are detected without falsely selecting OTUs for

which no perturbation occurred (false positives). False negatives

are perturbed OTUs that went undetected. This approach for

generating simulated experiments with a defined effect size (in the

form of multiplicative factor) was repeated for each combination of

median library size, number of samples per class, and the nine

microbial environments included in the Global Patterns dataset.

Each simulated experiment was subjected to various approaches

for normalization/noise-modeling and differential abundance

testing.

Normalization/Modeling in Simulation B. For each

simulated experiment, we used the following normalization/

modeling methods prior to testing for differential abundance.

1. Model/None. A parametric model was applied to the data,

or, in the case of the t-test, no normalization was applied (note:

the t-test without normalization can only work with a high

degree of balance between classes, and is provided here for

comparison but is not recommended in general).

2. Rarefied. Rarefying is performed as defined in the introduc-

tion, using rarefy_even_depth implemented in the

phyloseq package [32], with NL,min set to the 15th-percentile

of library sizes within each simulated experiment.

3. Proportion. Counts are divided by total library size.

Testing in Simulation B. For each OTU of each simulated

experiment we used the following to test for differential

abundance.

1. two sided Welch t-test. A two-sided t-test with unequal

variances, using the mt wrapper in phyloseq [32] of the

mt.maxT method in the multtest package [51].

Rarefying Microbiome Data Is Inadmissible

PLOS Computational Biology | www.ploscompbiol.org 5 April 2014 | Volume 10 | Issue 4 | e1003531



2. edgeR - exactTest. An exact binomial test (see base R’s

stats::binom.test) generalized for overdispersed counts

[11] and implemented in the exactTest method of the

edgeR package [41].

3. DESeq - nbinomTest. A Negative Binomial conditioned test

similar to the edgeR test above, implemented in the

nbinomTest method of the DESeq package [13]. See the

subsection Testing for differential expression in Anders and Huber,

2010 [13] for the precise definition.

4. DESeq2 - nbinomWaldTest. A Negative Binomial Wald

Test using standard maximum likelihood estimates for GLM

coefficients assuming a zero-mean normal prior distribution,

implemented in the nbinomWaldTest method of the

DESeq2 package.

5. metagenomeSeq - fitZig. An Expectation-Maximization

estimate of the posterior probabilities of differential abundance

based on a Zero Inflated Gaussian model, implemented in the

fitZig method of the metagenomeSeq package [40].

All tests were corrected for multiple inferences using the

Benjamini-Hochberg method to control the False Discovery

Rate [52]. Please note that in the context of these simulations

library size is altogether different from effect size; the former being

equivalent to both the column sums and the number of reads

per sample. The library sizes for both categories of simulation

were randomly sampled from the original distribution of library

sizes in the Global Patterns dataset, and then scaled according

to the prescribed median library size of each simulated

experiment.

We have included in Protocol S1 the complete source code

for computing the survey, simulations, normalizations, and

performance assessments described in this article. This includes

the code to acquire publicly available data via the phyloseq

interface to the microbio.me/qiime server, a function called

microbio_me_qiime [32]. Where applicable, this code

includes the RNG seed so that the simulations and random

resampling procedures can be reproduced exactly. Interested

investigators can inspect and modify this code, change the

random seed and other parameters, and observe the results

(including figures). For ease of inspection, we have authored the

source code in R flavored markdown [53], through which we have

generated HTML5 files for each simulation that include our

extensive comments interleaved with code, results, and both

intermediate and final figures. Our simulation output can be

optionally-modified and re-executed using the the knit2html

function in the knitr package. This function will take the

location of the simulation source files as input, evaluate its R

code in sequence, generate graphics and markdown, and

produce the complete HTML5 output file that can be viewed

in any modern web browser. These simulations, analyses, and

graphics rely upon the cluster [54], foreach [55], ggplot2 [56],

metagenomeSeq [40], phyloseq [32], plyr [57], reshape2 [58],

and ROCR [59] R packages; in addition to the DESeq(2) [13],

edgeR [41], and PoiClaClu [46] R packages for RNA-Seq data,

and tools available in the standard R distribution [60]. The

Global Patterns [48] dataset included in phyloseq was used as

empirical microbiome template data for simulations.

Results/Discussion

We surveyed various publicly available microbiome count data

to evaluate the variance-mean relationship for OTUs among sets

of biological replicates, a few examples of which are shown here

(Figure 3). In every instance the variances were larger than could

be expected under a Poisson model (overdispersed, w.0),

especially at larger values of the common-scale mean. By

definition, these OTUs are the most abundant, and receive the

greatest interest in many studies. For rarefied counts the absolute

scales are decreased and there are many fewer OTUs that pass

filtering, but overdispersion is present in both cases and follows a

clear sample-wide trend. See the dispersion-survey section of Protocol

S1 for additional examples of overdispersed microbiome counts.

The consistent (though non-linear) relationship between variance

and mean indicates that parameters of a NB model, especially wi,

can be adequately estimated among biological replicates of

microbiome data, despite a previous weak assertion to the

contrary [39].

In simulations evaluating clustering accuracy, we found that

rarefying undermined the performance of downstream clus-

tering methods. This was the result of omitted read counts,

added noise from the random sampling step in rarefying, as

well as omitted microbiome samples with small library sizes

that were accurately clustered by alternative procedures on the

same simulated data (Figure 4). The extent to which the

rarefying procedure performed worse depended on the effect-

size (ease of clustering), as well as the typical library size of the

samples in the simulation and the choice of threshold for the

minimum library size (Figure 5). We also evaluated the

performance of alternative clustering methods, k-means and

hierarchical clustering, on the same tasks and found similar

overall results (Protocol S1).

In additional rarefying simulations we investigated the depen-

dency of clustering performance on the choice of minimum

library threshold, NL,min. We found that samples were trivial to

cluster for the largest library sizes using most distance methods,

even with the threshold set to the smallest library in the

simulation (no samples discarded, all correctly clustered).

However, at more modest library sizes typical of highly-parallel

experimental designs the optimum choice of size threshold is less

clear. A small threshold implies retaining more samples but with

a smaller number of reads (less information) per sample; whereas

a larger threshold implies more discarded samples, but with

larger libraries for the samples that remain. In our simulations the

optimum choice of threshold hovered around the 15th-percentile

of library sizes for most simulations and normalization/distance

procedures (Figure 5), but this value is not generalizable to other

data. Regions within Figure 5 in which all distances have

converged to the same line (y~1{x) are regions for which the

minimum library threshold completely controls clustering accu-

racy (all samples not discarded are accurately clustered). Regions

to the left of this convergence indicate a compromise between

discarding fewer samples and retaining enough counts per sample

for accurate clustering.

In simulations evaluating performance in the detection of

differential abundance, we found an improvement in sensitivity

and specificity when normalization and subsequent tests are

based upon a relevant mixture model (Figure 6). Multiple t-tests

with correction for multiple inference did not perform well on

this data, whether on rarefied counts or on proportions. A direct

comparison of the performance of more sophisticated paramet-

ric methods applied to both original and rarefied counts

demonstrates the strong potential of these methods and large

improvements in sensitivity and specificity if rarefying is not

used at all.

In general, the rate of false positives from tests based on

proportions or rarefied counts was unacceptably high, and

increased with the effect size. This is an undesirable phenomenon

in which the increased relative abundance of the true-positive

Rarefying Microbiome Data Is Inadmissible
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OTUs (the effect) is large enough that the null (unmodified) OTUs

appear significantly more abundant in the null samples than in the

test samples. This explanation is easily verified by the sign of the

test statistics of the false positive OTU abundances, which was

uniformly positive (Protocol S1). Importantly, this side-effect of a

strong differential abundance was observed rarely in edgeR

performance results under TMM normalization (not shown) but

not with RLE normalization (shown), and was similarly absent in

DESeq(2) results. The false positive rate for edgeR and DESeq(2)

was near zero under most conditions, with no obvious correlation

between false positive rate and effect size. Although rarefied

counts and proportions both performed relatively poorly,

count proportions outperformed rarefied counts in most simula-

tions due to better sensitivity, but also suffered from a higher rate

of false positives at larger values of effect size (Figure 6, Protocol

S1).

The rarefying normalization procedure was associated

with performance costs in both sample-clustering and differential

abundance statistical evaluations, enumerated in the following.

1. Rarefied counts represent only a small fraction of the

original data, implying an increase in Type-II error – often

referred to as a loss of power or decreased sensitivity (Figure 1).

In sample-wise comparisons, this lost power is evident

through two separate phenomena, (1) samples that cannot

be classified because they were discarded, (2) samples that

are poorly distinguishable because of the discarded fraction

of the original library (Figure 5). Differential abundance

Figure 3. Examples of overdispersion in microbiome data. Common-Scale Variance versus Mean for Microbiome Data. Each point in each
panel represents a different OTU’s mean/variance estimate for a biological replicate and study. The data in this figure come from the Global Patterns
survey [48] and the Long-Term Dietary Patterns study [75], with results from additional studies included in Protocol S1. (Right) Variance versus mean
abundance for rarefied counts. (Left) Common-scale variances and common-scale means, estimated according to Equations 6 and 7 from Anders and
Huber [13], implemented in the DESeq package (Text S1). The dashed gray line denotes the s2 = m case (Poisson; w = 0). The cyan curve denotes the
fitted variance estimate using DESeq [13], with method=‘pooled’, sharingMode=‘fit-only’, fitType=‘local’.
doi:10.1371/journal.pcbi.1003531.g003
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analyses that include moderate to rare OTUs are even more

sensitive to this loss of power, where rarefied counts

perform worse in every analysis method we attempted

(Figure 6, Protocol S1).

2. Rarefied counts remain overdispersed relative to a Poisson

model, implying an increase in Type-I error (decreased

specificity). Overdispersion is theoretically expected for counts

of this nature, and we unambiguously detected overdispersion

in our survey of publicly available microbiome counts

(Figure 3). Estimating overdispersion is also more difficult after

rarefying because of the lost information (Figure 6). In our

simulations, Type-I error was much worse for rarefied counts

than original counts (Figure 6, Protocol S1).

3. Rarefying counts requires an arbitrary selection of a library size

minimum threshold that affects downstream inference

(Figure 5), but for which an optimal value cannot be known

for new empirical data [17].

4. The random step in rarefying is unnecessary and adds artificial

uncertainty (Protocol S1, minimal example, bottom). A

superior transformation (though still inadmissible) is to instead

round the expected value of each count at the new smaller

library size, that is EKijNL,min=sjE, avoiding the additional

sampling error as well as the need to repeat the random step

[24] and publish the random seed/process.

Due to these demonstrated limitations and proven sub-

optimality, we advocate that rarefying should not be used.

In special cases the costs listed above may be acceptable for

sample-comparison experiments in which the effect-size(s) and the

original library sizes are large enough to withstand the loss of data.

Many early descriptive studies fall into this category – for example

comparing functionally distinct human body sites or environments

[48] – and the ability to accurately distinguish those vastly-

different microbiome samples is not in question, even with rarefied

counts. However, for new empirical data the effect size(s) are

unknown and may be subtle; and consequently, rarefying may

undermine downstream analyses.

In the case of differential abundance detection, it seems

unlikely that the cost of rarefying is ever acceptable. In our

simulations, both rarefied counts and sample proportions

resulted in an unacceptably high rate of false positive OTUs.

As we described theoretically in the introduction, this is

explained by differences among biological replicates that

manifest as overdispersion, leading to a subsequent underes-

timate of the true variance if a relevant mixture model is not

used. We detected overdispersion among biological replicates

in all publicly available microbiome count datasets that we

surveyed (Figure 3, Protocol S1). Failure to account for this

overdispersion – by using proportions or rarefied counts –

results in a systematic bias that increases the Type-I error rate

even after correcting for multiple-hypotheses (e.g. Benjamini-

Hochberg [52]). In other words, if overdispersion has not been

addressed, we predict many of the reported differentially

abundant OTUs are false positives attributable to an under-

estimate of uncertainty.

Figure 4. Clustering accuracy in simulated two-class mixing. Partitioning around medoids [49,50] clustering accuracy (vertical axis) that results
following different normalization and distance methods. Points denote the mean values of replicates, with a vertical bar representing one standard
deviation above and below. Normalization method is indicated by both shade and shape, while panel columns and panel rows indicate the distance
metric and median library size ( ~NNL), respectively. The horizontal axis is the effect size, which in this context is the ratio of target to non-target values
in the multinomials that were used to simulate microbiome counts. Each multinomial is derived from two microbiomes that have negligible
overlapping OTUs (Fecal and Ocean microbiomes in the Global Patterns dataset [48]). Higher values of effect size indicate an easier clustering task.
For simulation details and precise definitions of abbreviations see Simulation A of the Methods section.
doi:10.1371/journal.pcbi.1003531.g004
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In our simulations this propensity for Type-I error increased with

the effect size, e.g. the fold-change in OTU abundance among the

true-positive OTUs. For rarefied counts, we also detected a

simultaneous increase in Type-II error attributable to the forfeited

data. It may be tempting to imagine that the increased variance

estimate due to rarefying could be counterbalanced by the

variance underestimate that results from omitting a relevant

mixture model. However, such a scenario constitutes an unlikely

special case, and false positives will not compensate for the false

negatives in general. In our simulations both Type-I and Type-II

error increased for rarefied counts (Figure 6, Protocol S1).

Fortunately, we have demonstrated that strongly-performing

alternative methods for normalization and inference are already

available. In particular, an analysis that models counts with the

Negative Binomial – as implemented in DESeq2 [13] or in edgeR

[41] with RLE normalization – was able to accurately and

specifically detect differential abundance over the full range of

effect sizes, replicate numbers, and library sizes that we simulated

(Figure 6). DESeq-based analyses are routinely applied to more

complex tests and experimental designs using the generalized

linear model interface in R [61], and so are not limited to a simple

two-class design. We also verified an improvement in differential

abundance performance over rarefied counts or proportions by

using an alternative mixture model based on the zero-inflated

Gaussian, as implemented in the metagenomeSeq package [40].

However, we did not find that metagenomeSeq’s AUC values

were uniformly highest, as Negative Binomial methods had higher

AUC values when biological replicate samples were low.

Furthermore, while metagenomeSeq’s AUC values were margin-

ally higher than Negative Binomial methods at larger numbers of

biological replicates, this was generally accompanied with a much

higher rate of false positives (Figure 6, Protocol S1).

Based on our simulation results and the widely enjoyed success

for highly similar RNA-Seq data, we recommend using DESeq2

or edgeR to perform analysis of differential abundance in

microbiome experiments. It should be noted that we did not

comprehensively explore all available RNA-Seq analysis methods,

which is an active area of research. Comparisons of many of these

methods on empirical [62,63] and simulated [14,64,65] data find

consistently effective performance for detection of differential

expression. One minor exception is an increased Type-I error for

edgeR compared to later methods [62], which was also detected in

our results relative to DESeq and DESeq2 when TMM

normalization was used (not shown) – but not after switching to

RLE normalization (Figure 6, Protocol S1). Generally speaking,

the reported performance improvements between these methods

are incremental relative to the large gains attributable to applying

a relevant mixture model of the noise with shared-strength across

OTUs. However, some of these alternatives from the RNA-Seq

community may outperform DESeq2 on microbiome data

meeting special conditions, for example a large proportion of true

positives and sufficient replicates [66], small sample sizes [14], or

extreme values [67].

Although we did not explore the topic in the simulations here

described, a procedure for further improving differential expres-

sion detection performance, called Independent Filtering [68], also

applies to microbial differential abundance. Some heuristics for

filtering low-abundance OTUs are already described in the

documentation of various microbiome analysis workflows

[29,30], and in many cases these can be classified as forms of

Figure 5. Normalization by rarefying only, dependency on library size threshold. Unlike the analytical methods represented in Figure 4,
here rarefying is the only normalization method used, but at varying values of the minimum library size threshold, shown as library-size quantile
(horizontal axis). Panel columns, panel rows, and point/line shading indicate effect size (ES), median library size ( ~NNL), and distance method applied
after rarefying, respectively. Because discarded samples cannot be accurately clustered, the line y~1{x is the maximum achievable accuracy.
doi:10.1371/journal.pcbi.1003531.g005
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Independent Filtering. More effort is needed to optimize

Independent Filtering for differential abundance detection, and

rigorously define the theoretical basis and heuristics applicable to

microbiome data. Ideally a formal application of Independent

Filtering of OTUs would replace many of the current ad hoc

approaches that often include poor reproducibility, poor justifica-

tion, and the opportunity to introduce bias.

Some of the justification for the rarefying procedure has

originated from exploratory sample-wise comparisons of micro-

biomes for which it was observed that a larger library size also

results in additional observations of rare species, leading to a

library size dependent increase in estimates of both alpha- and

beta-diversity [24,69], especially UniFrac [70]. It should be

emphasized that this represents a failure of the implementation

of these methods to properly account for rare species and not

evidence that diversity depends on library size. Rarefying is far

from the optimal method for addressing rare species, even when

analysis is restricted solely to sample-wise comparisons. As we

demonstrate here, it is more data-efficient to model the noise and

address extra species using statistical normalization methods based

on variance stabilization and robustification/filtering. Though

beyond the scope of this work, a Bayesian approach to species

abundance estimation would allow the inclusion of pseudo-counts

from a Dirichlet prior that should also substantially increase

robustness to rare species.

Our results have substantial implications for past and future

microbiome analyses, particularly regarding the interpretation of

differential abundance. Most microbiome studies utilizing high-

throughput DNA sequencing to acquire culture-independent

counts of species/OTUs have used either proportions or rarefied

counts to address widely varying library sizes. Left alone, both of

these approaches suffer from a failure to address overdispersion

among biological replicates, with rarefied counts also suffering

from a loss of power, and proportions failing to account for

heteroscedasticity. Previous reports of differential abundance

based on rarefied counts or proportions bear a strong risk of bias

toward false positives, and may warrant re-evaluation. Current

and future investigations into microbial differential abundance

Figure 6. Performance of differential abundance detection with and without rarefying. Performance summarized here by the ‘‘Area Under
the Curve’’ (AUC) metric of a Receiver Operator Curve (ROC) [59] (vertical axis). Briefly, the AUC value varies from 0.5 (random) to 1.0 (perfect),
incorporating both sensitivity and specificity. The horizontal axis indicates the effect size, shown as the actual multiplication factor applied to OTU
counts in the test class to simulate a differential abundance. Each curve traces the respective normalization method’s mean performance of that
panel, with a vertical bar indicating a standard deviation in performance across all replicates and microbiome templates. The right-hand side of the
panel rows indicates the median library size, ~NNL, while the darkness of line shading indicates the number of samples per simulated experiment. Color
shade and shape indicate the normalization method. See Methods section for the definitions of each normalization and testing method. For all
methods, detection among multiple tests was defined using a False Discovery Rate (Benjamini-Hochberg [52]) significance threshold of 0.05.
doi:10.1371/journal.pcbi.1003531.g006
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should instead model uncertainty using a hierarchical mixture,

such as the Poisson-Gamma or Binomial-Beta models, and

normalization should be done using the relevant variance-

stabilizing transformations. This can easily be put into practice

using powerful implementations in R, like DESeq2 and edgeR,

that performed well on our simulated microbiome data. We

have provided wrappers for edgeR, DESeq, DESeq2, and

metagenomeSeq that are tailored for microbiome count data

and can take common microbiome file formats through the

relevant interfaces in the phyloseq package [32]. These

wrappers are included with the complete code and documen-

tation necessary to exactly reproduce the simulations, analyses,

surveys, and examples shown here, including all figures

(Protocol S1). This example of fully reproducible research

can and should be applied to future publication of microbiome

analyses [71–73].

Supporting Information

Protocol S1 A zip file containing all supplementary
source files. This includes the Rmd source code, HTML

output, and all related documentation and code to completely and

exactly recreate every results figure in this article.

(ZIP)

Text S1 A supplemental appendix of the statistical
mathematics described in the article.
(PDF)
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