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Abstract

Loops in proteins are flexible regions connecting regular secondary structures. They are often involved in protein functions
through interacting with other molecules. The irregularity and flexibility of loops make their structures difficult to determine
experimentally and challenging to model computationally. Conformation sampling and energy evaluation are the two key
components in loop modeling. We have developed a new method for loop conformation sampling and prediction based on
a chain growth sequential Monte Carlo sampling strategy, called Distance-guided Sequential chain-Growth Monte Carlo
(DISGRO). With an energy function designed specifically for loops, our method can efficiently generate high quality loop
conformations with low energy that are enriched with near-native loop structures. The average minimum global backbone
RMSD for 1,000 conformations of 12-residue loops is 1:53 Å, with a lowest energy RMSD of 2:99 Å, and an average ensemble
RMSD of 5:23 Å. A novel geometric criterion is applied to speed up calculations. The computational cost of generating 1,000
conformations for each of the x loops in a benchmark dataset is only about 10 cpu minutes for 12-residue loops, compared
to ca 180 cpu minutes using the FALCm method. Test results on benchmark datasets show that DISGRO performs
comparably or better than previous successful methods, while requiring far less computing time. DISGRO is especially
effective in modeling longer loops (10–17 residues).
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Introduction

Protein loops connect regular secondary structures and are

flexible regions on protein surface. They often play important

functional roles in recognition and binding of small molecules or

other proteins [1–3]. The flexibility and irregularity of loops make

their structures difficult to resolve experimentally [4]. They are

also challenging to model computationally [5,6]. Prediction of loop

conformations is an important problem and has received

considerable attention [5–27].

Among existing methods for loop prediction, template-free

methods build loop structures de novo through conformational

search [5–7,9,10,13,14,17,18,21,23,28]. Template-based meth-

ods build loops by using loop fragments extracted from

known protein structures in the Protein Data Bank [11,19,27].

Recent advances in template-free loop modeling have enabled

prediction of structures of long loops with impressive accuracy

when crystal contacts or protein family specific information

such as that of GPCR family is taken into account [14,23,

25].

Loop modeling can be considered as a miniaturized protein

folding problem. However, several factors make it much more

challenging than folding small peptides. First, a loop conforma-

tion needs to connect two fixed ends with desired bond lengths

and angles [8,12]. Generating quality loop conformations

satisfying this geometric constraint is nontrivial. Second, the

complex interactions between atoms in a loop and those in its

surrounding make the energy landscape around near-native loop

conformations quite rugged. Water molecules, which are often

implicitly modeled in most loop sampling methods, may

contribute significantly to the energetics of loops. Hydrogen

bonding networks around loops are usually more complex and

difficult to model than those in regular secondary structures.

Third, since loops are located on the surface of proteins,

conformational entropy may also play more prominent roles in

the stability of near-native loop conformations [29,30]. Ap-

proaches based on energy optimization, which ignore backbone

and/or side chain conformational entropies, may be biased

toward those overly compact non-native structures. Despite

extensive studies in the past and significant progress made in

recent years, both conformational sampling and energy evalua-

tion remain challenging problems, especially for long loops (e.g.,

n§12).
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In this paper, we propose a novel method for loop sampling,

called Distance-guided Sequential chain-Growth Monte

Carlo (DISGRO). Based on the principle of chain growth

[15,31,32,34,35], the strategy of sampling through sequentially

growing protein chains allows efficient exploration of conforma-

tional space [15,34–37]. For example, the Fragment Regrowth via

Energy-guided Sequential Sampling (FRESS) method outper-

formed previous methods on folding benchmark HP sequences

[15,33]. In addition to HP model [15], sequential chain-growth

sampling has been used to study protein packing and void

formation [35], side chain entropy [29,38], near-native protein

structure sampling [30], conformation sampling from contact

maps [39], reconstruction of transition state ensemble of protein

folding [40], RNA loop entropy calculation [37], and structure

prediction of pseudo-knotted RNA molecules [41].

In this study, we first derive empirical distributions of end-to-

end distances of loops of different lengths, as well as empirical

distributions of backbone dihedral angles of different residue types

from a loop database constructed from known protein structures.

An empirical distance guidance function is then employed to bias

the growth of loop fragments towards the C-terminal end of the

loop. The backbone dihedral angle distributions are used to

sample energetically favorable dihedral angles, which lead to

improved exploration of low energy loop conformations. Compu-

tational cost is reduced by excluding atoms from energy

calculation using REsidue-residue Distance Cutoff and ELLipsoid

criterion, called Redcell. Sampled loop conformations, all free of

steric clashes, can be scored and ranked efficiently using an atom-

based distance-dependent empirical potential function specifically

designed for loops.

Our paper is organized as follows. We first present results for

structure prediction using five different test data sets. We show that

DISGRO has significant advantages in generating native-like loops.

Accurate loops can be constructed by using DISGRO combined

with a specifically designed atom-based distance-dependent

empirical potential function. Our method is also computationally

more efficient compared to previous methods [8,9,18,22,42]. We

describe our model and the DISGRO sampling method in detail

at the end.

Results

Test set
We use five data sets as our test sets. Test Set 1 contains 10

loops at lengths four, eight, and twelve, for a total of 3|10~30
loops from 21 PDB structures, which were described in Table 2

of zRef. [8]. Test Set 2 consists of 53 eight, 17 eleven, and 10

twelve-residue loops from Table C1 of Ref. [42]. Several loop

structures were removed as they were nine-residue loops but

mislabeled as eight-residue loops: (1awd, 55–63; 1byb, 246–254;

and 1ptf, 10–18). Altogether, there are 50 eight-residue loops. Test

Set 3 is a subset of that of [5], which was used in the RAPPER and

FALCm studies [10,22]. Details of this set can be found in the

‘‘Fiser Benchmark Set’’ section of Ref. [10]. Test Set 4 is taken

from Table A1–A6 of Ref. [42]. Test Set 5 contains 36 fourteen,

30 fifteen, 14 sixteen and 9 seventeen-residue loops from Table 3

of Ref. [23]. Test Set 1 and 2 are used for testing the capability of

DISGRO and other methods in generating native-like loops. Test

Set 3, 4, and 5 are used for assessing the accuracy of predicted

loops based on selection from energy evaluation using our atom-

based distance-dependent empirical potential function. Our results

are reported as global backbone RMSD, calculated using the N,

Ca, C and O atoms of the backbone.

Loop sampling
To evaluate our method for producing native-like loop

conformations, we use Test Set 1 and 2.

We generate 5,000 loops for each of the 10 loop structures in

Test Set 1 at length 4, 8, and 12 residues, respectively. We

compare our results with those obtained by CCD [8], CSJD [12],

SOS [18], and FALCm [22]. The minimum RMSD among 5,000
sampled loops generated by DISGRO are listed in Table 1, along

with results from the four other methods.

Accurate loops of longer length are more difficult to generate.

For loops with 12 residues, DISGRO generates more accurate loops

than other methods. Our method has a mean of 1:53 Å for the

minimum RMSD, compared to 1:81 Å for FALCm, the next best

method in the group [22]. The minimum RMSD of nine of the ten

12-residue loops have RMSDƒ2 Å, while five loops of the ten

generated by FALCm have RMSDw2 Å. Compared to the CCD,

CSJD, and SOS methods, our loops have significantly smaller

minimum RMSD (1:53 Å vs 3:05, 2:34, and 2:25 Å, respectively,

Table 1). The average minimum global backbone RMSD for 12-

residue loops can be further improved when we increase the

sample size of generated loop conformations. The minimum

global RMSD is improved to 1:45 Å, 1:26 Å, and 0:96 Å when

the sample size is increased to 20,000, 100,000, and 1,000,000,

respectively. Further improvement would likely require flexible

bond lengths and angles.

For loops with 8 residues, DISGRO has an average minimum

RMSD value smaller than the CCD, CSJD, and SOS methods

(0:81 Å vs 1:59 Å, 1:01 Å, and 1:19 Å, respectively, Table 1). In

eight of the ten 8-residue loops, DISGRO achieves sub-angstrom

accuracy (RMSDv1 Å), although the mean of minimum RMSD

of 8-residue loops is slightly larger than that from FALCm (0:80 Å

vs 0:72 Å).

For loops with 4-residue, the mean of the minimum RMSD

(0:21 Å) by DISGRO is significantly smaller than those by the

CSJD and the CCD methods (0:40 Å and 0:56 Å, respectively),

and is similar to those by the SOS and FALCm methods(0:20 Å

and 0:22 Å, respectively). Noticeably, three of the ten loops have

RMSDv0:1 Å, indicating our sampling method has good

accuracy for short loop modeling.

These loops can be generated rapidly. The computing time per

conformation averaged over 5,000 conformations for 4, 8, and 12-

residues is 4:4, 13, and 20 ms using a single AMD Opteron

processor of 2 GHz. In addition to improved average minimum

RMSD, DISGRO seems to take less time than CCD (31, 37, and

23 ms on an AMD 1800+ MP processor for the 4, 8, and 12-

residue loops), and is as efficient as SOS (5:0, 13, and 19 ms for the

4, 8, and 12-residue loops on an AMD 1800+ MP processor).

Author Summary

Loops in proteins are flexible regions connecting regular
secondary structures. They are often involved in protein
functions through interacting with other molecules. The
irregularity and flexibility of loops make their structures
difficult to determine experimentally and challenging to
model computationally. Despite significant progress made
in the past in loop modeling, current methods still cannot
generate near-native loop conformations rapidly. In this
study, we develop a fast chain-growth method for loop
modeling, called Distance-guided Sequential chain-Growth
Monte Carlo (DISGRO), to efficiently generate high quality
near-native loop conformations. The generated loops can
be used directly for downstream applications or as
candidates for further refinement.

Sampling and Structure Prediction of Protein Loops
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Reducing the number of trial states in DISGRO can further

reduce the computing time, with some trade-off in sampling

accuracy. For example, when we take (m,n)~(10,2), the

computing time per conformation averaged over 5,000 confor-

mations for 4, 8, and 12-residues is only 3:5, 5:0, and 5:8 ms,

respectively, with the average minimum RMSDs comparable to

those from SOS’s (0:29 Å vs 0:20 Å, 1:15 Å vs 1:19 Å, and 2:24 Å

vs 2:25 Å for the 4, 8, and 12-residue loops, respectively). Although

the CSJD loop closure method has faster computing time (0:56,

0:68, and 0:72 ms on AMD 1800+ MP processor), the speed of

DISGRO is adequate in practical applications.

We compare DISGRO in generating near-native loops with

Wriggling [43], Random Tweak [44], Direct Tweak [42,45],

LOOPYbb [45], and PLOP-build [13] using Test Set 2. The

minimum RMSD among 5,000 loops generated by DISGRO are

listed in Table 2, along with results from the other methods

obtained from Table 2 in Ref. [42]. Direct Tweak and LOOPYbb

from the LoopBuilder method and our DISGRO have better

accuracy in sampling than Wriggling, Random Tweak, and

PLOP-build methods. For loops with 11 and 12-residues, these

three methods are the only ones that can generate near-native loop

structures with minimal RMSD values below 2 Å. Among these,

DISGRO outperforms LOOPYbb in generating loops at all three

lengths: the average minimal RMSD (Rmin) is 1:28 Å vs. 1:80 Å for

length 12, 1:19 Å vs. 1:51 Å for length 11, and 0:80 Å vs. 0:89 Å

for length 8, respectively. Compared to the Direct Tweak sampling

method, DISGRO has improved Rmin for 12-residue loops (1:28 Å

vs 1:48 Å), slightly improved Rmin for 11-residue loops (1:19 Å vs

1:20 Å) and inferior Rmin for 8-residue loops (0:80 Å vs 0:69 Å).

Overall, these results show that DISGRO are very effective in

sampling near-native loop conformations, especially when mod-

eling longer loops of length 11 and 12.

Table 1. Minimum backbone RMSD values of the loops sampled by five different algorithms.

Length Loop CCD CSJD SOS FALCm DISGRO

12-res 1cruA_358 2.54 2.00 2.39 2.07 1.84

1ctqA_26 2.49 1.86 2.54 1.66 1.36

1d4oA_88 2.33 1.60 2.44 0.82 1.50

1d8wA_46 4.83 2.94 2.17 2.09 1.17

1ds1A_282 3.04 3.10 2.33 2.10 1.82

1dysA_291 2.48 3.04 2.08 1.67 1.45

1eguA_508 2.14 2.82 2.36 1.71 2.13

1f74A_11 2.72 1.53 2.23 1.44 1.46

1qlwA_31 3.38 2.32 1.73 2.20 0.79

1qopA_178 4.57 2.18 2.21 2.36 1.77

Average 3.05 2.34 2.25 1.81 1.53

8-res 1cruA_85 1.75 0.99 1.48 0.62 1.34

1ctqA_144 1.34 0.96 1.37 0.56 0.70

1d8wA_334 1.51 0.37 1.18 0.96 0.93

1ds1A_20 1.58 1.30 0.93 0.73 0.62

1gk8A_122 1.68 1.29 0.96 0.62 1.08

1i0hA_145 1.35 0.36 1.37 0.74 0.80

1ixh_106 1.61 2.36 1.21 0.57 0.39

1lam_420 1.60 0.83 0.90 0.66 0.63

1qopB_14 1.85 0.69 1.24 0.92 0.87

3chbD_51 1.66 0.96 1.23 1.03 0.67

Average 1.59 1.01 1.19 0.72 0.80

4-res 1dvjA_20 0.61 0.38 0.23 0.39 0.31

1dysA_47 0.68 0.37 0.16 0.20 0.09

1eguA_404 0.68 0.36 0.16 0.22 0.39

1ej0A_74 0.34 0.21 0.16 0.15 0.09

1i0hA_123 0.62 0.26 0.22 0.17 0.13

1id0A_405 0.67 0.72 0.33 0.19 0.33

1qnrA_195 0.49 0.39 0.32 0.23 0.19

1qopA_44 0.63 0.61 0.13 0.30 0.39

1tca_95 0.39 0.28 0.15 0.09 0.11

1thfD_121 0.50 0.36 0.11 0.21 0.05

Average 0.56 0.40 0.20 0.22 0.21

Minimum backbone RMSD values of the loops sampled by CCD, CSJD, SOS, FALCm and DISGRO for different loop structures. CCD result was obtained from Table 2 of Ref.
[8]. CSJD result was obtained from Table 1 of Ref. [12]. SOS result was obtained from Table 1 of Ref. [18]. FALCm result was obtained from Table 2 of Ref. [22].
doi:10.1371/journal.pcbi.1003539.t001
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Our DISGRO method can generate accurate loops and has

significant advantages for longer loops compared to previous

methods. Using RMSD values calculated from three backbone

atoms N, Ca, and C for all loop lengths lead to the same

conclusion.

Loop structure prediction and energy evaluation
To assess the accuracy of loops selected by our specifically

designed atom-based distance-dependent empirical potential

function, we test DISGRO using Test Set 3 and follow the

approach of reference [22] for ease of comparison. Because of the

high content of secondary structures, these loops are very

challenging to model. In the study of [22], 1,000 backbone

conformations with the best scores evaluated by DFIRE potential

function [46] were retained after screening 4,000 generated

backbone conformations for each loop. Loop closure and steric

clash removal were not enforced to the 4,000 conformations. We

follow the same procedure, except the DFIRE potential function is

replaced by our atom-based distance-dependent empirical poten-

tial function. The ensemble of the selected 1,000 backbone

conformations are then subjected to the procedure of side-chain

construction as described in the Section ‘‘Side-chain modeling and

steric clash removal’’. The loop conformations with full side-chains

are then scored and ranked by the atom-based distance-dependent

empirical potential function. Our results are summarized in

Table 3.

We measure the average minimum backbone RMSD Rmin, the

average ensemble RMSD Rave, and the average RMSD of the

lowest energy conformations REmin of the 1,000 loop ensemble

with the same length. Overall, DISGRO performs significantly

better than FALCm and RAPPER in Rmin, Rave and REmin for all

loop lengths. Compared to FALCm, DISGRO shows significant

advantages in Rmin on sampling long loops of 10–12 residues. Our

method has Rmin of 1:15 Å compared to 1:45 Å for 10-residue

loops, 1:39 Å compared to 1:47 Å for 11-residue loops, and

1:53 Å compared to 1:74 Å for 12-residue loops, respectively. For

example, as can be seen in Figure 1, the lowest energy loop (red) of

a 12-residue loop in the protein 1scs (residues 199–210) has a

0:9 Å RMSD to the native structure (white). The generated top

five lowest energy loops are all very close to the native loop, yet are

diverse among themselves.

DISGRO also generates loops with smaller Rave compared to

FALCm in loops with length ranging from 4 to 12, indicating

DISGRO can generate ensemble of loop conformations with

enriched near native conformations. Furthermore DISGRO

achieves better modeling accuracy using the atom-based dis-

tance-dependent empirical potential function. Compared to

FALCm, DISGRO has a REmin of 1:72 Å vs 1:87 Å for 8-residue

loops, 1:82 Å vs 2:08 Å for 9-residue loops, 2:33 Å vs 3:09 Å for

10-residue loops, 2:98 Å vs 3:43 Å for 11-residue loops, and

2:99 Å vs 3:84 Å for 12-residue loops, respectively.

DISGRO is also much faster than other methods. The reported

typical computational cost of FALCm is 180 cpu minutes for 8–12
residue loops on a Linux server of a 2:8 GHz 2-core Intel Xeon

processor [47]. The computation cost for DISGRO method is only

6 and 10 cpu minutes for 10 and 12–residue loops on a single

2 GHz AMD Opteron processor, respectively. In addition,

FALCm has a size restriction, and it only works with proteins

with v500 residues. In contrast, the overall protein size has no

effect on the computational efficiency of DISGRO since the

numbers of atoms for energy calculation that are retained by the

ellipsoid criterion are bounded.

The LOOPER method is an accurate and efficient loop

modeling method using a minimal conformational sampling
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method combined with energy minimization [17]. The test set

used in the LOOPER study is the original Fiser data set without

removal of any loops. Therefore, it is different from Test Set 3

used in the RAPPER and FALCm studies [10,22]. For ease of

comparison, we compare DISGRO to the LOOPER using the

test set with 10–12-residue loops from [17]. Our results are

summarized in Table 4.

We denote RBkb,ave and RBkb,med as the mean and median of

backbone RMSD of the lowest energy conformations with the

same loop length. Similarly, we use RAtm,ave, and RAtm,med to

denote the mean and median RMSD values of all-heavy atoms.

DISGRO shows improved prediction accuracy compared to

LOOPER in both backbone and all-heavy atom RMSD. For

the 40 loops of length 12, RBkb,ave is 3:20 Å compared to 4:08 Å,

while the median RBkb,med is 2:39 Å compared to 3:80 Å. It also

has better all-heavy atom RMSD of 3:39 Å/3:18 Å (mean/

median), compared to 3:58 Å/3:35 Å for 10-residue loops,

3:58 Å/3:30 Å compared to 4:30 Å/3:60 Å for 11-residue loops,

and 4:18 Å/3:60 Å compared to 5:22 Å/4:96 Å for 12-residue

loops.

It is worth noting that DISGRO outperforms LOOPER in speed

as well. For a loop with 10 residues, the time cost of DISGRO is 6
minutes using a 2 GHz CPU versus 40 cpu minutes using a 3 GHz

processor according to Figure 7 in the LOOPER paper [17].

Prior publications also allowed us to compare results in loop

structure predictions based on energy discrimination using Test

Set 4 with results obtained using the LoopBuilder method [42].

Following [42], we generated 1,000 closed loop conformations for

eight-residue loops, 2,000 for nine-residue loops, 5,000 for ten,

eleven, and twelve-residue loops, and 8,000 for thirteen-residue

loops. Energy calculations are carried out using our atom-based

distance-dependent empirical potential function. The average

RMSD of the lowest energy conformations, REmin, are then

compared between these two methods. The results are summa-

rized in Table 5.

Compared to LoopBuilder, DISGRO has better REmin: 1:83 Å vs

1:88 Å for 9-residue loops, 1:83 Å vs 1:93 Å for 10-residue loops,

2:38 Å vs 2:50 Å for 11-residue loops, 2:62 Å vs 2:65 Å for 12-

residue loops, and 3:26 Å vs 3:74 Å for 13-residue loops,

respectively. DISGRO has inferior performance in selecting REmin

for 8-residue loops (1:59 Å vs 1:31 Å). The average time using

LoopBuilder for twelve-residue loops was around 4.5 hours or

270 minutes, while the computational time using DISGRO is

around 10 minutes. Overall, DISGRO has equal or slightly better

performance than LoopBuilder in average prediction accuracy of

loop structures with far less computing time.

To test the feasibility of DISGRO in modeling longer loops with

length w12, we use the Fiser 13-residue loops data set to generate

and select low energy loop conformations. 1,000 conformations

with low energy are obtained. The mean of minimum backbone

RMSD Rmin of 40 loops with 13-residue is 1:76 Å, and the median

is 1:61 Å. The mean/median of the backbone RMSD RBkb,Emin,

and all heavy atom RMSD RAtm,Emin of the lowest energy

conformations are 2:91 Å/2:53 Å and 3:84 Å/3:29 Å, respective-

ly (Table 6).

With extensive conformational sampling using molecular

mechanics force field, the Protein Local Optimization Program

(PLOP) can predict highly accurate loops [13,14,23]. We tested

DISGRO using Test Set 5 consisting of 89 loops with length 14–17
and compared results with those using PLOP. Here the sampling

and scoring processes were similar to those used in Test Set 3,

except 100,000 backbone conformations were generated. We

measured the average minimum backbone RMSD Rmin and the
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Figure 1. Top five lowest energy loops of length 12 for single-metal-substituted concanavalin A (pdb 1scs, residues 199–210). The
lowest energy loop after side-chain construction is colored in red, and the native structure is in white.
doi:10.1371/journal.pcbi.1003539.g001
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average RMSD of the lowest energy conformations REmin. Our

results are summarized in Table 7.

Loops predicted by the PLOP method have smaller REmin

compared to DISGRO [23], although DISGRO samples well and

gives small Rmin of 1:58 Å for 14-residue loops, 1:80 Å for 15-

residue loops, 1:88 Å for 16-residue loops, and 2:18 Å for 17-

residue loops. For loops of length 17, the Rmin of 2:18 Å is less

than the reported REmin~2:30 Å using PLOP, although it is

unclear whether the Rmin of loops generated by PLOP is less than

2:18 Å. Overall, DISGRO is capable of successfully generating high

quality near-native long loops, up to length 17. The accuracy of

REmin of loops generated by DISGRO may be further improved by

using a more effective scoring function.

We also compared the computational costs of the two methods.

The average computing time for DISGRO is 0:73, 0:72, 0:81, and

0:95 hours for loops of lengths 14, 15, 16, and 17 using a single

core AMD Opteron processor 2350, respectively, which is more

than two orders of magnitude less than the time required for the

PLOP method (216:0, 309:6, 278:4, and 408:0 hours for loops of

length 14, 15, 16, and 17 residues, respectively).

Improvement in computational efficiency
We used a REsidue-residue Distance Cutoff and ELLipsoid

criterion (Redcell) to improve the computational efficiency. To

assess the effectiveness of this approach, we carry out a test using a

set of 140 proteins (see discussion of the tuning set in Materials and

Methods). We compared the time cost of energy calculation of

generating a single loop, with and without this procedure. When

the procedure is applied, we only calculate the pairwise atom-atom

distance energy between atoms in loop residues and other atoms

within the ellipsoid. When the procedure is not applied, we

calculate energy function between atoms in loop residues and all

other atoms in the rest of the protein. The computational cost of

energy calculations for sampling single loops with 12 and 6-

residues are shown in Figure 2A and Figure 2B, respectively.

From Figure 1, we can see that significant improvement in

computational cost is achieved. The average time cost using our

procedure is reduced from 82:3 ms to 6:0 ms for sampling 12-

residue loops, and 39:4 ms to 2:0 ms for 6-residue loops. In addition,

this approach makes the time cost of energy calculations indepen-

dent of the protein size (Figure 2A and Figure 2B), whereas the

computing time without applying this procedure increases linearly

with the protein size. The improvement is especially significant for

large proteins. For example, to generate a 15-residue loop in a

protein with 1,114 residues, the computing time is improved from

93:7 ms to 1:8 ms, which is more than 50-fold speed-up. Detailed

examination indicates that both distance cutoff and the ellipsoid

criterion contribute to the computational efficiency. Furthermore,

the full Redcell procedure has improved efficiency over using either

‘‘Ellipsoid Criterion Only’’ or ‘‘Cutoff Criterion Only’’. The

computing time for generating a 15-residue loops is 2:0 ms when

the full Redcell procedure is applied, compared to 5:3 ms, and

3:9 ms, when only the ellipsoid criterion and only the distance-

threshold are used, respectively (Figure 2C). Furthermore, there is

no loss of accuracy in energy evaluation. Overall, Redcell improves

the computational cost by excluding many atoms from collision

detections and energy calculations, with significant reduction in

computation time, especially for large proteins.

Discussion

In this study, we presented a novel method Distance-guided

Sequential chain-Growth Monte Carlo (DISGRO) for generating

Table 4. Comparison of accuracy of modeled loops using the original Fiser data set of loops with 10–12 residues.

Length Targets DISGRO/LOOPER

RBkb,ave RBkb,med RAtm,ave RAtm,med

10 40 2.30/2.66 2.20/2.39 3.39/3.58 3.18/3.35

11 40 2.63/3.35 2.25/2.76 3.58/4.30 3.30/3.60

12 40 3.20/4.08 2.39/3.80 4.18/5.22 3.60/4.96

The accuracy achieved by LOOPER and DISGRO at different loop length using the original Fiser data set of loops with 10–12 residues is listed. RBkb,ave , and RBkb,med

denote the mean and median of backbone RMSD, while RAtm,ave , and RAtm,med denote the mean and median of all-heavy atoms RMSD of the lowest energy
conformations with the same loop length.
doi:10.1371/journal.pcbi.1003539.t004

Table 5. Comparison of REmin of the loop conformations sampled by Loop Builder and DISGRO using Test Set 4 taken from the
Loop Builder study [42].

Average prediction accuracy (REmin)

Length # of Targets LoopBuilder DISGRO

8 63 1.31 1.59

9 56 1.88 1.83

10 40 1.93 1.83

11 54 2.50 2.38

12 40 2.65 2.62

13 40 3.74 3.26

REmin denote the average RMSD of the lowest energy conformations of the loop ensemble. Results of LoopBuilder were obtained from Table 5 of Ref. [42].
doi:10.1371/journal.pcbi.1003539.t005
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protein loop conformations and predicting loop structures.

Ensembles of near-native loop conformations can be efficiently

generated using the DISGRO method. DISGRO has better average

minimum backbone RMSD, Rmin, compared to other loop

sampling methods. For example, Rmin is 1:53 Å for 12-residue

loops when using DISGRO, while the corresponding values are

3:05 Å, 2:34 Å, 2:25 Å, and 1:81 Å when using the CCD, CSJD,

SOS, and the FALCm method.

DISGRO also performs well in identifying native-like conforma-

tions using atom-based distance-dependent empirical potential

function. In comparison with other similar loop modeling

methods, DISGRO demonstrated improved modeling accuracy,

in terms of an average RMSD of the lowest energy conformations

REmin for the more challenging task of sampling longer loops of

10–13 residues. For example, DISGRO outperforms FALCm [22]

(2:33 Å vs 3:09 Å) and LOOPER [17] (2:30 Å vs 2:66 Å) in

predicting 10-residue loops, while taking less computing time

(6 minutes vs 180 minutes for FALCm and 40 minutes for

LOOPER. Compared to LoopBuilder [42], DISGRO also has

better REmin: For 13-residue loops, the REmin is 3:26 Å using

DISGRO, but is 3:74 Å when using the Loop Builder. The average

computing time is also faster when using DISGRO: it takes about 6
minutes to predict structures of 10-residue loops and 10 minutes

for 12-residue loops. DISGRO also works well for short loops,

although this may be largely a reflection of the underlying

analytical closure method [12].

There are a number of directions for further improvement.

DISGRO can be further improved by adding fragments of peptides

when growing loops instead of adding individual residues.

Fragment-based approach has been widely used in protein

structure prediction [48–51] and specifically in loop structure

prediction [21]. It is straightforward to apply the strategy

described in this study for fragment-based growth, and it will

likely lead to improved sampling efficiency further and enable

longer loops to be modeled. Furthermore, the energy function

employed here can be further improved by optimization such as

those obtained by training with challenging decoy loops using

nonlinear kernel [52], and/or using rapid iterations through a

physical convergence function [53,54]. In addition, DISGRO is

compatible with different loop closure methods [8,12,22], and

experimenting with other closure strategy may also lead to further

improvement.

An efficient loop sampling method such as DISGRO can help to

improve overall modeling of loop structures. Currently, the

hierarchical approach of the Protein Local Optimization Program

(PLOP) [13,14,23] gives excellent accuracy in protein loop

modeling, but requires significant computational time. The

average time cost of modeling a 13-residue loop is about 4–5

days [23]. Kinematic closure (KIC) method can also make very

accurate predictions of 12-residue loops [21]. However, KIC also

requires substantial computation, with about 320 CPU hours on a

single 2:2 GHz Opteron processor for predicting 12-residue loops

[21]. As suggested earlier by Spassov et al [17], an efficient loop

modeling method combined with energy minimization may

overcome the obstacle of high computational cost. By generating

high quality initial structures using DISGRO, near native confor-

mations of loops can be used as candidates for further refinement.

Materials and Methods

Protein structures representation
All heavy atoms in the backbone and side chain of a protein

loop are explicitly modeled. The bond lengths b and angles h are

taken from standard values specific to residue and atom type [55].
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The backbone dihedral angles (w,y,v) and side chain dihedral

angles x constitute all the degrees of freedom (DOFs) in our model.

Distance-guided Sequential chain-Growth Monte Carlo
(DISGRO)

In order to efficiently generate adequate number of native-like

loop conformations, we have developed a Distance-guided

Sequential chain-Growth Monte Carlo (DISGRO) method.

Let the loop to be modeled begins at residue t and ends at

residue l. The sequence of the positions of backbone heavy atoms

from C atom of residue t to Ca (CA) atom of residue l are

unknown and need to be generated. We assume that the backbone

atoms before and after this fragment are known. Coordinates of

side chain atoms are also unknown and need to be generated if the

coordinates of the CA atoms they are attached to are unknown.

At each step of the chain growth process, we generate three

consecutive backbone atoms continuing from the backbone atom

sampled at the previous step. At the (i{t)-th growth step (tƒivl),
the three backbone atoms are C atom of residue i, N atom of

residue iz1, and Ca atom of residue iz1 (Figure 3). The

coordinates of the three atoms, Ci, Niz1 and CAiz1, are denoted

as xC,i, xN,iz1, and xCA,iz1, respectively. The v dihedral angles

that determine the coordinate of Ca atoms are sampled from a

normal distribution with mean 1800 and standard deviation 40. In

the next section, we describe in detail in sampling of the dihedral

angles (w,y), which determine the coordinates of the C and the N
atoms.

Sampling backbone (w,y) angles. Without loss of general-

ity, we describe the sampling procedure for Ci and Niz1 atoms at

the (i{t)-th growth step. Ci is generated first, followed by Niz1.

Denote the distance between xCA,i and xC,l as

dCAi ,Cl
~DxC,l{xCA,i D, and the distance between xC,i and xC,l as

dCi ,Cl
~DxC,i{xC,l D. Since the bond angle hC,i formed by the

Ni{CAi and CAi{Ci bonds is fixed, and the bond length bCAi ,Ci

is also fixed, Ci will be located on a circle CC (Figure 3):

CC~fx[R3Dsuch thatDDx{xCA,i DD~bCAi ,Ci

and (x{xCA,i):(xCA,i{xN,i)~cos hC,ig:
ð1Þ

Given a fixed dCi ,Cl
, Ci can be placed on two positions xC,i and

xC’,i on circle CC (Figure 3, xC,i and xC’,i are labeled as Ci and

C’i, respectively.) As the probability for placing Ci on either

position is about equal based on our analysis, we randomly select

one position to place atom Ci.

In principle, sampling from the empirical distributions of dCi ,Cl

and mapping back to Ci should encourage the growth of loops to

connect to the terminal Cl atom. Further analysis of the empirical

distribution of dCi ,Cl
given dCAi ,Cl

shows that dCAi ,Cl
can be very

informative for sampling dCi ,Cl
in some cases. This lead us to

design the sampling of xCi
based on the conditional distribution of

p(dCi ,Cl
DdCAi ,Cl

). See below for details.

Generating atom Niz1 is similar to generating Ci, only Niz1

instead of Ci is placed on a circle CN:

CN~fx[R3Dsuch thatDDx{xC,i DD~bCi ,Niz1

and (x{xC,i):(xC,i{xCA,i)~cos hN,iz1g,
ð2Þ

where bCi ,Niz1
is the bond length between atom Ci and atom

Niz1, and the distance between xN,iz1 and xC,l is

dNiz1,Cl
~DxN,iz1{xC,l D. Similarly, atom Niz1 is placed by
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sampling dNiz1,Cl
condition on dCi ,Cl

from the empirical

conditional density p(dNiz1,Cl
DdCi ,Cl

). We repeat this process m

times to generate m trial positions of Ci, Niz1, and CAiz1.

Sampling dCi ,Cl
and dNiz1,Cl

from conditional distribu-
tions. We sample dCi ,Cl

from the conditional distribution

p(dCi ,Cl
DdCAi ,Cl

) to obtain the location of Ci atom. We first

construct the empirical joint distribution p(dCAi ,Cl
,dCi ,Cl

) by

collecting (dCAi ,Cl
,dCi ,Cl

) pairs over all loops in a loop database

derived from the CulledPDB database (version 11118, at 30%

identity, 2.0 Å resolution, and with R~0:25) [56]. From the 6,521

protein structures in the CulledPDB, we remove 7 PDB structures

which appear in our test data set. For the rest of 6,514 protein

structures, loop regions were identified using the secondary

structure information either directly from the PDB records or

from classification provided by the DSSP software [57]. All

random coil regions, including a-helices and b-strands with length

v4 amino acids, are included in our database. In total, we have

49,336 loop structures.

For each set of loops with the same residue separation (l{i),
(dCAi ,Cl

,dCi ,Cl
) are Winsorised at 99:9% level [58]. Specifically, the

extreme values above 99:9% are replaced by the values at the 99:9
percentile. We then use a nonparametric two-dimensional

Gaussian kernel density estimator to construct a smooth bivariate

distribution p(dCAi ,Cl
,dCi ,Cl

) based on collected data. To estimate

the probability density at a point u~(dCAi ,Cl
,dCi ,Cl

)[R2, we use

the observed n pairs of data from the database

(x1, � � � xn)~((dCAi ,Cl ,1,dCi ,Cl ,1), � � � (dCAi ,Cl ,n,dCi ,Cl ,n)) to derive

the density function p(u), which takes the form of:

p(u)~
1

n

Xn

i~1

DHD{
1
2K½H{1

2:(u{xi)�, ð3Þ

where H is the symmetric and positive definite bandwidth 2|2
matrix, K is a bivariate gaussian kernel function:

K(x)~
e

({1
2

xT x)

2p
: ð4Þ

To construct the bandwidth matrix H, we calculate the

standard deviation sdCAi ,Cl
of the n pairs of (dCAi ,Cl

,dCi ,Cl
). The

corresponding entry hdCAi ,Cl
in the bandwidth matrix H is set as

hdCAi ,Cl
~sdCAi ,Cl

(
1

n
)

1
6. Similarly, hdCi ,Cl

is set as hdCi ,Cl
~sdCi ,Cl

(
1

n
)

1
6.

The bandwidth matrix H is then assembled as [59]:

H~
hdCAi ,Cl

hdCi ,Cl

hdCi ,Cl
hdCAi ,Cl

 !
: ð5Þ

We partition the domain of (dCAi ,Cl
,dCi ,Cl

) into a grid with 32 grid

points in each direction. p(dCAi ,Cl
,dCi ,Cl

) are estimated at the grid

points, and interpolated by a bilinear function elsewhere.

Conditional distribution p(dCi ,Cl
DdCAi ,Cl

) is constructed from the

joint distribution p(dCAi ,Cl
,dCi ,Cl

) when dCAi ,Cl
is fixed. dCi ,Cl

is

sampled from p(dCi ,Cl
DdCAi ,Cl

). We follow the same procedure to

construct p(dNiz1,Cl
DdCi ,Cl

), which is used to sample dNiz1,Cl
.

Backbone dihedral angle distributions from the loop

database. Although the empirical conditional distributions can

efficiently guide chain growth to generate properly connected loop

conformations, the dihedral angles of the loops are often not

energetically favorable. As a result, conditional distributions

described above alone are not sufficient in generating near native

loop conformations.

The problem can be alleviated by an additional step of selecting

a subset of n loops with low-energy dihedral angles from generated

samples. We use empirical distributions of the loop dihedral angles

obtained from the loop database. Specifically, for the m sampled

positions of the current residue i of type ai with dihedral angles

(w1,y1),::(wm,ym), we select nvm samples following an empiri-

cally derived backbone dihedral angle distribution p(wi,yi,ai).
Here p(wi,yi,ai) is derived from the same protein loop structure

database for conditional distance distributions and constructed by

counting the frequencies of (w,y) pairs for each residue type.

Determining the number of trial states at each growth

step for backbone torsion angles. It is important to

determine the appropriate size of trial states m and n for

generating backbone conformations, as small m and n values

may lead to insufficient sampling, resulting in inaccurate loop

conformations. On the other hand, very large m and n values will

require significantly more computational time, without significant

gain in accuracy.

We use a data set, denoted as tuning-set to determine the optimal

values of parameters m and n for sampling backbone conforma-

Figure 2. The time cost of energy calculations for generating one single loop. (A) The plot of computing time versus protein size show a
large time saving of ‘‘Redcell-On’’ (red solid curve) compared to ‘‘Redcell-Off’’ (black dashed curve) for 12-residue loops, and (B) The plot of 6-residue
loops. (C) Plot of computing time versus protein size show ‘‘Redcell-On’’ (red solid curve) has significantly improved computational time cost
compared to ‘‘Ellipsoid-Only’’ (black dashed curve) and ‘‘Cutoff-Only’’ (green solid curve).
doi:10.1371/journal.pcbi.1003539.g002
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tions. Part of this data set comes from that of Soto et al [42]. The

rest are randomly selected from pre-compiled CulledPDB (with

ƒ20% sequence identity, ƒ1:8 Å resolution, and Rƒ0:25). It

contains a total of 140 loops, with 35 loops of length 6, 35 of length

8, 35 of length 10, and 35 of length 12.

The optimal values of m and n are determined as

(m~160,n~32) according to the test result on tuning-set

(Figure 4).

Placement of backbone atoms. From the n sampled

dihedral angle pairs (w1,y1), � � � ,(wn,yn), we can calculate the

coordinates of atom Ci and Niz1 for all of the n trials. CAiz1

atoms are sampled by generating random v dihedral angles

from a normal distribution with mean 1800 and standard

deviation of 40. Calculating the coordinates of backbone O

atoms using standard bond length and angle values is straightfor-

ward.

The coordinates of backbone atoms of the n samples at this

particular growth step can be denoted as (x1
Ci

,x1
Oi

,x1
Niz1

,

x1
CAiz1

, � � � ,xk
Ci

,xk
Oi

,xk
Niz1

,xk
CAiz1

, � � � ,xn
Ci

,xn
Oi

,xn
Niz1

,xn
CAiz1

,). For

simplicity, we denote the coordinates of the four atoms at residue

i as Si and the k-th sample as Sk
i . We sample one of them using an

energy criterion. The probability for Sk
i is defined by

p(Sk
i DSt,Stz1, � � � ,Si{1)*exp({E(Sk

i )=T),

where T~1 is the effective temperature, and E(Sk
i ) is the

interaction energy of the four atoms defined by Sk
i with the

remaining part of the protein, including those loop atoms sampled

in previous steps. The energy function E is an atomic distance-

dependent empirical potential function constructed from the loop

database, which is effective in detecting steric clashes and efficient

to compute. Fragments with steric clashes are rarely drawn

because of their high energy values. In summary, the coordinates

of the four backbone atoms, Si~(Ci,Oi,Niz1,CAiz1), is drawn

from the following joint distribution at this step:

Si*p(dCi ,Cl
jdCAi ,Cl

):p(dNiz1,Cl
jdCi ,Cl

):p(v):p(wi,yi,ai)

:p(SijSt,Stz1, � � � ,Si{1):
ð6Þ

Altogether, (l{t) backbone dihedral angle combinations need to

be sampled. When the growing end is three residues away from the

C-terminal anchor atom of the loop, Cl , we apply the CSJD

analytical closure method to generate coordinates of the remaining

backbone atoms [12]. Small fluctuations of bond lengths, angles,

and v dihedral angles are introduced to the analytical closure

method to increase the success rate of loop closure.

Improving computational efficiency
To reduce computational cost of calculating atom-atom

distances in energy evaluation, we use a procedure, REsidue-

Figure 3. Schematic illustration of placing Ci and Niz1 atoms. Atom Ci has to be on the circle CC . The position xC,i of the Ci atom of residue
i is determined by dCi ,Cl

, which is based on known distance dCAi ,Cl
and the conditional distribution of p(dCi ,Cl

DdCAi ,Cl
). Once dCi ,Cl

is sampled, Ci can
be placed on two positions with equal probabilities. Here xC,i is the selected position of Ci . C’i (yellow ball) is placed at the position xC’,i alternative
to xC,i . Similarly, the Niz1 atom has to be on the circle CN and its position xN,iz1 is determined by dNiz1,Cl

in a similar fashion.
doi:10.1371/journal.pcbi.1003539.g003
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residue Distance Cutoff and ELLipsoid criterion (Redcell) to

reduce computational time.

Residue-residue distance cutoff. The residue-residue dis-

tance cutoff dR is used to exclude residues far from the loop energy

calculation. Instead of a universal cutoff value, such as the 10 Å

Cb{Cb distance used in reference [51], we use a residue-

dependent distance cutoff value. The residue-residue distance

cutoff dR is assigned to be rizrjzc, where ri and rj are the

effective radii of residue i and j, respectively. For one residue type,

effective radii is the distance between residue geometrical center

and the heavy atom which is farthest away from the residue

geometrical center. c is a constant set to 8 Å. For a residue i in the

loop region and residue j in the non-loop region, we calculate the

residue-residue distance dij~Exi{xjE, where xi and xj are the

geometric centers of residue i and j, respectively. If dijwdR, all of

the atoms in residue j are excluded from energy calculation. This

residue-dependent cutoff is more accurate and ensures close

residues are included.

Ellipsoid criterion. The basic idea of ellipsoid criterion is to

construct a symmetric ellipsoid such that all atoms that need to be

considered for energy calculation during loop sampling are

enclosed in the ellipsoid. Atoms that are outside of the ellipsoid

can then be safely excluded. The starting and ending residues of a

loop naturally serve as the two focal points of the ellipsoid.

Intuitively, all backbone atoms of a loop must be within an

ellipsoid. Formally, we define a set of points fxg, the sum of whose

distances to the two foci is less than L, defined as the sum of the

backbone bond lengths bC{C of the loop of length l:

fx~(x1,x2,x3)[R3D Ex{x1EzEx{x2EƒLg,

L~2a~
Xl

bC{C ,

where x1 and x2 are the two focal points of the ellipsoid. The

symmetric ellipsoid (b~c) can be written as:

x1
2

a2
z

x2
2

b2
z

x3
2

b2
~1, ð7Þ

where a~L=2 and b~½(L=2)2{(
DDx1{x2DD

2
)2�1=2

correspond to

the semi-major axis and semi-minor axis of the symmetric

ellipsoid, respectively. To incorporate the effects of side chain

atoms, we enlarge the ellipsoid by the amount of the maximum

side-chain length s. Furthermore, we assume that any atom can

interact with a loop atom if it is within a distance cut-off of k. As a

result, the overall enlargement of the ellipsoid is (szk). The final

definition of the enlarged ellipsoid for detecting possible atom-

atom interactions is given by Eqn (7), with

a~(DDx1{x2DD=2)sec a2, ð8Þ

and

b~(DDx1{x2DD=2)tan a1zszk, ð9Þ

where a1 is determined by the equation sec a1~
L

DDx1{x2DD
, and a2

by tan a2~
(szk)z(DDx1{x2DD=2)tan a1

DDx1{x2DD=2
(see Figure 5B).

For any atom in the protein, if the sum of its distances to the two

foci points is greater than 2a, this atom is permanently excluded

from energy calculations. The computational cost to enforce this

criterion depends only on the loop length and is independent of

the size the protein, once the rest of the residues have been

examined using the ellipsoid criterion. This improves our

computing efficiency significantly, especially for large

proteins. This criterion also helps to prune chain growth by

terminating a growth attempt if the placed atoms are outside the

ellipsoid.

Side-chain modeling and steric clash removal
Side chains are built upon completion of backbone sampling of

a loop. For the i-th residue of type ai, we denote the degrees of

freedom (DOFs) for its side chain as s(ai). DOFs of side chain

residues depend on the residue types, e.g. Arg has four dihedral

angles (x1,x2,x3,x4), with (s(ARG)~4). Val only has one dihedral

angle (x1), with (s(VAL)~1). Each DOFs is discretized into bins of

40, and only bins with non-zero entries for all loop residues in the

loop database are retained.

We sample nsc trial states of side chains from the empirical

distribution p(x1 � � � xs(ai )
) obtained from the loop database. One of

nsc trials is then chosen according to the probability calculated

by the empirical potential. Denote the side chain fragment for

the i-th residue as zi, we select zi following the probability

distribution:

pi(zi)*exp({E(zi)=T),

where E(zi) is the interaction energy of the newly added side chain

fragment zi with the remaining part of the protein, and T is the

effective temperature.

When there are steric clashes between side chains, we rotate the

side-chain atoms along the Ca{Cb axis for all residue types except

Pro. For Pro, we use the N{Ca axis for rotation. We consider two

atoms to be in steric clash if the ratio of their distance to the sum of

their van der Waals radii is less than 0:65 [13].

Figure 4. Mean of minimum backbone RMSD values for 140
protein loops. We generated 5,000 samples for each loop. The mean
value of the minimum RMSD of the 140 loops (y-axis) is plotted against
the size of trial samples n (x-axis) for different choices of m. For control,
results obtained without sampling torsion angles (m~n, control) are
also plotted. The backbone (N, Ca , C and O atoms) RMSD in this paper is
calculated by fixing the rest of the protein body.
doi:10.1371/journal.pcbi.1003539.g004
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Potential function
To evaluate the energy of loops, we develop a simple atom-

based distance-dependent empirical potential function, following

well-established practices [46,52,60–66]. Empirical energy func-

tions developed from databases have been shown to be very

effective in protein structure prediction, decoy discrimination, and

protein-ligand interactions [54,63,64,67–71]. As our interest is

modeling the loop regions, the atomic distance-dependent

empirical potential is built from loop structures collected in the

PDB [72].

Instead of using detailed 167 atom types associated with the 20
amino acids, we group all heavy atoms into 20 groups, similar to

the approach used in Rosetta [50]. The 16 side-chain atom types

comprise six carbon types, six nitrogen types, three oxygen types,

and one sulfur type. The 4 backbone types are N, Ca, C, and O.

This simplified scheme helps to alleviate the problem of sparsity of

observed data for certain parameter values. For an atom i in the

loop region of atom type ai and an atom j of atom type aj ,

regardless whether j is in the loop region, the distance-dependent

interaction energy E(ai ,aj ;dij ) is calculated as :

E(ai ,aj ;dij )~{ln
p(ai,aj ; dij)

p
0
(ai,aj ; dij)

, ð10Þ

where E(ai,aj ; dij) denotes the interaction energy between a

specific atom pair (ai,aj) at distance dij , p(ai,aj ; dij) and

p
0
(ai,aj ; dij) are the observed probability of this distance-depen-

dent interaction from the loop database and the expected

probability from a random model, respectively.

The observed probability p(ai,aj ; dij) is calculated as:

p(ai,aj ; dij)~
n(ai,aj ; dij)

ntotal

, ð11Þ

where n(ai,aj ; dij) is the observed count of (ai,aj) pairs found in the

loop structures with the distance dij falling in the predefined bins.

We use a total of 60 bins for dij , ranging from 2 Å to 8 Å, with the

bin width set to 0:1 Å. dij ranging from 0 Å to 2 Å is treated as

one bin. Here n(ai,aj ; dij)~
PN

k~1

n(ai,aj ,dij(k)), where N is the

number of loops in our loop database, n(ai,aj ,dij(k)) is the

observed number of (ai,aj) pairs at the distance of dij in the k-th

loop. ntotal is the observed total number of all atom pairs in the

loop database regardless of the atom types and distance, namely,

ntotal~
P
dij

P
aj

P
ai

n(ai,aj ; dij).

The expected random distance-dependent probability of this

pair p
0
(ai,aj ; dij) is calculated based on sampled loop conforma-

tions, called decoys. It is calculated as:

p
0
(ai,aj ; dij)~

n
0
(ai,aj ; dij)

n
0
total

, ð12Þ

where n
0
(ai,aj ; dij)~

PN
k~1

(

PM
x~1

n
0
(ai,aj ,dij(x,k))

M
) is the expected

number of (ai,aj ; dij ) pairs averaged over all decoy loop

conformations of all target loops in the loop database. Here

n
0
(ai,aj ,dij(x,k)) is the number of (ai,aj) pairs at distance dij in the

x-th generated loop conformations for the k-th loop. M is the

number of decoys generated for a loop, which is set to 500. N is

the number of loops in our loop database. n
0
total is the total number

of all atom pairs in the reference state,

n
0
total~

P
dij

P
aj

P
ai

n
0
(ai,aj ; dij).

Tool availability
We have made the source code of DISGRO available for

download. The URL is at: tanto.bioengr.uic.edu/DISGRO/.

Supporting Information

Text S1 Results of modeled loops on Test Set 2–5,
calculated using DISGRO. Table 1–3 are tables for Test Set 2.

Table 4–12 are tables for Test Set 3. Table 13–18 are tables for

Test Set 4. Table 19–22 are tables for Test Set 5.

(PDF)

Figure 5. Schematic illustration of ellipsoid criterion. (A) Three
dimensional view of a point x locating on the ellipsoid constructed
from the total loop length L and the two foci x1 and x2 . (B) Two
dimensional view along through the x3-axis of the ellipsoid, with

a~L=2 and b~c~½(L=2)2{(
DDx1{x2DD

2
)2�1=2 (dark gray). c is along x3-

axis, not shown. The maximum side-chain length is denoted as s and
the distance cut-off of interaction is k. The enlarged ellipsoid, which has
updated a and b, is also shown (light gray).
doi:10.1371/journal.pcbi.1003539.g005
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