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Abstract

Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role
in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to
mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed,
most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from
sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large
computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that
leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed
genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public
datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach
attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in
runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes
consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to
account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing
coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it
is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs.

Citation: Brown R, Pasaniuc B (2014) Enhanced Methods for Local Ancestry Assignment in Sequenced Admixed Individuals. PLoS Comput Biol 10(4): e1003555.
doi:10.1371/journal.pcbi.1003555

Editor: Alon Keinan, Cornell University, United States of America

Received July 23, 2013; Accepted February 10, 2014; Published April 17, 2014

Copyright: � 2014 Brown, Pasaniuc. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported in part by the National Institutes of Health (R03-CA162200, R01-GM053275 to BP and T32-GM008185 to RB). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exit.

* E-mail: rpb2103@ucla.edu (RB); bpasaniuc@mednet.ucla.edu (BP)

This is a PLOS Computational Biology Methods article.

Introduction

Advances in high-throughput genotyping technologies have

enabled large-scale studies of genetic variation, from genome-wide

association studies (GWAS) [1] to inference of population history

from genetic data [2]. The most notable use of high-throughput

genotyping has been in GWAS where researchers have re-

producibly identified thousands of genetic variants associated with

many diseases [3]. Although initial studies have focused on

homogenous populations [4], the development of accurate

methods for discerning population structure has enabled studies

across individuals of different ethnicities such as admixed

populations (i.e. populations with genetic ancestry from more

than one continent) [5–8]. Owing to their recent demographic

history, admixed individuals have genomes that are a mosaic of

segments originating from different continents. A key component

of genetic studies in recently admixed populations is the inference

of ancestry at each locus in the genome (i.e. the continental origin

of each variant, local ancestry). Although local ancestry has been

traditionally used to map genes to diseases through admixture

mapping [8–10], the past few years have seen the use of local

ancestry analyses in a wide range of genetic applications. Recent

work has shown that admixture mapping can be used to localize

missing sequences from the human reference genome [11], while

other analyses of local ancestry in large samples of African

American individuals have yielded novel insights into the

dynamics of recombination rates across the genome [12,13].

Local ancestry also can be leveraged to make demographic

inferences from genetic data of admixed populations [14–17] as

well as in finding signals of natural selection in African Americans

[18]. Finally, local ancestry is also important for disease genetics in

correcting for spurious associations in fine-mapping studies [19] as

well as in finding new disease risk loci through a combination of

association and admixture mapping [6,20–23].

Many methods have been developed to infer local ancestry in

admixed individuals. Early methods [24–26] relied on ancestry

informative markers within hidden Markov models to achieve high

accuracy. With decreasing genotyping costs, newer methods [27–

30] were designed to use the increasing amount of data from

genome-wide genotyping arrays while accounting for linkage

disequilibrium (LD) among variants. The currently established

methods [31–33] model LD in the form of haplotypes to achieve

superior accuracy over non-haplotype aware approaches. Recent

work in parallel to ours [34] explored the use of conditional

random forests in performing local ancestry analysis. Although
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extremely accurate for African Americans, these methods have not

achieved the same level of high accuracy in Latino Americans,

partially due to the lack of good proxies for the Native American

component [35] and more recent divergence among ancestral

populations. Rapid cost decreases in sequencing technologies

coupled with the increased power for assessing genetic variation

has made sequencing the approach of choice for many of the

coming genetic studies [36–48]. The amount of variants identified

by sequencing makes local ancestry inference in large cohorts of

sequenced individuals prohibitively time consuming (e.g. existing

HMM-based approaches will take 5 CPU years to infer local

ancestry in 15,000 sequenced African Americans, or 18 days per

core on a 100-core cluster). This is particularly important as

sample sizes continue to increase to hundreds of thousands of

individuals [49]. For example, a recent study of obesity included

over 15,000 African Americans [50] and another study included

30,000 African Americans for recombination mapping [12].

Here we present improved methods for local ancestry inference

for fully sequenced admixed genomes. Sequencing, as opposed to

genotyping, is able to catalogue much larger sets of variants with

a large component of such variants being continent-specific (i.e.

variants that are observed only in individuals from one continental

group such as Europeans or Africans). For example, the 1000

Genomes Project [51] has found that 17% of variants with

frequencies between 0.5–5% and 53% of variants with frequencies

,0.5% are continent-specific when comparing European, African,

East Asian and American populations. We hypothesized that these

variants can be used for ultra-fast assignment of ancestry at every

locus in the genome. We term these variants as continent-specific

variants (CSVs) and model them within standard hidden Markov

models of local ancestry to achieve an accurate and computation-

ally efficient method for local ancestry inference (Lanc-CSV). Our

model accounts for potential errors induced by low-coverage

sequencing as well as by the finite sample size of the reference

panels used for local ancestry inference. As opposed to most

previous local ancestry methods that require phased reference

panels, our approach only requires allele frequency information

for each continental group.

Our approach is significantly faster than existing standard

haplotype-based approaches making it the approach of choice for

large-scale sequencing studies (e.g. our approach is able to infer

local ancestry in under 42 CPU days in 15,000 sequenced

genomes, or 0.42 days per core if a 100-core cluster is available).

The very-fast computational speed of our approach allows it to be

sample aware by iteratively improving the quality of the CSV calls

using the admixed individuals themselves to further boost accuracy

by eliminating spuriously identified CSVs (see Methods). We use

simulations of recently admixed individuals starting from 1000

Genomes data to show that Lanc-CSV achieves comparable

accuracy to existing methods (e.g. mean r2 = 0.92 across simula-

tions of African Americans, Mexicans, and Puerto Ricans as

compared to 0.93 for LAMP-LD [31], 0.84 for RFMix [52] and

0.80 for MULTIMIX [53]).

We investigate the effect of low coverage sequencing on our

method in simulations and show that at 56coverage our approach

achieves an r2 = 0.86 in African Americans, 0.70 in Mexicans and

0.78 in Puerto Ricans. More importantly, we investigate whether

similar results can be obtained in real data. We infer local ancestry

using our approach in the real African American, Mexican, and

Puerto Rican individuals from 1000 Genomes and find that Lanc-

CSV agrees with the published consensus local ancestry calls [51]

(mean r2 = 0.79 across the three sets of comparisons as compared

to a mean r2 = 0.81 for a haplotype-based method, see Results).

While our current method achieves comparable results to existing

methods with the given data sets, we demonstrate that the iterative

sample aware CSV updating continues to increase the overall

accuracy as the sample size increases. With large studies this may

give Lanc-CSV a further accuracy advantage over existing

methods. Finally, we extend the concept of CSVs to sub-

continental population-specific variants (sCSVs) and show that

they can be used to perform ancestry assignment with individuals

admixed from two ancestries from the same continent.

As the costs of sequencing rapidly decreases and genetic studies

sequence more samples, the tradeoff between computational

runtime and accuracy becomes critical for local ancestry inference.

Using our proposed approaches we can reliably infer local

ancestry in very large sequenced cohorts at a fraction of the

computational cost of existing approaches. We provide Lanc-CSV

as a free software package for the community interested in local

ancestry inference at http://bogdan.bioinformatics.ucla.edu/

software/lanccsv.

Results

Continent-specific variants in the 1000 Genomes data
Using data from the 1000 Genomes Project, we investigate

whether CSVs can be used to perform accurate local ancestry

inference. We define CSVs as single nucleotide variants in which

one of the alleles is only observed in one of the continental groups

(e.g. European) and absent from other continental groups.

Determining CSVs can be quickly achieved using reference panels

such as data generated by the 1000 Genomes Project [51].

Although extremely useful, 1000 Genomes was sequenced at low

coverage (46) with potentially many rare variants (likely to be

CSVs [54]) being left uncalled. In addition, some variants are

spuriously called as CSVs due to the finite sample of the reference

panels; for example, variants that would be observed in larger

samples from more than one continental group are mislabeled as

CSVs due to the small size of the reference panels. We call these

variants spurious CSVs.

We assess the presence of informative and spurious CSVs for

the purposes of local ancestry inference in the real 1000 Genomes

data. To mimic local ancestry inference, we used data from the

TSI(97), JPT(88) and LWK(97) populations (as proxies for the

European, Native American and African continental groups,

numbers represent the number of individuals from each

population) to infer CSVs and used a different set of haplotypes

(CEU(85), CHB+CHS(197) and YRI(88)) to determine the

number of observed CSVs from each continental group on

Author Summary

Advances in sequencing technologies are dramatically
changing the volume and type of data collected in genetic
studies. Although most genetic studies so far have focused
on individuals of European ancestry, recent studies are
increasingly being performed in individuals of admixed
ancestry (i.e., with recent ancestors from multiple con-
tinents, e.g., Latino Americans). A key component in such
studies is the accurate inference of continental ancestry at
each segment in the genome of these individuals. In this
work we present accurate and robust methods that use
continent-specific variants (i.e., genetic variants observed
only in individuals of a given continent), now readily
accessible through sequencing technology, to perform
extremely fast and accurate inference of the ancestral
origin of each genomic segment in recently admixed
individuals.

Local Ancestry Assignment in Sequenced Individuals
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a haplotype of a given group (see Methods). We observe that only

a fraction of called CSVs using the reference panel are spurious

in the target panel; e.g. an average of 15.70 per mega-base per

chromosome of European CSVs in the reference are also

observed on a target European haplotype as compared to 1.20

per mega-base per chromosome that are spuriously called (i.e.

was a Native American or African CSV seen on the European

haplotype) (see Table 1). The spacing between observed CSVs on

a haplotype ranges on the average from ,10 kb for African

chromosomes to ,100 kb for Asian chromosomes. Since we used

data from different populations within the same continental

groups (e.g. TSI and CEU), some of the European CSVs are

missed as they are specific to only one population within the same

continent. Therefore the numbers in Table 1 represent a lower

bound on the total amount of CSVs informative for continental

local ancestry inference. As previously reported, we observe

a much larger number of African CSVs owing to the larger

genetic diversity observed within Africa [51]. We also observe

that the percentage of spurious African CSVs is much lower than

that of European and Asian CSVs that are falsely identified (0.7%

vs. 7.2% and 8.8%).

Accurate local ancestry inference using CSVs
The admixture process creates chromosomal segments of

different ancestry in recently admixed individuals [8]. Therefore,

if we visualize CSVs along the genome of a recently admixed

individual, we expect to observe continuous segments with only

CSVs from one continent (at loci where both alleles have the same

ancestry) or a mixture of CSVs from two continents (at loci where

one allele comes from one ancestry and another allele from

a different ancestry) (see Figure 1). In practice we do not know the

true local ancestry and we observe CSVs along the genome in an

admixed individual (with potential errors) and we seek to infer the

underlying local ancestry status. We extend standard hidden

Markov models (HMM) for local ancestry to model CSVs as

emissions and local ancestry as the underlying hidden state (see

Methods). We use this model to calculate the probability of the

ancestral state at each locus in the genome conditional on the

observed sequence of CSVs.

We used simulations of African Americans, Mexicans, and

Puerto Ricans to quantify the performance of our approach (see

Methods). As a baseline for comparison, we used LAMP-LD and

MULTIMIX, two of the fastest and most accurate methods

[31,53] for local ancestry inference. LAMP-LD models haplotypes

within HMMs of haplotype diversity for ancestry assignment and

has been recently shown to attain similar accuracy as another

HMM-based approach (HAPMIX [32]) for African Americans

and superior accuracy in Latino Americans. MULTIMIX models

correlations among SNPs using a multivariate Gaussian approach;

all methods utilize a window-based framework to integrate results

across the genome. As a metric of accuracy, we use the squared

correlation coefficient (r2) between the true simulated ancestry and

the inferred one; the correlation coefficient measures the loss in

association power for admixture mapping from errors in the local

ancestry estimates [31]. We also report the percent of correctly

inferred ancestry calls. Lanc-CSV attains similar results as best

performing methods for ancestry inference across simulations of

African Americans, Mexicans, and Puerto Ricans (e.g. mean r2 of

0.92 with Lanc-CSV across the considered populations)(see

Figure 2 and Table 2). Interestingly, we observe that the accuracy

of both LAMP-LD and MULTIMIX deteriorates when sequenc-

ing data is used; e.g. mean r2 of 0.93 when only SNPs on the

Illumina-1M array are used, as compared to 0.71 when all

sequencing data are used with LAMP-LD. Similar results are seen

with MULTIMIX (see Figure 2 and Table 2). This is likely due to

the fact that both LAMP-LD and MULTIMIX have been

optimized for GWAS genotyping array data and not for the

significant number of rare variants identified through sequencing.

Recent work in parallel to ours has proposed the use of conditional

random forests in local ancestry inference (RFMix [34]). We

assessed RFMix accuracy on our simulations and we observe

comparable accuracy as other methods for array data (see Figure 2

and Table 2). In addition, RFMix accuracy slightly increases when

sequencing data is available from an r2 = 0.84 to 0.87. We also

observe a lower performance of MULTIMIX as compared to

LAMP-LD and RFMix in our simulations. The average distance

between a true switch point and the inferred switch point for Lanc-

CSV is 76 kb and for LAMP-LD is 91 kb, both have a standard

deviation greater than 100 kb (see Figure S1). Importantly, our

approach requires significantly less computational runtime than

both LAMP-LD and MULTIMIX run on genotyping array data

(Lanc-CSV is 3–56 faster) or sequencing data (Lanc-CSV is 40–

1506 faster). Lanc-CSV is slightly faster than RFMix when run on

sequencing data (1.46 reduced runtime) (see Table S1 and

Figures 3 and S2). However, RFMix requires phased haplotype

data, which can take significant time to calculate with unrelated

individuals. If phasing time is included Lanc-CSV is 12.56 faster

than RFMix on sequencing data (see Table S1).

Extension to low-coverage sequencing
Recent works have shown that low-coverage sequencing yields

superior association power per unit of cost as compared to

genotyping arrays in GWAS [55]. The accuracy of genotype

calling from sequencing data is directly related to the read

coverage. High read coverage increases the likelihood of observing

true CSVs, while low read coverage increases the likelihood of

both not observing a CSV and spurious CSVs due to errors in the

genotype calling from read data. We extend our method to low-

coverage sequencing data by means of a preprocessing step where

a CSV is called present at a locus if the genotype dosage (i.e. the

expected count of alternate alleles given the observed reads) is

above a set threshold level at a CSV location (see Methods). We

Table 1. The average number of observed CSVs per haplotype per megabase from each ancestry.

European CSVs (TSI) African CSVs (LWK) Asian CSVs (JPT)

European Haplotypes (CEU) 15.70 (93%, 2.25) 1.00 (6%, 0.60) 0.21 (1%, 0.12)

African Haplotypes (YRI) 0.57 (,1%, 0.33) 123.48 (99%, 5.22) 0.33 (,1%, 0.14)

Asian Haplotypes (CHS+CHB) 0.40 (3%, 0.26) 0.64 (5%, 0.32) 10.75 (91%, 1.45)

Parentheses are the percentages of CSVs on each haplotype and the standard deviations. To estimate CSVs we used TSI, LWK, and JPT individuals as proxies for the
European, African and Native American ancestries. We calculated the number of European, African and Asian CSVs seen on CEU, YRI, and CHS+CHB haplotypes. The
values in parentheses represent the percentages of each ancestry type of CSV seen on a haplotype from a specific population.
doi:10.1371/journal.pcbi.1003555.t001

Local Ancestry Assignment in Sequenced Individuals
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estimate the genotype dosage from reads using standard

techniques (see Methods). Through simulations, we determine

that the Wahlund Effect [56,57] is likely not going to impact our

assumptions of Hardy-Weinberg Equilibrium at the allele

frequencies of most CSVs (see Methods and Table S3). Starting

from the previous simulations, we simulated sequencing data at

various coverages using standard parameters for sequencing (see

Methods). At 56 coverage we observe an accuracy of 0.86 for

African-Americans, 0.70 in Mexicans and 0.78 in Puerto Rican

simulations. As expected accuracy increases as coverage increases

with little gains in accuracy coming above 106 (e.g. an accuracy of

0.91 at 106 in Puerto Rican simulations) (see Figure 4).

Sample-aware inference of local ancestry improves
accuracy
Accurate methods for local ancestry inference leverage refer-

ence panels of haplotypes to use as proxies for the missing

ancestral individuals that mixed to form current admixed

populations. Recent works have shown that local ancestry

inference can be improved when using the admixed samples

themselves to rebuild the reference panels of haplotypes [35]. A

major advantage of our approach for local ancestry inference is

that we can iteratively re-estimate CSVs by incorporating

information from the inferred ancestry regions in the admixed

samples themselves. In particular, we first estimate CSVs using

external reference panels of haplotypes (e.g. 1000 Genomes), then

call local ancestry and in an iterative fashion, re-call CSVs using

confidently called ancestry segments from the sample itself (see

Methods). This procedure reduces the number of spuriously called

CSVs while determining new CSVs and increasing the overall

accuracy of the method. In addition, this allows for sample-aware

reference panels that are better proxies for the true ancestral

population of current day admixed individuals. For example we

observe an increase in accuracy from r2= 0.87 to 0.92 in 200

simulated admixed Puerto Ricans after four iterations. The

greatest increase in accuracy is after the first iteration and very

Figure 1. Example of CSVs in a 2-way admixed individual (e.g. African American). Lines denote the true local ancestry while the dots
denote CSVs. Different dot types denote the continental ancestry of each CSV. From visual inspection it is relatively easy to discern the true ancestry
from the three observed patterns. Spurious CSVs are denoted by CSVs mislabeling the true ancestry state.
doi:10.1371/journal.pcbi.1003555.g001
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little increase in accuracy comes with the fourth iteration. The

main source of errors in Mexicans and Puerto Ricans is in

distinguishing European and Native American regions that have

a much lower signal to noise ratio than in African and European

or African and Native American regions (see Table 1). African

American inference is highly accurate at all sample sizes because

even without any iterations, accuracy is high due to the strong

signal to noise ratio allowing African and European segments to be

easily distinguished.

As compared to previous methods that do not use information

from the other admixed individuals when calling local ancestry,

Lanc-CSV will continue to increase in accuracy as the admixed

sample size increases. Figure 5 plots the accuracy as a function of

the number of admixed individuals. As expected we observe that

the accuracy increases as the number of individuals increases with

200 samples being sufficient for high accuracy comparable to

LAMP-LD in these simulations. However, as more simulated

samples are added in, accuracy exceeds that of LAMP-LD in both

the Mexican and Puerto Rican ancestries.

Analysis of real admixed individuals from 1000 Genomes
We investigated whether similar results can be achieved in real

admixed genomes. We used our approach and LAMP-LD to call

ancestry in the real data from the Americans of African Ancestry in

South Western USA (ASW), Mexican Ancestry from Los Angeles

(MXL), and Puerto Ricans from Puerto Rico (PUR) individuals

from the 1000 Genomes Project. 1000 Genomes provided local

ancestry calls for these individuals based on the consensus of four

current local ancestry inference methods [31,32,52,53]. Since the

true ancestry is not known for these individuals, we measured the

correlation between the local ancestry calls of our approach with the

ancestry calls provided by 1000 Genomes. We observed an average

correlation rate (r2) on chromosome 10 of 0.94, 0.63, and 0.81 for

Lanc-CSV and 0.99, 0.66 and 0.79 for LAMP-LD (which was used

as part of inferring the consensus calls) in African Americas,

Mexicans and Puerto Ricans respectively (haploid and diploid

errors reported in Table S2).

These low r2 values are likely a result of poor reference panels in

our inference since we are using the Asian haplotypes as proxy for

Native American panels (1000 Genomes project used a specially

designed panel for Native Americans [58]). To further investigate

this hypothesis, we used our method to infer local ancestry in 20 of

the Mexican individuals using the rest of the Mexicans as reference

panel (that is, we used the consensus ancestry calls provided by

1000 Genomes to call CSVs). We observe a large increase in

accuracy when incorporating the other Mexicans (and their local

ancestry consensus calls) in the reference panel (mean r2 of 0.80

versus 0.66 if only Asian samples are used as reference).

Figure 2. Local ancestry inference accuracy in three simulated populations. ‘‘Array data’’ denotes that a method was run only on the
variants present on the Illumina 1 M genotyping array. ‘‘Full genome’’ denotes methods were run using all the variants. RFMix requires phased
haplotype input, which was infered using Beagle; all other methods received unphased genotype data as input. Correlation values are the mean
squared correlation across SNPs of the true vs. inferred ancestry across individuals. LAMP-LD and MULTIMIX were optimized to run with genotyping
array data, possibly explaining the steep drop in accuracy when they are run using full sequencing data. MULTIMIX is not plotted when run on full
sequencing data because it performed very poorly, possibly due to inaccurate parameters for sequencing data. Haploid and diploid errors are
reported in Table 2.
doi:10.1371/journal.pcbi.1003555.g002
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Figure 3. Runtime (in CPU days) as a function of the number of individuals in a study with sequencing data. Lanc-CSV is always faster
than LAMP-LD and MULTIMIX when run on either full genome sequencing data or genotyping array data (see Figure S3 and Table S1). The full
sequencing data contained ,30 times more alleles than the genotyping array data. Only RFMix has comparable speed for full sequenced data and is
faster for genotype array data. We show the runtime for RFMix with phasing time included.
doi:10.1371/journal.pcbi.1003555.g003

Table 2. Local ancestry accuracy in simulations of African Americans, Mexicans and Puerto Ricans.

African American Mexican Puerto Rican

LAMP-LD (array data) 0.98 (1.00, 0.99) 0.89 (0.97, 0.93) 0.91 (0.98, 0.96)

MULTIMIX (array data) 0.93 (0.99, 0.98) 0.73 (0.94, 0.80) 0.74 (0.93, 0.86)

RFMix (array data) 0.90 (0.98, 0.97) 0.79 (0.93, 0.87) 0.82 (0.95, 0.91)

LAMP-LD (full genome) 0.85 (0.97, 0.95) 0.80 (0.94, 0.89) 0.79 (0.95, 0.90)

MULTIMIX (full genome) 0.46 (0.84, 0.72) 0.44 (0.73, 0.49) 0.40 (0.74, 0.56)

RFMix (full genome) 0.92 (0.99, 0.97) 0.83 (0.95, 0.89) 0.85 (0.96, 0.92)

Lanc-CSV 0.96 (0.99, 0.99) 0.87 (0.96, 0.92) 0.92 (0.98, 0.96)

Accuracy is reported as mean r2 (haploid accuracy, diploid accuracy). ‘‘Array data’’ denotes that a method was run only on the variants present on the Illumina 1 M
genotyping array. ‘‘Full genome’’ denotes methods were run using all the variants. RFMix requires phased haplotype input that was phased using Beagle; all other
methods received unphased genotype data as input. Correlation values are the mean squared correlation across SNPs of the true vs. inferred ancestry across individuals.
Accuracy is reported as mean r2 (haploid accuracy, diploid accuracy). LAMP-LD and MULTIMIX were optimized to run with genotyping array data, possibly explaining the
steep drop in accuracy when they are run using full sequencing data.
doi:10.1371/journal.pcbi.1003555.t002

Local Ancestry Assignment in Sequenced Individuals
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Figure 4. Accuracy as a function of sequencing coverage. African-Americans with only two distinct ancestral populations increases fastest in
accuracy.
doi:10.1371/journal.pcbi.1003555.g004

Figure 5. Accuracy as a function of sample size. While accuracy increases with increasing numbers of admixed individuals, the most significant
increase is seen in Mexican individuals. We report accuracy for Lanc-CSV using 200 admixed individuals, but accuracy exceeds this as the number of
admixed individuals increases. This is due to the method being better able to correct for spurious CSVs and to add in new CSVs when there are more
individuals.
doi:10.1371/journal.pcbi.1003555.g005
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This demonstrates that the low accuracy of both LAMP-LD and

Lanc-CSV in real data is likely due to poor reference panels. It

also demonstrates that a sample aware method could overcome

this obstacle if sufficient admixed individuals are available.

Therefore, we use the consensus calls of the Mexicans and Puerto

Ricans of the 1000 Genome data to build improved CSV

reference panels and provide them as a free resource to be used

with Lanc-CSV for new sequenced admixed individuals.

Sub-continental ancestry calling
We extend continent-specific variants to sub-continental pop-

ulation-specific variants (sCSVs). We define sCSVs as variants that

are observed in only one of the 1000 Genomes populations and

not in any other (e.g. a variant observed only in the individuals

from Great Britain (GBR) and never in any of the other

populations). Using a leave one out analysis we demonstrate in

Figure 6 that the chromosomes from 9 out of 10 populations have

more observed sCSVs from the population from which it was

observed than from any other. Due to limited reference panel size

and the closeness of the sub-continental populations, there are

considerable numbers of spurious sCSVs, but not enough to make

sub-continental ancestry calling impossible in some scenarios. The

two exceptions are the IBS population that only has 28 reference

haplotypes (not enough to accurately determine sCSVs) and the

CHB and CHS that are genetically very similar.

We assess the ability of correctly calling the population through

a leave-one-out procedure starting from the real 1000 Genomes

haplotype data. For each held out haplotype we randomly select

short segments between 0.1 and 30 megabases and assign them to

the population that has the maximum sCSV count across this

segment. We plot the accuracy of this naı̈ve calling as a function of

segment size in Figure 7. We also calculate the accuracy of

assigning each haplotype to the correct continental group based on

sCSVs in Figure 8. Correlating the accuracy of assigning the

correct population to the haplotype segment (length 10 megabases)

with the size of the reference panel of the called segment achieves

a correlation coefficient of r = 0.65 (p-value = 0.042) showing that

larger reference panel sizes are associated with more accurate sub-

continental population ancestry inference. The two African

populations (YRI and LWK) as well as the Finnish (FIN) and

(JPT) have very accurate ancestry calls possibly due to a higher

degree of genetic differentiation as compared to the other sub-

continental populations. The CEU individuals are Utah residents

with northern and western European ancestry and may already be

sub-continentally admixed which could potentially explain the low

accuracy seen with the CEU. The IBS do not have enough

reference panels to be able to call IBS sCSVs. As expected, when

errors are being made, most of the errors resulted in another

population from the same continental group being called

(Figure 8). We also simulated diploid admixed individuals from

pairs of sub-continental European populations with moderate

accuracy in Lanc-CSV (Table S4).

In order to determine the effectiveness of the sCSV approach in

real data, we counted the sCSVs observed per megabase in

African-African and European-European continental called an-

cestry regions of the ASW individuals on chromosome 10 (using

the 1000 Genomes consensus local ancestry calls). Figure 9 shows

that in the African-African regions there is strong enrichment for

YRI sCSVs. We additionally plot the expected number of

observed sCSVs on a YRI haplotype (red diamonds) and the

expected number of observed sCSVs on an LWK haplotype (green

squares). The observed counts more closely resemble the count

profile expected from the YRI haplotypes. This supports the

established hypothesis that the African component of the ASW is

likely from western Africa [15]. When looking at the European-

European segments of the ASW (Figure 10), the most sCSVs are

CEU followed by GBR supporting the hypothesis that the

European ancestors are more related to northwestern Europeans.

However given the small admixture proportion of European

ancestry in African Americans, there are only a few small regions

of European-European ancestry resulting in the very low sCSV

counts for the ASW in these regions as compared to the African-

African ancestry regions.

Discussion

We have presented here an approach for local ancestry inference

in fully sequenced recently admixed individuals. Our approach

makes use of alleles that are found to be present only in individuals

from a given continental group (continent-specific variants, CSVs).

Through the use of real data from 1000 Genomes we have shown

that the density of such CSVs is high enough across the genome to

allow for fast and accurate inference of local ancestry. It should be

noted that the 1000 Genomes haplotypes are based on 46
sequencing data. Not only does the low coverage make this data

noisier, but it also misses many CSVs that are in the individuals but

not called due to the low coverage. As more high coverage reference

panels are constructed our method will become increasingly

accurate as more CSVs are identified and spurious CSVs removed.

Having no pre-compute time and fast runtime per individual allows

for our approach to be sample-aware in an iterative fashion. As

opposed to previous approaches Lanc-CSV shows increased

accuracy as more admixed samples are being analyzed. We show

that as the method is run on increasing numbers of simulated

individuals, it exceeds the accuracy that is obtained by LAMP-LD

on the 200 Mexican and Puerto Rican samples. We expect this

feature to become more important as larger sample sizes are being

analyzed since the accuracy should continue to increase.

The real data analysis demonstrates the necessity of having

reference panels well matched to the admixed population or

having a sample aware method that can correct for poorly

matched reference panels. Lanc-CSV achieves comparable results

to LAMP-LD in these few real African-American, Puerto Rican

and Mexican individuals. Unlike LAMP-LD, we expect our

approach to continue improving in accuracy as more sequenced

individuals from each continental population become available.

We extended the concept of continent-specific variants to sub-

continental population-specific variants and showed that under

some scenarios it is possible to determine the sub-continental

ancestry. We confirmed that in real ASW individuals, admixture

was most likely between individuals from western Africa (near or

related to the YRI); as more reference panels become available for

these and other populations, we expect sCSVs to be increasingly

informative of the sub-continental population ancestries. Although

sCSVs show potential for sub-continental ancestry calling in

haploid data, more sophisticated methods may prove fruitful for

diploid calling.

A future direction for research that may prove fruitful is to relax

assumptions used in our approach and by finding better ways to

parameterize the method. Linkage disequilibrium among the

CSVs is a main contributor to errors and further work explicitly

modeling the LD structure between CSVs may provide increased

accuracy. The current method has a uniform error rate for

spurious CSVs across all ancestries. However the number of

spurious European CSVs is much higher than the number of

spurious African CSVs and the number of reference haplotypes is

not controlled for in determining the error rate; therefore a non-

uniform error model may further increase accuracy.

Local Ancestry Assignment in Sequenced Individuals
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Methods

Data and simulations
The 1000 Genomes Project [51] has produced a public

catalog of human genetic variation through sequencing in

individuals from populations across the world. In this work we

use the 88 Yoruba (YRI) and 97 Luhya (LWK) individuals as

proxy for the African haplotypes; the 85 Utah residents with

northern and western European ancestry (CEU) and 97

Tuscans in Italy (TSI) individuals were used as proxy for the

European haplotypes; the 88 Japanese in Tokyo (JPT), 97 Han

Chinese in Beijing (CHB) and 100 Southern Han Chinese

(CHS) individuals were used as a proxy for the Native

American haplotypes. The 14 Iberian populations in Spain

(IBS), 93 Finnish in Finland (FIN) and 89 British in England

and Scotland (GBR) individuals are also used for determining

sCSVs. We used the 1000 Genomes phased haplotypes from

each individual. We restricted our analysis to chromosome 10.

The TSI, JPT and LWK haplotypes were used as training

haplotypes for CSVs and all of the CEU, CHB+CHS and YRI

haplotypes were used as simulation haplotypes so that the

training and simulation haplotypes would be disjoint and

unmatched. Following previous works we filtered A/T and C/

G variants from the analysis [35] leaving 1,581,313 (50,000)

SNPs used for sequencing (array) simulations.

Similar to previous works [32], we simulate admixed chromo-

somes as a random walk over the 1000 Genomes haplotypes.

Distance to the next crossover is sampled from an exponential

distribution with parameter 1/(lG) where l=1028 base pairs per

generation and G is the number of generations since admixture

[31,32]. At a crossover event, an ancestry (i.e. continental group)

is chosen according to admixture-specific proportions and

a random haplotype is drawn uniformly from that continental

group. We simulate 2000 haplotypes this way and paired them to

form 1000 genotypes with no simulated haplotype used more

than once. We used the following admixture proportions (h) for
the European, Native American and African ancestry:

0.45:0.5:0.05 for Mexicans and 0.67:0.13:0.2 for Puerto Ricans

and 0.2:0.0:0.8 for African-Americans [58–61]. For African

Americans we simulated data assuming 6 generations since

admixture (G= 6) and for Mexicans and Puerto Ricans we

assumed 15 generations (G= 15).

Figure 6. Proportions of sCSVs from each population observed on a held out haplotype. Each row represents the ancestry of the
haplotype that was held out and each column represents the average number of sCSVs observed on the held out haplotype from the given
population. Each row is normalized by the maximum value of the row so that the population with the most sCSVs observed has a value of 1. In each
row, higher values are associated with populations in the same continental group as would be expected. The IBS have only fourteen individuals,
which makes determining IBS sCSVs extremely difficult.
doi:10.1371/journal.pcbi.1003555.g006
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Continent-specific variants in the 1000 Genomes data
Comparing sequenced samples from different continental

groups identifies continent-specific variants. A CSV is identified

if the reference or alternate allele is observed in only one of the

continental groups being compared. A CSV is only informative of

an individual’s ancestry if it is observed in that individual. We used

the reference panels to estimate CSVs and then identified how

many European, Native American, and African CSVs per

megabase per haplotype are present in the haplotypes used for

simulations. That is, we count the total CSVs from each group

observed in the simulation haplotypes of given group and

normalize by sample size and chromosome length. The expected

number of informative CSVs per megabase per haplotype gives an

indication of how well local ancestry can be inferred using only

CSVs.

Local ancestry inference using CSVs
Following previous works [28], we consider admixed popula-

tions arising from K ancestral populations A1,…,AK that have been

mixing for G generations. For a given admixed genotype from the

admixed population, we describe each individual genotype as

a vector g, where giM (0,1,2) is the number of alternative alleles of

that individual at SNP i. At position i, the individual’s two alleles

have either both descended from the same ancestries (i.e.

continental group) or from two different ancestries. We are

interested in determining the ancestry origin of the two alleles at

each position i in the genome. Our model is based on an HMM

described by a triple H= (Q,d,e), where Q is the set of states, d is

the transition probability function and e is the emission probability

function. A different HMM is estimated for each individual at each

iteration with parameters estimated from the locations of in-

formative CSVs in each individual.

We denote by Q each possible combination (including the same

ancestry) of ancestries in a diploid genome. The transition function

d changes at each step j as a function of the genetic distance

between informative CSVs. The emission probabilities e are

constant for each state in Q. For any number of ancestral groups

K, there are nine transition types that are typical of all possible

transitions (not all are needed if K,4)(see Table 3). The transition

functions described can describe the transition from any state q at

step j-1 to any state q9 at step j (see Figure S2). Here r is the

probability of one or more recombinations occurring between the

j-1th informative CSV and the jth informative CSV and is

a function of the genetic distance between the two of them. This

is modeled as a Poisson process with parameter dGl as the

probability of one or more recombinations occurring between two

SNPs separated by distance d, having recombined G generations

ago and with a rate parameter l. There is significant linkage

between many of the CSVs so we set l=10215 in order to

minimize the effect of close highly linked CSVs.

Figure 7. sCSVs allow for calling the sub-continental population of a haplotype. Randomly drawn segments of haplotypes from known
populations can be accurately assigned to the population of origin. Accuracy for each population is significantly correlated with the number of
reference haplotypes for that population (r = 0.65, p-value= 0.042). The highest accuracies are seen in populations that are more isolated from other
populations in their continents.
doi:10.1371/journal.pcbi.1003555.g007
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It is impossible to perfectly determine which CSVs are

spurious from the reference sets, so emission probabilities must

reflect the possibility of errors in determining which variants

are continent-specific (see Table 4). In a section of heteroge-

neous ancestry, emissions from the two ancestries are expected

to occur proportional to the expected number of informative

continent-specific variants seen in the two ancestries. In

a section of homogenous ancestries, emissions are expected

from only the one ancestry. We assume a low spurious CSV

rate of eCSV = 1025 and allow for the iterations to correct for

errors by removing spurious CSVs identified in confidently

called homozygous ancestry sections. We assume that the first

state (q0) of the HMM is silent. With the HMM defined for

each individual, the probability of the individual’s continent-

specific variants is computed by summing over all paths p of

length L (the number of CSVs showing alternate alleles in that

respective individual):

P CSV HMMjð Þ~
X

p
P
L

j~1

dj pj{1,pj
� �

e CSVj pj
��� �

The HMM is posterior decoded and local ancestry is called by

assigning each CSV location the ancestry pair that had the highest

posterior probability. Ancestry was called at all variants by calling

a variant’s ancestry as the same as the proceeding informative CSV.

Once ancestry calls have been assigned, reference panels are

updated to reflect newly identified CSVs and to remove

spurious CSVs. For each reference continental group k and for

each allele i in the genome, the sample allele frequency pki is

found by summing the alternate allele count across all

individuals at allele i with homozygous ancestry for group k

at that allele and then dividing by twice the number of

homozygous calls at that locus for group k. This is performed

for all homozygous ancestry SNP locations in individual i

except for at SNPs that are within 10 SNPs of an ancestry

transition since these are likely to be less confidently called.

The minor allele frequency ~pki, first calculated from the

reference haplotypes is then updated.

~pki~max pki,~pkigfð Þ

The maximum value is used because allele frequencies are used

as indicators of the presence of a CSV in a population; that the

frequency is equal to zero or greater than zeros is what is

important for training CSVs. Another iteration of posterior

decoding is performed using this new ~pki in order to determine

CSV locations. We generally observed negligible improvement in

accuracy between the 3rd and 4th iteration.

Figure 8. sCSVs are able to assign the correct continental group to small haplotype segments with high accuracy. This shows most of
the incorrectly called accuracies still call to the correct continental group.
doi:10.1371/journal.pcbi.1003555.g008
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Comparison to array-based methods
We compared Lanc-CSV to LAMP-LD (v1.0) and MULTI-

MIX (v1.1.0), two widely used state-of-the art methods for local

ancestry inference and a concurrently published method, RFMix

(v1.0.2). We used unphased genotype data as input for all

methods except RFMix, which requires phased haplotypes. We

ran LAMP-LD using the same parameter settings used by 1000

Genomes [51] (number of states 25 and window size 100). We

ran RFMix using the default settings with no EM iterations

because of the large reference panel sizes. RFMix must be used

with phased haplotypes that we computed with Beagle [62] using

30 haplotypes each from the African, European and Native

American (Asian) reference panels as haplotype references for

phasing. We ran MULTIMIX using the MULTIMIX_MCMC-

geno method (which cannot be run with the resolve step). We ran

it using the suggested misfit rates for two-way admixture [0.95

0.05; 0.05 0.95] and [0.95 0.025 0.025; 0.025 0.95 0.025; 0.025

0.025 0.95] for three-way admixture. For sequencing results we

passed the fully sequenced reference haplotypes and the 200

simulated admixed individuals’ data to the programs. For array-

based results we passed only the data at variants present on the

Illumina 1 M genotyping array (down sampled randomly to

50,000 variants in order to run on LAMP-LD). We parallelized

LAMP-LD, RFMix and MULTIMIX for the fully sequenced

data by splitting the data into small segments (,50,000 SNPs per

segment) across the chromosome. We computed accuracies by

correlating the true and inferred local ancestry at each SNP

across individuals only at the Illumina 1 M chip variants.

Low-coverage sequencing
Using the same 200 genotypes for each simulated admixed

population as above, we simulate read data for each individual.

We assume that the number of reads covering each variant in each

individual is drawn from a Poisson distribution with the rate

parameter set to the average read coverage across the genome. We

simulate reads for 0.16, 16, 26, 56, 106, 206, and 306average

coverage across the genome.

We adapted the inference method above to function with input

read count data instead of genotype data. Given a set of read data

for an individual at SNP i, ri = (refi,alti), where ref and alt are the

counts of reads of the reference allele and the alternate allele. We

first compute genotype dosage (di) at SNP location i using the

admixture proportion weighted mean frequency in admixed

individuals (�pi) of the alternate allele. Let ancestral population k

have admixture proportion hk on average in the admixed

individuals.

Figure 9. The average number of sCSVs from each 1000 Genomes population observed per megabase on the African-African called
local ancestry regions of the real ASW individuals on chromosome 10. The large number of YRI sCSVs seen in these regions supports the
hypothesis that the African admixture component in African Americans comes from western Africa. We plot the expected number of observed sCSVs
per megabase on a YRI haplotype (red diamonds) and the expected number of observed sCSVs on an LWK haplotype (green squares). The observed
counts more closely resemble the count profile expected from the YRI haplotypes.
doi:10.1371/journal.pcbi.1003555.g009
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�pi~
XK

k~1

hk~pki

Then P(gi), where gi is the genotype, is assumed to follow

Hardy-Weinberg Equilibrium with alternate allele frequency �pi. P
(ri|gi) follows a binomial distribution modeling the number of

alternate alleles seen given the number of trials equal to the total

number of reads and the probability of an alternate allele equal to

1-es, 0.5 and es for g = 0, 1, or 2. We assume a sequencing error

rate of es=0.01. We then calculate the genotype dosage:

di~

X2

gi~0
giP(ri gi)P(gi)j

X2

gi~0
P(ri gi)P(gi)j

When di.0.6, we assume that the alternate allele is present

at position i and can then run Lanc-CSV as previously

described. We choose this threshold value so that the false

positive rate is below 0.0025 and the false discovery rate of

observed CSVs is below 0.2 for all coverage levels at or above

16.

Figure 10. The average number of sCSVs from each 1000 Genomes population observed on the European-European called local
ancestry regions of the real ASW individuals.
doi:10.1371/journal.pcbi.1003555.g010

Table 3. The transition probabilities between ancestry pairs.

(A1,A1) (A1,A2) (A3,A3) (A2,A3) (A3,A4)

(A1,A1) ((1{rj)zrjh1)
2 2((1{rj)zrjh1)rjh2 r2j h

2
3

r2j h2h3 NA

(A1, A2) ((1{rj)zrjh1)rjh1 ((1{rj )zrjh1)((1{rj)zrjh2)

zr2j h1h2

r2j h
2
3

((1{rj)zrjh2)rjh3

zrj
2h2h3

r2j h3h4

If Ak represent a specific ancestry and hk represents the admixture proportion of that ancestry in the admixed population, then these equations are the transition
probabilities for all possible types of transitions given a probability rj of one or more recombinations occurring between the previous informative CSV and the jth

informative CSV. The rows represent the ancestry state at the previous CSV and the columns the ancestry state being transitioned into at the jth CSV.
doi:10.1371/journal.pcbi.1003555.t003
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The Wahlund Effect [56,57] decreases heterozygosity and

breaks Hardy-Weinberg Equilibrium when individuals from

multiple populations are sampled and have different allele

frequencies. CSVs are very rare and 98% of CSVs have an allele

frequency ,5% in the population in which they are observed. In

order to ensure that the Wahlund Effect does not significantly

affect our method, we calculate the probability of each genotype

for a CSV with frequency 5% in one population admixing with

another population with CSV frequency 0%, where the admixture

proportion of the population with the observed CSV is 10%, 50%

and 80% (see Table S3). The magnitude of the effect is decreases

as CSV frequency decreases so these are the most extreme

expected values. The effect also assumes that sampled populations

have not mixed, so each generation since admixture will further

decrease the effect size.

Effect of sample aware inference
In order to determine if the accuracy of Lanc-CSV increases

with increasing numbers of admixed individuals, we used an

additional 800 African Americans, Puerto Ricans, and Mexicans

each giving a total of 1000 simulated admixed individuals for each

population. We then run Lanc-CSV for 50, 100, 200, 400, 800

and 1000 individuals in each sample and compute r2 after 4

iterations. Each set of individuals contains the individuals from

smaller data sets. Figure 5 shows the increasing accuracy with

increasing sample size.

Analysis of real admixed individuals from 1000 Genomes
In order to assess the performance of our approach in real

data, we used the Americans of African Ancestry in South

Western USA (ASW), Mexican Ancestry from Los Angeles

(MXL), and Puerto Ricans from Puerto Rico (PUR) genotypes

from real individuals contained in 1000 Genomes. Since the true

ancestry is not known, we evaluate the accuracy of Lanc-CSV by

comparing to the local ancestry calls provided by 1000 Genomes.

The 1000 Genomes calls are the consensus calls of four

established local ancestry methods (including LAMP-LD). Calls

were made at a locus when 3 of the 4 methods agreed on the local

ancestry at that locus. We used the 1000 Genomes consensus

ancestry calls in place of the true ancestry and r2 was calculated

the same way as previously described. This is not a measure of

accuracy since the true ancestry is not known, but a measure of

calling consensus between our approach and other ancestry

inference methods.

To check possible causes of poor correlation with the consensus

calls, we selected a subset of 20 individuals from the real Mexican

data, and determined CSVs using both the reference haplotypes as

well as the regions of the remaining (not from the subset of 20)

Mexican individuals’ genotypes that are homozygous for a local

ancestry. We then reran our method on the subset of Mexicans,

first using both reference haplotypes and the held out Mexicans for

training CSVs and second using only the reference haplotypes. We

trained on the held out admixed genotypes by using the

homozygous ancestry regions from 1000 Genomes local ancestry

calls to identify new and spurious CSVs after training on the

reference haplotypes. We see significant increases in accuracy

when we do this, demonstrating poor reference panels as a major

driver of the poor correlation.

Ancestry calling for closely related populations
CSVs, as demonstrated in Table 1, contain sufficient in-

formation to distinguish continental groups from each other.

However, it is possible to distinguish sub-continental populations

from each other as well, such as distinguishing a JPT haplotype

from a CHS haplotype, both of which are in the Asian

continental group.

In order to distinguish sub-continental haplotypes we define

sub-continental population-specific variants (sCSVs) as variants

seen in one of the 1000 Genomes populations (e.g. GBR) but not

in any of the other populations of all continental groups including

its own. We perform a leave one out analysis where we remove

one of the haplotypes from one of the populations, then train

sCSVs on all remaining haplotypes. We then determine how many

sCSVs from each of the populations we see on the held out

haplotype.

We repeated this analysis, but instead of using the full

haplotype to ask how many sCSVs are seen on each haplotype,

we randomly choose sections from each haplotype between 0.05

and 30 megabases long and call the ancestral population of each

haplotype segment as the population of which the most sCSVs

were seen on the segment. With ten populations, random

guessing results in an accuracy of 10%. We also calculate the

accuracy of correctly calling the continental group from which

each haplotype segment was drawn against the haplotype

length.

In order to address the accuracy of sub-continental

population calling in real data, we look at ASW individuals.

In regions where the continental group ancestry (using the

1000 Genomes consensus calls) was called as African-African

or European-European, we counted the number of sCSVs seen

in each population. We normalized the counts to the number

of observed sCSVs per megabase per haplotype. We compared

these counts for the African-African ancestry regions to the

expected number of observed sCSVs per megabase for a YRI

haplotype and a LWK haplotype (calculated from the

Table 4. Probability of emitting an informative CSV from an ancestry state.

p=A1A1 p=A1A2

CSV=A1 1{epsvK N1

N1{N2

{epsvK=2

CSV?A1 epsvK NA

CSV=A2 NA N2

N1{N2

{epsvK=2

CSV=A3 NA epsvK

The probability of seeing a CSV from a different ancestry in a homozygous ancestry state is eCSV. In heterozygous states, CSVs are expected to be observed proportional
to the ratio of the expected number of informative CSVs per haplotype per megabase per individual (see Table 1) in the two populations. Nk represents the expected
number of informative CSVs per haplotype per megabase per individual in population k.
doi:10.1371/journal.pcbi.1003555.t004
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expected counts from the haplotypes used for Figure 6 which

were then normalized by the length of the chromosome in

mega-bases).

Supporting Information

Figure S1 Resolution in determining ancestry switch
locations in LAMP-LD and Lanc-CSV. For each true

ancestry switch location in the simulated Puerto Rican data we

calculated the distance in base pairs to the nearest inferred

ancestry switch point for both LAMP-LD and Lanc-CSV from the

true ancestry switch point. We only considered true switches where

the inferred switches from both LAMP-LD and Lanc-CSV were

less than 500 kb from the true switch point. The mean distance to

the switch point for LAMP-LD was 91,145 bp and 75,644 bp for

Lanc-CSV. For each true switch, we take the difference between

the LAMP-LD error distance and Lanc-CSV’s error distance and

plot a histogram of these values. Positive values imply that at a true

switch location LAMP-LD had greater error, negative values that

our method had greater error; a zero value indicates that both

methods are equally accurate.

(TIFF)

Figure S2 The hidden Markov model for a 2-way
admixed individual (e.g. African American). The three

types of states represent the three types of possible ancestry

combinations: homozygous for African ancestry, homozygous for

European ancestry or heterozygous for African and European

ancestry. The probability of transitioning between the previous

state and ql is a function of the genetic distance between the

previous CSV and CSVj.

(TIFF)

Figure S3 Runtime (in CPU days) as a function of the
number of individuals in a study with genotyping array
data (and sequencing data for Lanc-CSV). Lanc-CSV is

always faster than LAMP-LD and MULTIMIX when run on

either full genome sequencing data (see Figure 3 and Table S1) or

genotyping array data. The full sequencing data contained ,30

times more alleles than the genotyping array data. Only RFMix

has comparable speed for full sequenced data and is faster for

genotype array data. We show the runtime for RFMix with

phasing time included.

(TIFF)

Software S1 MATLAB code for running Lanc-csv. Con-

tained in the software package is the MATLAB code for running

Lanc-csv on genotype data as well as a sample data set. The

included README instructs the user on required input data and

formatting. A C++ version of the code will additionally be

available on our website: http://bogdan.bioinformatics.ucla.edu/

software/lanccsv.

(ZIP)

Table S1 Runtime in CPU days for LAMP-LD, MULTI-
MIX, RFMix and Lanc-CSV. Runtimes were estimated by

running each method on chromosome 10 in 200 individuals and

extrapolated to full genome. Results are in total CPU days. All

methods can be parallelized for proportional decreases in

computing time. RFMix requires phased haplotype data and

phasing time is reported in the parentheses.

(PDF)

Table S2 Correlation of ancestry calls between our
approach and the 1000 Genomes calls in real admixed
individuals from 1000 Genomes. Accuracy reported as r2

(haploid accuracy, diploid accuracy). The 1000 Genomes

consensus local ancestry calls were made using LAMP-LD as

one of the four methods. This demonstrates that poor accuracy is

likely a result of poor reference panels.

(PDF)

Table S3 Wahlund Effect on genotype probabilities.
When an allele has different frequencies in different populations

and the populations are looked at as a single population, the

Wahlund Effect predicts a decrease in heterozygosity. The

magnitude of the effect decreases with the difference in the allele

frequencies and with mixing between the populations. 98% of

CSVs have an allele frequency,5%. Here we report the genotype

probabilities assuming the admixed populations have established

Hardy-Weinberg Equilibrium, and assuming they are completely

unmixed (the most extreme version of the Wahlund Effect). We

report these values for 10%, 50% and 80% admixture proportion

of the CSV containing population. This demonstrates that the

Wahlund Effect will have negligible effect on our method’s

performance.

(PDF)

Table S4 Accuracy of Inferrence on 100 simulated
admixed individuals among pairs of countries in
Europe. We used admixture proportions of (0.5,0.5) and 6

generations of admixture. Accuracy is reported as haploid error

(see main text). We observe a high proportion of heterozygous

ancestry calls (over 90%), consistent with increased ambiguity in

the calling using sCSVs for closely related populations.

(PDF)
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