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Abstract

A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An
economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected
costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly,
depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates
these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest,
triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain
implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series
of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to
dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted
on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match
explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest
duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate
proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in
anticipation, depending on explicit task difficulty.
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Introduction

Suppose that you are given a job whose payoff is proportional to

the effort made within a limited time, say for instance the number

of Christmas cards sold at the end of the day. Maximizing your

payoff would require running from house to house, but this effort

would induce such fatigue that you decide to walk from time to

time. This sort of situation can be examined through economic

decision theory, which would suggest you to write down the

expected costs and benefits, and try to figure out whether the effort

is worthy. If the cost of a given effort is anticipated to increase with

fatigue [1,2], then you will find an optimal duration that can be

determined before engaging any action. Yet the literature on

exercise performance has developed a different perspective on this

issue [3,4], which would suggest that you start by running, and

only stop when some physiological variable, for instance in

cardiovascular function (such as heart beat rate) or in muscular

metabolism (such as lactate concentration), attains a given limit

[5,6]. In other words, effort cessation would be a reaction to

homeostatic failure, and would not require any explicit anticipa-

tion of effort cost.

These two extreme perspectives have obvious limitations. The

physiological view does not account for the effect of expectations

that might pre-configure behavioral performance [4,7,8]. The

economic view does not integrate the constraints imposed by

physiological reactions, which might be difficult to anticipate [9].

Here, we intend to overcome these limitations by integrating the

two perspectives into the same computational model. Further-

more, we have built this model so as to explain the duration not

only of effort exertion but also of rest (recovery from fatigue). Let

us assume that a single waning and waxing variable triggers

decisions to stop and restart effort exertion when reaching bounds

(see Figure 1A for a graphical presentation). As this variable

linearly accumulates during effort and dissipates at rest, it can be

seen as a simple reflection of physiological reactions that predict

the proximity of homeostatic failure. Alternatively, it can be

interpreted as tracking cost increase with fatigue, by integrating

past effort over time. Thus, the basic architecture of the model (the

accumulation-to-bound principle) can account for implicit, online

adaptation to actual effort costs, complying with physiological

constraints. On this basis, the modulation of the model latent

parameters (slopes and bounds) could allow for anticipatory

adjustments, depending on explicit costs and benefits (see

Figure 1B for a graphical illustration).

To dissociate the effects of actual and expected effort costs, we

developed seven variants of a paradigm that was employed in a
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previous paper [10] to identify the neural underpinnings of the

modeled variable, which we termed cost evidence (see Figure 2 for

an overview). The task involved participants squeezing a handgrip

with a given force, knowing that their payoff will be proportional

to their effort duration. Cost evidence can be manipulated by

varying either an imposed duration or an imposed force (task

difficulty). In a first study, we used three tasks that impose variable

durations in order to verify that the behavior is adapted on the fly

due to internal constraints (bounds). In a second study, we

demonstrate that explicit ratings of subjective exhaustion do not

follow the cost-evidence variable that accounts for the decision to

stop effort exertion. In a third study, we used three other tasks that

vary the difficulty in order to dissociate the effects of expected and

actual costs.

Results

Behavioral adaptation to cost evidence (study 1)
In our previous paper [10], we suggested that the alternation of

effort and rest periods observed in the Effort Allocation Task was

well explained by a waning and waxing accumulation signal.

However, this cost-evidence signal that we localized in the brain

could be epiphenomenal, in the sense that it would not reflect any

causal mechanism triggering the decisions to stop and restart

effort. In this first study, we wished to verify that the level of cost

evidence imposes actual constraints on subsequent behavior, as

predicted by the accumulation-to-bound principle. We therefore

tested the predictions of the accumulation model on the behavior

that followed an effort whose duration was imposed. The difficulty

was not manipulated in this study, for two reasons: firstly, the effect

of difficulty was already shown in the previous paper [10] and will

be further investigated in the following studies, and secondly,

manipulation of difficulty only applies to effort periods, whereas

manipulation of duration can be equally applied to both effort and

rest periods. Predictions of the accumulation model are that 1)

prolonging effort should decrease the next effort period (if

compensatory resting is not allowed), 2) prolonging rest should

increase the next effort period (up to a maximum corresponding to

full recovery), and 3) prolonging effort should increase the next rest

period (if compensatory resting is allowed). These three predictions

were tested in different groups of participants (n = 36 in total),

using three variants of the Effort Allocation Task. These three

Adaptation Tasks had the same structure, with first an imposed

effort (between start and stop signals), second a rest period (either

fixed or free) and third a free effort exertion. Difficulty of both

efforts was fixed at 60% of the maximal force, and payoff was

proportional to the duration of the last effort, which was the main

dependent measure. Data were regressed at the individual level

against a linear model that included the factor of interest (the

imposed duration) and several potential confounds (see methods).

The statistical significance of regressors was estimated at the group

level using two-sided one-sample t-tests. Results are given as

standardized effect size (beta) 6 inter-subject standard error of the

mean.

Effort is adapted to accumulated cost evidence (Task 1)
In this task, cost evidence was increased by prolonging the first

effort period (from 1 to 10s), then the second effort duration was

observed after a fixed 2-s rest (Figure 3A). To ensure that the rest

duration was well controlled, we checked that initiation delay of

the second effort after the go signal was not significantly impacted

by the duration of the first effort (6.0 102263. 2 1022, df = 11,

p = 0.09), by cumulated duration of efforts produced in the current

session (1.1 102263.4 1022, df = 11, p = 0.76), and by the session

number (22.8 102262.3 1022, df = 11, p = 0.25). Critically, the

second effort was significantly shortened by prolonging the first

effort (28.29 102162.3 1021, df = 11, p = 0.0037).

Next we examined the shape of the transfer function from

imposed to observed effort duration. The model predicts that this

link should be negative, except if resting is long enough to fully

dissipate the accumulated cost. We therefore compared a model

with pure negative correlation (no saturation, #1) to models with

an upper plateau (over shortest efforts), followed by a decrease. We

tried two possibilities for this saturation effect: first a constant

followed by a linear decrease (#2) and second a negative

exponential (#3). The latter was implemented because it provides

a better fit of plateau effects when data are noisy (see methods).

Bayesian model selection revealed that the pure linear model was

far better than the two saturation models in the family comparison

(model 1 versus models 2 & 3), with an expected frequency

ef = 0.81 (which is much higher than chance level - 1/2) and an

exceedance probability xp = 0.96 (confidence that the model is

more frequently followed than the others). Thus, the result

supports linear accumulation of cost evidence, which limits

subsequent effort production due to the existence of an upper

bound. However, we found no evidence for the existence of a

lower bound in cost dissipation, probably because our rest period

was not long enough. This limitation was overcome in the next

task, where rest period was systematically varied.

Effort is adapted to dissipated cost evidence (Task 2)
This task (Figure 3B) was very similar to Task 1, except that

effort duration was now fixed (to 7 s) and rest duration was

systematically varied (from 1 to 12 s). We checked again that

subjects were not delaying effort initiation to compensate for

variations in the imposed rest duration (23.7 102262.1 1022,

df = 11, p = 0.10). In addition we found that the initiation delay

was slightly affected by the cumulated duration of past efforts (1.2

102265.0 10 23, df = 11, p = 0.03), but not by the session number

(21.1 102261.4 1022, df = 11, p = 0.46). Critically, observed

effort was significantly prolonged by longer rest (6.9 102161.9

1021, df = 11, p = 0.0035).

Author Summary

Imagine that ahead of you is a long time of work: when
will you take a break? This sort of issue – how to allocate
effort over time – has been addressed by distinct
theoretical fields, with different emphasis on reactive and
predictive processes. An intuitive view is that you start
working, stop when you are tired, and start again when
fatigue goes away. Biologically, this means that decisions
are taken when some physiological variable reaches a
given bound on the risk of homeostatic failure. In a more
economic perspective, fatigue translates into effort cost,
which must be anticipated and compared to expected
benefit before engaging an action. We proposed a
computational model that bridges these perspectives
from sport physiology and decision theory. Decisions are
made in reaction to bounds being reached by an implicit
cost variable that accumulates during effort, at a rate
proportional to task difficulty, and dissipates during rest.
However, some latent parameters (bounds and dissipation
rate) are adjusted in anticipation, depending on explicit
costs and benefits. This model was supported by behav-
ioral data obtained using a paradigm where participants
squeeze a handgrip to win a monetary payoff proportional
to effort duration.

Modeling Effort Allocation over Time
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Next we tested the existence of a saturation, meaning that

beyond a certain rest duration, cost evidence is entirely dissipated

and subsequent effort cannot be further prolonged. As was done

for the previous task, we compared three models for the link

between rest and effort duration: 1) a linear effect (no saturation),

2) a linear effect bounded by an upper plateau (over longest rests),

3) an exponential asymptotic plateau. Bayesian model selection

showed that the saturation family was now more plausible (models

2 and 3 versus model 1, chance level is 1/2, ef = 0.79, xp = 0.94).

Direct comparison between models 2 and 3 revealed that the

asymptotic saturation was more likely than the linear plateau

(xp = 0.98). Thus, the results confirmed that prolonging rest after a

first effort augments the capacity to produce a second effort, as if

cost evidence was dissipated. Moreover, the saturation effect

suggests the existence of a threshold after which prolonging rest is

useless, which would correspond to a lower bound for cost-

evidence dissipation.

Rest is adapted to accumulated cost evidence (Task 3)
This task (Figure 3C) was quite similar to Task 2, except that

participants were not asked to resume their effort immediately at

the go signal, but only when they felt ready to do so. There were

therefore two dependent variables of interest: rest duration and

subsequent effort duration. Critically, rest duration was signifi-

cantly increased by prolonging the imposed effort duration (6.5

102161.3 1021, df = 11, p = 0.0005).

Figure 1. Computational model of effort allocation over time. A. Application of the accumulation-to-bound principle to cost-evidence
monitoring. The graph displays an example trial from the Effort Allocation Task, with the observed force time series on top of the theoretical cost
evidence. Force level was normalized by the participant’s maximal force (estimated prior to the experiment). It is traced in black (not gray) when the
effort is rewarded, i.e. when above the target force level (80% of maximal force in this example). The three effort periods shown in red were defined
using both the force level and its temporal derivative. The modeled cost evidence accumulates during effort, with slope Se, to an upper bound
triggering effort cessation, and then dissipates during rest with slope Sr, to a lower bound triggering effort resumption. The amplitude of cost-
evidence fluctuations is denoted A. The accumulation model was built to fit two dependent measures: effort duration (Te) and rest duration (Tr). B.
Illustration of how the experimental factors (monetary incentive, actual difficulty, expected difficulty) affect cost-evidence monitoring. Bayesian
model comparison dissociated the computational effects of experimental factors: higher incentives increase the amplitude between bounds and the
dissipation rate; higher actual difficulty steepens the accumulation rate; higher expected difficulty shallows the dissipation rate. Mathematical
equations of the winning model are given in the results section.
doi:10.1371/journal.pcbi.1003584.g001

Modeling Effort Allocation over Time
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We expected that participants would rest long enough to fully

dissipate the first effort cost, which hence would have no impact on

the second effort duration. This was not the case: prolonging the

first effort significantly shortened the second effort (24.7

102161.4 1021, df = 11, p = 0.006). Thus, subjects did not wait

long enough to compensate for the imposed effort cost. This

partial recovery might be related to the fact that the total time

allowed for rest and effort was limited to 20s, so that participants

may have shortened rest to make sure there would be enough time

for effort (even if in reality, 20s was largely enough to fully dissipate

and accumulate cost again).

Introspection of cost evidence (study 2)
So far, our results suggest that effort duration is not entirely

planned in advance but adapted on the fly so as to keep cost

evidence within pre-defined bounds. The next study was designed

to assess whether our participants could explicitly report the cost

evidence that was monitored by their brain in order to regulate

their behavior. The first study only manipulated the duration of

effort or rest periods. Yet our model posits that cost evidence

accumulation during effort depends on task difficulty. Therefore,

cost-evidence level should reflect the interaction of task difficulty

and effort duration. The logic of this second study was first to

examine whether introspective reports would reflect the interaction

of difficulty and duration, and then to verify that behavioral

choices were indeed driven by this interaction,

For introspective reports we asked a new group of 18

participants to perform a Cost Rating Task, in which they had

to rate their degree of exhaustion after effort exertion. Note that

we could have directly inserted cost ratings within the Effort

Allocation Task, but subjects in this case might have artificially

aligned their behavior to their explicit reports (or vice-versa).

Another issue with this possibility was that effort duration would

not have been sufficiently varied, at least not orthogonally to effort

difficulty, since subjects would have stopped their effort when cost

evidence (difficulty times duration) reached a pre-defined bound.

We chose to frame the question in terms of exhaustion because

debriefing of previous studies revealed that exhaustion is the

intuitive term that subjects spontaneously use to describe the

sensation that makes them cease their effort. The precise question

was ‘Have you exhausted your resources?’ and the response scale

was ranging from ‘not at all’ to ‘completely’. In this Cost Rating

Task, both effort duration (from 3 to 7 s) and task difficulty (from

40 to 60% of maximal force) were imposed and varied

experimentally (Figure 4A). To keep similarity with the Effort

Allocation Task, we also manipulated the incentive level. Yet we

acknowledge that the comparison between tasks has limitations,

first because they implement different range of forces and

Figure 2. Summary of experimental manipulations and behavioral findings.
doi:10.1371/journal.pcbi.1003584.g002

Modeling Effort Allocation over Time
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durations, second because they are performed by different

subjects, who might have different sensitivity to effort cost.

On each trial, the payoff was calculated as the incentive

multiplied by the fraction of the imposed duration that subjects

spent squeezing at the required target force level or higher. As

participants were asked to be as accurate as possible, this fraction

was almost 100% (mean over subjects: 98.7%, extreme subjects:

94.6% and 99.9%). The difference between required and

produced force levels did not vary significantly across conditions

(multiple regression analysis and two-sided t-test with df = 17;

incentive: 4.1 102363.7 1023, p = 0.28; duration: 23.4 102664.6

1023, p = 0.99; difficulty: 21.8 102363.3 1023, p = 0.59; inter-

actions between these factors: all p.0.21), suggesting that effort

production was well controlled by the experimental design. Cost

ratings were not significantly impacted by incentives (1.460.86,

df = 17, p = 0.1), and marginally by the initial position of the

cursor on the scale (1.860.9, df = 17, p = 0.056). Critically, cost

ratings increased with both duration (1.960.79, df = 17,p = 0.028)

and difficulty (3.260.49, df = 17, p = 5 1026), without significant

interaction between these factors (p = 0.96).

We then fitted cost ratings with a linear combination of regressors

meant to capture the impact of duration and difficulty. We

considered three possibilities: main effects of duration and difficulty,

non-linear effects (power functions) of duration and difficulty, and

interaction between duration and difficulty. Including or not each

possibility in the linear combination made a total of eight models,

which we compared using Bayesian model selection (Figure 4C).

This analysis confirmed the absence of significant interaction

between duration and difficulty, since the best model was simply

additive (chance level is 1/8, ef = 0.48; xp = 0.93). In principle, this

additive effect could arise from half the subjects reporting duration

and the other half reporting difficulty. This would imply that the

effect sizes of these factors are anti-correlated across subjects. We

found the opposite result (Pearson rho: 0.82, df = 16, p = 3 1025),

suggesting that subjects who were good at perceiving duration were

also good at perceiving difficulty. Yet they reported the addition of

the two dimensions, and not their product, as should be the case if

they were simply introspecting cost evidence.

We next re-analyzed the behavioral choices observed in our

Effort Allocation Task (Figure 4B) that involved subjects (n = 38)

squeezing a handgrip in order to accumulate as much money as

possible [10]. The payoff was calculated as the monetary incentive

multiplied by the time spent above a target force level (which

indexed task difficulty). Both the incentive (10, 20 or 50 cents) and

difficulty levels (70, 80 or 90% of maximal force) were varied

across trials such that we could assess their effects on effort

allocation. Incentive levels were sufficient for subjects to initiate

the effort and to reach the target, but difficulty levels were too

demanding for subjects to sustain their effort throughout trials,

which lasted 30 seconds. Instead, they freely alternated effort and

rest periods within trials (as can be seen in Figure 1A). We used the

normalized cumulative distribution of effort durations to calculate

the probability of stopping the effort after a given duration at a

given difficulty level. This probability was fitted with a sigmoid

function of cost-evidence level, which accounts for higher cost

evidence making effort cessation more likely. Cost evidence was

then modeled with the same linear combinations as used for fitting

cost ratings. Results of Bayesian model selection (Figure 4D)

showed that the most plausible model was pure interaction (chance

level is 1/8, ef = 0.62, xp = 0.988).

Figure 3. Behavioral adaptation to cost evidence. The three columns (A, B and C) present three different studies, with results underneath the
tasks. Note that there are two sub-columns for the last study (on the right) because there are two dependent variables (rest and effort duration). Top:
Behavioral tasks. Each plot sketches the variations of exerted force level within a trial. Gray shading indicates the periods when action was imposed
on participants; in the other periods the behavior was let free. The broken line points to periods when durations were systematically varied. Bottom:
Relation between imposed and observed group-level average durations (6 SEM). Two data points are plotted for each imposed duration,
corresponding to left and right hands. The black line is the group average of the model fit estimated at the subject level; dash lines indicate the 95%
confidence interval of the average.
doi:10.1371/journal.pcbi.1003584.g003

Modeling Effort Allocation over Time
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The Cost Rating and Effort Allocation tasks thus elicited distinct

forms of cost evidence, with additive versus multiplicative effect of

effort difficulty and duration. The critical difference is the shape of

iso-value lines of cost evidence in the duration by difficulty space,

with straight lines for explicit report and convex lines for effort

cessation (compare Figures 4E and 4F). To directly compare the

curvature of cost evidence inferred from introspective reports and

behavioral choices, we fitted a model with constant elasticity of

substitution (CES) between duration and difficulty (see methods).

This model has a free parameter that captures the curvature of

Figure 4. Introspection of cost evidence. A–B: Behavioral tasks. The illustrated screenshots were successively presented every trial. A: the Cost
Rating Task was developed to assess introspection of resource exhaustion. On each trial, participants were asked to squeeze the hand grip up to the
target level (horizontal bar), which corresponded to varying difficulty level (40% to 60% of maximal force), as long as the thermometer was displayed,
which could last for varying durations (4 to 7 seconds). After each effort, participants rated their degree of exhaustion using a visual horizontal analog
scale. The last screen of each trial indicated the payoff cumulated over preceding trials. B: the Effort Allocation Task was exploited in a previous paper
[10]. When the thermometer image was displayed, participants could squeeze a handgrip to win as much money as possible. Subjects were provided
with online feedback on force level and cumulative payoff. The payoff was only increased when force level was above the target bar, at a constant
rate proportional to the monetary incentive. The incentive (10, 20 or 50 cents) and the difficulty (i.e. the force required to reach the target bar: 70, 80
or 90% of maximal force) were crossed over trials. The last screen indicated the money won over all preceding trials. C–D: Computational modeling:
Bayesian model comparison. For each participant, we estimated eight models generating cost evidence from difficulty and duration. Cost evidence
was then used to fit the subjective ratings of exhaustion (C) or the decisions to stop effort exertion (D). Models were linear combinations of different
possible regressors (main effects, interaction and non-linear effects), as indicated in the bottom chart (tick: included, cross: not included). E–F: Fit of
additive and multiplicative models. Data are subjective ratings of exhaustion (E) and probability of stopping effort exertion (F), shown in the duration
by difficulty space explored in the Cost Rating and Effort Allocation tasks, respectively. The color code indicates average observed data (left diagram)
or predicted data from the additive and multiplicative models that provided the best fit with median parameter values (middle and right diagrams).
Note the main difference between additive and multiplicative models is the curvature of iso-value lines (in white), which reflects the interaction
between duration and difficulty.
doi:10.1371/journal.pcbi.1003584.g004

Modeling Effort Allocation over Time
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cost in the duration by difficulty space, which should be equal to

one in the absence of interaction, and below one in the case of a

convex interaction. We found that the curvature parameter was

significantly below one in the Effort Allocation Task (median: 0.52,

SEM: 0.06; two-sided sign-test of the median against 1: p = 6.7

1028) but not in the Cost Rating Task (median: 1.01, SEM: 0.12;

sign-test of the median against 1: p = 1), with a significant

difference between tasks (p = 3 1026, two-sided Wilcoxon rank

sum test for equal medians).

When debriefing the Cost Rating Task, participants unambig-

uously reported having noticed variations in both difficulty and

duration. When asked whether one of these two factors had a

greater impact on their ratings, 13 subjects favored the duration, 3

favored the difficulty, and 2 could not favor one or the other,

describing something like an interaction. However, comparison of

standardized effect size revealed a greater impact of difficulty on

ratings (paired t-test on duration minus difficulty effect size:

21.360.48, df = 17, p = 0.016). Among the 16 subjects who

favored a main effect, 12 got it wrong (the other factor had a

higher impact on their ratings), which is more than expected by

chance (binomial test, p = 0.028).

To summarize, the costs reported in subjective ratings do not

have the same shape as the costs inferred from behavioral choices.

What subjects report is an addition of duration and difficulty,

whereas what drives their behavior is an interaction between the

two. Furthermore, at a meta-cognitive level, subjects have poor

insight into the factors that modulate their sensation of exhaustion.

Dissociation of implicit from explicit cost processing
(study 3)

The two studies presented so far are compatible with a completely

implicit and automatic model, in which decisions to cease and

resume effort production are controlled by an internal variable

fluctuating between bounds that might be determined by physio-

logical constraints. In this last study, we explored whether explicit

information about cost could impact the mechanics driving

decisions to start and stop effort exertion. In our previous paper

[10], we had observed that task difficulty shortened effort duration,

which could reflect cost evidence (difficulty times duration) reaching

the upper bound, but did not affect rest duration. We hypothesized

that the last observation could arise from task difficulty not being

made explicit to participants. Indeed, monetary incentives, contrary

to difficulty levels, were explicitly presented with coin images at trial

start and affected both effort and rest durations (with longer effort

and shorter rest for higher incentive).

We therefore tested whether providing explicit information

about difficulty level would change the way participants process

cost evidence. We constructed three variants of the Effort

Allocation Task, which were administered to three different

groups of participants (n = 67 in total). In all tasks, incentives (coin

images) were explicitly displayed before and during trials, which

had a fixed duration (30s) that was specified to participants prior to

the experiment. The Implicit Task (Figure 4B) is the task used in

our previous paper [10], with no visual cue for difficulty level. In

the Explicit Task, the only change is that difficulty level

(percentage of maximal force: 70, 80 or 90%) was announced

before the beginning of trials, on the same screen as incentive level.

In the Dissociation Task, we kept the explicit cues, but they were

no longer predictive of the actual task difficulty. To maintain

sufficient statistical power, only two difficulty levels were used (75

and 85%), in a full factorial design (two cued difficulties crossed by

two actual difficulties). This design was meant to disentangle the

effects of implicit versus explicit cost processing. Monetary

incentives were also manipulated in all tasks and crossed with

the three (Implicit and Explicit Tasks) or four (Dissociation task)

cells corresponding to variations in difficulty. We only used two

incentive levels (10 versus 20c) in the Dissociation task to avoid

combinatorial inflation. In every task, the effect of experimental

factors (incentive, actual and cued difficulty) on the duration of

effort and rest epochs were estimated in separate multiple linear

regressions followed by two-sided one-sample t-tests.

Note that because they must add up to 30s, the cumulative

durations of effort and rest are anti-correlated. However, this

dependency was broken first because the last rest epochs were

discarded from the analysis, since they are interrupted by trial

ending, and second because we considered the single epoch

durations, which are not predictable from the cumulative durations,

since they depend on the number of alternations between effort and

rest. The remaining correlation was rather low (Pearson rho:

20.1560.026 in the main Implicit Effort Allocation Task) and

probably due to opposite effects of experimental factors (see below).

Comparison of Implicit and Explicit Tasks
As previously shown [10], in the Implicit Task (Figure 5, left),

effort duration was both longer for higher incentive (1.560.26,

df = 37, p = 8.1 1027) and shorter for higher difficulty (21.160.13,

df = 37, p = 1.6 10210). In contrast, rest duration was shorter for

higher incentive (20.3760.08, df = 37, p = 2.0 1025) but was not

modulated by the difficulty (0.03, 60.03, df = 37, p = 0.32).

Interactions were included in the regression model, but the

incentive x difficulty interaction was not significant, neither for

effort or for rest duration (all p.0.084).

All significant results were replicated in the Explicit Task

(Figure 5, middle): effort duration was both longer for higher

incentive (2.260.53, df = 13, p = 1.1 1023) and shorter for higher

difficulty (21.860.24, df = 13, p = 6.0 1026), and rest duration

was shorter for higher incentive (20.460.09, df = 13, p = 9.7

1024). The novel result is that rest duration was now increased by

higher difficulty (0.3160.08, df = 13, p = 1.6 1023), which was

correctly cued at trial start. The difference in standardized effect

sizes between Implicit and Explicit Tasks was also significant

(p = 1.2 1024, unpaired t-test, df1: 37, df2: 13). All interactions

remained non-significant, neither for effort or rest duration (all

p.0.1). Thus, the difficulty in the Explicit Task, which was both

expected and experienced during effort exertion, affected both

effort and rest durations.

The results obtained with the Implicit and Explicit Tasks are

compatible with the actual difficulty affecting effort duration, and

the expected difficulty affecting rest duration. In the Implicit Task,

there was no explicit cue, so subjects did not expect any particular

difficulty level, and consequently only effort duration (not rest

duration) was affected by task difficulty. In the Explicit Task, both

effort and rest durations were modulated because the actual

difficulty was fully expected. However, as the explicit cues were

perfectly valid, we could not formally demonstrate with this task

that rest duration is not concerned with actual difficulty, or that

effort duration is not concerned with expected difficulty. To

complete our demonstration, we intended to dissociate the two

effects within the same task.

Analysis of the Dissociation Task
In the Dissociation Task (Figure 5, right), the levels of actual and

cued difficulty were manipulated independently. As in the Implicit

and Explicit tasks, higher incentive increased effort duration

(0.4260.16, df = 14, p = 0.022) and shortened rest duration

(20.2260.06, df = 14, p = 1.5 1023). Effort duration was affected

by the actual (20.4760.18, df = 14, p = 0.021) but not by the cued

difficulty (0.0760.15, df = 14, p = 0.64). The difference in
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standardized effect size was at significance limit (20.5460.25,

df = 14, p = 0.050, paired t-test). We also verified that the effect of

cued difficulty on effort duration in the Dissociation Task was

significantly lower than the (actual) difficulty effects observed in the

Implicit (p = 4.3 1027, unpaired t-test, df1: 37, df2: 14) and Explicit

(p = 2.3 1026, unpaired t-test, df1: 14, df2: 13) tasks. Conversely, rest

duration was affected by the cued (0.2260.06, df = 14, p = 1.7 1023)

but not by the actual (0.0360.06, df = 14, p = 0.63) difficulty. The

difference in standardized effect size was as well significant

(20.1960.08, df = 14, p = 0.045, paired t-test). We also verified

that the effect of cued difficulty on rest duration was higher in the

Dissociation Task than the (actual) difficulty effect observed in the

Implicit Task (p = 0.002, unpaired t-test, df1: 37, df2: 14), and that

the effect of actual difficulty in the Dissociation Task was lower than

the (cued) difficulty effect observed in the Explicit Task (p = 0.008,

unpaired t-test, df1: 14, df2: 13). Thus, within- and between-task

comparisons both support a double dissociation between the actual

and cued difficulty effects on effort and rest durations.

As some critical p-values were near 0.05 type I error rate, we

conducted a permutation test to ensure the reliability of the

parametric t-distribution in our small sample. This permutation-

based t-distribution yielded the same exact p-values up to the 3rd

decimal. Second and third order interaction terms between

incentive, cued and actual difficulty were included in the model,

but none of them was significant neither for rest or effort duration

(all p.0.18). We also checked that there was no interaction of

cued difficulty with time, which could potentially reflect a

progressive discount of the cue effect (as subjects would learn that

cues are not predictive of actual difficulty). Time was modeled at

three nested scales (rest or effort period position within a trial, trial

position within a session, and session number). Two-way

interactions with cued difficulty were estimated for each time

scale: none of them was significant (all p.0.25).

Bayesian model selection
We compared different versions of our accumulation model to

identify how the latent parameters (A: amplitude between bounds,

SE: accumulation slope during effort, and SR: dissipation slope

during rest) were affected by the experimental factors (I: Incentive,

Da: actual difficulty, Dc: cued difficulty). We started with the

formalization that we proposed in our previous publication [10] to

account for the behavior observed in the Implicit Task. All models

were built as a set of three equations that defines each latent

parameter as a linear combination of the different factors (see

Figure 5. Dissociation of implicit from explicit cost processing. Three sets of participants performed three slightly different versions of the
Effort Allocation Task. The Implicit Task is sketched in Figure 4B. The only variation introduced in the Explicit Task is that effort difficulty was written
on screen (70%, 80%, 90%) along with incentive level, announced as a coin image. The Dissociation Task was visually identical to the Explicit Task, the
difference being that the difficulty level announced on screen was not predictive of the actual difficulty level: cued and actual difficulties were
crossed into a factorial design. Thus, the factorial combination generated 9 cells for the Implicit and Explicit Tasks (3 incentives63 difficulties) and 8
cells for the Dissociation Task (2 incentives62 actual62 cued difficulties). The effects of the different factors, estimated with linear regression analysis,
are illustrated column-wise for each task. Regression coefficients were statistically tested and compared with two-sided t-test, p-values: *,0.05,
**,0.005, ***,0.0005.
doi:10.1371/journal.pcbi.1003584.g005
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methods). Only models that can produce the behavioral results

(significant effect on effort or rest duration) were included in the

space covered by Bayesian Model Selection. In the Implicit Task,

this left 24 possible models (see Figure 6A) with one that was much

more plausible than the others (chance level is 1/24, ef = 0.30,

xp = 0.90).

For the novel tasks (Explicit and Dissociation), we explored two

possibilities for integrating the additional factor (cued difficulty).

The first possibility was to integrate it as an additive term, just as

was done with actual difficulty (see Figure 6B and 6C). Note that

these purely linear models do not enable dissociating the effects of

actual and expected difficulty in the Explicit Task. The second

possibility was to integrate cued difficulty as a hyperbolic

discounter of incentives, which is quite standard in the literature

for capturing temporal discounting [11–13]. Thus, for the novel

tasks that manipulate expected difficulty, we included the

hyperbolic equivalent of our linear models (see Figure 6D). With

this hyperbolic version, we can dissociate the effect of actual and

expected difficulty (the former is linear, the latter hyperbolic) even

in the Explicit Task where the two factors are confounded.

Family comparison revealed that there was far more evidence in

favor of a hyperbolic rather than linear discount of incentives by

cued difficulty, in both the Explicit and Dissociation tasks (chance

level is 1/2, ef.0.91, xp.0.999). Among the 78 possible hyperbolic

models, a best model was identified with xp = 0.90 (chance level is

1/78, ef = 0.13) in the Dissociation Task and with xp = 0.82 (chance

level is 1/78, ef = 0.14,) in the Explicit Task. Crucially, the best

hyperbolic model identified in the Explicit and Dissociation tasks

was the same model, which also corresponded to the best model

identified in the Implicit Task (where modulation by cued difficulty

is necessarily absent). This best model is written as follows (Te and

Tr being effort and rest duration, a, b, c the coefficients and I, Da

and Dc the incentive, actual difficulty and cued difficulty levels):

Te~
A

Se
; Tr~

A

Sr

A~amzaI I

Se~bmzbDaDa

Sr~cmz
cI I

1zcDcDc

8>><
>>:

A graphical interpretation of the model with a summary of the

observed effects is provided in Figure 1. In short, incentives

Figure 6. Model space definition. Models are characterized by the modulation of latent parameters (A: amplitude between bounds, Se:
accumulation slope during effort, and Sr: dissipation slope during rest) by the experimental factors (incentive, actual difficulty, cued difficulty). Each
column is a potential factor and each line is a possible set of modulations by this factor (‘1’ denotes that the modulation is allowed, ‘0’ that the
modulation is absent). For each latent parameter, the different modulations are linearly combined (models A, B, C), except for the cued difficulty in
hyperbolic models (D), which is integrated as a hyperbolic discounter of monetary incentives. In this case, including cued difficulty (in the
denominator) is useless when modulation by incentives (the numerator) is not allowed, which is indicated by a gray background. Lines appearing in
red correspond to models that were not included in the comparison, because they cannot produce the behavioral results (significant effect on effort
or rest duration). The winning models for the different tasks appear in blue (note that it is indeed the same model, as there is no cued difficulty, and
hence no hyperbolic discounting, in the Implicit Task).
doi:10.1371/journal.pcbi.1003584.g006
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impacted both the amplitude between bounds and the dissipation

rate, resulting in longer effort and shorter rest for higher incentives.

The effect of task difficulty was computationally dissociable: higher

actual difficulty accelerated the accumulation, resulting in shorter

effort, whereas higher expected difficulty slowed the dissipation,

resulting in longer rest.

Discussion

In our previous paper [10], we addressed the issue of how the

brain allocates effort production over time, in a situation where the

payoff depends on the total effort duration. We found a neural

signal that was ramping up and down during effort and rest

periods and that could, in principle, trigger the decisions to stop

and restart effort production. Here we provide evidence that the

core accumulation-to-bound mechanism is reactive and implicit.

Indeed, participants adapted their behavior on the fly when we

implicitly manipulated both the duration (Study 1) and the

difficulty (Study 3) of effort exertion. However, when asked to rate

their degree of exhaustion (Study 2), subjects did not report the

cost evidence signal that was shown to drive their behavior. In

addition, we suggest that some latent parameters of the

accumulation-to-bound process are susceptible to anticipatory

adjustment based on explicit information. Indeed, we found that

expected benefit and difficulty could modulate the distance

between bounds or the dissipation rate during rest. The

dissociation of implicit and explicit cost processing could reconcile

the perspectives offered by sport physiology on the one hand, and

economic theory of choice on the other hand.

The implicit part of the model - monitoring cost evidence and

triggering decisions when bounds are attained, accords well with

the literature on exercise performance [4,8]. Although it was

developed to explain how athletes pace their running on

treadmills, we can borrow the notion that behavioral changes

are reactions to physiological variables reaching homeostatic

borders. Results of Study 1 show that bounds between which the

cost-evidence signal fluctuates are true limits that determine the

decisions to stop and restart effort exertion. On the contrary, the

explicit part of the model – adjusting the behavior depending on

expected benefit and difficulty – is consistent with the literature on

value-based decision-making [14,15]. It is quite remarkable in

Study 3 that the computational effect of actual (implicit) difficulty

during effort was simply linear, as in a passive accumulation,

whereas the effect of expected (explicit) difficulty was hyperbolic,

as in economic models of temporal discounting [13,16]. It should

be acknowledged that mixtures of anticipatory calculations and

on-line adaptations are frequently used in motor control theory

[17,18], for instance to explain how movement trajectory can be

adjusted to internal noise and to unexpected target displacement.

However, these models have not integrated the conflict between

costs and benefits until very recently [19,20]. Finally, we note that

the perspectives offered by the literatures on exercise performance

and value-based choice only explain the duration of effort; without

further specification they say nothing about the duration of rest.

Our model accounts for the timing of both effort and rest, within

the same accumulation framework.

Examining whether the accumulation mechanism is optimal or

not would go beyond the scope of this study. It can nonetheless be

seen has a heuristic mechanism that certainly has advantages.

Physiologically, it ensures that effort production does not put the

body at threat, avoiding for instance damage to the muscles. In this

view the signal would indicate the likelihood of physiological

damage, and the upper bound would implement a threshold on

that risk. Economically, it ensures that costs do not overcome

benefits. In this view, the signal would indicate the cost, and the

upper bound the benefit of the potential effort at the next time

point. Mixing predictive and reactive processes also presents

advantages. Online monitoring of effort consequences allows

refining cost estimation, which is usually uncertain beforehand, as

in our implicit version of the task. Anticipatory estimation allows

deciding whether or not to engage the action, and scaling energy

expenditure to expected costs and benefits. In our case, this means

spending more time at work and less time at rest when the net

value of effort is higher.

The two behaviors, effort and rest, are not equivalent though.

While monitoring cost evidence during effort might be a passive

process (mechanically integrating difficulty over time), dissipating

cost evidence during rest seems more active. Indeed, the

dissipation rate was susceptible to modulation by explicit

information (monetary incentive and cued difficulty). Moreover,

the observation that subjects do not report cost evidence was only

made in Study 2, relative to the effort period. It remains possible

that during rest, subjects are fully aware of the cost-evidence level,

and hence of how much effort they would be able to produce next.

We could have tried to test whether their introspective reports

integrate duration with cued difficulty after a given rest, but asking

the question in this case would have been awkward.

Using dissipation as well as accumulation in order to explain

behavioral choices is a major difference between our model and

the standard evidence accumulation models. Classically, accumu-

lation of evidence is meant to improve the estimation of a

stationary noisy input, whether external, as in perceptual decision-

making [21–23], or internal, as in value-based decision making

[24–26]. The fact that the cost evidence variable dissipates at rest

rules out the possibility that this signal simply reflects an

integration of the force produced throughout the trial (which

can only increase). It is likely that the signal reflects an input that is

already dynamical (and not stationary). This might be true not

only at the theoretical level, if we interpret it as signaling the

potential effort cost or the proximity of exhaustion, but also at the

biological level. For instance, our cost evidence signal could relay

the accumulation and dissipation of a by-product of effort

exertion, which could integrate several variables such as lactate

concentration, stretch of muscle fibers or heart beat rate.

Alternatively, the cost-evidence signal could reflect increase in

the efferent drive needed to overcome fatigue and maintain motor

output [27]. Using combined fMRI and MEG recordings, we

localized the cost-evidence signal in proprioceptive areas (posterior

insula). This localization would incline us to situate the input in the

afferent proprioception coming from the muscles [28]. However,

the fact that subjects had a poor introspection into that signal

argues against the idea that it represents the neural counterpart of

a common and intuitive sensation such as fatigue.

Yet the fact that cost evidence dissipation could be modulated

depending on expected benefit and difficulty suggests that other

neural processes occur during rest than passive transmission of

effort-induced physiological perturbation. First, the dissipation of

cost evidence could be linked to the preparation of the next effort.

Such preparation is reflected by motor signals such as the

readiness potential [29,30] or the de-synchronization of beta

oscillations [31,32]. We showed in a previous publication [33] that

the last process is modulated by incentive level; it could therefore

mediate the effect of motivation on cost dissipation in the posterior

insula. Second, the dissipation of cost evidence could be

accentuated by analgesic mechanisms. The posterior insula region

that signals cost evidence is also involved in pain perception

[34,35] and placebo effect [36]. The placebo effect suggests that

the brain has an endogenous means to control pain, possibly

Modeling Effort Allocation over Time

PLOS Computational Biology | www.ploscompbiol.org 10 April 2014 | Volume 10 | Issue 4 | e1003584



through the opioid system [37–39]. Another possibility would be

serotonin, which contributes to the analgesia induced by common

pain killers such as acetaminophen [40] and to the sensation of

fatigue during effort [1,5]. Thus, through opioids or serotonin, the

brain might be able to regulate cost-related signals depending on

motivation level.

Before concluding, we must acknowledge some limitations and

inconsistencies. First, the situation explored in our paradigm is

highly restricted. Notably, subjects are only allowed to adjust the

duration of their effort and not the intensity, which we can usually

adjust in ecological situations. We have conducted a series of

studies where the payoff was based on effort intensity [41–43], but

we still have to explore a situation where the two dimensions can

vary. Second, the model does not account for a number of

observations, for instance the fact that fatigue accumulates at

longer time scales. Indeed, we observed in some tasks an effect of

trial and/or session number on effort duration, which could mean

that cost was not fully dissipated after each rest period, or that

slower effort-induced perturbations were accumulated elsewhere

and imposed constraints on performance. Third, it cannot be

formally concluded that subjects have no explicit access to the cost-

evidence signal driving effort allocation, as one can always object

that the inability to report a variable is due to the question not

being appropriately formulated. This objection should neverthe-

less be tempered since our negative result is not an absence of

effect: the question about exhaustion did elicit subjective ratings

that were sensitive to the cost parameters (effort duration and

difficulty) but not in the way that is relevant to cost monitoring

(multiplicative and not additive). It remains interesting that,

although participants spontaneously explain why they stopped

their effort in terms of exhaustion, they failed to report the variable

(difficulty times duration) that exhausted their resources.

Despite these limitations, the results of the present studies taken

together provide strong evidence that costs are implicitly

monitored in order to adapt effort duration on the fly, which

can be dissociated from anticipatory adjustments depending on

explicit costs and benefits. Moreover, this dissociation was

computationally tractable and might be of clinical relevance. It

suggests the existence of two different kinds of apathy: effort could

be limited because the expected cost is over-estimated, or because

the actual effort-induced cost is inflated. The first category

(perhaps in depression disorders) would rest a lot but would

encounter little difficulty in maintaining their effort once it is

engaged, whereas the other (perhaps in chronic fatigue) would

easily initiate efforts but then would rapidly renounce.

Methods

Ethics statement
The study was approved by the Pitié-Salpétrière Hospital ethics

committee (protocol number: 106-07). All subjects were recruited

via email within an academic database and gave inform consent

prior to participating in the study.

Participants
The study was approved by the Pitié-Salpétrière Hospital ethics

committee. All subjects were recruited via email within an

academic database and gave inform consent prior to participating

in the study. There was no restriction of handedness, excepted for

the original (Implicit) Effort Allocation Task, in which participants

were all right handed for neuroimaging purposes. Other inclusion

criteria were: age between 20 and 39 years, absence of

self-reported psychiatric or neurological history and of current

psycho-active substance consumption.

In all studies, participants were told that they would win the

money accumulated during the task. In the previous study

(Implicit task), the payoff was eventually rounded up to a fixed

amount (100J) credited by bank transfer. In all new studies

participants were paid in cash at the end of the experiment. The

payoff was partitioned into a fixed amount and variable amount

depending on the money won during the task. For the Cost Rating

Task, the amount earned during the task was eventually down-

scaled (divided by 2.48) to fit in a budget of 30J per subject while

maintaining the correspondence between payoff and incentive

during the task. Participants were informed about this correction

prior to the experiment.

The Implicit task was performed in a MRI scanner for half the

subjects and under a MEG helmet for the other half. One subject

in the MRI group was excluded from the analysis because of

calibration issues. For the Adaptation Task 3, one participant was

excluded because of calibration issues and another for cheating

(repeated, direct manipulation of the air tube). For the Dissoci-

ation Task, one participant was excluded due to an instruction

issue: she could not understand the meaning of the percentage

displayed on the screen, which indicated the difficulty level in

proportion of the maximal force. Two other participants were

excluded due to calibration issues. The task-specific information is

summarized in Table 1.

Experimental set up
We used homemade power grips composed of two plastic or

wood cylinders compressing an air tube when squeezed. The tube

was connected to a transducer converting air pressure into voltage.

Thus, grip compression resulted in the generation of a differential

voltage signal, linearly proportional to the force exerted. The

signal was amplified and digitized by a signal conditioner (CED

1401, Cambridge electronic design, UK) for Implicit, Explicit and

Dissociation tasks, and by a homemade device for the Adaptation

Tasks and Cost Rating task. The digitized signal was read by a

Matlab program (The MathWorks Inc., USA).

Pre-processing of force data
In the Adaptation Tasks (1 to 3), the effort onsets were identified

on-line and used to update the screen displayed to the participants.

The effort onset was determined as the first sample exceeding 20%

of the participant maximal force.

In the Effort Allocation Tasks (‘implicit’, ‘explicit’ and

‘dissociation’), effort onsets and offsets were identified off-line

with an algorithm using the same two criteria for all conditions: 1)

force temporal derivative higher than one standard deviation and

2) force level lower (for effort onset) or higher (for effort offset) than

half the maximal force. The first rest period started with coin

presentation and the subsequent effort and rest periods were

defined by force onsets and offsets.

Maximal force estimate
For all tasks, we measured the maximal force for each hand

before starting task performance, following published guidelines

[1]. Participants were verbally encouraged to squeeze continuously

as hard as they could, until a growing line displayed on a computer

screen reached a target. The growing rate was proportional to the

force produced to motivate subjects to squeeze hard. Maximal

force was set to the average of data points over the last half of the

squeezing period exceeding the median. Then subjects were

provided a real-time feedback about the force produced on the

handgrip, which appeared as a fluid level moving up and down

within a thermometer, the maximal force being indicated as a

horizontal bar at the top. Subjects were asked to produce a force
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such that fluid level would reach this horizontal bar and to state

whether it truly corresponded to their maximal force. If not, the

calibration procedure was repeated.

The procedure was slightly simplified for the Adaptation Tasks

and Cost Rating Task: 1) the rate of the growing bar was held

constant and not indexed on the participants’ exerted force level,

2) the duration during which the participants had to squeeze as

hard as they could was fixed to 5 s, and 3) all data points were used

for the estimate (and not the last half of recorded levels).

Behavioral tasks
All tasks were presented on a computer screen, and were

programmed with Matlab using Cogent 2000 (Wellcome Depart-

ment of Imaging Neuroscience, London, UK) for the Implicit and

Explicit Tasks, and Psychtoolbox (http://psychtoolbox.org) for the

Dissociation Task, Adaptation Tasks, and Cost Rating Task.

Adaptation Tasks. The display was quite similar in all

adaptation tasks, which included a total of 8 sessions. The exerted

force level was always displayed as a fluid moving up a

thermometer, the target bar on the top of the thermometer

indicating 60% of the participant maximal force. The 60% level

was chosen to ensure that effort could be maintained by all

subjects and for all the imposed durations. All trials included a first

effort (with imposed duration), a rest period, and a second effort

(with free duration). The payoff was proportional (with a fixed

rate) to the time spent above the target force level during the

second effort. The color of the fluid in the thermometer instructed

what to do: red for the first effort, blue for rest (with ‘STOP!’

displayed above the thermometer), green for the second effort,

which participants initiated either immediately (in Tasks 1 and 2),

or at their convenience (in Task 3). When participants stopped

squeezing, more precisely at the first force sample under 50% of

their maximal force, the color turned to white, instructing that

they should rest until the following trial. In all Tasks, ‘PLUS

FORT’ (meaning ‘harder’) was displayed above the thermometer

during the imposed effort when the force being exerted was under

the target level (60%). For Tasks 1 and 2, the color turned to white

and the message ‘VOUS AVEZ APPUYE TROP TARD’

(meaning ‘you squeezed too late’) was displayed if the participant

initiated the trial too late (more than 1s after the color change). In

all three tasks, a flickering dollar symbol was displayed when the

force was above the target level, during the second effort whose

duration was free (green color), to indicate that money was being

accumulated. Both the trial payoff and the cumulated payoff were

displayed on screen at the end of each trial.

Adaptation Task 1 (variable effort/constant rest/free

effort). Each trial presented the following events successively:

imposed effort (at 60% of maximal force), imposed rest (2s), go

signal to initiate an effort of free duration (20s allowed), feedback

(2s), inter-trial interval (2s). Imposed effort durations were drawn

from a set of 36 points regularly spaced between 1 and 10s. The

same 36 durations, divided into 4 sessions of 9 trials each, were

presented once to the left hand and once to the right hand in the

same randomized order. For each session, effort durations were

picked up every 4 points in the randomized sequence of 36 values,

starting at a sample randomly drawn (without replacement)

between 1 and 4. This procedure ensures that over subjects, all

sessions have the same average effort duration.

Adaptation Task 2 (constant effort, variable rest, free

effort). Each trial presented the following events successively:

imposed effort (7s at 60% of maximal force), imposed rest

(between 1 and 12.5s), go signal to initiate an effort of free duration

(20s allowed), feedback (2s), and no inter-trial interval. Imposed

rest durations were defined so as to sample small durations more

than long durations. We simulated a mixture of Gaussians (10000

points), with 75% of points drawn from N(3,2), and 25% drawn

from N(10,2), where N(m,s) denotes a Gaussian distribution with

mean m and standard deviation s. This distribution was cut off to

retain values higher than 1s and divided into 37 bins. The first 36

bins were then retained for our sampling rest durations to avoid

extreme values from the Gaussian distribution. The same 36

durations were presented to the left and right hands in the same

randomized order, using the same randomization technique as was

implemented for Task 1.

Adaptation Task 3 (variable effort, free rest and free

effort). Each trial presented the following events successively:

imposed effort (at 60% of maximal force), imposed rest (2s), a

signal indicating to the participant that the second effort can be

initiated (20s allowed in total for first resting and then exerting

effort), feedback (2s), inter-trial interval (2s). Imposed effort

durations were 36 points equally spaced between 1s and 10s.

The same 36 durations were presented to the left and right hands

in the same randomized order, using the same randomization

technique as was implemented for Task 1.

Cost Rating Task. The task included 7 sessions, using right

and left hands alternatively. Each session comprised 21 trials. The

design was fully factorial, crossing all factor levels: 3 incentive

levels (10c, 20c, 50c), 7 duration levels (equally spaced from 3 to

7s) and 7 difficulty levels (equally spaced from 40 to 60% of the

participant maximal force). Each cell was presented only once, as

there were 147 cells for 147 trials. The order of presentation was

Table 1. Task-specific information on participants.

Task Exp. Period
N after
exclusion N male N excluded

Mean age ±
s.e.m. Fix (J) Var (J)

Var (J)
range

Adaptation Task 1 FM 03/2012 12 2 0 22.760.8 10 10.1 7–13

Adaptation Task 2 FM 03/2012 12 0 0 21.960.4 10 9.6 4–15

Adaptation Task 3 FM 03/2012 12 4 2 21.760.7 10 10.3 6–15

Cost Rating Task FM 02/2013 18 7 0 22.260.5 0 29.8 29–30

Implicit Task FM 04–05/2010 38 16 1 24.260.65 50 31.6 15–48

Explicit Task FM 03/2011 14 10 0 23.760.4 15 13 8–19

Dissociation Task LS 10/2011 15 5 3 25.460.8 10 6 3–10

‘Exp.’ refers to the author who collected the data. The payoff was fractioned into a fixed amount (‘Fix’) for participation and a variable amount (‘Var’) depending on
performance, for which we report the mean value and the range (minimum and maximum) across participants.
doi:10.1371/journal.pcbi.1003584.t001
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pseudo-randomized such that the different sessions had exactly the

same incentive and difficulty level on average, and little variation

in mean duration.

Every trial started with baseline (1s), followed by incentive

display (1s) and then by the appearance of a thermometer that

served as a ‘go’ signal to trigger effort exertion. The fluid level

within the thermometer provided online feedback on the force

being exerted, with scaling adjusted such that the target bar

corresponded to difficulty level (40% to 60% of the maximal

force). The thermometer was displayed as long as the participant

had to sustain the effort. The imposed duration was applied

starting when the target force was reached and not when the

thermometer appeared. Exhaustion rating was done just following

the effort. ‘Avez-vous épuisé vos ressources?’ (‘Have you exhausted

your resources?’) was written on screen, and participants indicated

their rating from ‘Pas du tout’ (‘not at all’) to ‘Totalement’

(‘completely’) with a cursor that could be moved with left/right key

press. We framed the question in terms of exhaustion instead of

the perceived exertion [44] because the rating occurred after (not

during) the effort. The rating scale had 50 steps but no visible

graduation. Rating and validation (by pressing the space bar) were

self-paced. The last screen lasted 1.5 s and summarized the payoff

earned in the current trial and the cumulated payoff over all

preceding trials. The amount earned during a trial was calculated

as the incentive value multiplied by the proportion of the imposed

duration spent above the target force level.

Effort Allocation Tasks (Implicit, Explicit and

Dissociation Tasks). The Implicit task is described in [10];

we reproduce here the relevant details. Participants performed 8

sessions of 9 trials corresponding to the 9 cells of the factorial

design (3 incentive63 difficulty conditions), which were presented

in a random order. Subjects performed 8 sessions in total,

switching hands as instructed between sessions to avoid muscular

fatigue. After baseline measurement of the pressure at rest, each

trial started by revealing the monetary incentive with a coin image

(10, 20 or 50 cents) displayed for 1s. Then subjects had 30s to win

as much money as possible. They knew that the payoff was

proportional to both the incentive and the time spent above the

target bar, which was always placed at the same height in the

thermometer. The force needed to reach the bar (70, 80 or 90% of

subject’s maximal force), i.e. trial difficulty, was not indicated to

subjects. Subjects only knew that task difficulty would vary across

trials. They were provided with online feedback on both the

exerted force (with a fluid level moving up and down within a

thermometer) and the trial-wise cumulated payoff (with a counter

displayed above the thermometer). Each trial ended with a 2s

display of the session-wise cumulated payoff.

The only change from the Implicit to the Explicit Task is that

the difficulty level was displayed on the right and left of the coin

image, as percentages of maximal force (70%, 80% or 90%).

In the Dissociation Task, monetary incentive (10c or 20c),

actual difficulty (75% or 85%) and cued difficulty (75% or 85%)

were combined into a factorial design comprising 8 cells. Cued

difficulty level was indicated on the screen as in the Explicit task

but was congruent with the actual difficulty level (actual force

needed to reach the target bar) in half the trials only. The

experiment was divided into 8 sessions presenting one trial for

each of the 8 cells in a random order. The randomization avoided

to present identical pair of cues (for incentive and difficulty levels)

in two consecutive trials. Apart from the potential mismatch

between the cued and actual difficulty levels, the trial settings were

identical to those of the Explicit Task.

Statistical analysis
Adaptation Tasks. We first verified that subjects complied

with the instructions, meaning that they sustained their effort at

the required level (60% of maximal force) and for the imposed

duration. As we found no significant deviation from instructed

effort, all trials were included in the analysis. Effort and rest

durations were analyzed using multiple linear regressions. For

Task 1, the dependent variable (second effort duration) was fitted

with four regressors: first effort duration, session number, session-

wise cumulated effort, and the residual effort initiation delay (i.e.,

delay between go signal and effort onset, after removing the

variance explained by the three other regressors). Significance of

parameter estimates was assessed with a random-effect analysis at

the group level using a two-sided t-test. For Task 2, the same four

regressors were used to explain the dependent variable (second

effort duration), except that the manipulated factor was rest

duration (not first effort duration). For Task 3, the two dependent

variables (rest and second effort durations) were fitted with the

same linear model as was done for Task 1, except that there was

no initiation delay.

We also analyzed the relationship between imposed and

observed durations in Tasks 1 and 2, by fitting linear and

saturation models, which we compared using Bayesian model

selection (BMS). The linear model was: T1~b1zb2T2. We tested

two models for saturation: a bounded linear model:

T1~
b1zb2T2 if T2vc

b1zb2c otherwise

�

and a model with exponential saturation:

T1~(c{b1)(1{e{b2T2 )zb1, in which b1 is the intercept, b2

the increase rate and c the asymptote. The BMS procedure is

described in the next section. In principle, the cost-evidence model

predicts that recovery during rest should be bounded, such that

after a certain time, more rest does not increase the duration of the

subsequent effort. For simplicity we assumed a linear dynamics for

accumulation and dissipation, which implies that the saturation

should manifest as a linear increase followed by a constant plateau.

However, we reasoned that white noise in data generation should

render this function closer to an exponential saturation. We

confirmed this intuition with a simulation, proceeding as follows.

1) We fitted a bounded linear model to individual data and

retained the median parameter estimates and the residuals

standard deviation for each subject. 2) With these parameter

estimates and the durations manipulated experimentally, we

simulated 100 sets of noisy effort data per subject, using a white

noise of the same magnitude as residuals standard deviation. 3) We

fitted both the bounded linear model and the exponential model to

these individually simulated data, and calculated their respective

log-evidence. 4) We averaged these log-evidences over simulations

and performed a group-level BMS, which favored the exponential

model with high confidence (chance level is K, expected

frequency ef = 0.75, exceedance probability xp = 0.97). We

noticed, as expected, that this exceedance probability decreased

when decreasing the noise magnitude. Therefore, we included the

exponential model in the BMS performed on our observed data,

since it was more likely to capture the saturation effect at the

observed noise magnitude.

Cost Rating Task vs. Implicit Task. We first submitted the

ratings obtained from the Cost Rating Task to a multiple

regression analysis, so as to estimate the effect of several factors.

The regressors comprised the manipulated factors (incentive,

difficulty and duration level) and covariates (a constant per session
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to capture the mean, a linear trend per session to capture drift over

trials, and the initial position of the rating cursor). Two-way

interaction terms were also included. Regressors were z-scored

over all trials, except trends that were z-scored within their sessions

and padded with 0, and constant regressors. The significance of

the parameter estimates was assessed with a random-effect analysis

at the group level using a two-sided t-test.

To compare with the Effort Allocation (implicit) Task, we

modeled cost evidence as follows:

C~b0zb1Tl1zb2Dl2 zb3Tl1 Dl2 , where D and T are difficulty

and time (duration). To make the estimation of D and T betas

independent of their unit (force versus time), they were divided by

their mean value. Setting the l terms to 1 made the model linear

with respect to experimental factors, setting b3 to zero made the

model purely additive and setting b1 and b2 to zero made the

model purely interactive. All three possibilities (including non-

linearities, including additive terms, including interaction) were

combined, resulting in a total of 8 models. Note that formally, the

linear and non-linear constant models (C = b0) are strictly

equivalent. In the Cost Rating Task, the dependent variable was

subjective rating of cost (sensation of exhaustion), which could be

directly regressed against the cost evidence model. In the Effort

Allocation (implicit) Task, costs had to be inferred from the

behavior. The probability to stop the effort after a given exertion

duration was derived from the cumulated distribution of effort

duration, for each difficulty level. This probability was regressed

against a sigmoid (or logit) function of the modeled cost evidence:

P~ 1
1ze{C . This sigmoid was not parameterized (i.e., C was not

transformed with scaling and offset parameters), since this would

be redundant with the beta parameters included in the definition

of C itself. Apart from the sigmoid transformation, the same

procedure was thus applied to the Cost Rating and Effort

Allocation Tasks.

A constant elasticity of substitution (CES) model was also fitted

to characterize the curvature of cost evidence. The CES model is

C~ aDdz 1{að ÞTd
� �1

d, in which a ranges from 0 to 1 and

characterizes the equivalence between D and T (or substitution

ratio), and d is strictly positive and characterizes the curvature of

this equivalence. We introduced an offset and a scaling factor to

the CES model as two additional free parameters, which were

independent from the estimation of alpha and delta since D and T

had a mean of one. Following the same procedure as in the model

comparison, cost evidence was fitted onto subjective rating in the

Cost Rating Task, and passed through a logit function to be fitted

onto stop probability in the Effort Allocation task.

Effort Allocation Tasks (Implicit, Explicit and

Dissociation Tasks). Effort and rest durations were submitted

to multiple regression analysis. The regressors comprised the

manipulated factors (incentive and difficulty levels for the Implicit

and Explicit Task; incentive, cued and actual difficulty levels for

the Dissociation Task), temporal factors (the session number, the

trial position within a session and the effort or rest position within

a trial), and interaction terms (the two-way interactions of

manipulated and temporal factors, and the two-way interactions

between manipulated factors, which was extended to a third-way

interaction between the three manipulated factors in the

Dissociation task). All the regressors were z-scored to provide

standardized effect size.

The significance of parameter estimates (regression coefficients)

was assessed with a random-effect analysis at the group level using

a two-sided t-test. Dissociation between cued and actual difficulty

in the Dissociation Task was estimated using a two-sided paired t-

test on the parameter estimates. For non-parametric t-tests, we

estimated the null t-distribution using all possible permutations

(n = 215) between the ‘cued’ and ‘actual’ labels, and estimated the

probability of t-values more extreme than observed (two-sided

test).

Bayesian model selection
To perform model selection, models were first estimated for

each subject following a variational Bayes approach under the

Laplace approximation [45,46], using a toolbox by Jean

Daunizeau [47] (available at http://code.google.com/p/mbb-vb-

toolbox/). Note that all the models developed here are determin-

istic: they are meant to provide a mechanistic link from factors of

interest (monetary incentive or task difficulty) to observations

(effort or rest duration). The aim of model estimation was to find

the distribution of free parameters that best fitted the observations,

and not to explain their stochasticity. The variational Bayes

algorithm not only estimates linear and non-linear models but also

calculates their evidence based on a free-energy approximation

[45]. The evidence of a model is the probability of observing the

data given this model. This probability corresponds to the

marginal likelihood, which is the integral over the parameter

space of the model likelihood weighted by the prior on free

parameters. This probability increases with the likelihood (which

measures the accuracy of the fit) and is penalized by the

integration over the parameter space (which measures the

complexity of the model). The model evidence thus represents a

trade-off between accuracy and complexity and can guide model

selection [48]. Model selection was performed with a group-level

random-effect analysis of the log-evidence obtained for each model

and subject, using Gibbs sampling in SPM8 (Statistical Parametric

mapping, Wellcome Department of Imaging Neuroscience,

London, UK) [48]. This procedure estimates the expected

frequency (denoted ef) and the exceedance probability (denoted

xp) for each model within a set of models, given the data gathered

from all subjects. Expected frequency quantifies the posterior

probability, i.e. the probability that the model generated the data

for any randomly selected subject. This quantity must be

compared to chance level (one over the number of models or

families in the search space). Exceedance probability quantifies the

belief that the model is more likely than all the other models of the

set, or in other words, the confidence in the model having the

highest expected frequency [48]. Family-level inference was

conducted similarly to model-level inference after defining a

partition within the model space as described in [49] and

implemented in SPM8.

Computational models (Implicit, Explicit and Dissociation
Tasks)

We first defined a class of models that can a priori produce the

results that we intended to explain. These models were then

submitted to a Bayesian model selection in order to identify the

most plausible model among all the possible models. The model

space was defined by simplifying a full model, starting with the

Implicit Task. The model is based on accumulation-dissipation

processes: cost evidence ramps up during effort to a bound that

triggers effort cessation, and ramps down during rest to a bound

that triggers effort resumption. As for simplicity the fluctuations

were modeled as linear, the effort and rest durations (Te and Tr)

are just the ratios between the amplitude A (distance between

bounds) and the accumulation or dissipation slope (Se and Sr). In

the full model, the free latent parameters A, Se, Sr can vary across

trials around their mean values (am, bm, cm), depending linearly on

experimental factors: in this case the incentive I and the difficulty

D. The full model is thus:
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Te~
A

Se
; Tr~

A

Sr

A~amzaI IzaDD

Se~bmzbI IzbDD

Sr~cmzcI IzcDD

8>><
>>:

Simpler models can be designed by setting one or more weights to

zero. As there are 6 weights (3 latent parameters times 2

experimental factors), all combinations give a total of 26 = 64

models. However, some of these models are not worth considering

as they cannot account for the effect that we want to explain. The

most extreme case is when all weights are null: such a model

cannot produce any of the effect of incentive and difficulty that we

observed in the data. After discarding all models with which at

least one of the significant results reported in Figure 5 could not be

produced (shown with red in Figure 6A), the search space was

restricted to 24 models. Note that predicting an effect which was

not significant in our data was not a criterion for rejection.

To illustrate the logic of model selection, we can take the case of

the opposite effects of incentives on effort and rest duration (Te

and Tr). This behavioral pattern cannot be accounted for by

models which would have no incentive effect at all or an effect on

one latent parameter only (A, Se or Sr). These models can

therefore be excluded from the model space retained for Bayesian

comparison. On the contrary, modulations of both A and Se (#1),

or both A and Sr (#2), or all three parameters (#3) can a priori

produce the observed incentive effects on Te and Tr; these models

should therefore be compared. Model #1 predicts that incentive

effect on Tr should be linear (because it only affects the numerator

A) and the effect on Te non-linear (because it also affects the

denominator Se). Model #2 generates the opposite predictions.

The data can thus disambiguate between these models, depending

on which effect is non-linear. Model #1 and #2 are special cases

of model #3 which is more complex and thereby, more likely to

provide a better fit. Yet model #3 will be preferred over model #1

and #2 only if the improvement of fit surpasses the inflation of

complexity in the calculation of model evidence. Note that this

example is a simplification of our model comparison, as all factors

(not just incentives) should be considered at the same time, which

also makes predictions on the pattern of interaction between

factors. However, detailing the specific predictions of all the

models included in the Bayesian comparison would require much

more length than that allowed in a research paper.

The same approach was applied for defining linear models of

the Explicit Task, leading to a search space of 16 models

(Figure 6C). For the Dissociation Task, another modulator was

included as there were two types of difficulty (cued and actual).

The full model has therefore 9 weights, which gives 29 = 512

possible models, which were reduced to 144 models after rejection

of irrelevant models (Figure 6B).

Te~
A

Se
; Tr~

A

Sr

A~amzaI IzaDaDazaDcDc

Se~bmzbI IzbDaDazbDcDc

Sr~cmzcI IzcDaDazcDcDc

8>><
>>:

Since these models provided poor fit and unclear evidence in favor

of a particular model, we also tested a class of hyperbolic models

for the Explicit and Dissociation Tasks. As opposed to the linear

formulation, the discount of incentive by cued difficulty was

assumed to be hyperbolic, as in some economic models of

temporal discounting. The full hyperbolic model is:

Te~
A

Se
; Tr~

A

Sr

A~amz
aI I

1zaDcDc
zaDaDa

Se~bmz
bI I

1zbDcDc
zbDaDa

Sr~cmz
cI I

1zcDcDc
zcDaDa

8>>>><
>>>>:

The D term that denoted difficulty in the first linear model has

been decomposed into Da and Dc, denoting actual and cued

difficulty in the Dissociation Task. Note that in the Explicit Task,

De and Dc have exactly the same values. The model can

nonetheless be estimated unambiguously in this task since the

effect of Da is linear whereas that of Dc is hyperbolic. Also note

that with hyperbolic formulation, there are dependencies between

weights since a null numerator prevents the denominator from

impacting the model fit. Thus we discarded models with a null

numerator and a non-null weight at the denominator (this is

shown with red in Figure 6D). After discarding the models that

were not able to produce all the significant results shown in

Figure 5, the search space was eventually restricted to 78 models

for the Explicit and Dissociation Tasks.
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