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Abstract

Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic
disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the
disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the
protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging
task to address, both experimentally and computationally. Here, we present this task as three related classification
problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect
predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction’s structure. It leverages supervised and
semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained
based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding
affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem
(strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-
class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised
classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87
for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the
3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was
applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of
SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be
useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://
korkinlab.org/snpintool/.
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Introduction

Being one of the most prevalent types of genetic variation in

humans, single nucleotide polymorphisms (SNPs) occur in both

coding and non-coding regions of the genome and have been

associated with a number of Mendelian diseases and complex

genetic disorders [1,2]. With the rapid advancement of DNA

sequencing and genotyping technology, millions of SNPs have

been determined [3,4]. An average gene is estimated to have

several non-synonymous missense SNPs (nsSNPs), each sub-

stituting an amino acid residue [5]. Nevertheless, our

knowledge of SNPs that cause a disease is very limited.

Understanding whether or not a mutation or a group of

mutations induce changes of a molecular function is often the

first step towards finding the missing link between the genetic

variation and the disease.

Recent studies of disease networks have linked many nsSNPs

with protein-protein interactions [6,7]. Understanding how these

mutations can rewire the interaction network mediated by proteins

associated with the disease is critical in studying complex genetic

disorders, such as cancer, autism, and diabetes [8–10]. Unfortu-

nately, the interaction landscape determined by the genetic

variants of the disease-associated genes is far from being fully

reconstructed. Thus, computational methods can play an impor-

tant role in modeling nsSNP-induced rewiring of a disease

network.

The growing interest in understanding the relationship between

a genetic variation and its functional effect on a protein has lead to

a number of recent in-silico methods. A group of methods

introduced the idea of computational mutagenesis to study the

structure-function relationship [11], predict the changes in enzyme
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activity [12,13], detect disease potential of a SNP [14], and

characterize other functional effects [15]. Most recently, a number

of computational alanine scanning methods were developed to

study protein-protein interactions (PPIs) and protein-peptide

interactions [16]. These methods aimed at finding residues in

the interaction interface that would disrupt the interaction when

mutated to alanine; they did it by estimating the relative free

energy change (DDG) between the wild-type and mutant PPI

complexes. Another group of methods focused on predicting the

effects of general nsSNPs on protein function and distinguishing

them from functionally neutral mutations [17–30]. Finally, several

works studied the effects of disease-associated nsSNPs on protein-

protein interactions by investigating the changes in binding energy

using force field and electrostatic calculations [31,32] and

understanding the structural effects caused by nsSNPs that lead

to the disruption of PPI [6,33]. However, in spite of the

tremendous progress, developing an accurate approach that

predicts the effect of an nsSNP on the protein function, including

protein-protein interaction, remains an open problem.

The goal of this paper is to introduce a novel computational

approach for the characterization of effects on PPIs caused by

nsSNPs (nsSNP-induced effects). The idea of our approach is

to consider prediction of such effects as a classification

problem. Specifically, we defined three related classification

problems that differ in the available input information and the

types of nsSNP-induced effects to be identified and character-

ized. Leveraging the machine learning methodology, we

formulated each of the three problems as the supervised and

semi-supervised learning tasks. The comparative assessment of

the independently built classifiers using a variety of the

supervised and semi-supervised methods has demonstrated

feasibility of the machine learning approach in addressing each

of the above problems.

Methods

The problem of determining whether an nsSNP within a gene

has any effect on a PPI mediated by the gene product is broken

down into three related classification problems (Fig. 1). In the first

problem, we assume that it is known that an nsSNP affects a

biochemical function mediated by a PPI. Such a functional change

may be a result of the nsSNP disrupting the interaction or, on the

contrary, significantly increasing the binding affinity, which may

cause for a transient complex to become permanent. Therefore,

our goal in the first problem is to determine whether the nsSNP

has a strengthening or weakening effect on the PPI. The second

problem is to determine whether an nsSNP is likely to disrupt or

preserve a PPI, without any prior knowledge on changes in the

biochemical function mediated by the interaction. Finally, the

third, most challenging, problem is to predict whether an nsSNP

has one of three effects on a PPI, detrimental, neutral, or beneficial,

again without any prior knowledge of the functional changes

associated with the PPI Thus, the first and second problems are

formulated as 2-class problems, and the third one as a 3-class

problem.

Figure 1. Three related classification problems addressed in this work. Classes in the 3-class problem are used to form the 2-class problems.
doi:10.1371/journal.pcbi.1003592.g001

Author Summary

Many genetic diseases in humans and animals are caused
by combinations of single-letter mutations, or SNPs. When
these mutations occur in a protein-coding region of a
genome, they can have a profound effect on the protein’s
function and ultimately on a health-related phenotype.
Recently, a growing number of evidence suggests that
many of SNPs reside on or near the protein regions that
are required for the interactions with other proteins. Some
of these SNPs could rewire the protein-protein interactions
altering the functions of the protein interaction complexes,
while other SNPs are neutral to the interactions. Under-
standing the effect of SNPs on the protein-protein
interactions is a challenging problem to solve, both
experimentally and computationally. Here, we leverage
the machine learning methods by training a computation-
al predictor to tell apart the mutations that are harmful to
protein-protein interactions from those ones that are not.
We use these tools in two case studies of mutations
affecting the protein-protein interaction networks cen-
tered around the genes associated with breast cancer and
diabetes.

Predicting Effects of nsSNPs on Protein-Protein Interactions
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For each problem, supervised and semi-supervised ap-

proaches are developed and assessed, and their performances

are compared. The top classifiers are then integrated into a

computational tool called the SNP-IN (non-synonymous SNP

INteraction effect predictor) tool. The overall protocol of the

training stage includes four steps (Fig. 2). First, the data on

nsSNPs are collected, and each nsSNP is assigned to a class by

comparing the difference of binding affinity between the

mutant and wild-type protein-protein interactions. Second, the

unlabeled data are obtained by generating a complementary

set of all other possible mutations different from the wild-type

residue and its mutations analyzed as in the first step. These

mutations are generated for each residue from the interaction

interface of the PPI being analyzed. Third, for each nsSNP, a

feature vector is generated. Last, a set of supervised and semi-

supervised classifiers are trained and evaluated; for each

classification problem a single classifier is selected. During

the prediction stage, the same set of features for a novel nsSNP

is calculated, and the feature vector is used to classify the

nsSNP.

Data collection and definition of interaction-associated
types of nsSNPs

Comprehensive analysis of the mutation effects on PPIs on a

large scale by experiments is a difficult task. As a result, while

several datasets have been used by the computational methods

[34–36], no golden standard currently exists. Here, we use one

of the largest such datasets, SKEMPI [35], which includes

mutations on structurally-defined heterodimeric complexes

that were experimentally characterized and extracted and

manually curated from the literature. For each mutation, the

database provides the changes in thermodynamic parameters

and kinetic rate constants between the wild-type and mutant

PPIs. From the initially collected set of 3,047 mutations

occurring in 158 heterodimeric complexes, we keep 2,795

mutations after removing the redundancy, where the redun-

dant mutations are defined as the same mutations obtained

from different references. Finally, since in this work we focus

on the effects caused by a single nsSNP, we filter out from the

sets those entries that include multiple mutations, resulting in the

final dataset of 2,079 single SNPs and 151 corresponding protein

complexes (This training dataset is available for download at SNP-IN

tool website: http://korkinlab.org/snpintool).

Next, each mutation is characterized as one of three

interaction-associated types: beneficial, neutral, or detrimental.

The types are assigned based on the difference, DDG, between

the binding free energies of the mutant and wild-type complexes.

Specifically, we calculate DDG~DGmt{DGwt, where DGmt and

DGwt are the mutant and wild-type binding free energies,

correspondingly. Each energy value is calculated as

DG~RT :ln EBAð Þ, where R is the gas constant, T is temperature,

and EBA is the known binding affinity. For our dataset, EBA is

obtained from the SKEMPI dataset at http://life.bsc.es/pid/

mutation_database/datatable.html (column 7 for the mutant and

Figure 2. A flowchart of supervised and semi-supervised learning methods used to predict the effect of nsSNPs on PPIs. A. Shown is
the protocol of training both supervised and semi-supervised methods for the 3-class problem (mutations of detrimental/neutral/beneficial effects).
The semi-supervised learning method depicted here is the random-forest self-learning classifier. B. Feature representation of each nsSNP was
calculated by taking energy differences between the wild-type and mutant complexes. The mutant PPI complex was modeled by FoldX using as a
template the structure of wild-type complex. C. During the prediction stage, the classifier assigns a new nsSNP to one of the classes.
doi:10.1371/journal.pcbi.1003592.g002
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column 8 for the wild-type). This value can also be calculated by

EBA~Koff {Kon, where Koff , Kon can also be found at the same

link above. The beneficial, neutral, or detrimental types of

mutations are then determined by applying two previously

established thresholds to DDG [35,37,38]:

Beneficial : DDGv{0:5 kcal=mol

Neutral : {0:5ƒDDGv0:5 kcal=mol

Detrimental : DDG§0:5 kcal=mol:

Intuitively, a neutral mutation will not change the interaction’s

properties, whereas the beneficial mutation will significantly

increase the binding affinity, and the detrimental mutation is

expected to disrupt the associated PPI. Using these three

mutation types, the labeled dataset for each supervised and

semi-supervised classifier is formed (see subsection Training and

evaluation of supervised and semi-supervised classifiers in Methods). We

note that these mutation types are introduced to characterize the

effect on a protein-protein interaction rather than the biological

function associated with the interaction. For instance, an nsSNP

that has a beneficial effect on protein-protein interaction may

have a detrimental functional effect by transforming a transient

complex to a permanent one.

Finally, the dataset of unlabeled mutations is generated for the

semi-supervised learning classifiers. Specifically, for each of the

2,079 mutations, all other 18 possible mutations, excluding the

original mutant and wild-type residues, are introduced at the same

location in the corresponding complex as the original nsSNP. For

these mutations, no DDG values are available, thus they cannot be

assigned a specific interaction-associated type. The final set

includes 17,692 mutations (mutations for which some of the

software packages failed to generate the features are excluded).

Feature representation
Each nsSNP in the labeled and unlabeled sets is represented as a

33-dimensional feature vector. To calculate the set of features, we

first model the structure of the mutant PPI complex using FoldX

[39,40] and using the structure of the wild-type complex as a

modeling template. Next, for each nsSNP a set of features is

calculated for the modeled mutant complex as well as the wild-

type native structure, and the difference of these features is

included into the final feature vector.

Several software packages are used to generate the features

(Table 1) [39,41–45]. The first group consists of 22 energy terms

calculated in FoldX: Total energy, Backbone Hbond, Sidechain

Hbond, Van der Waals, Electrostatics, Solvation Polar, Solvation

Hydrophobic, Van der Waals clashes, entropy sidechain, entropy

mainchain, sloop_entropy, mloop_entropy, cis_bond, torsional

clash, backbone clash, helix dipole, water bridge, disulfide,

electrostatic kon, partial covalent bonds, Energy Ionisation,

Entropy Complex [39]. The second group of three features

includes energy terms (OPUS-PSP terms 1–3) calculated in

OPUS-PSP [44]. Accessible surface area of the mutant amino

acid residue is computed by NACCASS [41], as a descriptor to

measure the changes on solvent accessibility during this mutation.

The next feature, Interaction energy, is defined as the sum of

interaction energies of the protein chain carrying the mutation

against all other chains in the complex. Interaction energy for each

pair of chains is also calculated in FoldX. The remaining features

include three energy terms (Goap terms 1–3) from software Goap

[45], Geometric score from Geometric tool [42], energy term from

Dfire2 [46], and Decomplex energy score [43].

Training and evaluation of supervised and semi-
supervised classifiers

Two supervised and two semi-supervised approaches are

implemented and compared. The supervised learning methods

include Support Vector Machines (SVM) and Random Forrest

(RF) classifiers, which have been consistently among the top

performing methods for a number of bioinformatics tasks [47–49].

Random Forests have been shown to outperform other feature-

based supervised learning approaches in bioinformatics and other

domains [50–53], although in some cases they perform worse than

SVM methods [48,54]. The SVM approach, in addition to being

among most widely used supervised learning methods in

bioinformatics, lies in the core of the top performing semi-

supervised learning algorithm [55]. For SVM, we assessed three

popular kernels: (i) linear, (ii) polynomial kernel, KP(x,x’)~
(Sx,x’Tz1)d , where d is degree of the polynomial, and (iii) radial

basis function (RBF), KG(x,x’)~exp({ x{x’k k2=c). The poly-

nomial kernel is then selected with d = 3 as the most accurate one,

as it has the highest f-measure value. SVM models are

implemented using the libSVM package [56] and the RF classifier

is implemented in Weka software [57].

Semi-supervised learning has been only recently introduced to

the field of bioinformatics [49,58–61]. The basic idea is to rely not

only on the labeled training data, but also to incorporate an

additional, unlabeled, dataset (often of a significantly larger size) as

a part of training to improve learning accuracy. We first apply

semi-supervised learning by low density separation (LDS) [55],

which is considered one of the most accurate semi-supervised

methods [62]. The LDS approach relies on clustering to guide the

unlabeled dataset by combining (i) graph-based distances that

emphasize low density regions between clusters and (ii) optimiza-

tion of the Transductive SVM objective function [63] which places

the decision boundary in low density regions using gradient

descent. Specifically, a nearest-neighbor graph G = (V,E) is first

derived for both labeled and unlabeled feature vectors. Then a

modified connectivity kernel K~ Kij

� �
is computed, defined as

follows:

Ki,j~exp {
D

r
i,j

2s2

 !
,

D
r
i,j~

1

r2
ln 1z min

p[Pi,j

Xpj j{1

k~1

epd(pk , pkz1){1
� �" #

,

where p is a path of length |p| from the set Pi,j of all paths

connecting two feature vectors xi and xj, and D
r
i,j is a

parameterized r-path distance defined between the set of all

labeled vectors on one hand and set of all vectors on the other

hand. The computed kernel is then used to train an SVM in the

supervised part of the algorithm [55].

Based on assessment of the supervised methods (see Leave-one-out

cross validations subsection), the RF classifier shows superior

performance over the SVM classifiers. Thus, we would like to

further improve the accuracy of this approach, by developing a

simple RF-based semi-supervised learning protocol that leverages

self-learning heuristics [64]. First the protocol trains a supervised

learning RF classifier. Next, this classifier is applied to the

Predicting Effects of nsSNPs on Protein-Protein Interactions
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unlabeled dataset and assigns each unlabeled nsSNP to one of the

classes. The newly labeled dataset is merged with the originally

labeled datasets. Finally, the resulting labeled datasets are used to

re-train the supervised RF method. We note that while several RF-

based semi-supervised based methods have been recently intro-

duced in pattern recognition and computer vision [65,66], to the

best of our knowledge, no RF-based semi-supervised method has

been applied in a bioinformatics area.

Finally, to further improve the performance on the most difficult

3-class problem, we explore whether the classifier of the 3–class

problem can benefit from the other two classifiers addressing one of

the 2-class problems. Specifically, for the most accurate classifier of

Problem 3 (selected based on the weighted f-measure), we calculate

two additional features: the prediction results from the most accurate

binary classifiers for Problems 1 and 2. To obtain these features, we

use each of the two binary classifiers to generate the prediction value

if it is a positive prediction, or one minus prediction value if it is a

negative prediction and scale the value to be from 0 to 1.

The labeled set for a supervised classifier addressing the first 2-

class problem includes mutations determined as beneficial as the

first class (strengthening PPI) and mutations determined as

detrimental as the second class (weakening PPI). Another labeled

set corresponding to the second 2-class problem includes both

beneficial and neutral mutations as the first class (preserving PPI),

and detrimental mutations as the second class (disrupting PPI).

Mutations in the final labeled set corresponding to the 3-class

problem are naturally grouped into beneficial, neutral, and

detrimental classes. For each semi-supervised classifier, we use

the same labeled data as in the corresponding supervised classifier

and the previously described unlabeled set of 17,692 nsSNPs

(Table 2).

To evaluate all supervised and semi-supervised classifiers for

each of the three classification problems, three assessment

protocols were implemented. The first protocol was a standard

leave-one-out (LOO) cross-validation protocol with the goal to

compare the methods and select the most accurate classifier for

each problem by utilizing each of the labeled datasets for the

corresponding problem in both supervised and semi-supervised

cases. For each problem, the class-based recall, precision and f-

measures are calculated for each class. Next, overall performance

of a classifier on the classification problem is assessed by the

average accuracy and weighted f-measure scores as following:

Acc~

X
i

NCiX
i

Ni

, fW ~

X
i

Ni|fiX
i

Ni

where NCi, fi, and Ni are the number of correctly identified class

members, standard f-measure, and total number of class members

in class i, correspondingly. A classifier with the highest weighted f-

measure is selected for each problem and included into the SNP-

IN tool web-server.

In the second protocol, we compare our top performing

classifier with the only other published method for predicting

the effect of nsSNPs on PPIs, BeAtMuSiC [31]. Unlike our

approach, BeAtMuSiC relies on a set of statistical potentials

derived from the structures of interacting proteins and does not

use a supervised learning and, subsequently, a training set.

Coincidentally, for the assessment of this method the authors

used the same SKEMPI dataset as was used in SNP-IN tool

LOO cross-validation, with a slightly different redundancy

Table 1. Feature descriptions.

# Dimensions Features Descriptions

22 FoldX energy terms 22 energy values from FoldX output

3 OPUS terms 3 terms from OPUS

1 ASA Naccess ASA of mutated residue

1 Interaction energy FoldX interaction energy of mutated residue

3 Goap terms 3 terms from Goap

1 Geometric score Energy score from Geometric

1 Dfire2 term Energy from Dfire2

1 Dcomplex term Energy score from Dcomplex

A 33-dimensional feature vector calculated for each nsSNP in both labeled and unlabeled sets. Each feature represents the difference in values of the corresponding
terms calculated for the wild-type and mutant PPI complexes.
doi:10.1371/journal.pcbi.1003592.t001

Table 2. Training datasets for different classifiers.

Problem 1 Problem 2 Problem 3

Beneficial 208 878 = 208(B)+670(N) 208

Neutral - 670

Detrimental 1,076 1,076 1,076

Unlabeled 17,692 17,692 17,692

Different combinations of three types of nsSNPs are used for each of the three classification problems. The set of 878 PPI preserving mutations included both beneficial
(B) and neutral (N) nsSNPs. The unlabeled set was used solely for semi-supervised learning methods.
doi:10.1371/journal.pcbi.1003592.t002
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removal protocol. Thus, we compared the performances of

BeAtMuSiC and SNP-IN tool on the overlapped dataset by

calculating the Pearson correlation coefficient between the

predicted scores and the experimental data for the latter

predictor and comparing with the published score for the

former method. The raw classification prediction score of the

SNP-IN tool was used. We discuss the validity and potential

shortcomings of this assessment protocol further in the paper.

In the last protocol, we assess the performance of SNP-IN tool

by applying it to the datasets of 26th Critical Assessment of

PRediction of Interactions (CAPRI) competition [67]. CAPRI is a

community-wide competition in computational tasks related to

characterization of the molecular structure of protein complexes.

Recently, a new type of challenge was introduced with a goal to

characterize the effect of mutation on protein-protein complexes.

Specifically, there were two challenge targets (Target 55 and

Target 56), each target was a designed influenza inhibitor

interacting with hemagglutinin (HA) [68]. A comprehensive set

of site-directed mutagenesis experiments was done for the residues

located next to or inside the interaction interface for each target

complex, and the effect of each point mutation on the binding

affinity was evaluated by deep sequencing of mutants before and

after binding [69]. During the competition, all CAPRI participants

were asked to provide a score as the prediction of each mutation’s

effect on inhibitor-HA interactions. The three types of effects

correspond to our 3-class problem and include detrimental,

neutral and beneficial mutations. The correlations between

predicted scores and experimental evaluations were calculated

by using the Kendall’s t rank correlation coefficient (http://www.

ebi.ac.uk/msd-srv/capri/round26/). Here, we apply the CAPRI

assessment protocol to predictions of the effect of each point

mutation in Targets 55 and 56 obtained by the 3-class classifier

from SNP-IN tool.

Case study protocol
Finally, the SNP-IN tool is applied to analyze nsSNPs in the PPI

networks associated with human diseases in two case studies using

the following protocol. First, the disease-associated nsSNPs and the

corresponding genes are selected from dbSNP database [70].

Second, for each nsSNP, a PPI mediated by the mutated protein is

identified, and its structural template is extracted from a recently

published dataset by Wang et al [7]. Third, MODELLER [71] is

used to build an accurate comparative model for each nsSNP-

associated PPI complex. Last, SNP-In tool is used to predict

nsSNP-induced loss/preservation of the PPI by characterizing the

effect of that nsSNP on the PPI.

Web-server
The SNP-IN tool was implemented as a web-server freely

available at http://korkinlab.org/snpintool/ (Fig. 3). It allows

users to upload a pdb file containing the structure of the studied

PPI, and provide information about the nsSNP they would like to

investigate. The server will then return the effects of the nsSNP

predicted by the semi-supervised RF-SL classifiers for both 2- and

3-class problems.

Results

Here, we provide a comparative assessment of the supervised

and semi-supervised approaches with (i) each other, (ii) the only

currently published method, and (iii) the results of a recent CAPRI

competition. We also analyze the importance of contribution of

each feature in each of the three classification problems. Finally, we

report results of the application of SNP-IN tool to characterization

of genomic variants in the PPI networks associated with two

human diseases.

Feature ranking
The importance analysis of all 33 features, carried out using

InforGainAttributeEval function in Weka [72], showed that many

features (Table 3) were equally important for all three classification

problems. These are primarily the energy terms obtained from

FoldX and OPUS. On the other hand, some features appeared to

be important only for certain classification problems. For instance,

Geometric score and Accessible Surface Area (ASA) were not

important in the interaction disrupting/preserving classification

problem, while the Goap energy terms were more important,

compared with the other two problems. On the other hand,

Electrostatics feature appeared to be more important for the 3-

class problem than for the 2-class problems. Interestingly, while

relative contribution of the features was different, all features

without exception were informative in the vector representation:

removing each of the features did not improve the prediction

accuracy for any of the supervised methods. The importance

analysis, thus, may be used to determine a higher priority when

improving the accuracy of certain features, such as the FoldX and

OPUS energy terms, which may be beneficial for all three

classification problems.

Leave-one-out cross validations
To assess performance of the four classifiers, we applied a LOO

cross-validation protocol (Table 4, Table S1). We started by testing

the classifiers on the data for the first classification problem

(strengthening/weakening mutations). Interestingly, for all four

classifiers, predicting a weakening mutation was significantly more

accurate than predicting a strengthening one. In addition, both the

SVM supervised classifier and LDS semi-supervised classifier,

which relied on transductive SVM (TSVM), performed worse than

the RF-based supervised and RF-based semi-supervised learning

methods. The top performing RF-based supervised classifier

reached 0.87 in weighted f-measure and 0.89 in average accuracy.

The performance gap between the SVM-based and RF-based

methods became even more apparent when assessing these

methods on the 3-class problem (Problem 3). Specifically, very

low recall and precision when classifying the beneficial nsSNPs

made the difference between the weighted f-measures of SVM-

based and RF-based methods to be close to 0.20 for both

supervised and semi-supervised approaches (Table 4). The top

performing method for this classification problem was the RF-

based semi-supervised approach, with the weighted f-measure

value of 0.70 and average accuracy of 0.72.

Based on the superior performance of the supervised and semi-

supervised RF-based methods for the first 2-class and 3-class

problems, we focused on evaluating only those two methods for

the second 2-class problem (disruptive/preserving PPI mutations).

We found that unlike the previous two classification problems, the

performance of both methods on the two classes of this problem

was more even (Table 4). Interestingly, the top performing RF-

based semi-supervised approach for this problem (weighted f-

measure is 0.78 and average accuracy is also 0.78) gained ,0.04 in

weighted f-measure, compared to the supervised approach. This

was not observed in the other two classification problems where

the difference between the RF-based supervised and semi-

supervised classifiers was at most 0.02.

The results of cross-validation allowed us to select the top

performing method for each problem, using weighted f-measure

(Table 4). The top classifiers for the more generally applicable

second and third classification problems were then integrated into
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the SNP-IN tool. The overall weighted prediction accuracies

(0.72–0.89) and f-measures (0.70–0.87), as estimated by the LOO

cross-validation protocol, suggest that each of the three problems is

feasible when applying a machine learning approach. In addition,

we observed that the performance of the classifiers on individual

classes varies even in the case of the most accurate methods. To

account for that in our evaluation, we calculated the Mathews

correlation coefficient (MCC) score for the top-performing RF

approaches (Table S1). The overall performance of the methods

according to the MCC score was consistent with the performance

evaluated based on the weighted f-measure.

While the thresholds for DDG employed here are widely used by

the community [35,37,38], other more conservative definitions for

the beneficial/neutral/detrimental mutations exist. For instance,

Bogan and Thorn [73] used a threshold of 2.0 kcal/mol to identify

the residues that contributed to the interaction hot spots. We

analyzed and compared the behavior of our top performing

supervised and semi-supervised methods by defining beneficial,

neutral, and detrimental effects using the more conservative

thresholds of 62.0 kcal/mol instead of 60.5 kcal/mol, followed

by retraining and evaluation of the methods for each problem

(Table S2). Using the more conservative definition resulted in

significantly unbalanced datasets (beneficial: 48, neutral: 1388,

detrimental: 518), but the performance of the classifiers was

similar, showing that our approach is adaptive to other definitions

of interaction effects.

Lastly, by including the performance of the two 2-class

classifiers as additional two features we were able to get a striking

improvement of the most accurate RF self- learning classifier for

the 3-class problem (Table 4, last row). Most significantly, we

obtained 82% gain in the recall of classifying beneficial mutations

(from 0.22 to 0.40), and 25% gain of the MCC score (from 0.49 to

0.61). Thus, integrating the intrinsic relationship between classi-

fication problems allowed us to significantly improve predictions

for the most difficult 3-class problem. We note that there may be

other, simpler, 2-level protocols where each of the three classes can

Figure 3. Snapshots of SNPIN-tool server. Snapshots of the result visualization page of SNPIN-tool web server, freely available at http://
korkinlab.org/snpintool/. The submission page allows users to upload a pdb file of the PPI structure and specify interacting chains with a mutation
(nsSNP). When the submitted job is finished, SNPIN-tool returns the prediction results and the estimated likelihoods for the 2-class and 3-class
classifiers. In addition, 3D structures of both wild-type and mutant PPIs with the highlighted residue position where nsSNP occurred are visualized.
doi:10.1371/journal.pcbi.1003592.g003
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be eliminated consecutively (e.g., classifying the detrimental

nsSNPs vs. the rest at the first level, and classifying the neutral

nsSNPs vs. beneficial ones at the second level). However, our

protocol is less restrictive, since it does not make a classification

decision for all three classes until the last level, where the

performances of both 2-class classifiers are considered simply as

additional numerical features and may or may not influence the

final classification.

Comparison to BeAtMuSiC on SKEMPI set
We next compared the performance of our top performing

RF-based semi-supervised classifier to BeAtMuSiC, a recently

published and the only publicly available tool, to the best of

our knowledge [31]. The authors of BeAtMuSiC assessed their

method by applying it to the SKEMPI set. Out of 3,047 entries

in SKEMPI, they removed the redundant entries and entries

with multiple mutations. The resulting set of 2,007 was used to

calculate the predicted values and compare them with the

original experimental measurements. Following our prepro-

cessing protocol, we also removed redundant entries and

entries with multiple mutations and then successfully predicted

1,954 mutations. Finally, comparing our set with the set of

2,007 entries used in BeAtMuSiC, we determined 1,897 entries

shared between the two sets that we used for our comparative

assessment.

We note that BeAtMuSiC is not a classifier, as it predicts the

changes in binding affinity caused by an nsSNP. Therefore,

instead of direct classification results, we used the classifier-

calculated probability for an nsSNP to be of the preserving

type; we expected this probability to correlate well with

changes in the binding affinity. We also note that our RF-

based classifier and all other classifiers were trained using the

Table 3. Feature importance ranking.

Ranking Classification (1) Classification (2) Classification (3)

1 Interaction Energy Interaction Energy Interaction Energy

2 Dcomplex term Total energy Dcomplex term

3 Geometric score OPUS term 1 Geometric score

4 Total energy Backbone clash Total energy

5 OPUS term 1 Dcomplex term OPUS term 2

6 OPUS term 2 OPUS term 2 OPUS term 1

7 Vander Waals Vander Waals Vander Waals

8 Solvation Polar Dfire2 term Solvation Polar

9 Goap term 2 Solvation Hydrophobic Electrostatics

10 Dfire2 term Goap term 2 ASA

11 Side chain H-bond Goap term 1 Goap term 2

12 Solvation Hydrophobic Electrostatic kon Dfire2 term

13 Vander Waals clashes Entropy sidechain Solvation Hydrophobic

14 ASA Vander Waals clashes Electrostatic kon

15 Backbone clash Torsional clash Vander Waals clashes

16 Electrostatic kon Side chain H-bond Goap term 1

17 Goap term 1 Solvation Polar Backbone clash

18 OPUS term 3 Electrostatics Torsional clash

19 Electrostatics Entropy mainchain Side chain H-bond

20 Torsional clash Backbone H-bond Backbone H-bond

21 Backbone H-bond Geometric score OPUS term 3

22 Entropy side chain Helix dipole Energy Ionisation

23 Entropy main chain Energy Ionisation Goap term 3

24 Energy Ionisation Entropy Complex Entropy mainchain

25 Helix dipole Partial covalent bonds Helix dipole

26 Partial covalent bonds Goap term 3 Entropy sidechain

27 Disulfide OPUS term 3 Disulfide

28 Goap term 3 ASA Entropy Complex

29 Entropy Complex mloop_entropy Partial covalent bonds

30 mloop_entropy sloop_entropy mloop_entropy

31 sloop_entropy Disulfide sloop_entropy

32 Water bridge cis_bond Water bridge

33 cis_bond Water bridge cis_bond

Feature importance rankings calculated using InforGainAttributeEval function in Weka for each of the three classification problems.
doi:10.1371/journal.pcbi.1003592.t003
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SKEMPI set. Therefore, for this comparative assessment we

applied a LOO cross-validation protocol to train models and

used predictions on the test examples from the same protocol

to calculate the Pearson correlation coefficient [31]. As a

result, the computed Pearson correlation coefficient between

our prediction scores and experimental values from SKEMPI

was 0.57, while the authors of BeAtMuSiC reported the

correlation coefficient of 0.47.

Validation on the dataset from the 26th round of Critical
Assessment of PRediction of Interactions (CAPRI)

As a final evaluation of our method, we applied the semi-

supervised RF-SL classifier of SNP-IN tool to characterize all

mutations of both CAPRI Targets, 55 and 56, and then scaled the

probability of each classification to obtain the score of mutation

effects on binding. Comparing to other participation groups in

26th round of CAPRI [74] and BeAtMuSiC applied for the same

purpose [31], our RF-SL classifier from SNP-IN tool obtained a

Kendall’s tau coefficient with experimental results of 0.37 on

target 55 and 0.25 on target 56. Both results were significantly

better than those ones by either a CAPRI predictor or

BeAtMuSiC (Table 5). The validation on the targets of the 26th

round of CAPRI demonstrates that our semi-supervised RF-SL

classifier is currently the best predictor of the mutation effects on

PPIs.

Application: Studying the nsSNP-induced rewiring of
disease interaction networks

The accuracy and computational performance of our approach

allowed us to study the mutation-induced rewiring effects of

protein-protein interaction networks mediated by disease genes.

The rationale of this approach was as follows. All nsSNPs on the

surface of a protein could be roughly organized in two groups with

respect to their role in a PPI mediated by this protein. The first

group included nsSNPs that were located inside the interaction

interface, while the second group consisted of nsSNPs that are

located outside interface (but might nevertheless rewire the PPI).

To demonstrate the applicability of our approach, we used it to

study two disease PPI networks centered around the genes

critically implicated in two complex genetic diseases, breast cancer

and diabetes (Fig. 4). For each study, we used dbSNP [70] and a

recently published INstruct database [75] to (1) select the disease-

associated genes that form a PPI network, (2) select nsSNPs

associated with the disease, and (3) determine whether any

interactions from that network have homologous structural

templates. To ensure the accuracy of the PPI data we used HINT

database [76] that includes PPIs experimentally supported by one

or more publications. We required for each PPI to be supported by

at least two references. For each PPI with a known structural

template we obtained a homology model (see Feature represen-

tation subsection in Methods), mapped known nsSNPs onto the

Table 5. Kendall’s tau rank correlation coefficient on target 55 and target 56 of the 26-th round of CAPRI.

Predictors Kendall’s tau rank correlation coefficient

Target 55 Target 56

SNP-IN tool 0.369 0.249

BeAtMuSiC 0.290 0.190

CAPRI Group 1 0.150 0.019

CAPRI Group 2 0.061 0.056

CAPRI Group 3 0.080 0.035

CAPRI Group 4 0.098 0.029

CAPRI Group 5 0.094 0.085

CAPRI Group 6 0.141 0.079

CAPRI Group 7 0.077 0.041

CAPRI Group 8 0.066 0.129

CAPRI Group 9 0.163 0.044

CAPRI Group 10 0.224 0.214

CAPRI Group 11 0.166 0.139

CAPRI Group 12 0.039 0.077

CAPRI Group 13 0.088 0.016

CAPRI Group 14 0.295 0.172

CAPRI Group 15 0.286 -

CAPRI Group 16 0.165 0.147

CAPRI Group 17 0.123 0.054

CAPRI Group 18 0.054 0.015

CAPRI Group 19 0.131 20.029

CAPRI Group 20 0.134 0.173

CAPRI Group 21 0.068 0.047

CAPRI Group 22 0.232 -

Kendall’s tau coefficients between predicted scores and experimental evaluations were calculated for our semi-supervised RF-SL classifier of SNP-IN tool, a recently
published predictor (BeAtMuSiC [31]), and all groups participating in the 26th round of CAPRI competition (http://www.ebi.ac.uk/msd-srv/capri/round26/).
doi:10.1371/journal.pcbi.1003592.t005
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modeled structure of the PPI and grouped them into the two

groups discussed above. Finally, we run SNP-IN tool on each

structurally resolved PPI and compared the obtained results with

the known literature on the effects of those variants.

Case Study 1: PPI network of breast cancer associated

genes. We extracted seven genes, XRCC3, XRCC2, RAD51C,

RAD51L1, RAD51L3, FANCG, BRCA2, that formed a connect-

ed PPI network with eight interactions (Fig. 4 A), and had been

associated with breast cancer as well as other types [77,78]. The

three most connected proteins, RAD51C, RAD51L3, and

XRCC3 had been critically implicated in the combinatorial

DNA repair due to the damage from ionizing radiation, mutagenic

chemicals and other DNA-damaging agents; the genetic variants

of these genes had been directly or indirectly linked to the disease

[79–81]. Specifically, forming an interaction complex between

RAD51C and XRCC3 was found to facilitate DNA-binding [82].

On the other hand, RAD51C and RAD51L3 were found to be a

part of a larger complex with the proposed function of forming

filaments on ssDNA, necessary for the formation of paired DNA

molecules and subsequent strand exchange and recombination

[78,83].

Six of eight PPIs had at least one structural template covering

them. Interestingly, all six interactions were mediated by

paralogous pairs of domains and thus could be modeled using

the same template (PDB ID: 1PZN). Two proteins, RAD51L3 and

XRCC3, had six and seven diseases-associated nsSNPs, corre-

spondingly (Table S3), covered by PPI structural templates. The

first template covered RAD51L3-RAD51C interaction and

therefore was used to model it, while the second template was

used to model RAD51L3-RAD51C. When we applied SNP-IN

tool to characterize each of the nsSNPs, we found that the majority

of the disruptive mutations were located on XRCC3 (four out of

six disruptive nsSNPs, including one directly in the binding site

(Fig. 4 C), while the majority of the nsSNPs on the surface of

RAD51L3 (six out of seven nsSNPs, including two on the binding

site) were predicted to be preserving the PPI (Fig. S1 A).

Interestingly, all four of disruptive nsSNPs in XRCC3 are

mutations of arginine (Fig. 4 C). We note that determining the

Figure 4. Effects of disease-associated nsSNPs rewiring disease interaction networks. SNP-IN tool is applied to study two disease-centered
PPI networks. Each PPI network consists of several binary interactions, some of which are covered by structural templates (shown as protein
structures inside the network edges). Binding sites of the corresponding interaction interfaces are shown in grey. The results of nsSNP classification
by SNP-IN tool into disruptive (magenta) and preserving (cyan) are shown for proteins whose interactions are structurally covered. A. A sub-network
of seven breast cancer associated genes. B. A sub-network of eight diabetes associated genes. C. A structure model of PPI between XRCC3 and
RAD51C interacting domains with predicted nsSNP effects. D. A structure model of PPI between HNF1A and PCBD1 interacting domains with
predicted nsSNP effects.
doi:10.1371/journal.pcbi.1003592.g004
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disruptive effects of nsSNPs using SNP-IN tool may not be

sensitive to the cases when these mutations trigger such

mechanisms indirectly. For instance, recent functional analysis of

E233G mutation in RAD51L3 found a two-fold decrease in the

interaction of the protein with RAD51C, compared to the wild-

type [84]. The authors suggested that the mutation residue might

disrupt the inter-domain interactions RAD51L3, altering protein

structure and folding of the protein, which in turn affected its

interaction with RAD51C. As there is no evidence for the direct

mechanism of rewiring the interaction by E233G, SNP-IN tool

characterized as a neutral mutation. Since RAD51L3 was also

found to interact with XRCC2 and RAD51L2, and both

interactions were modeled (using the same template), effects of

the same set of nsSNPs on those two interactions were also

predicted by SNP-IN tool (Fig. S1 B and C). All nsSNPs from

RAD51L3 were characterized as neutral for each of the two

interactions (Table S3).

Many of the reported mutations are yet to be studied, however

several genetic variants have been analyzed extensively including

other cancer types. For instance, the mutation T241M of XRCC3

has been previously identified a potential contributor to breast

cancer in one study, whereas no association with either breast or

skin cancer was found in another study. The fact that this mutation

occurs outside the interaction interface and the fact that it was

predicted to be preserving by SNP-IN tool suggest that it does not

have a direct impact on the PPI, which would drastically change

the functioning of the interacting proteins. Our findings are in

concordance with the recently proposed hypothesis that instead of

a stronger genetic-only effect associated with this variation, gene-

environment interactions are required, for which the environ-

mental exposure may not be present in some study groups and

which would explain the different outcomes of association studies

[85].

Case Study 2: PPI network of type II diabetes mellitus

associated genes. We found eight genes associated with several

forms of diabetes [86], which formed a connected PPI network

(Fig. 4 B). While, similar to the first case, each interaction was

supported by at least two PubMed references, only two out of ten

determined interactions had structural templates covering the

interaction interface, HNF1A-PCBD1 and PCBD1 homodimer.

Those two interactions are intrinsically related with each other:

PCBD1 (also referred to as DCoH), being a dimerization co-factor

of HNF1A, binds its dimer domain [87]. Both proteins are co-

expressed in liver, kidney, small intestine, and pancreas tissues and

are implicated in the enzymatic activity. None of three variants of

PCBD1 or a variant of HNF1A covered by a structural template

(Table S3) was found in the interaction interface of either

interaction. SNP-IN tool predicted all four variants to have a

preserving effect on the two PPIs (Fig. 4 D and Fig. S1 D). Unlike

the first case, we could not find any published evidence that any of

these nsSNPs are causative mutations. Interestingly, a recent

report associated I27L of HNFA1 with a ‘‘protective’’ effect to

hypertriglyceridemia [87]. With the new structural templates

available, it will be possible characterize nsSNPs associated with

other genes in the diabetes-centered PPI network.

Discussion

In this work, we developed a new approach, SNP-IN tool, that

characterizes the effects of nsSNPs on protein-protein interactions.

We introduced three related nsSNP effect classification problems

and applied supervised and semi-supervised machine learning

methods leveraging SVM and RF formalisms. The performance

assessment of the classifiers allowed us to draw several conclusions

regarding the nature of the studied problem and the machine

learning methodology addressing it. First, we found that while

many of the same nsSNP features play equally important role in all

three classification problems, some problems appeared to be more

challenging than the others. Second, we concluded that the

random forest approach is better suited for this problem than the

SVM approach: both RF-based supervised and semi-supervised

methods significantly outperformed the corresponding SVM-

based methods. Finally, we observed that the semi-supervised

learning method did not always significantly outperform the

supervised method. The comparative assessment showed the

superior performance of SNP-IN tool on the CAPRI targets as

well as over the only other published method, BeAtMuSiC. We

note, however, that the latter comparison should be treated with

caution, as it was done over the SKEMPI dataset that was used in

LOO for SNP-IN tool. In contrast, BeAtMuSiC is not a machine

learning approach, so it used this dataset exclusively for its

assessment. Thus, while none of the assessed examples from

SKEMPI were simultaneously used in training (due to design of

LOO cross-validation protocol) and could not influence the

classifiers, further more detailed assessment between these two

methods must be done, when another large dataset is available.

Semi-supervised learning approaches have received growing

attention from the bioinformatics community with their

successful applications to several areas of bioinformatics and

computational biology [47–49]. To the best of our knowledge,

none of the currently existing semi-supervised approaches in

bioinformatics have utilized random forest classifiers. Our

simple RF-based semi-supervised classifier performed remark-

ably better than state-of-the-art transductive SVM and LDS

based semi-supervised classifiers, suggesting that this could be

a promising direction for addressing the biological classifica-

tion problems that involve vector-based representations of

highly heterogeneous features. Overall, limitation of the

labeled data due to the difficulty of obtaining experimental

binding affinities from the site-directed mutagenesis experi-

ments renders semi-supervised approaches a powerful alterna-

tive to the supervised methods.

A related issue is predicting the effect of a non-synonymous

SNP on a function carried by a protein product of the mutant

gene, and specifically on a PPI mediated by this protein, has

emerged as an important computational challenge. A problem

of labeling nsSNPs as detrimental, neutral or beneficial, has

been recently introduced for the first time at the 26th round of

the CAPRI competition [88]. Considering the 3-class problem

as the most comprehensive annotation for nsSNP effects on

PPI, we have also introduced two other problems, each

involving only 2 classes. While related, the problems are

designed to characterize the genetic variation from different

perspectives. One two-class problem, where an nsSNP is

characterized as disrupting or preserving the associated PPI

could be used to study the network rewiring caused by certain

mutations, which in turn could be useful in pinpointing the

causative SNPs. The other 2-class problem, where an nsSNP is

labeled as either strengthening or weakening the interaction, is

useful when characterizing molecular mechanisms behind a

SNP that has been already linked to a functional change.

While an nsSNP occurring inside or in close proximity of an

interaction interface will directly modify only one of the two

interacting proteins, it is critical that our method takes into

account the structural information of the entire interaction,

including both binding sites forming the interaction interface. In

this manner, the role of the interaction partner and its binding site

is taken into consideration. For instance, it is possible that for a
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protein that competitively binds two other proteins through fully

or partially overlapping binding sites, a mutation occurring in the

overlapping region of these binding sites would disrupt one

interaction but be neutral for another interaction. With hundreds

of thousands of available interaction templates [89] and the

advancement of comparative modeling, the requirement for

structural information of the overall interaction makes an

increasingly small impact on the coverage of SNP-IN tool.

Understanding functional roles of nsSNPs associated with

diseases by studying the disease-centered PPI network has many

challenges. Being among the first such methods, SNP-IN tool is

yet to deal with some of them. One of the key challenges is

accounting for the indirect effects of nsSNPs on the interactions,

such as disabling a phosphorylation site that regulates a PPI,

altering an allosteric site, or nsSNP-induced structural changes

of a protein that affect the interaction. The difficulty of

modeling such effects lies in the complexity of indirect

mechanisms, as well as in the fact that the effect-causing SNPs

may be relatively distant from the protein interaction interface

they affect.

Another challenge is our ability to infer the functional

importance of an nsSNP—and ultimately its contribution to

the disease phenotype—from prediction of its effect on a PPI.

For instance, the disruptive effect on a PPI predicted for an

nsSNP that is either buried inside the interface or lies in its close

proximity would indicate the true functional effect of the

variation. However, predicting the neutral effect of a surface

nsSNP that is in proximity to the interface does not necessarily

mean that this genetic variation does not alter a biological

function, as it could be a part of another functional site. On the

other hand, an nsSNP that is buried inside the protein

interaction interface is far less likely to be involved in the other

function, e.g., belong to a DNA- or small ligand–binding site or a

site of posttranslational modification. Thus, the predicted

neutral effect of such genetic variation would indeed mean that

it does not have any functional impact.

As a recent work by Wang et al showed [7], there are thousands

of nsSNPs associated with the interaction interfaces, and more

SNPs are being identified every year from new high-throughput

studies [90]. Combined with the exponential growth of the

number of PPI structures being experimentally solved [91], we

expect that the coverage of SNP-IN tool will continue to grow,

providing more insights into molecular mechanisms of complex

genetic diseases. In addition, with the growing experimental

knowledge about the cooperative effects of multiple nsSNPs on

PPIs, we plan to expand the SNP-IN tool to multiple mutations as

one of the next future steps. Even more challenging is a problem of

computational estimation of the DDG values upon structural

changes in the protein interaction complex due to genetic

variation. The classification of nsSNPs can be considered as a

simplified, discretized, version of the latter problem. Based on the

success of the current machine learning approach, we anticipate

that the supervised and semi-supervised regression approaches will

complement the classical biophysical methods to address this

challenge.

Supporting Information

Figure S1 Structure models of disease associated PPIs
with predicted effects of nsSNPs. A. Structure model of PPI

between RAD51L3 and RAD51C. B. Structure model of PPI

between RAD51L3 and RAD51L1. C. Structure model of PPI

between RAD51L3 and XRCC2. D. Structure model of PPI of a

homodimer formed by PCBD1. Preserving nsSNPs are shown in

cyan and disruptive ones are shown in magenta.

(TIF)

Table S1 Mathews correlation coefficient (MCC) score
for the top-performing RF approaches. Different combina-

tions of three types of nsSNPs are used for each of the three

classification problems. RF, RF-SL, RF-SL-2F correspond to the

supervised random forest classifier, self-learning random forest

classifier, and self-learning random forest classifier using 2

additional features (predictions of effects by adding results from

the 2-class classifiers), correspondingly.

(DOCX)

Table S2 Leave-one-out cross validation results for the
top performing supervised and semi-supervised meth-
ods trained using more conservative thresholds of
±2.0 kcal/mol. Recall, precision, and f-measure are calculated

for each class. Weighted f-measure, fW, average accuracy, Acc, and

MCC score are calculated for all classes of a problem. All

assessments are based on leave-one-out cross-validation on the

labeled dataset.

(DOCX)

Table S3 Disease associated mutations studied in the
two case studies. Predictions are made using the most accurate

classifier for the second 2-class problem, disruptive (D) and

preserving (P) PPI mutations.

(DOCX)
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