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Abstract

An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are
caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for
over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression
and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with
data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of
their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases,
we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease
phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-
causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues
compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight
disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As
two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and
efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.
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Introduction

Hereditary diseases arise due to germline aberrations that are

present across the human body. Enormous progress has been

made over the years in mapping the genetic causes for a large

variety of hereditary diseases. To date, causal germline aberrations

for over 1,500 hereditary diseases can be retrieved from the

OMIM database [1]. Additional disease-related factors have been

mapped by genome-wide association studies, mRNA profiling and

epigenetic marking. Yet, despite this wealth of data, the molecular

basis of many hereditary diseases remains elusive. It is thus

apparent that novel strategies are required to enhance our

understanding of the molecular basis of these diseases.

While the genetic aberrations that cause hereditary diseases are

global, the diseases are often manifested in specific organs or

tissues (for simplicity we will use ‘tissue’ to denote ‘organ’ as well).

The mechanism for this selectivity and vulnerability in certain

tissues is unknown. Common explanations refer to a unique

function of the disease tissue, as in the case of muscle and liver

glycogen storage disease, or a unique feature of the disease tissue,

such as long-lived neurons and age-related protein misfolding

diseases [2]. It was also shown that expression levels of genes

underlying genetic diseases tend to be elevated in their disease

tissues [3,4]. Yet a rigorous analysis of the tissue-specific

manifestation of hereditary diseases and their respective disease

genes has rarely been performed.

An important determinant of tissue features is the repertoire of

proteins that are expressed in the tissue and their physical

interactions, whose union defines the tissue interactome. Tissue

interactomes were utilized to assess tissue-specific functions of

proteins and interactions (e.g., [4–8]) and to illuminate general

properties of disease genes (e.g., [3,7]). Tissue interactomes were

typically constructed by superimposing tissue expression data on a

static protein-protein interaction (PPI) network composed of

interactions that were frequently identified through in-vitro assays,

without any tissue context. These PPIs were included in the tissue

interactome if the interacting partners were found to be expressed

in that tissue, otherwise the PPIs were down-weighted or excluded

(e.g., [4–11]). Due to the scarcity of protein expression data across

tissues, most studies exploited data of gene expression across

tissues. The dataset of Su et al. [12], which used DNA microarrays

to profile transcript levels across 77 tissues, has been a prominent

quantitative resource in many of these studies (e.g., [3,9,11]).

Recently, our views of gene and protein expression across tissues

were considerably amplified owing to the application of additional

technologies to expression mapping. First, application of next-

generation RNA sequencing (RNA-seq) revealed that many more

transcripts were expressed per tissue than previously acknowledged
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[13], thereby affecting conclusions drawn from previous data [7].

Second, large-scale measurements of protein abundance have

become available, providing direct evidence for the presence of a

protein in a tissue. In particular, the Human Protein Atlas (HPA)

initiative offers qualitative immunohistochemical measurements of

protein abundance for thousands of proteins across tens of tissues

[14].

Here we took advantage of the exciting new wealth of

information regarding gene and protein expression across tissues

and harnessed them to illuminate the tissue-specificity of

hereditary diseases. First, we combined these data and integrated

them with known PPIs to create the interactomes of 16 main

human tissues (Figure 1). We observed considerable similarities

between tissue interactomes in terms of expressed proteins and

interactions, including significant correlations between transcript

levels and the numbers of interacting partners per gene in each

tissue. Focusing on genes causing hereditary diseases, we show

that, in contrast to the tissue-specific manifestation of their

respective diseases, the genes are often expressed in many tissues.

However, they tend to have elevated transcript levels or tissue-

specific PPIs preferentially in their disease tissues. We demonstrate

that knowledge of the tissue-specific PPIs of genes causing

hereditary diseases can be used to highlight disease-related

mechanisms. Therefore, comparison between tissue interactomes

can serve as an efficient strategy for illuminating the molecular

basis of these diseases.

Results

Tissue profiling data reveals a bi-modal distribution of
expressed genes across tissues

We obtained extensive data of genes and proteins expression

across tissues by integrating three major datasets: the dataset of the

Genomics Institute of the Novartis Research Foundation (GNF)

measured by using DNA microarrays [12], the Human Protein

Atlas (HPA) dataset described above [14], and the Illumina Body

Map 2.0 dataset measured by using RNA-seq [15]. From each

dataset we extracted the set of proteins or protein-coding genes

expressed per tissue, denoted tissue expressome, by using stringent

thresholds (see Methods). Since the available PPI data were

oblivious to alternatively-spliced isoforms we associated each

protein-coding gene with a single protein product (see Methods).

For simplicity we henceforth refer to protein-coding genes and

proteins interchangeably.

Dataset comparison of the genes expressed in each tissue

revealed that RNA-seq identified the largest number of genes per

tissue, with a median increase of 1.5-fold relative to HPA and of

3.8-fold relative to GNF (Table 1). Still, RNA-seq did not fully

contain data from the other datasets but covered between 58–80%

of their expressomes per tissue. We therefore tested whether the

different datasets were compatible and could be combined.

Indeed, the overlaps between datasets in expressed genes per

tissue were highly statistically significant in all cases (p-value,

10297, Fisher exact test). Moreover, corresponding tissues from the

different datasets best correlated with each other in almost all cases

(see Methods and Table S1). We also compared between the tissue

distributions of genes per dataset and found them to be bi-modal,

with most genes showing either tissue-specific or ubiquitous

expression across tissues (Figure 2A). In particular, in the GNF

dataset most genes were tissue-specific, but in the more recent

RNA-seq and HPA datasets, in accordance with other expression

datasets [4], most genes were ubiquitously expressed across all

tissues. We observed similar bi-modal distributions upon using less

stringent expression thresholds (Figure S1).

To obtain an extensive view of the repertoire of expressed genes

and their potential PPIs in each tissue we combined the three

datasets. Specifically, we defined a gene as expressed in a tissue if it

was found to be expressed in that tissue in at least one dataset. The

resulting tissue expressomes maintained the bi-modal tissue

distribution (Figure 2A): 61% of the genes were expressed in 14–

16 tissues, henceforth denoted globally expressed genes, and 14%

of the genes were expressed in 1–3 tissues, henceforth denoted

tissue-specific genes. Testing for gene ontology (GO) enrichments

we found that globally expressed genes were highly enriched for

basic cellular processes common to living cells, such as RNA

splicing (p,10228) and protein transport (p,10226, Table S2).

Tissue-specific genes were enriched for tissue-specific processes

such as spermatogenesis in testis (p = 7.3*1026) and sensory

perception in brain (p = 7.2*1024, Table S3).

Common features of tissue interactomes
To construct tissue interactomes we first gathered recent data of

experimentally-detected human PPIs from four major public

databases [16–19]. These data amounted to a global interactome

consisting of 67,439 interactions between 11,225 proteins, thus

covering 52% of the human protein-coding genes. We then

constructed tissue interactomes by filtering the global interactome

according to tissue expressomes (Figure 1). Specifically, each tissue

interactome contained only those PPIs in which both interacting

partners were found to be expressed in that tissue (see Methods).

Each resulting tissue interactome covered more than half of the

global human interactome, with 58–75% of the proteins and 63–

79% of the PPIs. The tissue interactomes are provided at http://

netbio.bgu.ac.il/tissueinteractoms.

An overall view of the tissue interactomes appears in Figure 2B.

All the tissue interactomes shared a common core sub-network

that contained 4,989 proteins and 26,370 PPIs. This core sub-

network dominated all tissue interactomes by containing half or

more of their proteins and PPIs. To test the consistency in

expression levels of core proteins across tissues we applied the

DESeq method [20]. Only 555 of the 4,989 core genes (11%)

Author Summary

An open question in human genetics is what underlies the
tissue-specific manifestation of hereditary diseases, which
are caused by genomic aberrations that are present in cells
across the entire human body. In order to answer this
question, we created an extensive resource of protein
expression and interactions across 16 main human tissues.
Using this resource, we first show that the genes
underlying hundreds of hereditary diseases are widely
expressed across tissues, yet, enigmatically, cause disease
phenotypes in few tissues only. We then identify two
distinct, statistically-significant factors that could lead to
tissue-specific vulnerability in the face of this broad
expression: (i) many disease-causing genes have elevated
expression levels in their disease tissues, and (ii) disease-
causing genes have a significantly higher tendency for
tissue-specific interactions in their disease tissues. As we
show for several disease-causing genes, these tissue-
specific interactions highlight disease mechanisms and
provide an efficient filter for interrogating the molecular
basis of diseases. Together the two factors we identified
are relevant for as many as two thirds of the tissue-specific
hereditary diseases. Our comparative tissue analysis
therefore provides a meaningful and efficient framework
for enhancing the understanding of the molecular basis of
hereditary diseases.

Mechanism of Tissue-Specific Hereditary Diseases
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showed a significant change in expression (p-value#0.01) in at

least one tissue, implying that most core proteins are expressed at

similar levels across tissues. As can be expected, core proteins were

highly enriched for basic cellular processes (Table S4).

Another common feature of the tissue interactomes was the

scale-free like distribution of their PPI degrees (degree is the

number of interacting partners per protein). In each tissue most

proteins had at most five interacting partners, while a small subset

of proteins, denoted hubs, had over 45 interacting partners each

(Figure S2). These 451 tissue hubs generally retained their high

degree across tissues (Figure 2C), and were highly enriched for a

variety of regulatory processes, such as regulation of transcription

(36%, p,10215) and regulation of signal transduction (18%, p,

10212, see Table S5). 221 of these tissue hubs were also found in

the core sub-network and showed a similar regulatory nature

relative to other core proteins (Table S6).

The wide range of PPI degrees led us to hypothesize that

proteins with many interacting partners may require a larger

number of molecules in order to support these interactions,

relative to proteins with only a few interacting partners, as was

previously observed in budding yeast [21]. We therefore correlated

between PPI degrees and transcript level per gene in each tissue

(see Methods). In all tissues these correlations were statistically

significant (Figure 2D and Figure S3). These correlations were

maintained despite the diversity across tissues in transcript levels

and in PPI partners (Figure S4).

A network view into transcript levels and tissue-specific
PPIs of genes causing hereditary diseases

We gathered 303 hereditary diseases that manifested clinically

in at least one of the 16 tissues that we analyzed, and their 233

causal germline-aberrant genes (see Methods and Figure S5). As

shown in Figure 3A, most hereditary diseases manifested in a

single tissue, and yet over 80% of their causal genes were

expressed in 10 tissues or more. Thus, causal genes tend to elicit a

clear phenotype in only a small subset of their expressing tissues.

We next tested whether the expression levels of causal genes

differ between their disease- and unaffected tissues, as shown

previously for the larger set of genetic diseases caused by somatic

or germline aberrations [3]. To this end we compared between the

median expression level of causal genes in their disease tissues and

their median expression level in non-disease tissues (see Methods).

We found that a significant fraction of these genes were expressed

at elevated levels in their disease tissues (63%, randomization test

p,1024, Figure 3B), with almost a third of these having

significantly high levels (28% with p#0.01, DESeq analysis).

Given the correlation between transcript levels and PPI degrees,

we next tested whether causal genes also tend to have more PPIs in

Figure 1. The construction of 16 human tissue interactomes by integrating data of tissue expression with data of PPIs. Data of
expression per tissue according to DNA microarray (GNF, [12]), protein abundance (HPA, [14]), and RNA-sequencing (RNA-seq, [15]) were consolidated
into 16 main tissues. In parallel, experimentally detected PPIs were united from BIOGRID [16], DIP [17], IntAct [18] and MINT [19] to form a global
human interactome. Tissue interactomes were then constructed by filtering the global interactome per tissue to contain only PPIs in which both pair-
mates were found to be expressed within the tissue.
doi:10.1371/journal.pcbi.1003632.g001

Mechanism of Tissue-Specific Hereditary Diseases
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their disease tissue. This tendency too was significant (42%,

randomization test p,1024, Figure S6). Moreover, there was a

significant overlap between causal genes with elevated expression

levels and causal genes with higher PPI degrees in their disease

tissue (Fisher exact test p = 0.02).

Given that causal genes tended to have more PPIs in their

disease tissue, we tested whether they are also associated with PPIs

that occur almost exclusively in that tissue. Such tissue-specific

PPIs (TS-PPIs) can offer a clear molecular basis for the tissue-

specific manifestation of hereditary diseases. Indeed, we found

several examples where the TS-PPIs of causal genes in their

disease tissues involved genes and interactions previously shown to

be relevant for disease etiology (Table 2 and Figure 4, see

Discussion). The full list of causal genes and their TS-PPIs appears

in Table S8. We next turned to assess the prevalence of TS-PPIs

among causal genes. We found that causal genes had a

significantly higher tendency for TS-PPIs relative to interactome

genes (Fisher exact test p = 8.8*1025, Figure S7). Moreover, their

TS-PPIs occurred preferentially in their disease tissues (random-

ization test p,1024, Figure 3C). As could be expected, causal

genes with more PPIs and causal genes with TS-PPIs in their

disease tissue significantly overlapped (Fisher exact test p,1029).

However, there was no significant overlap between causal genes

with TS-PPIs and causal genes with elevated transcript levels in

their disease tissues (Fisher exact test p = 0.56). Thus, TS-PPIs and

elevated transcript levels of causal genes in their disease tissues

distinctly contribute to the emergence of tissue-specific pheno-

types. As shown in Figure 3D, these two factors are related to 67%

of the hereditary diseases in our dataset.

Discussion

The identification of germline-aberrant genes underlying many

of the hereditary diseases provides an important step toward

Figure 2. Common features of tissue interactomes. A. The distribution of proteins and PPIs by the number of tissues in which they are
expressed is bi-modal, with most genes being globally expressed or tissue-specific. The distribution is shown per dataset and when combined. PPIs
show a corresponding bi-modal distribution (the numbers of PPIs across 1–16 tissues appear in Table S11). B. A comparative view of the numbers of
expressed proteins and PPIs across tissues. The core sub-network that is shared by all tissues (the right-most bar) is larger than the interactome of
each tissue that remains after excluding the core. The numbers of genes and PPIs in the interactome of each tissue appear in Table S12. C. Most tissue
hubs are widely expressed and retain their large PPI degree when expressed. The PPI degrees of the 451 tissue hubs (rows) in the 16 tissue
interactomes (columns) are presented using a heat map, where each entry marks the PPI degree of the corresponding hub in that tissue. Entries are
colored by the PPI degree from yellow (#30 PPIs) to dark blue ($150 PPIs); a white entry implies that the hub is not expressed in that tissue. Tissue
acronyms: LV = Liver, WBC = White Blood Cells, BT = Breast, OV = Ovary, HT = Heart, AP = Adipose, SM = Skeletal Muscle, CL = Colon, LG = Lung,
KY = Kidny, TR = Thyroid, PT = Prostate, LG = Lung, BN = Brain, TS = Testis, AD = Adrenal. D. A strong correlation between RPKM levels and PPI degree is
observed in adipose tissue (Spearman r = 0.98, p = 4.7*1027). The box-plot diagram shows the quartiles (25%, 50% and 75%) of the sorted PPI degree
values in each RPKM bin. Similar correlations were observed in all 16 tissues (Figure S3).
doi:10.1371/journal.pcbi.1003632.g002

Mechanism of Tissue-Specific Hereditary Diseases
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unraveling their molecular basis. Still, the remarkable tissue-

specificity of hereditary diseases makes it clear that additional

factors are governing disease manifestations. Relying on the utility

of interactomes in understanding genotype-to-phenotype relation-

ships [22], we applied here a comparative analysis of tissue

interactomes to uncover determinants of the tissue-specificity of

hereditary diseases.

We analyzed over 300 hereditary diseases and their causal genes.

However, this set was limited by several factors: First, only diseases

caused by mutations in protein-coding genes were included.

Second, diseases had to be associated with at least one of the 16

tissues we analyzed. Given that the tissue associations were deduced

by using a text-mining approach [3], these associations could be

noisy or limited to the subset of hereditary diseases with clear tissue

phenotypes. Third, the expression level of causal genes in their

disease tissue had to reach a certain threshold, and thus diseases

whose causal genes are lowly expressed might have been ignored.

These limitations imply that our results may be more relevant for

monogenic disorders with strong tissue phenotypes.

To construct tissue interactomes we combined three large-scale

datasets of transcript or protein abundance across a multitude of

tissues, which were obtained through three experimental tech-

niques. We found relatively strong correlations between transcript

levels in corresponding tissues, and statistically significant yet low

correlations between transcript levels and protein abundance. The

latter correlation was recently shown to be around 0.4 in

simultaneous measurements from a common sample [23]. The

lower correlations we observed likely stem from noisy estimates of

transcript and protein abundance, and from correlating between

measurements from different tissue samples.

Similarly to other studies of tissue interactomes (e.g., [9,11]), we

combined the datasets by associating a gene with a tissue if its

expression in that tissue passed certain criteria in at least one

dataset. This combination resulted in tissue expressomes that were

unique in their extent (Table 1). At the same time, relying on no

more than three sources allowed us to limit lab bias effects that

would have been encountered upon analyzing a similar number of

samples but from many different labs [24]. We then superimposed

the subset of tissue-associated genes on the set of known PPIs,

filtering out PPIs in which at least one interacting partner was not

associated with the tissue. It is important to note that whether a

PPI indeed occurs in the tissue depends on additional factors, such

Figure 3. Tissue-related features of hereditary diseases and their causal genes. A. The tissue-distribution of hereditary diseases and their
causal genes shows that diseases are manifested in few tissues, while most of their germline-aberrant causal genes are expressed in 10 tissues or
more. The numbers of expressed causal genes across 1–16 tissues appear in Table S13. B. Causal genes tend to be more highly expressed in their
disease tissues relative to other tissues in which they are expressed. We observed higher median expression levels in disease tissues for 128 out of the
203 germline-aberrant causal genes for which RPKM values were available (p-value,1024). The box-plot diagram shows the quartiles (25%, 50% and
75%) of the median RPKM levels of causal genes; for each gene only tissues expressing the gene were considered. C. Causal genes involved in TS-PPI
tend to have more TS-PPI in their disease tissues relative to other tissues. Out of 126 genes with TS-PPI, 58 genes had higher median TS-PPI in the
disease tissue relative to non-disease tissues in which they are expressed (p-value,1024). The box-plot diagram shows the quartiles (25%, 50% and
75%) of the median number of TS-PPI of causal genes, where for each gene only tissues expressing the gene were considered. The first (25%) and
second (50%) quartiles of non-disease tissues were zero and therefore overlap with the X axis. D. The majority of the 303 hereditary diseases are
associated with elevated expression and/or TS-PPIs of their causal genes in their disease tissues.
doi:10.1371/journal.pcbi.1003632.g003
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as the cellular localization of the interacting proteins and their

posttranslational modifications. Nevertheless, expression of both

partners is a necessary initial requirement, and therefore is often

used as a filter for constructing tissue interactomes (e.g., [3,7,9–

11]). The effectiveness of filtered tissue interactomes was

demonstrated in two recent studies, which showed that they

considerably improve the prioritization of disease genes relative to

an unfiltered global interactome [10,11].

The interactomes of the different tissues had common features.

First, the majority of their genes were common to 14 or more

interactomes (Figure 2). These globally expressed genes were

enriched in basic cellular processes and formed a common core

sub-network that dominated all tissue interactomes (Figure 3).

Second, hubs in the different tissue interactomes were enriched in

regulatory processes. Third, the different tissues shared significant

correlations between transcript levels and PPI degrees (Figure 2D

and Figure S3). Such correlation was previously observed in

budding yeast [21] but not in human. One might assume that

these correlations stem from the fact that PPIs between highly-

expressed proteins are easier to detect. However, the detection of

PPIs was often done outside of a human cell, through in-vitro assays

or by using yeast cells (e.g. [25]). In such assays the transcript levels

are unrelated to the in-vivo levels of these transcripts within human

cells of different tissues, and therefore the bias toward genes with

high transcript levels in-vivo is unlikely.

In view of these marked similarities between the different tissue

interactomes, the hereditary diseases that we analyzed stood out as

a critical manifestation of tissue-specificity. Contrary to what

might be expected, only 7% of the tissue-specific hereditary

diseases were associated with tissue-specific causal genes

(Figure 3D). Instead, the large majority of causal genes were

expressed in many tissues that, enigmatically, did not show marked

disease phenotypes (Figure 3A). We next harnessed the tissue

interactomes to identify features that distinguish causal genes in

their disease tissues and could underlie the tissue-specific selectivity

and vulnerability.

We found that causal genes tend to have elevated expression

levels in their disease tissues relative to unaffected tissues in which

they were expressed (Figure 3B). A similar tendency was observed

previously among genes causal for genetic diseases excluding

Figure 4. TS-PPIs illuminate disease-related tissue-specific effects of causal genes. Orange, blue and grey nodes denote tissue-specific,
globally-expressed, and other proteins, respectively; diamond nodes mark hereditary disease genes; edges denote PPIs. A. BRCA1 is a globally-
expressed tumor-suppressor hub, and ESR1 is an estrogen receptor protein that activates cellular proliferation. The breast-specific PPI linking BRCA1
and ESR1 provides a potential basis for the breast-specific effects of BRCA1 germline mutations [44]. B. A lung-specific PPI connects the widely-
expressed epidermal growth factor receptor EGFR and its ligand protein epiregulin (EREG). Germline mutations in EGFR lead to lung cancer [30], and
EREG was shown to confer invasive properties in an EGFR-dependent manner [31]. C. Muscle-specific PPIs connect the widely expressed trans-
membrane cell adhesion receptor dystroglycan 1 (DAG1) to its muscle-specific ligand dystrophin (DMD), and to caveolin 3 (CAV3) which regulates
DMD by preventing the DAG1-DMD PPI. Mutations in all three genes give rise to various forms of muscular dystrophies. D. The brain-specific PPIs that
link members of the globally-expressed protein complex EIF2B to the netrin-1-receptor DCC may underlie the brain-specific effects of germline
mutations in EIF2B complex members [35].
doi:10.1371/journal.pcbi.1003632.g004
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cancers [3]. The correlation we observed between transcript levels

and PPI degrees (Figure 2D), and the law of mass-action that links

gene dosage with probability of interactions [26], both suggest that

causal genes will interact in a more promiscuous manner in their

disease tissues. Indeed, we found that causal genes tend to have

more PPIs in their disease tissues. Given that mutations leading to

diseases were shown in some cases to disturb the physical

interactions of disease proteins [27,28], the higher tendency for

potentially disturbed PPIs in disease tissues may underlie the

increased vulnerability of these tissues.

The other feature that distinguishes causal genes in their disease

tissues is their tendency for TS-PPIs, which is observed for 27% of

the hereditary diseases (Figure 3D). Notably, such TS-PPIs can

offer an explanation for the tissue-specific manifestation of a

disease: while they may not comprise the entire disease mecha-

nism, these interactions can enhance or propagate the aberrant

phenotypes and thus contribute to the clinical manifestation

(Table 2). An important implication of this observation relates to

the interrogation of disease etiologies: Whereas current efforts to

illuminate the molecular basis of diseases typically consider all the

interactions involving causal genes in their disease tissues (e.g.,

[10,11]), we suggest concentrating efforts on their TS-PPIs. We

show in Table S8 that focusing on these TS-PPIs typically reduces

the number of candidate PPIs by 8-fold, thus providing a powerful

filter.

Below we demonstrate that TS-PPIs can highlight additional

disease-related proteins and interactions effectively. Our first

example relates to the widely-expressed tumor suppressor BRCA1

that causes predisposition to hereditary breast and ovarian cancer.

We found that, in breast, BRCA1 is involved in a single TS-PPI,

with the estrogen receptor ESR1 that activates cell proliferation

(Figure 4A). Indeed, it was previously demonstrated that through

this interaction BRCA1 inhibits ESR1 and its proliferative activity

in breast, and that this effect is reduced in mutated forms of

BRCA1 [29]. The second example of a disease-related TS-PPI is

that of the widely-expressed epidermal growth factor receptor

EGFR. Germline and somatic mutations in EGFR lead to lung

cancer [30]. Notably, we found that a lung-specific PPI connects

EGFR to its ligand-protein epiregulin (EREG) that was shown to

confer invasive properties in an EGFR-dependent manner [31].

Thus, the EGFR-EREG PPI has the potential to enhance the

effect of EGFR aberration in a lung-specific manner (Figure 4B).

The third example relates to aberrations in three genes that

separately cause different subtypes of muscular dystrophy:

dystroglycan 1 (DAG1), dystrophin (DMD), and caveolin 3

(CAV3). DMD is a muscle-specific protein that anchors the

extracellular matrix to the cytoskeleton. It is also the ligand of

DAG1, a globally expressed trans-membrane cell adhesion

receptor that interacts with DMD in muscle only [32]. This

interaction is prevented by another muscle-specific PPI, in which

CAV3 binds to DAG1 [33]. These muscle-specific PPIs explain

the muscle-specific phenotypes of DAG1 and CAV3 aberrations

(Figure 4C). The last example is a putative explanation for

leukoencephalopathy with vanishing white matter, a brain disease

that manifests during childhood. The progressive white matter

deterioration is caused by germline mutations in any of the five

genes encoding the subunits of the translation initiation factor

EIF2B, and cells harboring any of these mutations show decreased

Table 2. Hereditary disease genes and their disease-related TS-PPI.

Disease
Causal gene (number of
expressing tissues)

TS-PPI partner in disease
tissue Relation to disease

Familial hyper-cholesterolemia LDLR (16) PCSK9, liver PCSK9 promotes LDLR degradation [45]

Androgen insensitivity AR (10) MAGEA11, testis MAGEA11 increases AR activity [46]

Atrial septal defect 2 GATA4 (14) NKX2-5, heart NKX2-5 mutations are related to atrial
septal defects [47]

Alzheimer disease type 3 PSEN1 (16) ICAM5, brain ICAM5 loss of function is related to
dementia [48]

Alzheimer disease-4 PSEN2 (16) ICAM5, brain ICAM5 loss of function is related to
dementia [48]

Alzheimer disease-4 PSEN2 (16) GFAP, brain GFAP splice variant expression is related to
Alzheimer [49]

Dementia with Lewy Bodies (DLB) SNCA (15) SNCB, brain SNCB mutations lead to DLB [50]

Dementia frontotemporal with or without
parkinsonism

MAPT (13) SLC1A2, brain SLC1A2 polymorphisms are associated with
essential tremor [51]

Sex Reversal SOX9 (14) NR5A1, testis NR5A1 mutations are related to XY sex
reversal [52]

Hereditary non-polyposis colorectal cancer Turcot
syndrome

MLH1 (16) MUC2, colon Muc2 is involved in colorectal cancer
suppression [53]

Muscular Dystrophy DAG1 (16) DMD, skeletal muscle DMD is the ligand of DAG1 [32]

Muscular Dystrophy DAG1 (16) CAV3, skeletal muscle This PPI regulates DMD recruitment to
sarcolemma [33]

Hereditary Breast Cancer BRCA1 (16) ESR1, breast BRCA1 inhibits ESR1 proliferative activity
[29]

Lung Cancer EGFR (15) EREG, lung EREG is EGFR’s ligand, confers invasiveness
[31]

Leukoencephalopathy with vanishing white matter EIF2B1 complex proteins (14–
16)

DCC, brain DCC activates EIF2B translation complex
[35]

doi:10.1371/journal.pcbi.1003632.t002
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translation activity [34]. While EIF2B proteins are globally

expressed, we found that they exhibit brain- and testis-specific

interactions with the netrin-1-receptor DCC, which mediates axon

guidance (Figure 4D). Notably, Tcherkezian et al. [35] that

identified the relationships between DCC and EIF2B also showed

that the absence of netrin significantly lowers cellular translation.

We therefore propose that this relationship enhances the effect of

EIF2B mutations in a brain-specific manner.

The distinct features we identified provide a starting point for

elucidating the molecular basis of many hereditary diseases and

can be further applied to filter the wealth of data being generated

by large-scale disease-associations studies. In the future, additional

tissue features could be considered, such as protein isoform

concentrations [36] and relationships other than PPIs [37]. The

comparative tissue analysis, along with the extensive resource of

human tissue interactomes that we put forward, should become a

standard framework for interpreting the wealth of disease-related

data and for enhancing our understanding of the etiologies of

hereditary diseases.

Methods

Expression data sources
GNF data [12] were downloaded from BioGPS [38], and all

genes with intensity value above 100 in a tissue were considered as

expressed [39]. HPA data [14] included proteins that were

identified as expressed in a tissue, i.e., assigned as ‘low’, ‘medium’

or ‘high’ abundance based on manual assessment of tissue staining

by antibodies against the proteins of interest. Proteins were further

filtered by imposing stringent thresholds on the reliability and

validity of their antibodies: When available, a medium or high

antibody-reliability score was required; otherwise we required at

least one supportive and no negative validity scores. In case of

multiple measurements per tissue per gene we chose the highest

value. RNA-seq data from Illumina Body Map 2.0 [15] were

filtered for genes with at least 1 read per kilobase per million reads

(RPKM). Results for a threshold of 0.3 RPKM were similar and

appear in Figure S1. Analysis was limited to proteins and protein-

coding genes only, and these were mapped to their Ensembl gene

identifiers using BioMart [40]. Table S9 presents the numbers of

genes and tissues measured in each dataset.

Consolidation of expression and tissue data
Since RNA-seq data covered the largest number of genes per

tissue we based our analysis on the 16 main human tissues profiled

with RNA-seq. GNF and HPA each contained profiles for 15 and

14 of these tissues and their subparts, respectively. We manually

consolidated the various tissue subparts according to the consol-

idation scheme given in Table S10. A gene was considered as

expressed in a tissue if that gene or its protein product were found

to be expressed in that tissue or the tissue subparts by at least one

dataset. Compatibility among datasets was tested by (i) computing

the overlaps in genes and interactions expressed per tissue using

Fisher exact test, and (ii) computing the correlation in expression

levels of commonly-expressed genes using Kendall’s tau rank

correlation, and ranking the correlations between matching tissues

compared to correlations between non-matching tissues (Table

S1). Figure S8 provides scatter plots comparing the expression

levels of common genes in corresponding tissues measured by any

two out of HPA, GNF and RNA-seq.

PPI data sources
We assembled PPI data from BIOGRID [16], DIP [17], IntAct

[18] and MINT [19]. Only experimentally-detected physical

interactions were included, and their union formed the global

human interactome.

Construction of tissue interactomes
Tissue interactomes were constructed by filtering the PPIs in the

global human interactome according to tissue expression data

[41]. A PPI was included only if both pair-mates were found to be

co-expressed in the same sample or in the same tissue subpart at

the lowest hierarchy level (Table S10). PPIs from subparts of the

same tissue were united to form the tissue interactome.

Hubs
Interactome hubs were defined as those nodes in the network

where the number of interacting partners (PPI degree) ranked

among the top 5%. This resulted in a threshold of over 45 PPI

partners for each interactome we analyzed.

Statistical analysis
Pair-wise Kendall’s tau rank correlations between datasets were

computed for expression levels of commonly detected genes. GO

enrichments were performed using DAVID [42]. The total

number of human proteins was 21,450 according to BioMart

[40]. Differential expression of genes in a tissue was computed

using the DEseq method [20]. DESeq analysis was performed for

16 tissues, such that each run compared one tissue to all other 15

tissues. The statistical significance of the overlap between disease

genes with elevated expression, higher PPI degree or TS-PPI was

calculated using Fisher exact test while excluding tissue-specific

disease genes.

Correlation between RPKM levels and PPI degrees
In each tissue we computed the Spearman correlation between

RPKM levels and PPI degrees of genes with RPKM readout

above 0 and PPIs in the tissue. We also binned genes based on

their RPKM levels into 10 equally-sized bins, and computed

correlations using the median of each bin. In all tissues both types

of correlations were highly statistically significant. The correlation

values and figures appear in Figure S3.

Disease-tissue-gene associations
Disease to tissue associations were taken from Lage et al. [3],

and included manually curated associations or associations

exceeding a cutoff of 15 yielding a precision of 85% as mentioned

therein.

Using data from the OMIM database [1] we limited the set of

diseases to include only non-somatic and allelic disorders, and

extracted disease-genes that were causally associated with those

diseases. Data of hereditary cancers were downloaded from the

cancer gene census website [43], was limited to cancer germline

mutation genes, and manually associated with disease tissues. Only

diseases that were associated with at least one of the 16 main

tissues and whose causal disease gene was expressed in that tissue

were analyzed.

Comparative analysis of RPKM levels of disease genes
We compared the RPKM values of a disease gene between its

disease and non-disease tissues in two ways. To identify elevated

expression we compared between (i) the median RPKM of that

gene in its disease tissues, and (ii) the median RPKM of that gene

in its non-disease tissues. The permutation test used to assess the

significance of the results is described in the following subsection.

To identify significant over-expression we used the DEseq method

as described in the ‘statistical analysis’ subsection above [20]. The

Mechanism of Tissue-Specific Hereditary Diseases
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subset of tissues considered for a specific gene was limited to tissues

in which the gene was indeed expressed.

Statistical significance of features of disease genes in
their disease tissues relative to non-disease tissues

We used a permutation test to assess the statistical significance

of the number of genes whose median value (RPKM level, PPI

degree or number of TS-PPI) in their disease tissues was higher

than the corresponding median value in their non-disease tissues.

Specifically, for each disease gene we randomly selected a set of x

disease tissues out of the set of tissues expressing that gene, where x

was set to the number of original disease tissues for that gene. The

remaining, non-selected tissues expressing the gene were consid-

ered as the gene’s random non-disease tissues. In all calculations

we ignored tissue-specific disease genes as their set of non-disease

tissues could be empty. We then computed the relevant median

value for that gene in its randomly-selected disease tissues (median

value denoted V_d) and the median value in its random non-

disease tissues (median value denoted V_nd). If the median in

disease tissues was higher (i.e., V_d.V_nd) the gene was

considered as success in the permutation test. We applied this

test to all disease genes and counted the total number of random

successes in that run. We repeated this analysis 10,000 times. We

computed the p-value as the fraction of runs out of the 10,000 runs

in which the total number of random successes was at least as high

as the number of successes in the original data.

Additional data files
The supplementary material file contains Figures S1, S2, S3, S4,

S5, S6, S7, S8 and Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13. The tissue interactomes can be found at http://

netbio.bgu.ac.il/tissueinteractoms.

Supporting Information

Figure S1 The distribution of genes by number of
expressing tissues remains bi-modal when gene expres-
sion thresholds are relaxed. Most genes are either globally

expressed or tissue-specific, yet the tendency for global expression

is enhanced. GNF refers to the study of Su et al (1). HPA refers to

data of the human protein atlas (2). RNA-seq refers to RNA-

sequencing data (3). GNF genes were considered as expressed in a

tissue if their intensity value was above 30, and RNA-seq genes

were considered as expressed in a tissue if their RPKM was at least

0.3. Total is the combined expression.

(PDF)

Figure S2 The 16 tissue interactomes show similar
distributions of PPI degrees. The PPI degree of a protein in a

tissue is the number of its PPI partners in that tissue. Most genes

have at most 5 PPI partners in a tissue. Also shown are the PPI

degree distributions within the global interactome and within the

backbone interactome shared by all tissues.

(PDF)

Figure S3 Gene expression levels and their PPI degrees
are correlated in all 16 tissues. A. Binned expression data:

Each box-plot diagram shows the quartiles (25%, 50% and 75%)

of the sorted PPI-degree values (Y axis) in each RPKM bin (X

axis). The Spearman correlations of the median values were above

0.91 and statistically significant (p,2.4*1024) in all tissues. B. No

binning of expression data: Each scatter plot shows the log2

RPKM values (X-axis) and the PPI-degree values (Y axis) for a

specific tissue. The Spearman correlations were above 0.2 for 14

out of 16 tissues and statistically significant (p,2.97*10218) in all

tissues. Correlations and p-values for each tissue were as follows:

Adipose 0.23, p,8.13*10280 ; Adrenal 0.23 p,9.65*10287; Brain

0.22 p,1.57*10-78; Breast 0.20, p,7.47*10262; Colon 0.22, p,

7.07*10-76; Heart 0.18, p,2.46*10249; Kidney 0.19, p,

1.61*10260; Liver 0.11, p,2.97*10218; Lung 0.22, p,

2.41*10279; Lymph Node 0.23, p,8.17*10289; Skeletal Muscle

0.21, p,1.91*10263; Ovary 0.25, p,4.57*102105; Prostate 0.22,

p,5.09*10283; Testis 0.25, p,9.19*102109; Thyroid 0.23, p,

5.72*10288; WBC 0.20, p,2.65*1023.

(PDF)

Figure S4 The diversity across tissues in transcript
levels and in genes’ PPI partners. A. A heat map showing

the diversity in RPKM expression levels. Each row represents a

gene (g), each column represents a tissue (t), and each entry (g,t)

represents the rank of the RPKM level of the gene g in tissue t. The

ranking is in decreasing order of expression, such that the most

highly expressed gene is ranked 1. The ranking is from blue to gray,

white entries represent non-expressing tissues. B. The diversity on

PPI partners of genes across tissues. Each row represents a gene and

the percentage of its PPI partners that are expressed in 1–3 tissues

(orange), 4–13 tissues (blue) and 14–16 tissues (grey).

(PDF)

Figure S5 Tissue-association of hereditary diseases,
their causally-associated hereditary disease genes, and
the disease-to-gene associations per tissue. All tissues

manifest at least one hereditary disease.

(PDF)

Figure S6 The PPI degrees of causal genes across
tissues. A. The PPI degree distribution of causal genes across

tissues is scale-free like. Similarly to other interactome genes, most

causal genes have at most five PPI partners. B. Causal genes tend

to have a higher PPI degree in their disease tissues relative to other

tissues (42%, randomization test p,1024). The box-plot diagram

shows the quartiles (25%, 50% and 75%) of the median PPI

degree of causal genes; for each gene only tissues expressing the

gene were considered.

(PDF)

Figure S7 Causal genes are significantly enriched in
genes involved in tissue-specific PPIs. Each pie chart

describes the fraction of genes with 0 to 5 and above tissue-specific

PPIs. Notably, 54% of the causal genes have at least one tissue-

specific PPI, relative to only 42% of all interactome genes

(p = 8.8*1025, Fisher exact test).

(PDF)

Figure S8 Scatter plots comparing the expression levels
of genes measured in corresponding tissues by any two
methods out of HPA, GNF and RNA-seq. The poor

correlations observed for HPA stem from the qualitative nature

of protein abundance measurements (proteins abundance is either

‘low’, ‘medium’ or ‘high’ and determined based on manual

assessment of antibody staining), while gene expression levels

nicely correlated despite differences in samples and technique.

Top panel: HPA vs. GNF r = 0.085, p = 1.51e-59. Middle panel:

HPA vs. RNA-seq r = 0.085, p = 6.62e-233. Bottom panel: GNF

vs. RNA-Seq r = 0.32, p = 0.0. All correlations were measured

using Kendall’s tau rank correlation.

(PDF)

Table S1 Compatibility between corresponding tissues
from different datasets. Table S1A. Overlap in edges between

corresponding tissues shows significant overlap between different

datasets. Table S1B. Correlations between corresponding tissues
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from different datasets as determined by the expression levels of

commonly detected genes in each tissue.

(PDF)

Table S2 Gene ontology (GO) enrichment of globally
expressed genes relative to all expressed genes.
(PDF)

Table S3 GO enrichment of tissue-specific genes rela-
tive to all expressed genes.
(PDF)

Table S4 GO enrichment of backbone proteins relative
to all interactome proteins.
(PDF)

Table S5 GO enrichment of tissue hubs versus the
global interactome.
(PDF)

Table S6 GO enrichment of global hubs versus global
genes.
(PDF)

Table S7 Distribution of the number of hereditary
diseases and their causal germline-aberrant disease
genes by number of disease tissues they affect shows
that most hereditary diseases are tissue-specific.
(PDF)

Table S8 Tissue-selective hereditary diseases and their
tissue-specific PPIs in their disease tissues.
(PDF)

Table S9 Overview of the numbers of genes and tissues
measured in each dataset.

(PDF)

Table S10 Consolidation of tissues from the different
datasets into 16 main tissues.

(PDF)

Table S11 The distribution of the number of PPIs
across 1–16 tissues.

(PDF)

Table S12 The numbers of genes and PPIs in the
interactome of each tissue.

(PDF)

Table S13 The distribution of the number of expressed
causal genes across 1–16 tissues.

(PDF)

Acknowledgments

We thank Galila Agam, Assaf Rudich and Haim Belmaker for their help in

tissue consolidation. We thank Vered Chalifa-Caspi and Inbar Plaschkes

for their help in analyzing RNA-seq data.

Author Contributions

Conceived and designed the experiments: RB EYL. Performed the

experiments: RB OS. Analyzed the data: RB. Contributed reagents/

materials/analysis tools: IYS. Wrote the paper: RB EYL.

References

1. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online

Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37: D793–796.

2. Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and
human disease. Annu Rev Genomics Hum Genet 7: 103–124.

3. Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, et al. (2008) A large-

scale analysis of tissue-specific pathology and gene expression of human disease

genes and complexes. Proc Natl Acad Sci U S A 105: 20870–20875.

4. Reverter A, Ingham A, Dalrymple BP (2008) Mining tissue specificity, gene

connectivity and disease association to reveal a set of genes that modify the

action of disease causing genes. BioData Min 1: 8.

5. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, et al. (2008) A

comprehensive functional analysis of tissue specificity of human gene expression.
BMC Biol 6: 49.

6. Hu J, Wan J, Hackler L, Jr., Zack DJ, Qian J (2010) Computational analysis of

tissue-specific gene networks: application to murine retinal functional studies.

Bioinformatics 26: 2289–2297.

7. Emig D, Albrecht M (2011) Tissue-specific proteins and functional implications.

J Proteome Res 10: 1893–1903.

8. Zhu W, Yang L, Du Z (2011) MicroRNA regulation and tissue-specific protein

interaction network. PLoS One 6: e25394.

9. Bossi A, Lehner B (2009) Tissue specificity and the human protein interaction

network. Mol Syst Biol 5: 260.

10. Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, et al. (2012)

Tissue-specific functional networks for prioritizing phenotype and disease genes.
PLoS Comput Biol 8: e1002694.

11. Magger O, Waldman YY, Ruppin E, Sharan R (2012) Enhancing the

Prioritization of Disease-Causing Genes through Tissue Specific Protein

Interaction Networks. PLoS Comput Biol 8: e1002690.

12. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad

Sci U S A 101: 6062–6067.

13. Ramskold D, Wang ET, Burge CB, Sandberg R (2009) An abundance of

ubiquitously expressed genes revealed by tissue transcriptome sequence data.
PLoS Comput Biol 5: e1000598.

14. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, et al. (2008) A

genecentric Human Protein Atlas for expression profiles based on antibodies.

Mol Cell Proteomics 7: 2019–2027.

15. Bradley RK, Merkin J, Lambert NJ, Burge CB (2012) Alternative splicing of

RNA triplets is often regulated and accelerates proteome evolution. PLoS Biol

10: e1001229.

16. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, et al. (2011)
The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39: D698–704.

17. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, et al. (2004) The Database

of Interacting Proteins: 2004 update. Nucleic Acids Res 32: D449–451.

18. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, et al. (2010) The
IntAct molecular interaction database in 2010. Nucleic Acids Res 38: D525–

531.

19. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, et al. (2010)

MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:

D532–539.

20. Anders S, Huber W (2010) Differential expression analysis for sequence count

data. Genome biology 11: R106.

21. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, et al. (2002)

Comparative assessment of large-scale data sets of protein-protein interactions.
Nature 417: 399–403.

22. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human

disease. Cell 144: 986–998.

23. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global

quantification of mammalian gene expression control. Nature 473: 337–342.

24. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, et al. (2005) Multiple-

laboratory comparison of microarray platforms. Nat Methods 2: 345–350.

25. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005)

Towards a proteome-scale map of the human protein-protein interaction

network. Nature 437: 1173–1178.

26. Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B (2009) Intrinsic protein

disorder and interaction promiscuity are widely associated with dosage
sensitivity. Cell 138: 198–208.

27. Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, et al. (2009) Edgetic

perturbation models of human inherited disorders. Mol Syst Biol 5: 321.

28. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, et al. (2012) Three-dimensional
reconstruction of protein networks provides insight into human genetic disease.

Nat Biotechnol 30: 159–164.

29. Ma YX, Tomita Y, Fan S, Wu K, Tong Y, et al. (2005) Structural determinants

of the BRCA1 : estrogen receptor interaction. Oncogene 24: 1831–1846.

30. Centeno I, Blay P, Santamaria I, Astudillo A, Pitiot AS, et al. (2011) Germ-line

mutations in epidermal growth factor receptor (EGFR) are rare but may

contribute to oncogenesis: a novel germ-line mutation in EGFR detected in a

patient with lung adenocarcinoma. BMC Cancer 11: 172.

31. Zhang J, Iwanaga K, Choi KC, Wislez M, Raso MG, et al. (2008) Intratumoral

epiregulin is a marker of advanced disease in non-small cell lung cancer patients

and confers invasive properties on EGFR-mutant cells. Cancer Prev Res (Phila)

1: 201–207.

32. Ilsley JL, Sudol M, Winder SJ (2001) The interaction of dystrophin with beta-
dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13: 625–632.

Mechanism of Tissue-Specific Hereditary Diseases

PLOS Computational Biology | www.ploscompbiol.org 11 June 2014 | Volume 10 | Issue 6 | e1003632



33. Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, et al. (2000) Caveolin-3

directly interacts with the C-terminal tail of beta -dystroglycan. Identification of
a central WW-like domain within caveolin family members. J Biol Chem 275:

38048–38058.

34. Fogli A, Schiffmann R, Hugendubler L, Combes P, Bertini E, et al. (2004)
Decreased guanine nucleotide exchange factor activity in eIF2B-mutated

patients. Eur J Hum Genet 12: 561–566.
35. Tcherkezian J, Brittis PA, Thomas F, Roux PP, Flanagan JG (2010)

Transmembrane receptor DCC associates with protein synthesis machinery

and regulates translation. Cell 141: 632–644.
36. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. (2008) Alternative

isoform regulation in human tissue transcriptomes. Nature 456: 470–476.
37. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8: 565.

38. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, et al. (2009) BioGPS: an
extensible and customizable portal for querying and organizing gene annotation

resources. Genome biology 10: R130.

39. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, et al. (2005)
Genome-wide midrange transcription profiles reveal expression level relation-

ships in human tissue specification. Bioinformatics 21: 650–659.
40. Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, et al. (2011) BioMart Central

Portal: an open database network for the biological community. Database

(Oxford) 2011: bar041.
41. Barshir R, Basha O, Eluk A, Smoly IY, Lan A, et al. (2013) The TissueNet database

of human tissue protein-protein interactions. Nucleic Acids Res 41: D841–844.
42. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, et al. (2007) DAVID

Bioinformatics Resources: expanded annotation database and novel algorithms
to better extract biology from large gene lists. Nucleic Acids Res 35: W169–175.

43. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, et al. (2004) A census of

human cancer genes. Nat Rev Cancer 4: 177–183.

44. Rosen EM, Fan S, Isaacs C (2005) BRCA1 in hormonal carcinogenesis: basic

and clinical research. Endocr Relat Cancer 12: 533–548.
45. Nassoury N, Blasiole DA, Tebon Oler A, Benjannet S, Hamelin J, et al. (2007)

The cellular trafficking of the secretory proprotein convertase PCSK9 and its

dependence on the LDLR. Traffic 8: 718–732.
46. Bai S, He B, Wilson EM (2005) Melanoma antigen gene protein MAGE-11

regulates androgen receptor function by modulating the interdomain interac-
tion. Mol Cell Biol 25: 1238–1257.

47. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, et al. (1998)

Congenital heart disease caused by mutations in the transcription factor NKX2-
5. Science 281: 108–111.

48. Yang H (2012) Structure, Expression, and Function of ICAM-5. Comp Funct
Genomics 2012: 368938.

49. Hol EM, Roelofs RF, Moraal E, Sonnemans MA, Sluijs JA, et al. (2003)
Neuronal expression of GFAP in patients with Alzheimer pathology and

identification of novel GFAP splice forms. Mol Psychiatry 8: 786–796.

50. Nishioka K, Wider C, Vilarino-Guell C, Soto-Ortolaza AI, Lincoln SJ, et al.
(2010) Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body

disease. Arch Neurol 67: 970–975.
51. Thier S, Lorenz D, Nothnagel M, Poremba C, Papengut F, et al. (2012)

Polymorphisms in the glial glutamate transporter SLC1A2 are associated with

essential tremor. Neurology 79: 243–248.
52. Correa RV, Domenice S, Bingham NC, Billerbeck AE, Rainey WE, et al. (2004)

A microdeletion in the ligand binding domain of human steroidogenic factor 1
causes XY sex reversal without adrenal insufficiency. J Clin Endocrinol Metab

89: 1767–1772.
53. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, et al. (2002) Colorectal

cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–

1729.

Mechanism of Tissue-Specific Hereditary Diseases

PLOS Computational Biology | www.ploscompbiol.org 12 June 2014 | Volume 10 | Issue 6 | e1003632


