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Abstract

Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and
sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the
prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer
and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal
representation of the complex prior, or from additional constraints in performing probabilistic computations on complex
distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference
using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the
need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation
of the prior probability density over locations, which changed on each trial. Different classes of priors were examined
(Gaussian, unimodal, bimodal). Subjects’ performance was in qualitative agreement with the predictions of Bayesian
Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the
priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in
dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than
computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to
identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including
probability matching and sample-averaging strategies. Instead we show that subjects’ response variability was mainly
driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process,
which we represent as a noisy or stochastic posterior.
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Introduction

Humans have been shown to integrate prior knowledge and

sensory information in a probabilistic manner to obtain optimal

(or nearly so) estimates of behaviorally relevant stimulus quantities,

such as speed [1,2], orientation [3], direction of motion [4],

interval duration [5–8] and position [9–11]. Prior expectations

about the values taken by the task-relevant variable are usually

assumed to be learned either from statistics of the natural

environment [1–3] or during the course of the experiment [4–

6,8–11]; the latter include studies in which a pre-existing prior is

modified in the experimental context [12,13]. Behavior in these

perceptual and sensorimotor tasks is qualitatively and often

quantitatively well described by Bayesian Decision Theory

(BDT) [14,15].

The extent to which we are capable of performing probabilistic

inference on complex distributions that go beyond simple

Gaussians, and the algorithms and approximations that we might

use, is still unclear [14]. For example, it has been suggested that

humans might approximate Bayesian computations by drawing

random samples from the posterior distribution [16–19]. A major

problem in testing hypotheses about human probabilistic inference

is the difficulty in identifying the source of suboptimality, that is,

separating any constraints and idiosyncrasies in performing

Bayesian computations per se from any deficiencies in learning

and recalling the correct prior. For example, previous work has

examined Bayesian integration in the presence of experimentally-

imposed bimodal priors [4,8,9,20]. Here the normative prescrip-

tion of BDT under a wide variety of assumptions would be that

responses should be biased towards one peak of the distribution or

the other, depending on the current sensory information.

However, for such bimodal priors, the emergence of Bayesian

biases can require thousands of trials [9] or be apparent only on

pooled data [4], and often data show at best a complex pattern of

biases which is only in partial agreement with the underlying

distribution [8,20]. It is unknown whether this mismatch is due to

PLOS Computational Biology | www.ploscompbiol.org 1 June 2014 | Volume 10 | Issue 6 | e1003661

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003661&domain=pdf


the difficulty of learning statistical features of the bimodal

distribution or if the bimodal prior is actually fully learned but

our ability to perform Bayesian computation with it is limited. In

the current study we look systematically at how people integrate

uncertain cues with trial-dependent ‘prior’ distributions that are

explicitly made available to the subjects. The priors were displayed

as an array of potential targets distributed according to various

density classes – Gaussian, unimodal or bimodal. Our paradigm

allows full control over the generative model of the task and

separates the aspect of computing with a probability distribution

from the problem of learning and recalling a prior. We examine

subjects’ performance in manipulating probabilistic information as

a function of the shape of the prior. Participants’ behavior in the

task is in qualitative agreement with Bayesian integration,

although quite variable and generally suboptimal, but the degree

of suboptimality does not differ significantly across different classes

of distributions or levels of reliability of the cue. In particular,

performance was not greatly affected by complexity of the

distribution per se – for instance, people’s performance with

bimodal priors is analogous to that with Gaussian priors, in

contrast to previous learning experiments [8,9]. This finding

suggests that major deviations encountered in previous studies are

likely to be primarily caused by the difficulty in learning complex

statistical features rather than computing with them.

We systematically explore the sources of suboptimality and

variability in subjects’ responses by employing a methodology that

has been recently called factorial model comparison [21]. Using this

approach we generate a set of models by combining different

sources of suboptimality, such as different approximations in

decision making with different forms of sensory noise, in a factorial

manner. Our model comparison is able to reject some common

models of variability in decision making, such as probability

matching with the posterior distribution (posterior-matching) or a

sampling-average strategy consisting of averaging a number of

samples from the posterior distribution. The observer model that

best describes the data is a Bayesian observer with a slightly

mismatched representation of the likelihoods, with sensory noise in

the estimation of the parameters of the prior, that occasionally

lapses, and most importantly has a stochastic representation of the

posterior that may represent additional variability in the inference

process or in action selection.

Results

Subjects were required to locate an unknown target given

probabilistic information about its position along a target line

(Figure 1a–b). Information consisted of a visual representation of

the a priori probability distribution of targets for that trial and a

noisy cue about the actual target position (Figure 1b). On each

trial a hundred potential targets (dots) were displayed on a

horizontal line according to a discrete representation of a trial-

dependent ‘prior’ distribution pprior(x). The true target, unknown

to the subject, was chosen at random from the potential targets

with uniform probability. A noisy cue with horizontal position

xcue, drawn from a normal distribution centered on the true target,

provided partial information about target location. The cue had

distance dcue from the target line, which could be either a short

distance, corresponding to added noise with low-variance, or a

long distance, with high-variance noise. Both prior distribution

and cue remained on screen for the duration of the trial. (See

Figure 1c–d for the generative model of the task.) The task for the

subjects involved moving a circular cursor controlled by a

manipulandum towards the target line, ending the movement at

their best estimate for the position of the real target. A ‘success’

ensued if the true target was within the cursor radius.

To explain the task, subjects were told that the each dot

represented a child standing in a line in a courtyard, seen from a

bird’s eye view. On each trial a random child was chosen and,

while the subject was ‘not looking’, the child threw a yellow ball

(the cue) directly ahead of them towards the opposite wall. Due to

their poor throwing skills, the farther they threw the ball the more

imprecise they were in terms of landing the ball straight in front of

them. The subject’s task was to identify the child who threw the

ball, after seeing the landing point of the ball, by encircling him or

her with the cursor. Subjects were told that the child throwing the

ball could be any of the children, chosen randomly each trial with

equal probability.

Twenty-four subjects performed a training session in which

the ‘prior’ distributions of targets shown on the screen (the set

of children) corresponded to Gaussian distributions with a

standard deviation (SD) that varied between trials (sprior from

0.04 to 0.18 standardized screen units; Figure 2a). On each

trial the location (mean) of the prior was chosen randomly

from a uniform distribution. Half of the trials provided the

subjects with a ‘short-distance’ cue about the position of the

target (low noise: slow~0:06 screen units; a short throw of the

ball); the other half had a ‘long-distance’ cue (high noise:

shigh~0:14 screen units; a long throw). The actual position of

the target (the ‘child’ who threw the ball) was revealed at the

end of each trial and a displayed score kept track of the

number of ‘successes’ in the session (full performance

feedback). The training session allowed subjects to learn the

structure of the task in a setting in which humans are known to

perform in qualitative and often quantitative agreement with

Bayesian Decision Theory, i.e. under Gaussian priors [5,9–11].

Note however that, in contrast with the previous studies, our

subjects were required to compute each trial with a different

Gaussian distribution (Figure 2a). The use of Gaussian priors

in the training session allowed us to assess whether our subjects

could use explicit priors in our novel experimental setup in the

same way in which they have been shown to learn Gaussian

priors through extended implicit practice.

Author Summary

The process of decision making involves combining
sensory information with statistics collected from prior
experience. This combination is more likely to yield
‘statistically optimal’ behavior when our prior experiences
conform to a simple and regular pattern. In contrast, if
prior experience has complex patterns, we might require
more trial-and-error before finding the optimal solution.
This partly explains why, for example, a person deciding
the appropriate clothes to wear for the weather on a June
day in Italy has a higher chance of success than her
counterpart in Scotland. Our study uses a novel experi-
mental setup that examines the role of complexity of prior
experience on suboptimal decision making. Participants
are asked to find a specific target from an array of potential
targets given a cue about its location. Importantly, the
‘prior’ information is presented explicitly so that subjects
do not need to recall prior events. Participants’ perfor-
mance, albeit suboptimal, was mostly unaffected by the
complexity of the prior distributions, suggesting that
remembering the patterns of past events constitutes more
of a challenge to decision making than manipulating the
complex probabilistic information. We introduce a math-
ematical description that captures the pattern of human
responses in our task better than previous accounts.

Suboptimality in Probabilistic Inference
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After the training session, subjects were randomly divided in

three groups (n~8 each) to perform a test session. Test sessions

differed with respect to the class of prior distributions displayed

during the session. For the ‘Gaussian test’ group, the

distributions were the same eight Gaussian distributions of

varying SD used during training (Figure 2a). For the ‘unimodal

test’ group, on each trial the prior was randomly chosen from

eight unimodal distributions with fixed SD (sprior~0:11 screen

units) but with varying skewness and kurtosis (see Methods and

Figure 2b). For the ‘bimodal test’ group, priors were chosen

from eight (mostly) bimodal distributions with fixed SD (again,

sprior~0:11 screen units) but variable separation and weighting

between peaks (see Methods and Figure 2c). As in the training

session, on each trial the mean of the prior was drawn

randomly from a uniform distribution. To preserve global

symmetry during the session, asymmetric priors were ‘flipped’

along their center of mass with a probability of 1=2. During the

test session, at the end of each trial subjects were informed

whether they ‘succeeded’ or ‘missed’ the target but the target’s

actual location was not displayed (partial feedback). The

‘Gaussian test’ group allowed us to verify that subjects’

behavior would not change after removal of full performance

feedback. The ‘unimodal test’ and ‘bimodal test’ groups

provided us with novel information on how subjects perform

Figure 1. Experimental procedure. a: Setup. Subjects held the handle of a robotic manipulandum. The visual scene from a CRT monitor,
including a cursor that tracked the hand position, was projected into the plane of the hand via a mirror. b: Screen setup. The screen showed a
home position (grey circle), the cursor (red circle) here at the start of a trial, a line of potential targets (dots) and a visual cue (yellow dot). The task
consisted in locating the true target among the array of potential targets, given the position of the noisy cue. The coordinate axis was not displayed
on screen, and the target line is shaded here only for visualization purposes. c: Generative model of the task. On each trial the position of the
hidden target x was drawn from a discrete representation of the trial-dependent prior pprior(x), whose shape was chosen randomly from a session-
dependent class of distributions. The vertical distance of the cue from the target line, dcue , was either ‘short’ or ‘long’, with equal probability. The
horizontal position of the cue, xcue , depended on x and dcue. The participants had to infer x given xcue , dcue and the current prior pprior. d: Details of
the generative model. The potential targets constituted a discrete representation of the trial-dependent prior distribution pprior(x); the discrete
representation was built by taking equally spaced samples from the inverse of the cdf of the prior, Pprior(x). The true target (red dot) was chosen
uniformly at random from the potential targets, and the horizontal position of the cue (yellow dot) was drawn from a Gaussian distribution,
p(xcuejx,dcue), centered on the true target x and whose SD was proportional to the distance dcue from the target line (either ‘short’ or ‘long’,
depending on the trial, for respectively low-noise and high-noise cues). Here we show the location of the cue for a high-noise trial. e: Components
of Bayesian decision making. According to Bayesian Decision Theory, a Bayesian ideal observer combines the prior distribution with the
likelihood function to obtain a posterior distribution. The posterior is then convolved with the loss function (in this case whether the target will be
encircled by the cursor) and the observer picks the ‘optimal’ target location x� (purple dot) that corresponds to the minimum of the expected loss
(dashed line).
doi:10.1371/journal.pcbi.1003661.g001

Suboptimality in Probabilistic Inference
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probabilistic inference with complex distributions. Moreover,

non-Gaussian priors allowed us to evaluate several hypotheses

about subjects’ behavior that are not testable with Gaussian

distributions alone [22].

Human performance
We first performed a model-free analysis of subjects’ perfor-

mance. Figure 3 shows three representative prior distributions

and the pooled subjects’ responses as a function of the cue

position for low (red) and high (blue) noise cues. Note that pooled

data are used here only for display and all subjects’ datasets were

analyzed individually. The cue positions and responses in Figure 3

are reported in a coordinate system relative to the mean of the

prior (set as mprior~0). For all analyses we consider relative

coordinates without loss of generality, having verified the

assumption of translational invariance of our task (see Section 1

in Text S1).

Figure 3 shows that subjects’ performance was affected by

both details of the prior distribution and the cue. Also,

subjects’ mean performance (continuous lines in Figure 3) show

deviations from the prediction of an optimal Bayesian observer

(dashed lines), suggesting that subjects behavior may have been

suboptimal.

Linear integration with Gaussian priors. We examined

how subjects performed in the task under the well-studied case of

Gaussian priors [9,10]. Given a Gaussian prior with SD sprior and

a noisy cue with horizontal position xcue and known variability scue

(assuming Gaussian noise), the most likely target location can be

computed through Bayes’ theorem. In the relative coordinate

system (mprior~0), the optimal target location takes the simple

linear form:

x�(xcue)~w:xcue

with w~
s2

prior

s2
priorzs2

cue

(relative coordinates),
ð1Þ

where w is the linear weight assigned to the cue.

We compared subjects’ behavior with the ‘optimal’ strategy

predicted by Eq. 1 (see for instance Figure 3a; the dashed line

corresponds to the optimal strategy). For each subject and each

combination of sprior and cue type (either ‘short’ or ‘long’,

corresponding respectively to low-noise and high-noise cues), we fit

the responses r as a function of the cue position xcue with a robust

linear fit. The slopes of these fits for the training session are plotted

in Figure 4; results were similar for the Gaussian test session.

Statistical differences between different conditions were assessed

using repeated-measures ANOVA (rm-ANOVA) with Green-

house-Geisser correction (see Methods).

In general, subjects did not perform exactly as predicted by the

optimal strategy (dashed lines), but they took into account the

probabilistic nature of the task. Specifically, subjects tended to

give more weight to low-noise cues than to high-noise ones (main

effect: Low-noise cues, High-noise cues; F(1,23)~145, pv0:001),

and the weights were modulated by the width of the prior (main

effect: prior width sprior; F(3:45,79:2)~88, E~0:492, pv0:001),

with wider priors inducing higher weighting of the cue.

Interestingly, cue type and width of the prior seemed to influence

the weights independently, as no significant interaction was found

(interaction: prior width | cue type; F(4:86,112)~0:94, E~0:692,

p~0:46). Analogous patterns were found in the Gaussian test

session.

Figure 2. Prior distributions. Each panel shows the (unnormalized) probability density for a ‘prior’ distribution of targets, grouped by
experimental session, with eight different priors per session. Within each session, priors are numbered in order of increasing differential entropy (i.e.
increasing variance for Gaussian distributions). During the experiment, priors had a random location (mean drawn uniformly) and asymmetrical priors
had probability 1/2 of being ‘flipped’. Target positions are shown in standardized screen units (from {0:5 to 0:5). a: Gaussian priors. These priors
were used for the training session, common to all subjects, and in the Gaussian test session. Standard deviations cover the range sprior~0:04 to 0:18
screen units in equal increments. b: Unimodal priors. All unimodal priors have fixed SD sprior~0:11 screen units but different skewness and
kurtosis (see Methods for details). c: Bimodal priors. All priors in the bimodal session have fixed SD sprior~0:11 screen units but different relative
weights and separation between the peaks (see Methods).
doi:10.1371/journal.pcbi.1003661.g002

Suboptimality in Probabilistic Inference
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We also examined the average bias of subjects’ responses

(intercept of linear fits), which is expected to be zero for the

optimal strategy. On average subjects exhibited a small but

significant rightward bias in the training session of

(5:2+1:2):10{3 screen units or 1*2 mm (mean + SE across

subjects, pv10{3). The average bias was only marginally different

than zero in the test session: (3:2+1:6):10{3 screen units (*1
mm, p~0:08).

Optimality index. We developed a general measure of

performance that is applicable beyond the Gaussian case. An

objective measure of performance in each trial is the success

probability, that is, the probability that the target would be within

a cursor radius’ distance from the given response (final position of

the cursor) under the generative model of the task (see Methods).

We defined the optimality index for a trial as the success probability

normalized by the maximal success probability (the success

probability of an optimal response). The optimality index allows

us to study variations in subjects’ performance which are not

trivially induced by variations in the difficulty of the task. Figure 5

shows the optimality index averaged across subjects for different

conditions, in different sessions. Data are also summarized in

Table 1. Priors in Figure 5 are listed in order of differential

entropy (which corresponds to increasing variance for Gaussian

priors), with the exception of ‘unimodal test’ priors which are in

order of increasing width of the main peak in the prior, as

computed through a Laplace approximation. We chose this

ordering for priors in the unimodal test session as it highlights the

pattern in subjects’ performance (see below).

For a comparison, Figure 5 also shows the optimality index of

two suboptimal models that represent two extremal response

strategies. Dash-dotted lines correspond to the optimality index of

a Bayesian observer that maximizes the probability of locating the

Figure 3. Subjects’ responses as a function of the position of the cue. Each panel shows the pooled subjects’ responses as a function of the
position of the cue either for low-noise cues (red dots) or high-noise cues (blue dots). Each column corresponds to a representative prior distribution,
shown at the top, for each different group (Gaussian, unimodal and bimodal). In the response plots, dashed lines correspond to the Bayes optimal
strategy given the generative model of the task. The continuous lines are a kernel regression estimate of the mean response (see Methods). a.
Exemplar Gaussian prior (prior 4 in Figure 2a). b. Exemplar unimodal prior (platykurtic distribution: prior 4 in Figure 2b). c. Exemplar bimodal prior
(prior 5 in Figure 2c). Note that in this case the mean response is not necessarily a good description of subjects’ behavior, since the marginal
distribution of responses for central positions of the cue is bimodal.
doi:10.1371/journal.pcbi.1003661.g003

Figure 4. Response slopes for the training session. Response
slope w as a function of the SD of the Gaussian prior distribution, sprior,
plotted respectively for trials with low noise (‘short’ cues, red line) and
high noise (‘long’ cues, blue line). The response slope is equivalent to
the linear weight assigned to the position of the cue (Eq. 1). Dashed
lines represent the Bayes optimal strategy given the generative model
of the task in the two noise conditions. Top: Slopes for a representative
subject in the training session (slope + SE). Bottom: Average slopes
across all subjects in the training session (n~24, mean + SE across
subjects).
doi:10.1371/journal.pcbi.1003661.g004

Suboptimality in Probabilistic Inference
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correct target considering only the prior distribution (see below for

details). Conversely, dotted lines correspond to an observer that

only uses the cue and ignores the prior: that is, the observer’s

response in a trial matches the current position of the cue. The

shaded gray area specifies the ‘synergistic integration’ zone, in

which the subject is integrating information from both prior and

cue in a way that leads to better performance than by using either

the prior or the cue alone. Qualitatively, the behavior in the gray

area can be regarded as ‘close to optimal’, whereas performance

below the gray area is suboptimal. As it is clear from Figure 5, in

all sessions participants were sensitive to probabilistic information

from both prior and cue – that is, performance is always above the

minimum of the extremal models (dash-dotted and dotted lines) –

in agreement with what we observed in Figure 4 for Gaussian

sessions, although their integration was generally suboptimal.

Human subjects were analogously found to be suboptimal in a

previous task that required to take into account explicit

probabilistic information [23].

We examined how the optimality index changed across different

conditions. From the analysis of the training session, it seems that

subjects were able to integrate low-noise and high-noise cues for

priors of any width equally well, as we found no effect of cue type

on performance (main effect: Low-noise cues, High-noise cues;

F(1,23)~0:015, p~0:90) and no significant interaction between

Figure 5. Group mean optimality index. Each bar represents the group-averaged optimality index for a specific session, for each prior (indexed
from 1 to 8, see also Figure 2) and cue type, low-noise cues (red bars) or high-noise cues (blue bars). The optimality index in each trial is computed as
the probability of locating the correct target based on the subjects’ responses divided by the probability of locating the target for an optimal
responder. The maximal optimality index is 1, for a Bayesian observer with correct internal model of the task and no sensorimotor noise. Error bars are
SE across subjects. Priors are arranged in the order of differential entropy (i.e. increasing variance for Gaussian priors), except for ‘unimodal test’ priors
which are listed in order of increasing width of the main peak in the prior (see text). The dotted line and dash-dotted line represent the optimality
index of a suboptimal observer that takes into account respectively either only the cue or only the prior. The shaded area is the zone of synergistic
integration, in which an observer performs better than using information from either the prior or the cue alone.
doi:10.1371/journal.pcbi.1003661.g005

Table 1. Group mean optimality index.

Session Low-noise cue High-noise cue All cues

Gaussian training 0:86+0:02 0:87+0:01 0:87+0:01

Gaussian test 0:89+0:02 0:88+0:02 0:89+0:01

Unimodal test 0:85+0:03 0:80+0:04 0:83+0:02

Bimodal test 0:90+0:02 0:89+0:01 0:89+0:01

All sessions 0:87+0:01 0:87+0:01 0:87+0:01

Each entry reports mean + SE of the group optimality index for a specific session and cue type, or averaged across all sessions/cues. See also Figure 5.
doi:10.1371/journal.pcbi.1003661.t001

Suboptimality in Probabilistic Inference
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cue types and prior width (interaction: prior width | cue type;

F(5:64,129:6)~1:56, E~0:81, p~0:17). However, relative perfor-

mance was significantly affected by the width of the prior per se

(main effect: prior width sprior; F(2:71,62:3)~17:94, E~0:387,

pv0:001); people tended to perform worse with wider priors, in

a way that is not simply explained by the objective decrease in the

probability of locating the correct target due to the less available

information (see Discussion).

Results in the Gaussian test session (Figure 5 top right)

replicated what we had obtained in the training session. Subjects’

performance was not influenced by cue type (main effect: Low-

noise cues, High-noise cues; F(1,7)~0:026, p~0:88) nor by the

interaction between cue types and prior width (interaction: prior

width | cue type; F(2:65,18:57)~0:67, E~0:379, p~0:56). Con-

versely, as before, the width of the prior affected performance

significantly (main effect: prior width sprior; F(1:47,10:3)~5:21,

E~0:21, pv0:05); again, wider priors were associated with lower

relative performance.

A similar pattern of results was found also for the bimodal test

session (Figure 5 bottom right). Performance was affected

significantly by the shape of the prior (main effect: prior shape;

F(4:01,28:1)~3:93, E~0:573, pv0:05) but otherwise participants

integrated cues of different type with equal skill (main effect: Low-

noise cues, High-noise cues; F(1,7)~1:42, p~0:27; interaction:

prior shape | cue type; F(2:84,19:9)~1:1, E~0:406, p~0:37).

However, in this case performance was not clearly correlated with

a simple measure of the prior or of the average posterior (e.g.

differential entropy).

Another scenario emerged in the unimodal test session (Figure 5

bottom left). Here, subjects’ performance was affected not only by

the shape of the prior (main effect: prior shape; F(3:79,26:5)~20:7,

E~0:542, pv0:001) but also by the type of cue (main effect: Low-

noise cues, High-noise cues; F(1,7)~9:85, pv0:05) and the specific

combination of cue and prior (interaction: prior shape | cue type;

F(3:53,24:7)~5:27, E~0:504, pv0:01). Moreover, in this session

performance improved for priors whose main peak was broader

(see Discussion).

Notwithstanding this heterogeneity of results, an overall

comparison of participants’ relative performance in test sessions

(averaging results over priors) did not show statistically significant

differences between groups (main effect: group; F(2,21)~2:13,

p~0:14) nor between the two levels of reliability of the cue (main

effect: Low-noise cues, High-noise cues; F(1,21)~3:36, p~0:08);

only performance in the unimodal session for high-noise cues was

at most marginally worse. In particular, relative performance in

the Gaussian test and the bimodal test sessions was surprisingly

similar, unlike previous learning experiments (see Discussion).

Effects of uncertainty on reaction time. Lastly, we

examined the effect of uncertainty on subjects’ reaction time

(time to start movement after the ‘go’ beep) in each trial.

Uncertainty was quantified as the SD of the posterior distribution

in the current trial, spost (an alternative measure of spread,

exponential entropy [24], gave analogous results). We found that

the average subjects’ reaction time grew almost linearly with spost

(Figure 6). The average change in reaction times (from lowest to

highest uncertainty in the posterior) was substantial during the

training session (*50 ms, about 15% change), although less so in

subsequent test sessions.

Suboptimal Bayesian observer models
Our model-free analysis showed that subjects’ performance in

the task was suboptimal. Here we examine the source of this

apparent suboptimality. Subjects’ performance is modelled with a

family of Bayesian ideal observers which incorporate various

hypotheses about the decision-making process and internal

representation of the task, with the aim of teasing out the major

sources of subjects’ suboptimality; see Figure 1e for a depiction of

the elements of decision making in a trial. All these observers are

‘Bayesian’ because they build a posterior distribution through

Bayes’ rule, but the operations they perform with the posterior can

differ from the normative prescriptions of Bayesian Decision

Theory (BDT).

We construct a large model set with a factorial approach that

consists in combining different independent model ‘factors’ that

can take different ‘levels’ [8,21]. The basic factors we consider are:

1. Decision making (3 levels): Bayesian Decision Theory (‘BDT’),

stochastic posterior (‘SPK’), posterior probability matching

(‘PPM’).

2. Cue-estimation sensory noise (2 levels): absent or present (‘S’).

3. Noisy estimation of the prior (2 levels): absent or present (‘P’).

4. Lapse (2 levels): absent or present (‘L’).

Observer models are identified by a model string, for example

‘BDT-P-L’ indicates an observer model that follows BDT with a

noisy estimate of the prior and suffers from occasional lapses. Our

basic model set comprises 24 observer models; we also considered

several variants of these models that are described in the text. All

main factors are explained in the following sections and

summarized in Table 2. The term ‘model component’ is used

through the text to indicate both factors and levels.

Decision making: Standard BDT observer (‘BDT’). The

‘decision-making’ factor comprises model components with differ-

ent assumptions about the decision process. We start describing the

‘baseline’ Bayesian observer model, BDT, that follows standard

BDT. Suboptimality, in this case, emerges if the observer’s internal

estimates of the parameters of the task take different values from the

true ones. As all subsequent models are variations of the BDT

observer we describe this model in some detail.

On each trial the information available to the observer is

comprised of the ‘prior’ distribution pprior(x), the cue position xcue,

and the distance dcue of the cue from the target line, which is a

proxy for cue variability, scue:s(dcue). The posterior distribution

of target location, x, is computed by multiplying together the prior

with the likelihood function. For the moment we assume the

observer has perfect access to the displayed cue location and prior,

and knowledge that cue variability is normally distributed.

However, we allow the observer’s estimate of the variance of the

likelihood (~ss2
low and ~ss2

high) to mismatch the actual variance (s2
low

and s2
high). Therefore the posterior is given by:

ppost(x)~ppost(xjxcue,dcue,pprior)!pprior(x)N xcueDx,~ss2
cue

� �
ð2Þ

where N xDm,s2
� �

denotes a normal distribution with mean m and

variance s2.

In general, for any given trial, the choice the subject makes

(desired pointing location for x) can be a probabilistic one, leading

to a ‘target choice’ distribution. However, for standard BDT, the

choice is deterministic given the trial parameters, leading to a

‘target choice’ distribution that collapses to a delta function:

ptarget xjxcue,dcue,pprior

� �
~d x{x�(xcue; dcue,pprior)
� �

ð3Þ

where x� is the ‘optimal’ target position that minimizes the

observer’s expected loss. The explicit task in our experiment is to

Suboptimality in Probabilistic Inference
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place the target within the radius of the cursor, which is equivalent

to a ‘square well’ loss function with a window size equal to the

diameter of the cursor. For computational reasons, in our observer

models we approximate the square well loss with an inverted

Gaussian (see Methods) that best approximates the square well,

with fixed SD s‘~0:027 screen units (see Section 3 in Text S1).

In our experiment all priors were mixtures of m (mainly 1 or

2) Gaussian distributions of the form pprior(x)~Xm

i~1
piN xDmi,s

2
i

� �
, with

Xm

i~1
pi~1. It follows that the

expected loss is a mixture of Gaussians itself, and the optimal

target that minimizes the expected loss takes the form (see

Methods for details):

x�(xcue)~x�(xcue; dcue,pprior)

~ arg min
x
0

{
Xm

i~1

ciN x
0
Dni,t

2
i zs2

‘

� �( )
ð4Þ

where we defined:

ci:piN xcueDmi,s
2
i z~ss2

cue

� �
,

ni:
mi~ss

2
cuezxcues2

i

s2
i z~ss2

cue

, t2
i :

s2
i ~ss2

cue

s2
i z~ss2

cue

:
ð5Þ

For a single-Gaussian prior (m~1), pprior~N xDm1,s2
1

� �
and the

posterior distribution is itself a Gaussian distribution with mean

mpost~n1 and variance s2
post~t2

1, so that x�(xcue)~mpost.

We assume that the subject’s response is corrupted by motor

noise, which we take to be normally distributed with SD smotor. By

convolving the target choice distribution (Eq. 3) with motor noise

we obtain the final response distribution:

p(rjxcue,dcue,pprior)~ N rDx�(xcue),s2
motor

� �
: ð6Þ

The calculation of the expected loss in Eq. 4 does not explicitly

take into account the consequences of motor variability, but this

Figure 6. Average reaction times as a function of the SD of the posterior distribution. Each panel shows the average reaction times (mean
+ SE across subjects) for a given session as a function of the SD of the posterior distribution, spost (individual data were smoothed with a kernel
regression estimate, see Methods). Dashed lines are robust linear fits to the reaction times data. For all sessions the slope of the linear regression is
significantly different than zero (pv10{3).
doi:10.1371/journal.pcbi.1003661.g006

Table 2. Set of model factors.

Label Model description # parameters Free parameters (hM )

BDT Decision making: BDT 4 smotor,~sslow, ~sshigh|2
� �

PPM Decision making: Posterior probability matching 4 smotor,~sslow, ~sshigh|2
� �

SPK Decision making: Stochastic posterior 6 smotor,~sslow, ~sshigh,k
� �

|2

PSA Decision making: Posterior sampling average (*) 6 smotor,~sslow, ~sshigh,k
� �

|2

S Cue-estimation noise z2 z Scue|2ð Þ
P Prior estimation noise z2 z gprior|2

� �
L Lapse z2 z l|2ð Þ
MV Gaussian approximation: mean/variance (*) – –

LA Gaussian approximation: Laplace approximation (*) – –

Table of all major model factors, identified by a label and short description. An observer model is built by choosing a model level for decision making and then
optionally adding other components. For each model component the number of free parameters is specified. A ‘|2’ means that a parameter is specified independently
for training and test sessions; otherwise parameters are shared across sessions. See main text and Methods for the meaning of the various parameters. (*) These
additional components appear in the comparison of alternative models of decision making.
doi:10.1371/journal.pcbi.1003661.t002
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approximation has minimal effects on the inference (see

Discussion).

The behavior of observer model BDT is completely

described by Eqs. 4, 5 and 6. This observer model is subjectively

Bayes optimal; the subject applies BDT to his or her internal

model of the task, which might be wrong. Specifically, the

observer will be close to objective optimality only if his or her

estimates for the likelihood parameters, ~sslow and ~sshigh, match

the true likelihood parameters of the task (slow and shigh). As

extreme cases, if ~sslow,~sshigh?0 the BDT observer will ignore the

prior and only use the noiseless cues (cue-only observer model;

dashed lines in Figure 5), whereas for ~sslow,~sshigh?? the

observer will use only probabilistic information contained in

the priors (prior-only observer model; dotted lines in Figure 5).

Decision making: Noisy decision makers (‘SPK’ and

‘PPM’). An alternative to BDT is a family of observer models

in which the decision-making process is probabilistic, either

because of noise in the inference or stochasticity in action

selection. We model these various sources of variability without

distinction as stochastic computations that involve the posterior

distribution.

We start our analysis by considering a specific model, SPK

(stochastic posterior, k-power), in which the observer mini-

mizes the expected loss (Eq. 4) under a noisy, approximate

representation of the posterior distribution, as opposed to the

deterministic, exact posterior of BDT (Figure 7a and 7d); later

we will consider other variants of stochastic computations. As

before, we allow the SD of the likelihoods, ~sslow and ~sshigh, to

mismatch their true values. For mathematical and computa-

tional tractability, we do not directly simulate the noisy

inference during the model comparison. Instead, we showed

that different ways of introducing stochasticity in the inference

process – either by adding noise to an explicit representation of

the observer’s posterior (Figure 7b and 7e), or by building a

discrete approximation of the posterior via sampling (Figure 7c

and 7f) – induce variability in the target choice that is well

approximated by a power function of the posterior distribution

itself; see Text S2 for details.

We, therefore, use the power function approximation with

power k – hence the name of the model – to simulate the effects of

a stochastic posterior on decision making, without committing to a

specific interpretation. The target choice distribution in model

SPK takes the form:

ptarget(xjxcue,dcue,pprior)! ppost(x)
� �k ð7Þ

where the power exponent k§0 is a free parameter inversely

related to the amount of variability. Eq. 7 is convolved with

motor noise to give the response distribution. The power

function conveniently interpolates between a posterior-match-

ing strategy (for k~1) and a maximum a posteriori (MAP)

solution (k??).

We consider as a separate factor the specific case in which the

power exponent k is fixed to 1, yielding a posterior probability

matching observer, PPM, that takes action according to a single

draw from the posterior distribution [25,26].

Observer models with cue-estimation sensory noise

(‘S’). We consider a family of observer models, S, in which we

drop the assumption that the observer perfectly knows the

horizontal position of the cue. We model sensory variability by

adding Gaussian noise to the internal measurement of xcue, which

we label jcue:

p jcuejxcue,dcueð Þ~N jcueDxcue,S2(dcue)
� �

with S2(dcue)[ S2
low,S2

high

n o ð8Þ

where S2
low, S2

high represent the variances of the estimates of the

position of the cue, respectively for low-noise (short-distance) and

high-noise (long-distance) cues. According to Weber’s law, we

assume that the measurement error is proportional to the distance

from the target line dcue, so that the ratio of Shigh to Slow is equal to

the ratio of dlong to dshort, and we need to specify only one of the

two parameters (Shigh). Given that both the cue variability and the

observer’s measurement variability are normally distributed, their

combined variability will still appear to the observer as a Gaussian

distribution with variance ~ss2
cuezS2

cue, assuming independence.

Therefore, the observer’s internal model of the task is formally

identical to the description we gave before by replacing xcue with

jcue in Eq. 2 (see Methods). Since the subject’s internal

measurement is not accessible during the experiment, the observed

response probability is integrated over the hidden variable jcue

(Eq. 18 in Methods). A model with cue-estimation sensory noise

(‘S’) tends to the equivalent observer model without noise for

Scue?0.

Observer models with noisy estimation of the prior

(‘P’). We introduce a family of observer models, P, in which

subjects have access only to noisy estimates of the parameters of

the prior, pprior. For this class of models we assume that estimation

noise is structured along a task-relevant dimension.

Specifically, for Gaussian priors we assume that the observers

take a noisy internal measurement of the SD of the prior, ~ssprior,

which according to Weber’s law follows a log-normal distribution:

p(~sspriorjsprior)~LogN ~sspriorDsprior,g
2
prior

� �
ð9Þ

where sprior, the true SD, is the log-scale parameter and

gprior§0 is the shape parameter of the log-normally distributed

measurement (respectively mean and SD in log space). We

assume an analogous form of noise on the width of the

platykurtic prior in the unimodal session. Conversely, we

assume that for priors that are mixtures of two Gaussians the

main source of error stems from assessing the relative

importance of the two components. In this case we add log-

normal noise to the weights of each component, which we

assume to be estimated independently:

p(~ppijpi)~LogN ~ppi Dpi,g
2
prior

� �
for i~1,2 ð10Þ

where pi are the true mixing weights and gprior is the noise

parameter previously defined. Note that Eq. 10 is equivalent to

adding normal noise with SD
ffiffiffi
2
p

gprior to the log weights ratio

in the ‘natural’ log odds space [27].

The internal measurements of ~ssprior (or ~ppi) are used by the

observer in place of the true parameters of the priors in the

inference process (e.g. Eq. 5). Since we cannot measure the

internal measurements of the subjects, the actual response

probabilities are computed by integrating over the unobserved

values of ~ssprior or ~ppi (see Methods). Note that for gprior?0 an

observer model with prior noise (‘P’) tends to its corresponding

version with no noise.

Suboptimality in Probabilistic Inference

PLOS Computational Biology | www.ploscompbiol.org 9 June 2014 | Volume 10 | Issue 6 | e1003661



A different type of measurement noise on the the prior density is

represented by ‘unstructured’, pointwise noise which can be shown

to be indistinguishable from noise in the posterior under certain

assumptions (see Text S2).

Observer models with lapse (‘L’). It is possible that the

response variability exhibited by the subjects could be simply

explained by occasional lapses. Observer models with a lapse term

are common in psychophysics to account for missed stimuli and

additional variability in the data [28]. According to these models,

in each trial the observer has a typically small, fixed probability

0ƒlƒ1 (the lapse rate) of making a choice from a lapse probability

distribution instead of the optimal target x�. As a representative

lapse distribution we choose the prior distribution (prior-matching

lapse). The target choice for an observer with lapse has

distribution:

p
(lapse)
target xjxcue,dcue,pprior

� �
~(1{l):ptarget xjxcue,dcue,pprior

� �
zl:pprior(x)

ð11Þ

where the first term in the right hand side of the equation is the

target choice distribution (either Eq. 3 or Eq. 7, depending on the

decision-making factor), weighted by the probability of not making

a lapse, 1{l. The second term is the lapse term, with probability

l, and it is clear that the observer model with lapse (‘L’) reduces to

an observer with no lapse in the limit l?0. Eq. 11 is then

convolved with motor noise to provide the response distribution.

We also tested a lapse model in which the lapse distribution was

uniform over the range of the displayed prior distribution.

Observer models with uniform lapse performed consistently worse

than the prior-matching lapse model, so we only report the results

of the latter.

Model comparison
For each observer model M and each subject’s dataset we

evaluated the posterior distribution of parameters p(hM jdata),
where hM is in general a vector of model-dependent parameters

(see Table 2). Each subject’s dataset comprised of two sessions

(training and test), for a total of about 1200 trials divided in 32

distinct conditions (8 priors | 2 noise levels | 2 sessions). In

general, we assumed subjects shared the motor parameter smotor

across sessions. We also assumed that from training to test sessions

people would use the same high-noise to low-noise ratio between

cue variability (~sshigh=~sslow); so only one cue-noise parameter (~sshigh)

needed to be specified for the test session. Conversely, we assumed

that the other noise-related parameters, if present (k, Shigh, gprior,

l), could change freely between sessions, reasoning that additional

response variability can be affected by the presence or absence of

feedback, or as a result of the difference between training and test

distributions. These assumptions were validated via a preliminary

model comparison (see Section 5 in Text S1). Table 2 lists a

summary of observer models and their free parameters.

The posterior distributions of the parameters were obtained

through a slice sampling Monte Carlo method [29]. In general, we

assumed noninformative priors over the parameters except for

motor noise parameter smotor and cue-estimation sensory noise

parameter Shigh (when present), for which we determined a

Figure 7. Decision making with stochastic posterior distributions. a–c: Each panel shows an example of how different models of
stochasticity in the representation of the posterior distribution, and therefore in the computation of the expected loss, may affect decision making in
a trial. In all cases, the observer chooses the subjectively optimal target x� (blue arrow) that minimizes the expected loss (purple line; see Eq. 4) given
his or her current representation of the posterior (black lines or bars). The original posterior distribution is showed in panels b–f for comparison
(shaded line). a: Original posterior distribution. b: Noisy posterior: the original posterior is corrupted by random multiplicative or Poisson-like noise (in
this example, the noise has caused the observer to aim for the wrong peak). c: Sample-based posterior: a discrete approximation of the posterior is
built by drawing samples from the original posterior (grey bars; samples are binned for visualization purposes). d–f: Each panel shows how
stochasticity in the posterior affects the distribution of target choices ptarget(x) (blue line). d: Without noise, the target choice distribution is a delta
function peaked on the minimum of the expected loss, as per standard BDT. e: On each trial, the posterior is corrupted by different instances of noise,
inducing a distribution of possible target choices ptarget(x) (blue line). In our task, this distribution of target choices is very well approximated by a
power function of the posterior distribution, Eq. 7 (red dashed line); see Text S2 for details. f: Similarly, the target choice distribution induced by
sampling (blue line) is fit very well by a power function of the posterior (red dashed line). Note the extremely close resemblance of panels e and f (the
exponent of the power function is the same).
doi:10.1371/journal.pcbi.1003661.g007
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reasonable range of values through an independent experiment

(see Methods and Text S3). Via sampling we also computed for

each dataset a measure of complexity and goodness of fit of each

observer model, the Deviance Information Criterion (DIC) [30],

which we used as an approximation of the marginal likelihood to

perform model comparison (see Methods).

We compared observer models according to a hierarchical

Bayesian model selection (BMS) method that treats subjects and

models as random effects [31]. That is, we assumed that multiple

observer models could be present in the population, and we

computed how likely it is that a specific model (or model level

within a factor) generated the data of a randomly chosen subject,

given the model evidence represented by the subjects’ DIC scores

(see Methods for details). As a Bayesian metric of significance we

used the exceedance probability P� of one model (or model level)

being more likely than any other model (or model levels within a

factor). In Text S1 we report instead a classical (frequentist)

analysis of the group difference in DIC between models (GDIC),

which assumes that all datasets have been generated by the same

unknown observer model. In spite of different assumptions, BMS

and GDIC agree on the most likely observer model, validating the

robustness of our main findings. The two approaches exhibit

differences with respect to model ranking, due to the fact that, as a

‘fixed effect’ method, GDIC does not account for group

heterogeneity and outliers [31] (see Section 4 in Text S1 for

details). Finally, we assessed the impact of each factor on model

performance by computing the average change in DIC associated

with a given component.

Results of model comparison. Figure 8 shows the results of

the BMS method applied to our model set. Figure 8a shows the

model evidence for each individual model and subject. For each

subject we computed the posterior probability of each observer

model using DIC as an approximation of the marginal likelihood

(see Methods). We calculated model evidence as the Bayes factor

(posterior probability ratio) between the subject’s best model and a

given model. In the graph we report model evidence in the same

scale as DIC, that is as twice the log Bayes factor. A difference of

more than 10 in this scale is considered very strong evidence [32].

Results for individual subjects show that model SPK-P-L

(stochastic posterior with estimation noise on the prior and lapse)

performed consistently better than other models for all conditions.

A minority of subjects were also well represented by model SPK-P

(same as above, but without the lapse component). All other

models performed significantly worse. In particular, note that the

richer SPK-S-P-L model was not supported, suggesting that that

sensory noise on estimation of cue location was not needed to

explain the data. Figure 8b confirms these results by showing the

estimated probability of finding a given observer model in the

population (assuming that multiple observer models could be

present). Model SPK-P-L is significantly more represented

(P~0:72; exceedance probability P�w0:999), followed by model

SPK-P (P~0:10). For all other models the probability is essentially

the same at Pv0:01. The probability of single model factors

reproduced an analogous pattern (Figure 8c). The majority of

subjects (more than 80% in each case) are likely to use a stochastic

decision making (SPK), to have noise in the estimation of the

priors (P), and lapse (L). Only a minority (10%) would be described

by an observer model with sensory noise in estimation of the cue.

The model comparison yielded similar results, although with a

more graded difference between models, when looking directly at

DIC scores (see Section 4 in Text S1; lower is better).

To assess in another way the relative importance of each model

component in determining the performance of a model, we

measured the average contribution to DIC of each model level

within a factor across all tested models (Figure 4 in Text S1). In

agreement with our previous findings, the lowest DIC (better

score) in decision making is obtained by observer models

containing the SPK factor. BDT increases (i.e. worsens) average

DIC scores substantially (difference in DIC, DDIC = 173+14;

mean + SE across subjects) and PPM has devastating effects on

model performance (DDIC = 422+72), where 10 points of DDIC

may already be considered a strong evidence towards the model

with lower DIC [30]. Regarding the other factors (S, P, L) we

found that in general lacking a factor increases DIC (worse model

performance; see Section 4 in Text S1 for discussion about factor

S). Overall, this analysis confirms the strong impact that an

appropriate modelling of variability has on model performance

(see Section 4 in Text S1 for details).

We performed a number of analyses on an additional set of

observer models to validate the finding that model SPK-P-L

provides the best explanation for the data in our model set.

Firstly, in all the observer models described so far the subjects’

parameters of the likelihood, ~sslow and ~sshigh, were allowed to vary.

Preliminary analysis had suggested that observer models with

mismatching likelihoods always outperformed models with true

likelihood parameters, slow and shigh. We tested whether this was

the case also with our current best model, or if we could assume

instead that at least some subjects were using the true parameters.

Model SPK-P-L-true performed considerably worse than its

counterpart with mismatching likelihood parameters (P~0:01
with P�&1 for the other model; DDIC = 178+33), suggesting that

mismatching likelihoods are invariably necessary to explain our

subjects’ data.

We then checked whether the variability of subjects’ estimates of

the priors may have arisen instead due to the discrete representation

of the prior distribution in the experiment (see Figure 1d). We

therefore considered a model SPK-D-L in which priors were not

noisy, but the model component ‘D’ replaces the continuous

representations of the priors with their true discrete representation

(a mixture of a hundred narrow Gaussians corresponding to the dots

shown on screen). Model SPK-D-L performed worse than model

SPK-P-L (P~0:01 with P�&1 for the other model; DDIC =

145+25) and, more interestingly, also worse than model SPK-L

(P~0:09 with P�&1 for the other model; DDIC = 59+15). The

discrete representation of the prior, therefore, does not provide a

better explanation for subjects’ behavior.

Lastly, we verified whether our subjects’ behavior and apparent

variability could be explained by a non-Bayesian iterative model

applied to the training datasets. A basic iterative model failed to

explain subjects’ data (see Section 6 in Text S1 and Discussion).

In conclusion, all analyses identify as the main sources of

subjects’ suboptimal behavior the combined effect of both noise in

estimating the shape of the ‘prior’ distributions and variability in

the subsequent decision, plus some occasional lapses.

Comparison of alternative models of decision

making. Our previous analyses suggest that subjects exhibit

variability in decision making that conforms to some nontrivial

transformation of the posterior distribution (such as a power

function of the posterior, as expressed by model component SPK).

We perform a second factorial model comparison that focusses on

details of the decision-making process, by including additional

model components that describe different transformations of the

posterior. We consider in this analysis the following factors (in

italic the additions):

1. Decision making (4 levels): Bayesian Decision Theory

(‘BDT’), stochastic posterior (‘SPK’), posterior probability

matching (‘PPM’), posterior sampling-average (‘PSA’).
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2. Gaussian approximation of the posterior (3 levels): no

approximation, mean/variance approximation (‘MV’) or Laplace

approximation (‘LA’).

3. Lapse (2 levels): absent or present (‘L’).

Our extended model set comprises 18 observer models since

some combinations of model factors lead to equivalent observer

models. In order to limit the combinatorial explosion of models, in

this factorial analysis we do not include model factors S and P that

were previously considered, since our main focus here is on

decision making (but see below). All new model components are

explained in this section and summarized in Table 2.

Firstly, we illustrate an additional level for the decision-making

factor. According to model PSA (posterior sampling-average), we

assume that the observer chooses a target by taking the average of

k§1 samples drawn from the posterior distribution [33]. This

corresponds to an observer with a sample-based posterior that

applies a quadratic loss function when choosing the optimal target.

For generality, with an interpolation method we allow k to be a

real number (see Methods).

We also introduce a new model factor according to which

subjects may use a single Gaussian to approximate the full

posterior. The mean/variance model (MV) assumes that subjects

approximate the posterior with a Gaussian with matching low-

order moments (mean and variance). For observer models that act

according to BDT, model MV is equivalent to the assumption of a

quadratic loss function during target selection, whose optimal

target choice equals the mean of the posterior. Alternatively, a

commonly used Gaussian approximation in Bayesian inference is

the Laplace approximation (LA) [34]. In this case, the observer

approximates the posterior with a single Gaussian centered on the

mode of the posterior and whose variance depends on the local

curvature at the mode (see Methods). The main difference of the

Laplace approximation from other models is that the posterior is

usually narrower, since it takes into account only the main peak.

Crucially, the predictions of these additional model components

differ only if the posterior distribution is non-Gaussian; these

observer models represent different generalizations of how a noisy

decision process could affect behavior beyond the Gaussian case.

Therefore we include in this analysis only trials in which the

theoretical posterior distribution is considerably non-Gaussian (see

Methods); this restriction immediately excludes from the analysis

the training sessions and the Gaussian group, in which all priors

and posteriors are strictly Gaussian.

Figure 9 shows the results of the BMS method applied to this

model set. As before, we consider first the model evidence for each

individual model and subject (Figure 9a). Results are slighly

different depending on the session (unimodal or bimodal) but in

both cases model SPK-L (stochastic posterior with lapse) performs

consistently better than other tested models for all conditions.

Only a couple of subjects are better described by a different

approximation of the posterior (either PSA or SPK-MV-L). These

results are summarized in Figure 9b, which shows the estimated

probability that a given model would be responsible of generating

the data of a randomly chosen subject. We show here results for

both groups; a separate analysis of each group did not show

qualitative differences. Model SPK-L is significantly more

represented (P~0:64; exceedance probability P�w0:99), followed

by model PSA (P~0:10) and SPK-MV-L (P~0:08). For all other

models the probability is essentially the same at P&0:01. The

probability of single model factors reproduces the pattern seen

before (Figure 9c). The majority of subjects (more than 75% in

Figure 8. Model comparison between individual models. a: Each column represents a subject, divided by test group (all datasets include a
Gaussian training session), each row an observer model identified by a model string (see Table 2). Cell color indicates model’s evidence, here
displayed as the Bayes factor against the best model for that subject (a higher value means a worse performance of a given model with respect to the
best model). Models are sorted by their posterior likelihood for a randomly selected subject (see panel b). Numbers above cells specify ranking for
most supported models with comparable evidence (difference less than 10 in 2 log Bayes factor [32]). b: Probability that a given model generated the
data of a randomly chosen subject. Here and in panel c, brown bars represent the most supported models (or model levels within a factor). Asterisks
indicate a significant exceedance probability, that is the posterior probability that a given model (or model component) is more likely than any other
model (or model component): (���)P�w0:999. c: Probability that a given model level within a factor generated the data of a randomly chosen subject.
doi:10.1371/journal.pcbi.1003661.g008
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each case) are likely to use a stochastic decision making (SPK), to

use the full posterior (no Gaussian approximations) and lapse (L).

The model comparison performed on group DIC scores (GDIC)

obtained mostly similar results although with a more substantial

difference between the unimodal group and the bimodal group

(Figure 3 in Text S1). In particular, group DIC scores fail to find

significant differences between distinct types of approximation of

the posterior in the unimodal case. The reason is that for several

subjects in the unimodal group differences between models are

marginal, and GDIC does not have enough information to

disambiguate between these models. Nonetheless, results in the

bimodal case are non-ambigous, and overall the SPK-L model

emerges again as the best description of subjects’ behavior (see

Section 4 in Text S1 for details).

As mentioned before, in order to limit model complexity we did

not include model factors S and P in the current analysis. We can

arguably ignore sensory noise in cue estimation, S, since it was

already proven to have marginal effect on subjects’ behavior, but

this is not the case for noisy estimation of the prior, P. We need,

therefore, to verify that our main results about decision making in

the case of non-Gaussian posteriors were not affected by the lack

of this factor. We compared the four most represented models of

the current analysis (Figure 9b) augmented with the P factor: SPK-

P-L, PSA-P, SPK-MV-P-L and PSA-P-L. Model SPK-P-L was still

the most representative model (P~0:80, exceedance probability

P�w0:99), showing that model factor P does not affect our

conclusions on alternative models of decision making. We also

found that model SPK-P-L obtained more evidence than any

other model tested in this section (P~0:72, exceedance probabil-

ity P�w0:99), in agreement with the finding of our first factorial

model comparison.

Finally, even though the majority of subjects’ datasets is better

described by the narrow loss function of the task, a few of them

support also observer models that subtend a quadratic loss. To

explore this diversity, we examined an extended BDT model in

which the loss width s‘ is a free parameter (see Section 3 in Text

S1). This model performed slightly better than a BDT model with

fixed s‘, but no better than the equivalent SPK model, so our

findings are not affected.

In summary, subjects’ variability in our task is compatible with

them manipulating the full shape of the posterior corrupted by

noise (SPK), and applying a close approximation of the loss

function of the task. Our analysis marks as unlikely alternative

models of decision making that use instead a quadratic loss or

different low-order approximations of the posterior.

Analysis of best observer model
After establishing model SPK-P-L as the ‘best’ description of the

data among the considered observer models, we examined its

properties. First of all, we inspected the posterior distribution of

the model parameters given the data for each subject. In almost all

cases the marginalized posterior distributions were unimodal with

a well-defined peak. We therefore summarized each posterior

distribution with a point estimate (a robust mean) with minor loss

of generality; group averages are listed in Table 3. For the analyses

in this section we ignored outlier parameter values that fell more

than 3 SDs away from the group mean (this rule excluded at most

one value per parameter). In general, we found a reasonable

statistical agreement between parameters of different sessions, with

some discrepancies in the unimodal test session only. In this

section, inferred values are reported as mean + SD across

subjects.

The motor noise parameter smotor took typical values of

(4:8+2:0):10{3 screen units (*1:4 mm), somewhat larger on

average than the values found in the sensorimotor estimation

experiment, although still in a reasonable range (see Text S3). The

inferred amount of motor noise is lower than estimates from

previous studies in reaching and pointing (e.g. [10]), but in our task

subjects had the possibility to adjust their end-point position.

The internal estimates of cue variability for low-noise and high-

noise cues (~sslow and ~sshigh) were broadly scattered around the true

values (slow~0:06 and shigh~0:14 screen units). In general,

individual values were in qualitative agreement with the true

parameters but showed quantitative discrepancies. Differences

were manifest also at the group level, as we found statistically

significant disagreement for both low and high-noise cues in the

unimodal test session (t-test, pv0:01) and high-noise cues in the

bimodal test session (pv0:05). The ratio between the two

likelihood parameters, ~sshigh=~sslow~2:00+0:54, differed signifi-

cantly from the true ratio, shigh=slow~2:33 (pv0:01).

A few subjects (n~5) were very precise in their decision-making

process, with a power function exponent kw20. For the majority

of subjects, however, k took values between 1:8 and 14 (median

6:4), corresponding approximately to an amount of decision noise

of *7{55% of the variance of the posterior distribution (median

*15%). The range of exponents is compatible with values of k (*
number of samples) previously reported in other experiments, such

as a distance-estimation task [33] or ‘intuitive physics’ judgments

[35]. In agreement with the results of our previous model

comparison, the inferred exponents suggest that subjects’ stochas-

tic decision making followed the shape of a considerably narrower

version of the posterior distribution (k&1) which is not simply a

form of posterior-matching (k~1).

The Weber’s fraction of estimation of the parameters of the

priors’ density took typical values of gprior~0:48+0:19, with

similar means across conditions. These values denote quite a large

amount of noise in estimating (or manipulating) properties of the

priors. Nonetheless, such values are in qualitative agreeement with

a density/numerosity estimation experiment in which a change of

*40% in density or numerosity of a field of random dots was

necessary for subjects to note a difference in either property [36].

Although the two tasks are too different to allow a direct

quantitative comparison, the thresholds measured in [36] suggest

that density/numerosity estimation can indeed be as noisy as we

found.

Finally, even though we did not set an informative prior over

the parameter, the lapse rate took reasonably low values as

expected from a probability of occasional mistakes [28,37]. We

found l~0:03+0:03, and the inferred lapse rate averaged over

training and test session was less than 0:06 for all but one subject.

We examined the best observer model’s capability to reproduce

our subjects’ performance. For each subject and group, we

generated 1000 datasets simulating the responses of the SPK-P-L

observer model to the experimental trials experienced by the

subject. For each simulated dataset, model parameters were

sampled from the posterior distribution of the parameters given

the data. For each condition (shape of prior and cue type) we then

computed the optimality index and averaged it across simulated

datasets. The model’s ‘postdictions’ are plotted in Figure 10 as

continuous lines (SE are omitted for clarity) and appear to be in

good agreement with the data. Note that the postdiction is not

exactly a fit since (a) the parameters are not optimized specifically

to minimize performance error, and (b) the whole posterior

distribution of the parameters is used and not just a ‘best’ point

estimate. As a comparison, we also plotted in Figure 10 the

postdiction for the best BDT observer model, BDT-P-L (dashed

line). As the model comparison suggested, standard Bayesian

Decision Theory fails to capture subjects’ performance.
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For each subject and group (training and test) we also plot the

mean optimality index of the simulated sessions against the

optimality index computed from the data, finding a good

correlation (R2~0:98; see Figure 11).

Lastly, to gain an insight on subjects’ systematic response biases,

we used our framework in order to nonparametrically reconstruct

what the subjects’ priors in the various conditions would look like

[2,3,8,9] (see Methods). Due to limited data per condition and

computational constraints, we recovered the subjects’ priors at the

group level and for model SPK-L, without additional noise on the

priors (P). The reconstructed average priors for distinct test

sessions are shown in Figure 12. Reconstructed priors display a

very good match with the true priors for the Gaussian session and

show minor deviations in the other sessions. The ability of the

model to reconstruct the priors – modulo residual idiosyncrasies –

is indicative of the goodness of the observer model in capturing

subjects’ sources of suboptimality.

Discussion

We have explored human performance in probabilistic infer-

ence (a target estimation task) for different classes of prior

distributions and different levels of reliability of the cues. Crucially,

in our setup subjects were required to perform Bayesian

Figure 9. Comparison between alternative models of decision making. We tested a class of alternative models of decision making which
differ with respect to predictions for non-Gaussian trials only. a: Each column represents a subject, divided by group (either unimodal or bimodal test
session), each row an observer model identified by a model string (see Table 2). Cell color indicates model’s evidence, here displayed as the Bayes
factor against the best model for that subject (a higher value means a worse performance of a given model with respect to the best model). Models
are sorted by their posterior likelihood for a randomly selected subject (see panel b). Numbers above cells specify ranking for most supported models
with comparable evidence (difference less than 10 in 2 log Bayes factor [32]). b: Probability that a given model generated the data of a randomly
chosen subject. Here and in panel c, brown bars represent the most supported models (or model levels within a factor). Asterisks indicate a significant
exceedance probability, that is the posterior probability that a given model (or model component) is more likely than any other model (or model
component): (��)P�w0:99, (���)P�w0:999. c: Probability that a given model level within a factor generated the data of a randomly chosen subject.
Label ‘:GA’ stands for no Gaussian approximation (full posterior).
doi:10.1371/journal.pcbi.1003661.g009

Table 3. Best observer model’s estimated parameters.

Session smotor ~sslow ~sshigh k(�) g l

Gaussian training (4:8+2:0):10{3 0:07+0:02 0:13+0:07 7:67+4:33 0:48+0:15 0:03+0:02

Gaussian test (5:7+2:9):10{3 0:07+0:02 0:14+0:07 7:31+3:83 0:47+0:20 0:02+0:02

Unimodal test (6:3+4:8):10{3 0:05+0:01 0:08+0:02 4:01+2:77 0:48+0:20 0:04+0:02

Bimodal test (4:0+1:1):10{3 0:06+0:02 0:11+0:03 6:38+2:17 0:49+0:28 0:04+0:04

True values – slow~0:06 shigh~0:14 – – –

Group-average estimated parameters for the ‘best’ observer model (SPK-P-L), grouped by session (mean + SD across subjects). For each subject, the point estimates of
the parameters were computed through a robust mean of the posterior distribution of the parameter given the data. For reference, we also report the true noise values
of the cues, slow and shigh . (*) We ignored values of kw20.

doi:10.1371/journal.pcbi.1003661.t003
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computations with explicitly provided probabilistic information,

thereby removing the need either for statistical learning or for

memory and recall of a prior distribution. We found that subjects

performed suboptimally in our paradigm but that their relative

degree of suboptimality was similar across different priors and

different cue noise. Based on a generative model of the task we

built a set of suboptimal Bayesian observer models. Different

methods of model comparison among this large class of models

converged in identifying a most likely observer model that deviates

from the optimal Bayesian observer in the following points: (a) a

mismatching representation of the likelihood parameters, (b) a

noisy estimation of the parameters of the prior, (c) a few occasional

lapses, and (d) a stochastic representation of the posterior (such

that the target choice distribution is approximated by a power

function of the posterior).

Human performance in probabilistic inference
Subjects integrated probabilistic information from both prior

and cue in our task, but rarely exhibited the signature of full

‘synergistic integration’, i.e. a performance above that which could

be obtained by using either the prior or the cue alone (see Figure 5).

However, unlike most studies of Bayesian learning, on each trial in

our study subjects were presented with a new prior. A previous

study on movement planning with probabilistic information (and

fewer conditions) similarly found that subjects violated conditions

of optimality [23].

More interestingly, in our data the relative degree of sub-

optimality did not show substantial differences across distinct

classes of priors and noise levels of the cue (low-noise and high-

noise). This finding suggests that human efficacy at probabilistic

inference is only mildly affected by complexity of the prior per se,

at least for the distributions we have used. Conversely, the process

of learning priors is considerably affected by the class of the

distribution: for instance, learning a bimodal prior (when it is

learnt at all) can require thousands of trials [9], whereas mean and

variance of a single Gaussian can be acquired reliably within a few

hundred trials [11].

Within the same session, subjects’ relative performance was

influenced by the specific shape of the prior. In particular, for

Gaussian priors we found a systematic effect of the variance –

subjects performed worse with wider priors, more than what

would be expected by taking into account the objective

decrease in available information. Interestingly, neither noise

in estimation of the prior width (factor P) nor occasional lapses

that follow the shape of the prior itself (factor L) are sufficient

to explain this effect. Model postdictions of model BDT-P-L

show large systematic deviations from subjects’ performance in

the Gaussian sessions, whereas the best model with decision

noise, SPK-P-L, is able to capture subjects’ behavior; see top

left and top right panels in Figure 10. Moreover, the Gaussian

priors recovered under model SPK-L match extremely well the

true priors, furthering the role of the stochastic posterior in

fully explaining subjects’ performance with Gaussians. The

crucial aspect of model SPK may be that decision noise is

proportional to the width of the posterior, and not merely of

the prior.

Figure 10. Model ‘postdiction’ of the optimality index. Each bar represents the group-averaged optimality index for a specific session, for each
prior (indexed from 1 to 8, see also Figure 2) and cue type, either low-noise cues (red bars) or high-noise cues (blue bars); see also Figure 5. Error bars
are SE across subjects. The continuous line represents the ‘postdiction’ of the best suboptimal Bayesian observer model, model SPK-P-L; see ‘Analysis
of best observer model’ in the text). For comparison, the dashed line is the ‘postdiction’ of the best suboptimal observer model that follows Bayesian
Decision Theory, BDT-P-L.
doi:10.1371/journal.pcbi.1003661.g010
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In the unimodal test session, subjects’ performance was

positively correlated with the width of the main peak of the

distribution. That is, non-Gaussian, narrow-peaked priors (such as

priors 1 and 6 in Figure 12b) induced worse performance than

broad and smooth distributions (e.g. priors 4 and 8). Subjects

tended to ‘mistrust’ the prior, especially in the high-noise

condition, giving excess weight to the cue (~sshigh is significantly

lower than it should be; see Table 3), which can be also interpreted

as an overestimation of the width of the prior. In agreement with

this description, the reconstructed priors in Figure 12b show a

general tendency to overestimate the width of the narrower peaks,

as we found in a previous study of interval timing [8]. This

behavior is compatible with a well-known human tendency of

underestimating (or, alternatively, underweighting) the probability

of occurrence of highly probable results and overestimating

(overweighting) the frequency of rare events (see [27,38,39]).

Similar biases in estimating and manipulating prior distributions

may be explained with an hyperprior that favors more entropic

and, therefore, smoother priors in order to avoid ‘overfitting’ to

the environment [40].

Modelling suboptimality
In building our observer models we made several assumptions.

For all models we assumed that the prior adopted by observers in

Eq. 2 corresponded to a continuous approximation of the

probability density function displayed on screen, or a noisy

estimate thereof. We verified that using the original discrete

representation does not improve model performance. Clearly,

subjects may have been affected by the discretization of the prior

in other ways, but we assumed that such errors could be absorbed

by other model components. We also assumed subjects quickly

Figure 11. Comparison of measured and simulated perfor-
mance. Comparison of the mean optimality index computed from the
data and the simulated optimality index, according to the ‘postdiction’
of the best observer model (SPK-P-L). Each dot represents a single
session for each subject (either training or test). The dashed line
corresponds to equality between observed and simulated performance.
Model-simulated performance is in good agreement with subjects’
performance (R2~0:98).
doi:10.1371/journal.pcbi.1003661.g011

Figure 12. Reconstructed prior distributions. Each panel shows the (unnormalized) probability density for a ‘prior’ distribution of targets,
grouped by test session, as per Figure 2. Purple lines are mean reconstructed priors (mean + 1 s.d.) according to observer model SPK-L. a: Gaussian
session. Recovered priors in the Gaussian test session are very good approximations of the true priors (comparison between SD of the reconstructed
priors and true SD: R2~0:94). b: Unimodal session. Recovered priors in the unimodal test session approximate the true priors (recovered SD:
0:105+0:007, true SD: 0:11 screen units) although with systematic deviations in higher-order moments (comparison between moments of the
reconstructed priors and true moments: skewness R2~0:47; kurtosis R2

v0). Reconstructed priors are systematically less kurtotic (less peaked,
lighter-tailed) than the true priors. c: Bimodal session. Recovered priors in the bimodal test session approximate the true priors with only minor
systematic deviations (recovered SD: 0:106+0:004, true SD: 0:11 screen units; coefficient of determination between moments of the reconstructed
priors and true moments: skewness R2~0:99; kurtosis R2~0:80).
doi:10.1371/journal.pcbi.1003661.g012
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acquired a correct internal model of the probabilistic structure of

the task, through practice and feedback, although quantitative

details (i.e. model parameters) could be mismatched with respect

to the true parameters. Formally, our observer models were not

‘actor’ models in the sense that they did not take into account the

motor error in the computation of the expected loss. However, this

was with negligible loss of generality since the motor term has no

influence on the inference of the optimal target for single

Gaussians priors, and yields empirically negligible impact for

other priors for small values of the motor error smotor (as those

measured in our task; see Text S3).

Suboptimality was introduced into our observer models in three

main ways: (a) miscalibration of the parameters of the likelihood;

(b) models of approximate inference; and (c) additional stochas-

ticity, either on the sensory inputs or in the decision-making

process itself. Motor noise was another source of suboptimality,

but its contribution was comparably low.

Miscalibration of the parameters of the likelihood means that

the subjective estimates of the reliability of the cues (~sslow and ~sshigh)

could differ from the true values (slow and shigh). In fact, we found

slight to moderate discrepancies, which became substantial in

some conditions. Previous studies have investigated whether

subjects have (or develop) a correct internal estimate of relevant

noise parameters (i.e. the likelihood) which may correspond to

their own sensory or motor variability plus some externally

injected noise. In several cases subjects were found to have a

miscalibrated model of their own variability which led to

suboptimal behavior [33,41–43], although there are cases in

which subjects were able to develop correct estimates of such

parameters [10,44,45].

More generally, it could be that subjects were not only using

incorrect parameters for the task, but built a wrong internal model

or were employing approximations in the inference process. For

our task, which has a relatively simple one-dimensional structure,

we did not find evidence that subjects were using low-order

approximations of the posterior distribution. Also, the capability of

our models to recover the subjects’ priors in good agreement with

the true priors suggest that subjects’ internal model of the task was

not too discrepant from the true one.

Crucial element in all our models was the inclusion of extra

sources of variability, in particular in decision making. Whereas

most forms of added noise have a clear interpretation, such as

sensory noise in the estimation of the cue location, or in estimating

the parameters of the prior, the so-called ‘stochastic posterior’

deserves an extended explanation.

Understanding the stochastic posterior
We introduced the stochastic posterior model of decision

making, SPK, with two intuitive interpretations, that is a noisy

posterior or a sample-based approximation (see Figure 7 and Text

S2), but clearly any process that produces a variability in the target

choice distribution that approximates a power function of the

posterior is a candidate explanation. The stochastic posterior

captures the main trait of decision noise, that is a variability that

depends on the shape of the posterior [33], as opposed to other

forms of noise that do not depend on the decision process.

Outstanding open questions are therefore which kind of process

could be behind the observed noise in decision making, and during

which stage it arises, e.g. whether it is due to inference or to action

selection [46].

A seemingly promising candidate for the source of noise in the

inference is neuronal variability in the nervous system [47].

Although the noisy representation of the posterior distribution in

Figure 7b through a population of units may be a simplistic

cartoon, the posterior could be encoded in subtler ways (see for

instance [48]). However, neuronal noise itself may not be enough

to explain the amount of observed variability (see Text S2). An

extension of this hypothesis is that the noise may emerge since

suboptimal computations magnify the underlying variability [49].

Conversely, another scenario is represented by the sampling

hypothesis, an approximate algorithm for probabilistic inference

which could be implemented at the neural level [19]. Our analysis

ruled out an observer whose decision-making process consists in

taking the average of k samples from the posterior – operation that

implicitly assumes a quadratic loss function – showing that

averaging samples from the posterior is not a generally valid

approach, although differences can be small for unimodal

distributions. More generally, the sampling method should always

take into account the loss function of the task, which in our case is

closer to a delta function (a MAP solution) rather than to a

quadratic loss. Our results are compatible with a proper sampling

approach, in which an empirical distribution is built out of a small

number of samples from the posterior, and then the expected loss

is computed from the sampled distribution [19].

As a more cognitive explanation, decision variability may have

arisen because subjects adopted a probabilistic instead of determin-

istic strategy in action selection as a form of exploratory behavior. In

reinforcement learning this is analogous to the implementation of a

probabilistic policy as opposed to a deterministic policy, with a

‘temperature’ parameter that governs the amount of variability

[50]. Search strategies have been hypothesized to lie behind

suboptimal behaviors that appear random, such as probability

matching [51]. While generic exploratory behavior is compatible

with our findings, our analysis rejected a simple posterior-matching

strategy [25,26].

All of these interpretations assume that there is some noise in

the decision process itself. However, the noise could emerge

from other sources, without the necessity of introducing

deviations from standard BDT. For instance, variability in

the experiment could arise from lack of stationarity: depen-

dencies between trials, fluctuations of subjects’ parameters or

time-varying strategies would appear as additional noise in a

stationary model [52]. We explored the possibility of nonsta-

tionary behavior without finding evidence for strong effects of

nonstationarity (see Section 6 in Text S1). In particular, an

iterative (trial-dependent) non-Bayesian model failed to model

the data in the training dataset better than the stochastic

posterior model. Clearly, this does not exclude that different,

possibly Bayesian, iterative models could explain the data

better, but our task design with multiple alternating conditions

and partial feedback should mitigate the effect of dependencies

between trials, since each trial typically displays a different

condition from the immediately preceding ones.

In summary, we show that a decision strategy that

implements a ‘stochastic posterior’ that introduces variability

in the computation of the expected loss has several theoretical

and empirical advantages when modelling subjects’ perfor-

mance, demonstrating improvement over previous models that

implemented variability only through a ‘posterior-matching’

approach or that implicitly assume a quadratic loss function

(sampling-average methods).

Methods

Ethics statement
The Cambridge Psychology Research Ethics Committee

approved the experimental procedures and all subjects gave

informed consent.
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Participants
Twenty-four subjects (10 male and 14 female; age range 18–33

years) participated in the study. All participants were naı̈ve to the

purpose of the study. All participants were right-handed according

to the Edinburgh handedness inventory [53], with normal or

corrected-to-normal vision and reported no neurological disorder.

Participants were compensated for their time.

Behavioral task
Subjects were required to reach to an unknown target given

probabilistic information about its position. Information consisted

of a visual representation of the a priori probability distribution of

targets for that trial and a noisy cue about the actual target

position.

Subjects held the handle of a robotic manipulandum (vBOT,

[54]). The visual scene from a CRT monitor (Dell UltraScan

P1110, 21-inch, 100 Hz refresh rate) was projected into the plane

of the hand via a mirror (Figure 1a) that prevented the subjects

from seeing their hand. The workspace origin, coordinates ½0,0�,
was *35 cm from the torso of the subjects, with positive axes

towards the right (x axis) and away from the subject (y axis). The

workspace showed a home position (1.5 cm radius circle) at

½0,{15� cm and a cursor (1.25 cm radius circle) that tracked the

hand position.

On each trial 100 potential targets (0.1 cm radius dots) were

shown around the target line at positions ½uj ,vj �, for j~1, . . . ,100,

where the uj formed a fixed discrete representation of the trial-

dependent ‘prior’ distribution pprior(x), obtained through a regular

sample of the cdf (see Figure 1d), and the vj were small random

offsets used to facilitate visualization (vj* Uniform(20.3, 0.3) cm).

The true target was chosen by picking one of the potential targets

at random with uniform probability. A cue (0.25 cm radius circle)

was shown at position ½xcue,{dcue�. The horizontal position xcue

provided a noisy estimate of the target position, xcue~xzE:scue,

with x the true (horizontal) position of the target, scue the cue

variability and E a normal random variable with zero mean and

unit variance. The distance of the cue from the target line, dcue,

was linearly related to the cue variability: cues distant from the

target line were noisier than cues close to it. In our setup, the noise

level scue could only either be low for ‘short-distance’ cues,

slow~1:8 cm (dshort~3:9 cm), or high for ‘long-distance’ cues,

shigh~4:2 cm (dlong~9:1 cm). Both the prior distribution and cue

remained on the screen for the duration of a trial.

After a ‘go’ beep, subjects were required to move the handle

towards the target line, choosing an endpoint position such that

the true target would be within the cursor radius. The

manipulandum generated a spring force along the depth axis

(Fy~{5:0 N/cm) for cursor positions past the target line,

preventing subjects from overshooting. The horizontal endpoint

position of the movement (velocity of the cursor less than 0.5 cm/

s), after contact with the target line, was recorded as the subject’s

response r for that trial.

At the end of each trial, subjects received visual feedback on

whether their cursor encircled (a ‘success’) or missed the true target

(partial feedback). On full feedback trials, the position of the true

target was also shown (0.25 cm radius yellow circle). Feedback

remained on screen for 1 s. Potential targets, cues and feedback

then disappeared. A new trial started 500 ms after the subject had

returned to the home position.

For simplicity, all distances in the experiment are reported in

terms of standardized screen units (window width of 1.0), with

x[½{0:5,0:5� and 0.01 screen units corresponding to 3 mm. In

screen units, the cursor radius is 0:042 and the SD of noise for

short and long distance cues is respectively slow~0:06 and

shigh~0:14.

Experimental sessions
Subjects performed one practice block in which they were

familiarized with the task (64 trials). The main experiment

consisted of a training session with Gaussian priors (576 trials)

followed by a test session with group-dependent priors (576–640

trials). Sessions were divided in four runs. Subjects could take short

breaks between runs and there was a mandatory 15 minutes break

between the training and test sessions.

Each session presented eight different types of priors and two

cue noise levels (corresponding to either ‘short’ or ‘long’ cues), for

a total of 16 different conditions (36–40 trials per condition). Trials

from different conditions were presented in random order.

Depending on the session and group, priors belonged to one of

the following classes (see Figure 2):

Gaussian priors. Eight Gaussian distributions with evenly

spread SDs between 0.04 and 0.18 i.e. sprior[ 0:04,0:06, . . . ,0:18f g
screen units.

Unimodal priors. Eight unimodal priors with fixed SD

sprior~0:11 and variable skewness and kurtosis. With the

exception of platykurtic prior 4, which is a mixture of 11

Gaussians, and prior 8, which is a single Gaussian, all other priors

were realized as mixtures of two Gaussians that locally maximize

differential entropy for given values of the first four central

moments. In the maximization we included a constraint on the

SDs of the individual components so to prevent degenerate

solutions (0:02ƒsiƒ0:2 screen units, for i~1,2). Skewness and

excess kurtosis were chosen to represent various shapes of

unimodal distributions, within the strict bounds that exist between

skewness and kurtosis of a unimodal distribution [55]. The values

of (skewness, kurtosis) for the eight distributions, in order of

increasing differential entropy: 1: (2,5); 2: (0,5); 3: (0:78,0); 4:

(0,{1); 5: (0:425,{0:5); 6: (0,1); 7: (0:5,0); 8: (0,0).
Bimodal priors. Eight (mostly) bimodal priors with fixed SD

sprior~0:11 and variable separation and relative weight. The

priors were realized as mixtures of two Gaussians with equal

variance: pprior(x)~pN xDm1,s2
� �

z(1{p)N xDm2,s2
� �

. Separa-

tion was computed as d
0
~

m1{m2

s
, and relative weight was

defined as w~
p

1{p
. The values of (separation, relative weight) for

the eight distributions, in order of increasing differential entropy:

1: (5,1); 2: (4,3); 3: (4,2); 4: (4,5); 5: (4,1); 6: (3,1); 7: (2,1); 8:

(0,{) (the last distribution is a single Gaussian).

For all priors, the mean mprior was drawn from a uniform

distribution whose bounds were chosen such that the extremes of

the discrete representation would fall within the active screen

window (the actual screen size was larger than the active window).

Also, asymmetric priors had 50% probability of being flipped

horizontally about the mean.

Data analysis
Analysis of behavioral data. Data analysis was conducted

in MATLAB 2010b (Mathworks, U.S.A.). To avoid edge artifacts

in subjects’ response, we discarded trials in which the cue position,

xcue, was outside the range of the discretized prior distribution

(2691 out of 28672 trials: 9.4%). We included these trials in the

experimental session in order to preserve the probabilistic

relationships between variables of the task.

For each trial, we recorded the response location r and the

reaction time (RT) was defined as the interval between the ‘go’

beep and the start of the subject’s movement. For each subject and
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session we computed a nonlinear kernel regression estimate of the

average RT as a function of the SD of the posterior distribution,

spost. We only considered a range of spost for which all subjects

had a significant density of data points. Results did not change

qualitatively for other measures of spread of the posterior, such as

the exponential entropy [24].

All subjects’ datasets are available online in Dataset S1.

Optimality index and success probability. We calculated

the optimality index for each trial as the success probability for

response r, psuccess(r), divided by the maximal success probability

p�success, which we used to quantify performance of a subject (or an

observer model). The optimality index of our subjects in the task is

plotted in Figure 5 and success probabilities are shown in Figure 1

in Text S1.

The success probability psuccess(r) in a given trial represents the

probability of locating the correct target according to the generative

model of the task (independent of the actual position of the target).

For a trial with cue position xcue, cue noise variance s2
cue, and prior

distribution pprior(x), the success probability is defined as:

psuccess(r)~ðrz‘
2

r{‘
2

1Ð
dx
0
pprior(x

0
)N x

0
xcue,s2

cue

		� � pprior(x)N x xcue,s
2
cue

		� �" #
dx
ð12Þ

where the integrand is the posterior distribution according to the

continuous generative model of the task and ‘ is the diameter of the

cursor. Solving the integral in Eq. 12 for a generic mixture-of-

Gaussians prior, pprior(x)~
Pm

i~1 piN xDmi,s
2
i

� �
, we obtain:

psuccess(r)~

Xm

i
0
~1

c
i
0

0@ 1A{1Xm

i~1

ci

2
erf

rz ‘
2
{niffiffiffi

2
p

ti


 �
{erf

r{ ‘
2
{niffiffiffi

2
p

ti


 �� 
 ð13Þ

where the symbols ci, ni and ti have been defined in Eq. 5. The

maximal success probability is simply computed as

p�success~ maxr psuccess(r).

Note that a metric based on the theoretical success probability is

more appropriate than the observed fraction of successes for a

given sample of trials, as the latter introduces additional error due

to mere chance (the observed fraction of successes fluctuates

around the true success probability with binomial statistics, and

the error can be substantial for small sample size).

The priors for the Gaussian, unimodal and bimodal sessions

were chosen such that the average maximal success probability of

each class was about the same (*51:5%) making the task

challenging and of equal difficulty across the task.

Computing the optimal target. According to Bayesian

Decision Theory (BDT), the key quantity an observer needs to

compute in order to make a decision is the (subjectively) expected

loss for a given action. In our task, the action corresponds to a

choice of a cursor position x
0
, and the expected loss takes the form:

E½x0 ; ppost,L�~
ð

ppost(x)L(x
0
,x)dx ð14Þ

where ppost(x) is the subject’s posterior distribution of target

position, described by Eq. 2, and the loss associated with choosing

position x
0

when the target location is x is represented by loss

function L(x
0
,x).

Our task has a clear ‘hit or miss’ structure that is represented by

the square well function:

Lwell(x
0
,x; ‘)~

{ 1
‘ for jx0{xjv ‘

2

0 otherwise

(
ð15Þ

where x
0
{x is the distance of the chosen response from the target,

and ‘ is the size of the allowed window for locating the target (in

the experiment, the cursor diameter). The square well loss allows

for an analytical expression of the expected loss, but the optimal

target still needs to be computed numerically. Therefore we make

a smooth approximation to the square well loss represented by the

inverted Gaussian loss:

LGauss(x
0
,x; s‘)~{N xDx

0
,s2
‘

� �
ð16Þ

where the parameter s‘ governs the scale of smoothed detection

window. The Gaussian loss approximates extremely well the

predictions of the square well loss in our task, to the point that

performance under the two forms of loss is empirically indistin-

guishable (see Section 3 in Text S1). However, computationally

the Gaussian loss is preferrable as it allows much faster calculations

of optimal behavior.

For the decision process, BDT assumes that observers choose

the ‘optimal’ target position x� that minimizes the expected loss:

x�~ arg min
x
0
E½x0 ; ppost,LGauss�

~ arg min
x
0

{
Xm

i~1

pi

ð
N xDmi,s

2
i

� �
N xDxcue,~ss2

cue(dcue)
� �

N xDx
0
,s2
‘

� �
dx

( ) ð17Þ

where we have used Eqs. 2, 14 and 16. With some algebraic

manipulations, Eq. 17 can be reformulated as Eq. 4. Given the

form of the expected loss, the solution of Eq. 4 is equivalent to

finding the maximum (mode) of a Gaussian mixture model. In

general no analytical solution is known for more than one model

component (mw1), so we implemented a fast and accurate

numerical solution adapting the algorithm in [56].

Computing the response probability. The probability of

observing response r in a trial, p(rjtrial) (e.g., Eq. 6) is the key

quantity for our probabilistic modelling of the task. For basic

observer models, p(rjtrial) is obtained as the convolution between

a Gaussian distribution (motor noise) and a target choice

distribution in closed form (e.g. a power function of a mixture of

Gaussians), such as in Eqs. 3, 7 and 11. Response probabilities are

integrated over latent variables of model factor S (jcue; see Eq. 8)

and of model factor P (log ~ssprior and log ~pp1

~pp2
; see Eqs. 9 and 10).

Integrations were performed analytically when possible or

otherwise numerically (trapz in MATLAB or Gauss-Hermite

quadrature method for non-analytical Gaussian integrals [57]).

For instance, the observed response probability for model factor S

takes the shape:

p(rjxcue,dcue,pprior)~

ð ð
N rDx,s2

m

� �
ptarget xjjcue,dcue,pprior

� �
dx

� 

N jcueDxcue,S2

cue

� �
djcue

ð18Þ

where we are integrating over the hidden variables jcue and x. The

target choice distribution ptarget depends on the decision-making

model component (see e.g. Eqs. 3 and 7). Without loss of

generality, we assumed that the observers are not aware of their
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internal variability. Predictions of model S do not change whether

we assume that the observer is aware of his or her measurement

error S2
cue or not; differences amount just to redefinitions of ~ss2

cue.

For a Gaussian prior with mean mprior and variance s2
prior, the

response probability has the following closed form solution:

p(rjxcue,dcue,mprior,s
2
prior)~ N rDmresp,s2

response

� �
ð19Þ

with

mresp:
mprior~ss

2
cuezxcues2

prior

s2
priorz~ss2

cue

,

s2
resp:s2

mz
1

k

s2
prior~ss

2
cue

s2
priorz~ss2

cue

z
s2

prior

s2
priorz~ss2

cue

 !2

S2
cue

ð20Þ

where k is the noise parameter of the stochastic posterior in model

component SPK (k~1 for PPM; k*? for BDT) and Scue is the

sensory noise in estimation of the cue position in model S (Scue~0
for observer models without cue-estimation noise). For observer

models P with noise on the prior, Eq. 19 was numerically

integrated over different values of the internal measurement (here

corresponding to log sprior) with a Gauss-Hermite quadrature

method [57].

For non-Gaussian priors there is no closed form solution similar

to Eq. 19 and the calculation of the response probability,

depending on active model components, may require up to three

nested numerical integrations. Therefore, for computational

tractability, we occasionally restricted our analysis to a subset of

observer models, as indicated in the main text.

For model class PSA (posterior sampling average), the target

choice distribution is the probability distribution of the average

of k samples drawn from the posterior distribution. For a

posterior that is a mixture of Gaussians and integer k, it is

possible to obtain an explicit expression whose number of terms

grows exponentially in k. Fortunately, this did not constitute a

problem as observer models favored small values of k (also, a

Gaussian approximation applies for large values of k due to the

central limit theorem). Values of the distribution for non-integer

k were found by linear interpolation between adjacent integer

values. For model class LA (Laplace approximation) we found

the mode of the posterior numerically [56] and analytically

evaluated the second derivative of the log posterior at the mode.

The mean of the approximate Gaussian posterior is set to the

mode and the variance to minus the inverse of the second

derivative [34].

For all models, when using the model-dependent response

probability, p(rjtrial), in the model comparison, we added a small

regularization term:

p(reg)(rjtrial)~(1{E)p(rjtrial)zE ð21Þ

with E~1:5:10{6 (the value of the pdf of a normal distribution at 5

SDs from the mean). This change in probability is empirically

negligible, but from the point of view of model comparison the

regularization term introduces a lower bound log E on the log

probability of a single trial, preventing single outliers from having

unlimited weight on the log likelihood of a model, increasing

therefore the robustness of the inference.

Sampling and model comparison. For each observer model

and each subject’s dataset (comprised of training and test session) we

calculated the posterior distribution of the model parameters

given the data, Pr(hM | data, model) ! Pr(data| hM , model)

Pr(hM | model), where we assumed a factorized prior over

parameters, Pr(hM | model) =Pi Pr(hi | model). Having

obtained independent measures of typical sensorimotor noise

parameters of the subjects in a sensorimotor estimation

experiment, we took informative log-normal priors on param-

eters smotor and Shigh (when present), with log-scale respectively

log 3:4:10{3 and log 7:7:10{3 screen units and shape parame-

ters 0:38 and 0:32 (see Text S3; results did not depend crucially

on the shape of the priors). For the other parameters we took a

noninformative uniform prior * Uniform[0, 1] (dimensionful

parameters were measured in normalized screen units), with the

exception of the gprior and k parameters. The gprior parameter

that regulates the noise in the prior could occasionally be quite

large (see main text) so we adopted a broader range *
Uniform[0, 4] to avoid edge effects. A priori, the k parameter

that governs noise in decision making could take any positive

nonzero value (with higher probability mass on lower values), so

we assumed a prior * Uniform[0, 1] on 1=(kz1), which is

equivalent to a prior *1=(kz1)2, for k[½0,?). Formally, a

value of k less than one represents a performance more variable

than posterior-matching (for k?0 the posterior distribution

tends to a uniform distribution). Results of the model

comparison were essentially identical whether we allowed k to

be less than one or not. We took a prior *1=k2 on the positive

real line since it is integrable; an improper prior such as a

noninformative prior *1=k is not recommendable in a model

comparison between models with non-common parameters due

to the ‘marginalization paradox’ [58].

The posterior distribution of the parameters is proportional

to the data likelihood, which was computed in logarithmic form

as:

log Pr(datajhM ,model)~
XN

i~1

log p(reg)(r(i)jtriali) ð22Þ

where p(reg) is the regularized probability of response given by Eq. 21,

and triali represents all the relevant variables of the i-th trial. Eq. 22

assumes that the trials are independent and that subjects’ parameters

are fixed throughout each session (stationarity). The possibility of

dependencies between trials and nonstationarity in the data is explored

in Section 6 of Text S1.

A convenient way to compute a probability distribution

whose unnormalized pdf is known (Eq. 22) is by using a Markov

Chain Monte Carlo method (e.g. slice sampling [29]). For each

dataset and model, we ran three parallel chains with different

starting points (103 to 104 burn-in samples, 2:103 to 5:104 saved

samples per chain, depending on model complexity) obtaining a

total of 6:103 to 1:5:105 sampled parameter vectors. Marginal

pdfs of sampled chains were visually checked for convergence.

We also searched for the global minimum of the (minus log)

marginal likelihood by running a minimization algorithm

(fminsearch in MATLAB) from several starting points (30 to

100 random locations). With this information we verified that,

as far as we could tell, the chains were not stuck in a local

minimum. Finally, we computed Gelman and Rubin’s potential

scale reduction statistic R for all parameters [59]. Large values

of R indicate convergence problems whereas values close to 1

suggest convergence. Longer chains were run when suspicion of

a convergence problem arose from any of these methods. In the

end average R (across parameters, participants and models) was
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1.003 and almost all values were v1:1 suggesting good

convergence.

Given the parameter samples, we computed the DIC score

(deviance information criterion) [30] for each dataset and model.

The DIC score is a metric that combines a goodness of fit term

and a penality for model complexity, similarly to other metrics

adopted in model comparison, such as Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC), with

the advantage that DIC takes into account an estimate of the

effective complexity of the model and it is particularly easy to

compute given a MCMC output. DIC scores are computed as:

DIC~2
1

ns

Xns

i~1

D(h
(i)
M )

" #
{D(bhhM ),

D(h):{2 log Pr(datajh)

ð23Þ

where D(h) is the deviance given parameter vector h, the h(i) are

MCMC parameter samples and bhh is a ‘good’ parameter

estimate for the model (e.g. the mean, median or another

measure of central tendency of the sampled parameters). As a

robust estimate of bhhM we computed a trimmed mean

(discarding 10% from each side, which eliminated outlier

parameter values). DIC scores are meaningful only in a

comparison, so we only report DIC scores differences between

models (DDIC). Although a difference of 3-7 points is already

suggested to be significant [30], we follow a conservative

stance, for which the difference in DIC scores needs to be 10 or

more to be considered significant [33]. In Section 4 of Text S1

we report a set of model comparisons evaluated in terms of

group DIC (GDIC). The assumption of GDIC is that all

participants’ datasets have been generated by the same

observer model, and all subjects contribute equally to the

evidence of each model.

In the main text, instead, we compared models according to

a hierarchical Bayesian model selection method (BMS) [31]

that treats both subjects and models as random factors, that is,

multiple observer models may be present in the population.

BMS uses an iterative algorithm based on variational inference

to compute model evidence from individual subjects’ marginal

likelihoods (or approximations thereof, such as DIC, with the

marginal likelihood being &{
1

2
DIC). BMS is particularly

appealing because it naturally deals with group heterogeneity

and outliers. Moreover, the output of the algorithm has an

immediate interpretation as the probability that a given model

is responsible for generating the data of a randomly chosen

subject. BMS also allows to easily compute the cumulative

evidence for groups of models and we used this feature to

compare distinct levels within factors [31]. As a Bayesian

metric of significance we report the exceedance probability P�

of a model (or model level within a factor) being more likely

than any other model (or level). We consider values of

P�w0:95 to be significant. The BMS algorithm is typically

initialized with a symmetric Dirichlet distribution that repre-

sents a prior over model probabilities with no preference for

any specific model [31]. Since we are comparing a large

number of models generated by the factorial method, we chose

for the concentration parameter of the Dirichlet distribution a

value a0~0:25 that corresponds to a weak prior belief that only

a few observer models are actually present in the population

(a0?0 would correspond to the prior belief that only one

model is true, similarly to GDIC, and a0~1 that any number

of models are true). Results are qualitatively independent of

the specific choice of a0 for a large range of values.

When looking at alternative models of decision making in

our second factorial model comparison, we excluded from the

analysis ‘uninteresting’ trials in which the theoretical posterior

distribution (Eq. 2 with the true values of slow and shigh) was

too close in shape to a Gaussian; since predictions of these

models are identical for Gaussian posteriors, Gaussian trials

constitute only a confound for the model comparison. A

posterior distribution was considered ‘too close’ to a Gaussian

if the Kullback-Leibler divergence between a Gaussian

approximation with matching low-order moments and the full

posterior was less than a threshold value of 0.02 nats (results

were qualitatively independent of the chosen threshold). In

general, this preprocessing step removed about 45–60% of

trials from unimodal and bimodal sessions (clearly, Gaussian

sessions were automatically excluded).

Nonparametric reconstruction of the priors. We recon-

structed the group priors as a means to visualize the subjects’

common systematic biases under a specific observer model

(SPK-L). Each group prior qprior(x) was ‘nonparametrically’

represented by a mixture of Gaussians with a large number of

components (m~31). The components’ means were equally

spaced on a grid that spanned the range of the discrete

representation of the prior; SDs were equal to the grid spacing.

The mixing weights fpigm
i~1 were free to vary to define the

shape of the prior (we enforced symmetric values on symmetric

distributions, and the sum of the weigths to be one). The

representation of the prior as a mixture of Gaussians allowed

us to cover a large class of smooth distributions using the same

framework as the rest of our study.

For this analysis we fixed subjects’ parameters to the values

inferred in our main model comparison for model SPK-L (i.e.

to the robust means of the posterior of the parameters). For

each prior in each group (Gaussian, unimodal and bimodal test

sessions), we simultaneously inferred the shape of the

nonparametric prior that explained each subject’s dataset,

assuming the same distribution qprior for all subjects. Specif-

ically, we sampled from the posterior distribution of the

parameters of the group priors, Pr(qpriorj data), with a flat prior

over log values of the mixing weights fpigm
i~1. We ran 5

parallel chains with a burn-in of 103 samples and 2:103 samples

per chain, for a total of 104 sampled vectors of mixing weights

(see previous section for details on sampling). Each sampled

vector of mixing weights corresponds to a prior q
(j)
prior, for

j~1 . . . 104. Purple lines in Figure 12 show the mean (+ 1 SD)

of the sampled priors, that is the average reconstructed priors

(smoothed with a small Gaussian kernel for visualization

purposes). For each sampled prior we also computed the first

four central moments (mean, variance, skewness and kurtosis)

and calculated the posterior average of the moments (see

Figure 12).

Statistical analyses. All regressions in our analyses used a

robust procedure, computed using Tukey’s ‘bisquare’ weight-

ing function (robustfit in MATLAB). Robust means were

computed as trimmed means, discarding 10% of values from

each side of the sample. Statistical differences were assessed

using repeated-measures ANOVA (rm-ANOVA) with Green-

house-Geisser correction of the degrees of freedom in order to

account for deviations from sphericity [60]. A logit transform

was applied to the optimality index measure before performing

rm-ANOVA, in order to improve normality of the data (results

were qualitatively similar for non-transformed data). Nonlinear

Suboptimality in Probabilistic Inference

PLOS Computational Biology | www.ploscompbiol.org 21 June 2014 | Volume 10 | Issue 6 | e1003661



kernel regression estimates to visualize mean data (Figure 3

and 6) were computed with a Nadaraya-Watson estimator with

rule-of-thumb bandwidth [61]. For all analyses the criterion

for statistical significance was pv0:05.

Supporting Information

Dataset S1 Subject’s datasets. Subjects’ datasets for the main

experiment (n~24, training and test sessions) and for the sensorimotor

estimation experiment (n~10), with relevant metadata, in a single

MATLAB data file.

(ZIP)

Text S1 Additional analyses and observer models. This

supporting text includes sections on: Translational invariance of

subjects’ behavior; Success probability; Inverted Gaussian loss

function; Model comparison with DIC; Model comparison for

different shared parameters between sessions; Nonstationary

analysis.

(PDF)

Text S2 Noisy probabilistic inference. Description of the

models of stochastic probabilistic inference (‘noisy posterior’

and ‘sample-based posterior’) and discussion about unstruc-

tured noise in the prior.

(PDF)

Text S3 Sensorimotor estimation experiment. Methods

and results of the additional experiment to estimate the range of

subjects’ sensorimotor parameters.

(PDF)
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