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Abstract

Navigation of cells to the optimal environmental condition is critical for their survival and growth. Escherichia coli cells, for
example, can detect various chemicals and move up or down those chemical gradients (i.e., chemotaxis). Using the same
signaling machinery, they can also sense other external factors such as pH and temperature and navigate from both sides
toward some intermediate levels of those stimuli. This mode of precision sensing is more sophisticated than the
(unidirectional) chemotaxis strategy and requires distinctive molecular mechanisms to encode and track the preferred
external conditions. To systematically study these different bacterial taxis behaviors, we develop a continuum model that
incorporates microscopic signaling events in single cells into macroscopic population dynamics. A simple theoretical result
is obtained for the steady state cell distribution in general. In particular, we find the cell distribution is controlled by the
intracellular sensory dynamics as well as the dependence of the cells’ speed on external factors. The model is verified by
available experimental data in various taxis behaviors (including bacterial chemotaxis, pH taxis, and thermotaxis), and it also
leads to predictions that can be tested by future experiments. Our analysis help reveal the key conditions/mechanisms for
bacterial precision-sensing behaviors and directly connects the cellular taxis performances with the underlying molecular
parameters. It provides a unified framework to study bacterial navigation in complex environments with chemical and non-
chemical stimuli.
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Introduction

Living systems detect changes in the environment and try to find

optimal conditions for their survival and growth. As one of the

best-studied systems in biology, bacterial chemotaxis allows

bacteria (such as Escherichia coli) to sense chemical gradients and

navigate toward attractant or away from repellent [1–4]. This

gradient sensing strategy makes cells move unidirectionally toward

the extreme levels of stimuli. However, for other natural factors

(such as pH and temperature), the physiological optimum does not

locate at the extreme but at some intermediate level in the

respective gradient. To find such intermediate point, it requires a

more sophisticated strategy, namely, precision sensing. Both pH taxis

[5–9] and thermotaxis of E. coli [10–16] provide us inspiring

examples of precision sensing.

Amazingly, E. coli cells use the same signaling system to achieve

these different navigation tasks. Different external signals are

sensed by several types of transmembrane chemoreceptors, among

which the Tar and Tsr receptors are the most abundant [17]. For

chemotaxis, binding of attractant (or repellent) molecules to

chemoreceptors triggers their conformational changes and affects

the autophosphorylation of the histidine kinase CheA [3,4].

Analogous to ligand binding in chemotaxis, both temperature and

pH affect the conformational state of chemoreceptors and hence

the CheA activity. Regardless of the way of being activated,

phosphorylated CheA transfers its phosphate group to the

response regulator CheY in the cytoplasm. The phosphorylated

CheY molecules (denoted as CheY-P) then bind to the flagellar

motors, increase their probability of clockwise rotations, and cause

E. coli to tumble. The resulted alternating run and tumble pattern

can steer cells to advantageous locations. To make temporal

comparisons of stimuli, a short-term memory (or adaptation

mechanism) is required [4,18,19]. This is achieved by the slow

methylation-demethylation kinetics, as catalyzed by two enzymes

(CheR and CheB) that add and remove methyl group at specific

sites of receptors, respectively.

How does a bacterium navigate through its environment with

different chemical and nonchemical cues by using the same

signaling and motility machinery? How do bacterial cells make

decisions under competing chemical and/or nonchemical signals?

How accurately and reliably can bacteria find their favored

conditions (such as the preferred temperature or pH)? and how do

they tune their preference for precision sensing? We aim to address

these questions under a unified theoretical framework, given that

different taxis behaviors are based on the same sensory/motion

machinery.

To this end, we develop a multi-scale model which incorporates

intracellular signaling pathways into bacterial population dynam-

ics. The continuum population model reveals a simple theoretical

result for the steady state cell distribution, which is found to be

determined by the direction-dependent tumbling rates (transmit-

ted through intracellular signaling pathways) as well as the
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dependence of the swimming speed on external factors (such as

temperature). This new finding enables us to systematically

analyze bacterial navigation in chemical, pH, and temperature

gradients. From each application, we have made quantitative

comparison with the available experimental data and have gained

new insights about the mechanisms of bacterial taxis. Our general

model can be extended to study bacterial migration in complex

environments (e.g., with a mixture of chemical and nonchemical

stimuli) and provide quantitative predictions to be tested by future

population level experiments.

Results

The Unified Model for Bacterial Taxis: A Simple Result for
Steady State Cell Distribution

Our unified model for bacterial taxis is developed on the basis of

a number of previous models at different scales [20–29]. We

incorporate microscopic pathway dynamics into the macroscopic

transport equations [22,28] and derive a closed-form solution for

the steady state cell distribution in chemical and/or nonchemical

gradients. In the following, we outline the main steps in obtaining

this key result (Eq. 5), with more details about our model given in

Text S1.

The architecture of our model is illustrated in Fig. 1. The

environmental signals (such as chemoattractants, pH, and

temperature), denoted by S(x)~fS1,S2,:::g, can be sensed by

different types of transmembrane chemoreceptors and converted

into the total receptor-kinase activity, denoted by a. This activity

represents the internal state of the cell and is described by the

Monod-Wyman-Changeux (MWC) two-state model [23–26,29]:

a(m,S)~
1

1z exp½Nfa(m,S)� , ð1Þ

where N measures the degree of receptor cooperativity and fa

represents the free energy difference between the active and

inactive receptor conformations. The total activity, a, depends on

the average methylation level of receptors, m, which restores a to

the adapted level, a0, over a time scale ta. For simplicity, the

methylation rate is taken to be linear in a and hence the

methylation dynamics can be described by:
dm

dt
~(a0{a)=ta.

Here, we do not distinguish the methylation dynamics for different

types of receptors (which appears to be regulated by the receptor-

specific activity [30]) and consider m as the average methylation

level of the whole receptor cluster. This treatment does not affect

our main results since we are only interested in the total receptor-

kinase activity, a, of the entire receptor cluster.

A swimming bacterial cell may change its direction due to two

mechanisms: the active transition to the tumbling state and the

passive rotational diffusion (characterized by the rotational

diffusion rate, z0). According to the measured flagellar CW bias

[31], the (instantaneous) rate of going into the tumbling state can

be described as: z1(a)~t{1(a=K1=2)H , where t&0:2s is the

duration time of the tumbling state, K1=2 represents the activity

level at which the CW bias is 0:5, and H&10 denotes the

ultrasensitivity of the motor response to CheY-P. Combining these

two effects, the effective tumbling rate z(a) is given as:

z(a)~z0zz1(a)~z0z
1

t

a

K1=2

� �H

: ð2Þ

In response to environmental signals, a population of bacteria

will move in the physical space. Different from purely passive

Brownian particles, cells also ‘‘distribute’’ in the internal state

space, as each cell carries its own internal activity a when moving

around. In the one-dimensional setup, let P+(x,a,t) denote the

probability to find a cell being in the internal state a and moving in

the ‘‘z’’ or ‘‘{’’ direction at (x,t). One can write down the

master equation that governs the evolution of these probabilities

(Text S1). As in many experiments, here we study the distribution

of cells constrained in a finite chamber with a chemical or non-

chemical gradient. The cell population distribution will equilibrate

given enough time as the diffusion of cells balance the taxis drift

effect. Using the zero-flux condition in the master equation leads

to an exact expression for the steady state cell distribution r(x)
(Text S1):

r(x):
ð

(PzzP{)da~
V

v(x)
exp {

ðx

x0

zz(x’){z{(x’)
2v(x’)

dx’

" #
,ð3Þ

Figure 1. Illustration of the multiscale architecture of our
unified model. Environmental signals are sensed by the transmem-
brane receptor-kinase complexes which controls the level of the
intracellular response regulator (CheY-P). The response regulator
controls the rotational direction of flagellar motors and the bacterial
tumble frequency. Some environmental factors (such as temperature)
can also affect bacterial swimming speed and motor switching
dynamics. The population distribution of cells is finally shaped by the
alternating tumble and swim behaviors.
doi:10.1371/journal.pcbi.1003672.g001

Author Summary

Bacteria, such as E. coli, live in a complex environment with
varying chemical and/or non-chemical stimuli. They con-
stantly seek for and migrate to optimal environmental
conditions. A well-known example is E. coli chemotaxis
which direct cell movements up or down chemical
gradients. Using the same machinery, E. coli can also
respond to non-chemical factors (e.g., pH and tempera-
ture) and navigate toward certain intermediate, optimal
levels of those stimuli. Such taxis behaviors are more
sophisticated and require distinctive sensing mechanisms.
In this paper, we develop a unified model for different
bacterial taxis strategies. This multiscale model incorpo-
rates intracellular signaling pathways into population
dynamics and leads to a simple theoretical result regarding
the steady-state population distribution. Our model can be
applied to reveal the key mechanisms for different taxis
behaviors and quantitatively account for various experi-
mental data. New predictions can be made within this new
model framework to direct future experiments.

Taxis in Chemical and Nonchemical Gradients
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where V is the normalization constant and z+(x)~

Ð
zP+daÐ
P+da

represents the average tumbling rate for the right or left moving

cells at the same position x.

It is clear from Eq. (3) that the cell distribution is determined by

the two motility characteristics, tumbling rate (z) and swimming

speed (v). On one hand, the local cell density is inversely

proportional to the local swimming speed which may depend on

the external condition S. Intuitively, it is easier for cells to leave a

region if cells move faster there and thus cells spend more time in

regions of low swimming speed. On the other hand, the cell

density also depends on the accumulative (integrated) effect of the

tumbling rate difference between the left and the right moving

cells. For example, if zz(x)vz{(x), cells tend to move in the right

(z) direction on average because it is more difficult for cells to

enter a region where they tumble more frequently.

What is the origin of different tumbling rates (zz(x)=z{(x)) for

cells moving in different directions? The tumbling frequency is

controlled by the CheY-P level which is proportional to the total

activity, a. At any location x, the internal activity a is not fixed but

distributed around its average, a. In fact, the average activity of the

left moving cells (az~

Ð
aPzdaÐ
Pzda

) is different from that of the right

moving cells (a{~

Ð
aP{daÐ
P{da

) as these two populations carry

different average receptor methylation levels (memories). This

activity difference can be evaluated (see Text S1 and Figure S1 for

more details): Da:az{a{&
2v

z(a)

dS

dx

La

LS

� �
a~a

, which is pro-

portional to the (average) run length 2v=z and is valid as long as

the adaptation time ta is much longer than the average run time

1=z. The activity difference Da can be used to evaluate the

tumbling rate difference (Dz:zz{z{):

Dz&
Lz

La

� �
a~a

Da&2v
dS

dx

L ln z

La
: La

LS

� �
a~a

: ð4Þ

By using the above expression for (zz{z{) in Eq. (3), we

finally obtain a simple expression for the steady state cell

distribution r(x):

r(x)&
V

v(S)
exp {

ðx

x0

L ln z

La
: La

LS

� �
a~a

dS

" #
: ð5Þ

The equation for a is given in Text S1.

This general expression (Eq. (5)) for the cell distribution is the

main theoretical result of our paper. It shows that the steady state

cell distribution is determined by two separable effects, the local

effect of swimming speed v(S) and the accumulative effect of the

gradient-dependent tumbling rates governed by internal signaling

dynamics. In a previous work [20,21], a simple relation,

r(x)~V=v(x), was derived by assuming that the tumbling rate

directly depends on the local environment factor. This treatment,

however, did not take into account the cell’s internal state or

memory. Therefore, although the 1=v dependence in Ref. [21]

agrees with our Eq. (5), the integrated effect of the intracellular

signaling dynamics was not identified or captured before.

The intracellular signaling response to specific stimuli and the

motor response to the response regulator are characterized by the

free energy function fa(m,S), and tumbling rate z(a), respectively.

These functions can be determined by molecular and cellular level

experiments, such as Ref. [26] for fa and Ref. [31] for z(a). Here,

our model shows how population level (macroscopic) behaviors of

cells can be predicted quantitatively based on these molecular level

(microscopic) signaling and response characteristics. The general

expression for steady state cell distribution, Eq. (5), provides a

unified framework to systematically study diverse bacterial

navigation behaviors in response to different chemical and non-

chemical gradients, as will be shown in the following. We will also

compare our theoretical results with the available experiments and

make quantitative predictions on population-level behaviors of

bacteria in more complex environments.

Population-Level Sensitivity of Bacterial Chemotaxis
We first apply our unified model to the case of bacterial

chemotaxis. For simplicity, the chemical gradient (e.g. aspartate),

denoted by ½L�(x), is specifically sensed by one type of receptors

(e.g. Tar) whose average activity can be described by the two-state

model, Eq. (1). The free-energy difference between the active and

inactive states is given by [25,29]:

fa(m,½L�)~fmzfL~{Em(m{m0)z ln
1z½L�=KI

1z½L�=KA

, ð6Þ

where fm(m) and fL(½L�) denote the methylation- and ligand-

dependent contributions, respectively. The prefactor Em is the

free-energy change per added methyl group, m0 is a reference

methylation level, and KA and KI represent the dissociation

constants for the active and inactive conformations, respectively.

E. coli swimming speed (v) does not vary with the aspartate

concentrations and is treated as constant here. By Eq. (5), it is easy

to derive the steady-state cell distribution:

r(x)&V exp g(a)fL L½ � xð Þð Þ½ �, ð7Þ

with a dimensionless factor g that represents the effective

sensitivity of the bacterial population to the environment:

g(a)~HN(1{a) 1{
z0

z0zt{1(a=K1=2)H

" #
: ð8Þ

The effective sensitivity g is proportional to the signal

amplification factors at both the receptor and the motor levels

(i.e., H and N). It is dampened by the rotational diffusion (z0),

because random collision of cells with the medium reduces

directed chemotaxic motion. The dependence of g(a) on the

average activity a is nontrivial: on one hand, an increase of a could

significantly boost the intrinsic tumbling (z1!aH ) and thus

suppress the negative role of rotational diffusion; on the other

hand, chemoreceptors become less responsive at a higher activity

level a. Consequently, a has to be in a narrow optimal range in

order to achieve high sensitivity.

Our model allows for quantitative comparison with experi-

ments. As shown in Fig. 2, the same functional form given in Eq.

(7) can be used to fit the cell distribution data [32] in different

attractant gradients. The coefficient g inferred from experiments

(Fig. 2) appears to decrease with the gradient steepness GL~
d½L�
dx

,

indicating a higher population-level sensitivity in shallower

chemical gradients. This trend agrees with the observation in

our model that the average receptor activity a tends to increase

Taxis in Chemical and Nonchemical Gradients
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with the gradient steepness in closed geometry. This increase in a

is caused by the back flow of cells due to diffusion as r(x) is peaked

at the boundary with the higher attractant concentration (see

Fig. 2). Note that this is different from the open geometry case

where the cell density is constant and there is no net diffusive back

flow of cells.

Tunability vs. Accuracy of E. coli pH Taxis
E. coli can sense pH changes in the environment. According to

recent experiments [8], Tar receptors exhibit an attractant

response to a decrease of pH while an opposite response was

observed for Tsr. The balance between the two opposing receptors

leads to a preferred pH level for the wild-type E. coli, i.e., precision

sensing, as suggested by our recent model study [9] of intracellular

pH responses. Here, we examine how accurately and how robustly

a population of bacteria could find their preferred pH level.

The extracellular pH modulates the receptor-kinase activity

primarily by affecting the periplasmic domain of the Tar and Tsr

receptors. The total receptor-kinase activity can be described by

the generalized MWC model for heterogeneous types of receptors.

The total free energy between the active and inactive states is

given by

fa(m,pH)~fmzr1f1(pH)zr2f2(pH)

~fmz
X

q~1,2

rq ln
1z10KI

q{pH

1z10
KA

q {pH
,

ð9Þ

where r1 and r2 denote the fractions of Tar (q~1) and Tsr (q~2)

in the receptor cluster, respectively. The dissociation constants

KI
1,2 and KA

1,2 for the inactive and active receptors are expressed in

the pH scale. The observed opposite responses to pH changes

indicate that KA
1 vKI

1 for Tar and KA
2 wKI

2 for Tsr. Without loss

of generality, we set KI
1~9:0 and KI

2~6:0 for numerical

examples.

As the E. coli motor speed does not vary significantly with the

external pH [33], we can take the swimming speed as constant

here. Using Eq. (5), one can easily obtain the cell distribution in a

pH gradient: r(x)&V exp½{Veff (x)�, with the effective potential

Veff~{g½r1f1(pH)zr2f2(pH)�. The competition between the

opposing pH dependence of f1 (from Tar) and f2 (from Tsr) leads

to the accumulation of cells at an intermediate (preferred) pH

level, which can be analytically determined by the condition

Veff
0(pH�)~0; see Text S1 for more details.

The preferred pH is mostly sensitive to the relative abundances

of receptors (r1=r2) and the values of KA
1 and KA

2 . Based on our

analysis and simulations, we find an empirical equation (Text S1),

pH�&
KA

1 zKA
2

2
{l log10

r1

r2

� �
, ð10Þ

which shows the logarithmic dependence of the preferred pH on

the relative abundance of Tar and Tsr (Fig. 3A). The coefficient l
in Eq. (10) varies with the dissociation constants and can be

interpreted as a measure of tunability of the preferred pH upon

changing the Tar/Tsr ratio. Theoretically, this coefficient is close

to one (l&1) when KA
1 &KA

2 (Text S1). Numerically, we also

found that higher tunability (lw1) can be achieved if KA
1 vKA

2

and the opposite holds for KA
1 wKA

2 (Fig. 3A). Our results can be

compared with the recent experiment [8], where the pH

preference point (pH�) was observed to shift from 8:0 to 7:5 when

the Tar/Tsr ratio (r1=r2) changed from 0:43 to 1:25 (symbols in

Fig. 3A). Using these data with the empirical Eq. (10) yields

(KA
1 zKA

2 )=2~7:6 and l~1:08, which together indicate that

KA
1 &KA

2 &7:6.

In addition to the preferred pH, our population model also tell

us the dispersion (or accuracy) of bacteria seeking and aggregating

around their favored pH, which can be quantified by the standard

deviation of the cell distribution in the pH scale. As shown in

Fig. 3B, the dispersion measure turns out to be minimal for the

scheme KA
1 ~KA

2 , compared to the dispersion for either KA
1 wKA

2

or KA
1 vKA

2 . Therefore, one possible advantage for having

KA
1 &KA

2 (Fig. 3A) in E. coli is the optimal accuracy of pH sensing

at population level, though with a tradeoff of a modest tunability

(l&1) for KA
1 &KA

2 .

Figure 2. The cell density distributions for bacterial chemo-
taxis. Different density profiles correspond to different gradients of
varying steepness GL. Symbols represent the experimental data from
Ref. [32], whereas lines denote the fitting of our Eq. (7) to the data. We
used KA~3mM, KI ~18mM for MeAsp here.
doi:10.1371/journal.pcbi.1003672.g002

Figure 3. Tunability and accuracy of bacterial pH taxis. (A) The
preferred pH� versus the logarithm of the Tar/Tsr ratio to base 10 for
three representative parameter regimes: KA

1 ~KA
2 , KA

1 vKA
2 , and

KA
1 wKA

2 . The red symbols represent the experimental data from Ref.

[8] and seem to coincide with the model curve for KA
1 ~KA

2 . (B) The
standard deviations of the cell distributions as a function of log10 (r1=r2)

for the three representative parameter regimes: KA
1 ~KA

2 , KA
1 vKA

2 , and

KA
1 wKA

2 . In the above numerical examples, we have fixed

(KA
1 zKA

2 )=2~7:6, KI
1~9:0 and KI

2 ~6:0.
doi:10.1371/journal.pcbi.1003672.g003
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The Inversion of Thermal Response at the Critical
Temperature

Bacteria are able to sense thermal variations and migrate

toward their favored temperature [10–15], another example of

precision sensing. However, unlike in pH sensing where two types

of receptors, Tar and Tsr, respond in opposite ways to a pH

change, temperature sensing can be achieved by a given type of

receptor (Tar) which changes the sensing mode (from being a

warm sensor to a cold sensor) as its methylation level m increases

across a critical level mc(&2) [12,13]. Added to the complexity is

the fact that temperature affects many other aspects of motility,

such as the swimming speed and the motor switch sensitivity.

Here, we first demonstrate how a chemoreceptor acts as a thermal

sensor that inverts response at some critical temperature. In the

next section, we will study how all those temperature-sensitive

factors affect thermotaxis at the population level.

For simplicity, we consider E. coli cells that only express Tar

receptors and migrate in a linear temperature gradient. In general,

the total free energy for the Tar activity can be described as

fa(m,T)&{Em(m{m0){(m{mc):g(T), ð11Þ

where g(T) describes how temperature affects the total free energy

and where Em refers to the free energy change per added methyl

group (in units of kT ) at a given reference temperature T0 (i.e.,

g(T0)~0). Note that a linear function g(T)~a(T{T0) with aw0
was used in a previous model of thermotaxis [16]. However, it is

easy to verify that as long as g’(T)w0, the Tar receptor switch

from being a warm sensor (
La

LT
v0) when mvmc to a cold sensor

(
La

LT
w0) when mwmc; see Fig. 4A.

It is observed experimentally that the adapted activity also

changes with temperature [26,34]. This can be modeled by

a0~1= 1ze{b(T{T0)
� �

. For E. coli, it is reported that a0&1=3 at

room temperature T~220C and a0&1=2 at T0~320C, leading to

an estimate of b&0:07=0C. The critical temperature Tc at which

Tar inverts its response is defined by m(Tc)~mc. Using the

condition a~a0, we can obtain the steady state methylation level

m(T) as well as the critical temperature:

Tc~T0zNEm(mc{m0)=b, which is determined by the (up-

stream) receptor kinetics. This also leads to a simple relationship:

m(T){mc~
b(T{Tc)

N½g(T)zEm�
, ð12Þ

showing that the average methylation level relative to mc changes

sign at the critical temperature Tc (Fig. 4A). According to Eq. (12),

when TvTc, the Tar methylation level is less than mc (mvmc), so

the Tar receptor is a warm sensor driving the cell towards Tc from

lower T ; when TwTc, the Tar methylation level is greater than

mc (mwmc), now the Tar is a cold sensor driving the cell towards

Tc from higher T . This is the basic mechanism for cell

accumulation around T~Tc.

Two Channels Drive Bacterial Thermotaxis: Speed and
Sensing

Besides the receptor-kinase activities, temperature also affects

other aspects of the system. For example, it is observed for E. coli

that both the motor dissociation constant, K1=2, and the swimming

speed, v, change with temperature [34,35]. It remains unclear

whether and how different temperature-sensitive factors affect the

performance of bacterial thermotaxis.

Using Eq. (5), one can derive the steady-state cell distribution

over the temperature range ½T{,Tz�:

r(T)&
V

v(T)Z(T)
:

V

v(T)
exp {

b

N

ðT

T{

(T̂T{Tc)g(T̂T)h(T̂T)dT̂T

� �
, ð13Þ

where the function Z(T) represents the effect of the direction-

dependent tumbling rates governed by the thermosensory system.

In Eq. (13), g(T) is the effective sensitivity defined in Eq. (8) and

has weak dependence on temperature through both a0(T) and

K1=2(T). The function h(T):
g’(T)

g(T)zEm

is introduced for

convenience and represents the effect of the sensory system.

Eq. (13) shows that there are two independent channels affecting

bacterial thermotaxis: one is the swimming speed v(T), and the

other is the sensory system that controls the rotational direction of

flagellar motors. In contrast to the local speed effect v(T) which is

direct and memoryless, the sensing effect Z(T) is indirect

(channeled through signaling networks and motor control) and

relies on the slow adaptation dynamics which encodes memory for

the system to sense the environment [19,29].

Near the critical temperature Tc, we can compute Z(T) by

keeping only the leading order term in (T{Tc), that is,

Z(T)& exp½bg(Tc)h(Tc)(T{Tc)2=(2N)�. The expression for the

cell density follows:

Figure 4. Inverted response to temperature changes and
bacterial thermotaxis. (A) The steady-state methylation level
subtract the critical methylation level, m(T){mc , and the receptor
response to temperature changes, da=dT , as a function of temperature.
The critical temperature Tc is determined by the crossing point where
m(Tc)~mc (or equivalently da=dT~0). Tar acts as a warm sensor for
TvTc and a cold sensor for TwTc , which drives the cells towards Tc

from both sides. (B) The steady-state cell distribution, r, as a function of
temperature. For illustrative purposes, we assume that the swimming
speed, v, increases linearly with temperature and that the motor
dissociation constant is K1=2(T)~1= 1ze{c(T{T0)

� �
, with a constant

parameter c. Three cases are considered. The red solid line corresponds
the case where both v and K1=2 are constant; the blue dot-dashed lines
is for the case of constant K1=2 (i.e. c~0) and dv=dT~1:0; the green
dashed line is generated by using c~0:1=0C and dv=dT~1:0. Evidently,
the steady-state cell distribution can be changed by the temperature
dependence of the speed v(T), but it is insensitive to the temperature
dependence of motor sensitivity K1=2(T). Here, we fix h~0:1 in all
numerical examples. Other parameters used include: h~0:1=0C,
b~0:07=0C, Em~1:0, H~10, N~6, m0~1:94, mc~2:0, T0~320C,

z0~0:28rad2=s, and t~0:2s.
doi:10.1371/journal.pcbi.1003672.g004
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r(T)&
V

v(T)
exp½{C(T{Tc)2�, ð14Þ

where C~
bg(Tc)h(Tc)

2N
is a positive constant when bw0 and

h(Tc)w0. It is clear from the above equation that for a constant

v(T) cells will accumulate around the temperature T�~Tc

(Fig. 4B). The accumulation temperature T� can be shifted from

Tc by the dependence of the swimming speed on temperature,

e.g., if v increases with temperature, cells tend to spend more time

in regions of lower speed and thus aggregate at a lower

temperature, i.e. T�vTc (Fig. 4B).

The shift of T� from Tc only weakly depends on K1=2, which

indirectly affect C in Eq. (14) through g (see Eq. (8)). In fact, even

the shape of the distribution r(T) is not sensitive to K1=2(T), as

shown in Fig. 4B. The insensitivity of thermotaxis to K1=2(T) is

due to the fact that K1=2 only depends on the local temperature

and is the same for different cells at a given position x, regardless

of their direction of motion. In other words, K1=2(T) does not

contribute to the tumbling rate difference Dz(x) that drives the

directed migration (taxis) of cells.

Thermotaxis in Shallow Temperature Gradients: Model
vs. Data

Our theory can help explain some recent experiments

measuring cellular behaviors in shallow temperature gradients

[36,37]. It was observed that even the mutant bacteria lacking

all chemoreceptors are still able to migrate toward high

temperature [36], showing that there is an additional channel

(other than sensing) in regulating bacterial thermotaxis. When

the sensing channel (i.e. the bacterial signaling machinery

which translates temperature stimuli into tumbling bias) does

not work (e.g., due to deletion of the receptors), the

temperature-dependent swimming speed can still cause the

directed cell migration [36]. This is consistent with earlier

work [20,21] and our model where mutant strains lacking all

receptors can be described by h(T)~0 which leads to

r&V=v(T) as described by Eq. (13).

In Ref. [37], the swimming speed v(T) for wild-type E. coli (with

functional chemoreceptors) was measured at different tempera-

tures. The speed profile appears to be a quadratic function of

temperature and reaches its maximum at T~300C. We have

quantitatively compared the inverse speed profile, r&V=v(T),
with the cell density data in Ref. [37] and found that the inverse

speed profile alone could not account for the observation,

especially the significant aggregation of cells at high temperatures

(Fig. 5). This suggests that the thermosensory system may not be

completely silent in shallow temperature gradients as suggested in

[37]. We test this hypothesis by using Eq. (13) with the measured

v(T) and the assumption h&0:2=0C for Tw350C. It turns out that

our model, which includes both channels (speed and sensing),

provides a better agreement with the observed data (Fig. 5). This

result suggests that the thermosensory system may be active even

in shallow temperature gradients. Further experiments are needed

to examine and quantify the interplay between these two channels

(speed and sensing) in shallow temperature gradients.

Navigation under Opposing Chemical and Thermal
Gradients

Our unified model can be applied to study and predict bacterial

taxis behaviors in more complex environments. As a final

example, we investigate the behavioral response of the Tar-only

mutant cells over the interval ½x0,x1� under a temperature gradient

(
dT

dx
~GTw0) and an opposing chemoattractant gradient

(
d½L�
dx

~{GLv0). The total free energy is modified by adding

an additional ligand-depend free energy fL(x) to Eq. (11). In this

case, the steady-state cell density is found to be (Text S1):

r(x)&
V

vZ
exp {

ðx

x0

g GL
dfL

d½L�zGT hfL

� �
dx’

" #
, ð15Þ

where the term GL
dfL

d½L� describes the chemotactic drift, and the

other term GT hfL captures the interaction between the chemical

and thermal signals.

In the absence of attractant (i.e., fL~0), Eq. (15) recovers

Eq. (13) for thermotaxis. Interestingly, for a uniform chemical

background (i.e., fLw0 and dfL=dx~0), the interference effect

GT h(T)fL(½L�)w0 tends to suppress the accumulation of cells at

high temperatures. Quantitatively, a uniform chemoattractant

background can shift the preferred temperature from T�~Tc

to a lower temperature T�~Tc{NfL=b. When there is an

attractant gradient (so that dfL=dxv0) imposed against the

temperature gradient, the accumulation point can be shifted

further. Specifically, as the chemical gradient steepens (GL

increases), the chemotacic response of bacteria become

stronger, leading to a positional shift of their aggregation

toward lower temperatures, as shown in Fig. 6. This example

demonstrates the general capability of our model in making

quantitative predictions on bacterial behaviors in complex

environments (with multiple and competing chemical and

nonchemical stimuli), which can be used to guide future

experiments.

Figure 5. Comparison between model results and experimental
data for E. coli thermotaxis. The blue symbols represent the cell
density data obtained in Ref. [37] at *42 min after applying a shallow
temperature gradient (*0:020C=mm). The black dashed line is the

inverse speed profile, r(T)~V=v(T) where v(T)~{0:09(T{30)2z24
is a quadratic fitting to the measured swimming speed in Ref. [37]. The
red solid line corresponds to model Eq. (13) with h~0:1½1z

tanh (T{35)� and v(T)~{0:09(T{30)2z24. Other parameters used
are the same to those in Fig. 4B.
doi:10.1371/journal.pcbi.1003672.g005
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Discussion

In this paper, we have incorporated the intracellular signaling

pathways into the bacterial population dynamics and developed a

unified model to study bacterial navigation in chemical and

nonchemical gradients. This model leads to a general result, which

shows that the steady state cell density is determined by the

accumulative effect of the direction-dependent tumbling rates as

well as the local swimming speed. In the following, we discuss

some of the specific findings and related possible future directions.

The Push-Pull Mechanism for Precision Sensing
From the population model, we can construct an effective

potential function Veff!{ ln (r), which provides a useful scheme

to visualize different cases of bacterial taxis, as summarized in

Fig. 7. The effective potential for chemotaxis decreases monoton-

ically with the chemoattractant concentration and thus steer cells

up the chemical gradient (Fig. 7). Our application to pH taxis

illustrates how the competition between two pH sensors (Tar and

Tsr) determines the preferred pH for the wild-type cells expressing

both Tar and Tsr: a push-pull mechanism here creates a potential

well for bacteria to accumulate (Fig. 7). In the case of E. coli

thermotaxis, the push-pull mechanism is more subtle as the

‘‘push’’ and the ‘‘pull’’ are provided by the two sub-populations of

Tar receptors with their methylation levels above or below the

critical level (mc). This leads to a well-defined critical temperature

where cells tend to accumulate (Fig. 7). The push-pull mechanism

is likely a general strategy for precision sensing. For example, it

was found that two receptors, Tar and Aer, leads to a preferred

level of oxygen for E. coli aerotaxis [38], which may also be studied

within our unified model.

Robustness and Sensitivity
E. coli chemotaxis has served as a model system in studying

robustness of biochemical networks [34,39,40]. Bacteria exhibit

thermal robustness in their chemotaxis network output by

counterbalancing temperature effects on different opposing

network components [34]. For example, the dissociation constant

K1=2(T) for the motor switch is observed to increase with

temperature [35]. This effect balances the increase of the adapted

CheY-P level with temperature such that the motor switch is able

to operate in a narrow optimal range with ultrasensitivity [31].

This, however, raises a question for bacterial thermotaxis: do those

temperature-sensitive factors, such as K1=2(T) and a0(T), hinder

the thermotactic performance? According to our model analysis,

the steady state distribution of cells in a temperature gradient is

mainly determined by two effects: the temperature-dependent

swimming speed and the direction-dependent tumbling rates. The

system is actually robust/insensitive to those instantaneous/local

temperature-sensitive factors (e.g. K1=2(T)) which do not contrib-

ute to the tumbling rate difference at any spatial point. The

insensitivity of thermotaxis to K1=2(T), as shown from our model,

is a highly desirable feature of the system as it allows robust

thermotaxis without sacrificing motor-level sensitivity.

Navigation in Complex Environments
In the natural environment, cells are often exposed to multiple

chemical stimuli [41]. Our general model can be applied to study

such cases (with a specific example discussed in Text S1). The

density of cells subject to a multitude of chemical gradients shall be

given by r(x)&V exp (g
P

q rqfq), where fq(½L�1,½L�2,:::) denotes

Figure 6. The cell density profiles under two opposing
chemical and thermal gradients. The temperature gradient used
here is from 120C to 420C in a channel of length 1:0cm. Different
density profiles correspond to different attractant (MesAsp) gradients
GL~0.0, 3.0, 5.0, and 6.0 mM=cm but the same concentration at the
middle point: ½L�(x~0:5cm)~3:0mM. Other parameters used are the
same to those in Fig. 4B.
doi:10.1371/journal.pcbi.1003672.g006

Figure 7. Schematic illustration of the effective potential Veff

for chemotaxis, pH taxis, and thermotaxis. In the case of
chemotaxis, Veff (½L�) decreases monotonically as the chemoattractant
concentration ½L� increases. For pH taxis, Veff (pH) decreases with pH
for Tsr-only mutant cells and increase with pH for Tar-only mutant.
Based on the push-pull mechanism, Veff (T) for the wild-type E. coli
represents the balancing effect between Tar and Tsr, leading to a local
minimum in the effective potential. In the case of thermotaxis, Veff (T)
can be shifted by the effect of temperature-dependent swimming
speed v(T). It is, however, insensitive to other temperature effects
such as the temperature dependence of motor response, K1=2(T)~

1= 1ze{c(T{T0)
� �

, parameterized by c.
doi:10.1371/journal.pcbi.1003672.g007
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the free energy contribution from all the chemical signals that are

sensed by the type-q receptors. Quantitative predictions can be

made about how bacterial cells integrate and respond to mixed or

competitive chemical signals and how their response changes with

the composition and relative abundance of their sensors. More

complex situations exist when different stimuli are interdependent

and/or interfere with non-chemical factors. For example, the

chemical environment can be modified through consumption and

secretion by the bacteria, a dynamical process depending on the

bacterial cell density [36]. In addition, temperature can change the

metabolic rates of bacterial cells and create temperature-depen-

dent chemical (nutrients, oxygen) gradients. How cells navigate

under such complex circumstances and how such behaviors lead

to survival/growth benefits remain unclear. Our model can be

extended to study those phenomena and help address those

fundamental questions.

In sum, the work presented here provides a general model

framework to study population behaviors in the presence of both

chemical and non-chemical signals based on realistic intracellular

signaling dynamics.

Materials and Methods

Numerical simulations and figures are generated using MA-

TLAB 7.0.

Supporting Information

Figure S1 Illustration of the key step in deriving the
population level model.
(PDF)

Text S1 Technical details on the development of our
unified model for bacterial taxis.
(PDF)
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