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Abstract

Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically
identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse
heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however,
either incapable of simultaneously analysing different experimental conditions or are computationally demanding and
difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome
disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE
models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture
variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation
structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic
rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2
phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a
mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across
experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE
constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic
insights and possess a high sensitivity.
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Introduction

Multi-cellular organisms are faced with diverse, ever changing

environments. To ensure survival and evolutionary success,

microbial systems exploit cell-to-cell variability originating from

bet-hedging strategies which increase the robustness against

environmental changes [1]. Such bet-hedging relies on the

formation of cellular subpopulations with distinct phenotypes

and has been observed in the context of food source selection

[2] and cellular stress response [3]. More complex organisms,

such as mammals, evolved strategies to actively detect and

respond to environmental changes. The building blocks for the

necessary structures and functional units are cell types with

distinct properties [4]. These cell types, e.g., neurones and

immune cells, split up in further cellular subpopulations – cluster

of cells with similar properties – to allow for a fine-grained

recognition and tailored response. Due to the ubiquity of

structured population heterogeneity, the analysis of subpopula-

tion characteristics and causal differences between subpopula-

tions is crucial for a holistic understanding of biological

processes.

Heterogeneous cell populations are usually investigated using

molecular and cell-biological methods with single cell resolution.

Currently available methods include microscopy [5,6], flow

cytometry [7], single-cell PCR [8–10] and single-cell mass

spectrometry [11]. While some microscopy based approaches

provide possibly time-resolved data [5], most experimental

techniques do not allow for the tracking of individual cells but

provide snapshots of the population. In this study, we considered

these snapshot data, which can provide information about cellular

properties, such as protein expression and phosphorylation. An

illustration of snapshot data is provided in Figures 1A and B.

The analysis of population snapshot data can be approached

using a multitude of statistical methods, e.g., thresholding, density

based methods and mixture modelling. The selection of the

method is highly problem specific [12]. Thresholding methods are

the most commonly used tools to identify the size of a

subpopulation, e.g., the size of a subpopulation expressing a

particular marker [13]. Based on a control experiment a threshold

(or gate) is defined based on which cells are classified as marker

positive or negative. While thresholding works in cases of clearly

separated subpopulations (Figure 1A), it fails for strongly

overlapping heterogeneous populations (Figure 1B) as no appro-

priate threshold exists, resulting in large numbers of false positives
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and/or false negatives. Furthermore, thresholding only detects

large changes rendering it insensitive. An improved sensitivity is

achieved by density based methods, namely histogram-based and

kernel density estimation (KDE)-based methods [14–19], which

compare the full distributions. Nevertheless, also density based

methods tend to underestimate the size of positive/responsive

subpopulations. This is not the case for mixture models which

describe the cell population as a weighted sum of the underlying

subpopulations. The underlying subpopulations are described

using simple distributions functions [7,20–22], those statistical

properties, e.g., mean and variance, describe the subpopulation.

The outcome of a mixture model based data analysis depends,

more or less sensitively, on the distribution assumption [7]. To

assess the temporal evolution of subpopulations, matching is

performed [7,12].

In addition to the aforementioned shortcoming, currently

available statistical methods can only analyse measured snapshot

data. None of the methods provides directly mechanistic insights,

prediction for hidden network components, hypotheses regarding

causal factors for the population heterogeneity or estimates for

reaction rates. To gain such additional insight and to simulta-

neously analyse multiple snapshots, a mechanistic description of

the underlying process is required. Mostly, such descriptions are

based on ordinary differential equations (ODEs). Commonly used

ODE models, however, do not allow for the integration of

distributional information but only use the measured mean

concentration [23–26]. A summary of data analysis tools and

their key properties is provided in Figure 1C.

In the following, we propose ODE constrained mixture models

(ODE-MMs), a combination of mixture models and ODE based

pathway models which exploits their individual advantages

(Figure 1D). This novel class of models describes the individual

snapshots using mixtures whose components are constrained by

ODE models. These ODE models for the subpopulations are

derived from the pathway topology and assumptions about causal,

mechanistic differences between subpopulations. Due to the

underlying mechanistic description of subpopulation dynamics,

ODE-MMs can go beyond the obvious. Instead of only analysing

the measured quantities and performing error-prone matching

across conditions across multiple snapshots, ODE-MMs are

capable of determining the dynamics of hidden components and

testing for causal differences between subpopulations. This is

illustrated using a simulation study of a conversion process.

Exemplarily, ODE-MMs are applied to investigate NGF-

induced Erk1/2 phosphorylation in primary sensory neurones, a

signalling pathway regulating pain sensitisation. Due to the diverse

functional roles of sensory neurones, the cell system is highly

heterogeneous. We introduce a dynamical model for NGF-

induced Erk1/2 phosphorylation in primary sensory neurones

and attempt the unraveling of the subpopulation structure and the

source of heterogeneity using ODE-MMs. The results are

validated using co-labelling experiments.

Methods

Ethics statement
All animal experiments were reported to the responsible

authority, the Landesamtes für Gesundheit und Soziales (LAGeSo) in

Berlin (T0370/05) and approved (license ZH120). All efforts were

made to minimise the number of animals used and their suffering.

Measurement data
In this work we consider collections D~fDe

kge,k of population

snapshot data De
k, as illustrated in Figures 1A and B. Experimental

conditions are indexed by e and time points are indexed by k. The

individual snapshots De
k are measured at time te

k under experi-

mental condition ue. De
k is a collection of single cell measurements

ye
j (te

k)[Rny , De
k~fye

j (te
k)gj , with j indexing the individual cells.

The single cell measurements are assumed to be statistically

independent.

Mixture models
The analysis of the individual population snapshots De

k, which

are samples of cells, is often approached using mixture models,

p(yDh)~
Xm

i~1

wip(yDQi) with h~f(wi,Qi)g
m
i~1: ð1Þ

Parameters and probability weights of the i-th mixture component

are denoted by Qi and wi§0, with
Pm

i~1 wi~1, respectively.

Common choices for the individual mixture components p(yDQi)
are normal, log-normal, skew normal, t-, and skew t-distributions

[7]. In the case of normal mixtures the component parameters are

mean mi and covariance matrix Si, Qi~(mi,Si). The parameters h
of mixture models can be estimated using maximum likelihood

methods,

max
h[H

‘(h) :~
P

j

log
Pm
i~1

wip(yj DQi)

� �( )
,

subject to
Pm
i~1

wi~1,

in which ‘(h) :~log p(DDh) denotes the log-likelihood function of

the mixture model and j is the index of the single cell

measurement. The set of possible parameter values is denoted

by H.

The individual mixture components are often regarded as

subpopulations with different characteristics, e.g., different expres-

sion levels. To analyse collections of snapshots D, a matching of

subpopulations detected under different conditions is performed

[7,12]. The results of this matching can in principle be used to

extract the characteristics of subpopulations and their dependence

Author Summary

In this manuscript, we introduce ODE constrained mixture
models for the analysis of population snapshot data of
kinetics and dose responses. Population snapshot data can
for instance be derived from flow cytometry or single-cell
microscopy and provide information about the population
structure and the dynamics of subpopulations. Currently
available methods enable, however, only the extraction of
this information if the subpopulations are very different. By
combining pathway-specific ODE and mixture models, a
more sensitive method is obtained, which can simulta-
neously analyse a variety of experimental conditions. ODE
constrained mixture models facilitate the reconstruction of
subpopulation sizes and dynamics, even in situations
where the subpopulations are hardly distinguishable. This
is shown for a simulation example as well as for the
process of NGF-induced Erk1/2 phosphorylation in primary
sensory neurones. We find that the proposed method
allows for a simple but pervasive analysis of heteroge-
neous cell systems and more profound, mechanistic
insights.
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on time and stimuli. The matching performed between individual

conditions is however often questionable, in particular if some

populations change their characteristics dramatically or are not/

hardly distinguishable under some condition. In this case

matching-based methods are highly error-prone [12].

Pathway models
To circumvent shortcomings of mixture modelling, we propose

to complement it with pathway information. The responses of

subpopulations to different experimental conditions is ultimately

determined by the involved metabolic, signalling and gene

regulatory pathways. Accordingly, experimental conditions can

be matched using models of the underlying biochemical pathway.

Biochemical pathways are mostly modelled using reaction rate

equations (RREs) [24], which are systems of ODEs. RREs

describe the temporal evolution of the ‘‘average state’’ of cells in a

cell population, e.g., the abundance of signalling molecules and

their activity, assuming that the population is homogeneous. More

precisely, RREs implicitly assume that the variance in the

abundance of chemical species across cells is small. Therefore,

these models can neither be used to process the distributional

information encoded in snapshot data nor to study cellular

subpopulations.

While RRE based modelling of heterogenous cell populations

consisting of different subpopulations is not desirable, RREs might

be used to model the dynamics of rather homogeneous subpop-

ulations. In the following, we will describe the ‘‘average dynamics’’

of cells in the i-th subpopulation using a RRE,

_xxi~f (xi,ji,u), xi(0)~x0(ji,u), i~1, . . . ,m, ð2Þ

in which xi(t)[Rnx
z is the state of the i-th subpopulation at time t,

ji[R
nj
z is the parameter vector of the i-th subpopulation, and

u(t)[Rnu is the time-dependent external stimulus. The vector field

f encodes the biochemical pathway and x0 models the depen-

dence of the initial condition on subpopulation parameters and

Figure 1. Illustration of population snapshot data and ODE constrained mixture modelling. (A) Heterogeneous population consisting of
two homogeneous subpopulations with a very different response level. Snapshot data provide at different time points (filled circle) information
about the biological state of single cells. This allows for the characterisation of the kinetics of the subpopulations using threshold, histogram and
kernel density estimate (KDE) based methods as well as mixture modelling. (B) Heterogeneous population consisting of two heterogenous
subpopulations with a large overlap of the dose response behaviour, rendering an analysis using snapshot data difficult. (C) Table including the
available analysis tools for population snapshot data and proposed ODE constrained mixture modelling along with key properties of the methods. (D)
Sketch of ODE constrained mixture modelling which combines mixture modelling of the measurement data with pathway information, thereby
allowing for an improved quantification of subpopulation properties and mechanistic insights.
doi:10.1371/journal.pcbi.1003686.g001
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experimental conditions. The subpopulation parameters ji are a

collection of parameters k0 which are identical in all subpopula-

tions and subpopulation specific parameters ki, ji~(k0,ki).
Identical parameters might be structural properties, such as

affinities. Differences between subpopulations are modelled by

differences in their parameters, ki=kj . These parameter discrep-

ancies describe the causal differences between subpopulations, e.g.,

altered protein abundances, and are biologically essential when

studying heterogeneity.

As most experimental procedures only allow for the assessment

of a few chemical species, we introduce a measurement model,

yi(t,u)~h(xi(t,u),ji,u): ð3Þ

If merely the j{th chemical species is observed this mapping

becomes: h(xi(t,u),ji,u)~xi,j(t,u).

Assuming that the communication across and transitions

between subpopulations can be neglected for the process of

interest, the dynamics of the overall population are captured by

the weighted dynamics of its subpopulations. This idea is exploited

by ODE-MMs, and will in the following be illustrated for mixtures

of normal distributions and more general mixture distributions.

RRE constrained mixture of normal distributions
The most commonly used mixture models are mixtures of

normal distributions, p(yDQi)~N (yDmi,Si), which are parame-

terised by mean mi and covariance Si. As RREs describe the

dynamics of the mean state xi(t,u) of homogeneous subpopula-

tions, an obvious possibility is to model the condition- and time-

dependent measured mean mi(t,u) of the mixture components by

RREs,

mi(t,u)~yi(t,u)~h(xi(t,u),ji,u): ð4Þ

Accordingly, the component means (mi~mi(t,u)) are determined

by the parameters of the subpopulation i, ji~(k0,ki). The

component covariances (Si~Si(t,u)), which summarise cell-to-cell

variability within the i-th subpopulation and measurement noise,

are not constrained by RREs. Accordingly, we obtain RRE

constrained mixture of normal distributions,

p(yDh,t,u)~
Xm

i~1

wiN (yDmi(t),Si(t))

with _xxi~f (xi,ji,u), xi(0)~x0(ji,u),

mi~h(xi,ji,u),

ð5Þ

with parameters h~f(wi,ji,Si)gm
i~1. The mixture parameters,

Qi~(mi,Si), depend on experimental condition u and time t.
Furthermore, mi depends implicitly on ji via the ODE model.

In contrast to conventional mixture models (1), ODE-MMs (5)

describe the distribution of the observed variables at discrete

points and the temporal evolution of subpopulations in response to

stimuli. Hence, ODE-MMs establish a mechanistic link between

different experimental conditions and time points based on

pathway models and differences between subpopulations. This

renders error-prone matching of distributions across conditions

unnecessary (see discussion in Mixture models).

General class of ODE constrained mixture models
The combination of normal mixture models and RRE models

yields simple ODE-MMs. More flexible ODE-MMs are obtained

by considering other distributions p(yDQi), e.g., log-normal, skew

normal, t- or skew t-distributions [7]. Furthermore, more

sophisticated descriptions of the biochemical processes can be

employed, e.g., linear noise approximations [27,28], effective

mesoscopic rate equations [29,30] or moment equations [31,32].

These classes of ODE models, _xxi~f (xi,ji,u), do not only

constrained means but also variances, covariances and higher

order moments. Hence, more distribution parameters Qi can be

linked to the state of the ODE model, Qi~h(xi,ji,u). In general,

the subpopulation parameters ji contain mechanistic parameters

as well as parameters ni which specify statistics of the distribution,

ji~(k0,ki,ni).

Parameter estimation and model selection
The analysis of measurement data D using ODE-MMs requires

the estimation of the parameters h. For this we will use maximum

likelihood estimation. The likelihood function is the product of the

conditional probability of the snapshot data De
k given the

parameters h. The resulting optimisation problem in terms of

the log-likelihood function ‘(h) is

max
h[H

‘(h) :~
P
e,k,j

log
Pm
i~1

wip yk,e
j DQe

i (tk)
� �� �( )

subject to _xxe
i ~f (xe

i ,ji,u
e), xe

i (0)~x0(ji,u
e)

Qe
i ~h(xe

i ,ji,u
e), Vi,e,

1~
Pm
i~1

wi:

ð6Þ

Note that in contrast to the MMs we sum over all combinations of

k and j, meaning that all time points and experimental conditions

are studied simultaneously.

Optimisation problem (6) belongs to the class of ODE

constrained optimisation problems. In general this problem is

non-convex and possesses local maxima. To determine the

parameter vector h� which maximises the log-likelihood function,

global optimisation methods are required. Commonly used global

optimisation methods are multi-start local optimisation [33],

evolutionary and genetic algorithms [34], particle swarm optimi-

sers [35], simulated annealing [36] and hybrid optimisers [37,38].

For details we refer to available comprehensive surveys of local

and global optimisation procedures [33,39–41]. In the following,

we will use multi-start local optimisation, an approach which has

been shown to be efficient for parameter estimation in RRE

models [33].

As the measurement data are limited, the parameters can often

not be determined uniquely. In particular the kinetic rates, k0 and

ki, as well as the population fraction, wi often remain uncertain. A

variety of methods exist to assess parameter uncertainties,

including profile likelihoods [33,42], bootstrapping [43,44],

Markov chain Monte Carlo sampling [45,46], Approximate

Bayesian Computing [47,48] and local approximation to the

objective function [44]. In the remainder, we use profile

likelihoods due to their often superior efficiency. Profile likelihoods

allow for a global uncertainty analysis of individual parameters by

means of repeated optimisation. For details we refer to the work of

Raue et al. [42].

The source of the cell-to-cell variability, namely the parameters

which differ between subpopulations, are often unknown. ODE-

MMs can be used to assess the plausibility of different potential

sources of cell-to-cell variability by means of model selection.

Models corresponding to different hypotheses can be formulated

and fitted to the data. The comparison of these models using

ODE Constrained Mixture Modelling
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model selection criteria such as the Akaike information criterion

(AIC) [49] or the Bayesian information criterion (BIC) [50]

indicates which model is most appropriate. Using such model

selection procedures, ODE-MMs can unravel the population

structure by predicting differences in properties which have not

been measured or are not even measurable. Furthermore, ODE-

MMs provide information about rate constants. In contrast,

conventional mixture models can only be used to analyse

differences in observed quantities.

Acquisition of snapshot data for NFG-induced Erk1/2
phosphorylation

The proposed ODE-MMs will be used to analyse NGF-induced

Erk1/2 phosphorylation. The respective measurement data for

NGF-induced Erk1/2 phosphorylation were acquired using

quantitative automated microscopy (QuAM) [13]. The prepara-

tion of primary sensory neurones from rat (DRG cell culturing),

the cell stimulation, the immunofluorescence labelling and the cell

imaging was performed according to the protocol described by

Andres et al. [19].

In short, primary sensory neurones derived from L1-L6 DRGs

were prepared from male Sprague Dawley rats. Dissociated cells

were cultured for 15–20 h before stimulated with NGF. After

treatment, cells were fixed with paraformaldehyde and permea-

bilised with Triton X-100. Nonspecific binding sites were blocked

and cultures were probed with primary antibodies (anti-phospho-

Erk (Thr-202/Tyr-204) (1:200) and anti-Erk (1:500)) against target

proteins, washed three times, and incubated with secondary

antibodies. Cells were quantified with a Zeiss Axioplan 2

microscope controlled by the software Metacyte (Metasystems).

As selection marker of sensory neurones, cell identification was

performed on immunofluorescently-labelled (Erk staining) cells.

The fluorescence intensities derived from pErk antibody and Erk

antibody were quantified. To compensate for differences in the

mean fluorescence intensity between experimental replicates, the

data are normalised.

More detailed information, e.g., information about cell culture

conditions as well as the detailed immunofluorescence protocol is

provided in Supporting Information S1.

Results

In the following, we will illustrate how ODE-MMs can be used,

how the results can be interpreted and what kind of insights can be

gained using them. For this purpose, we study a simulation

example for which the ground truth is known as well as an

application example for which new biological insights are gained

using ODE-MMs.

Simulation example: Conversion process
To illustrate the properties of ODE-MMs and to assess their

performance, we consider the conversion process

R1 : A?B, rate~k1u½A�,
R2 : A?B, rate~k2½A�,
R3 : B?A, rate~k3½B�,

which is illustrated in Figure 2A. The reactions R1 and R2 model

a stimulus dependent and a stimulus (u) independent (basal)

conversion of A to B, respectively. The conversion of B to A is

described by reaction R3. Concentrations of A and B are denoted

by [A] and [B]. The conversion of A to B is modulated by the

time-dependent concentration u of an external stimulus, also

denoted as input. The governing RRE for this conversion process

is

d½A�
dt

~{(k1uzk2)½A�zk3½B�

d½B�
dt

~z(k1uzk2)½A�{k3½B�

with ½A�z½B� being constant.

Population model and artificial data. Artificial data for

the conversion process are generated using an ensemble cell

population model [51], which belongs to the class of Bayesian

hierarchical models. The ensemble consists of single cells whose

stimulus response is governed by the RRE stated above. The

parameters differ between cells and are drawn from a probability

distribution. Ensemble models provide a more detailed description

of cell populations and are, in principle, advantageous compared

to the ODE-MMs. This description of cell-to-cell variability,

namely parameter variability, is thought to be sufficient to describe

genetic and epigenetic differences between single cells [51,52].

However, estimating parameters and parameter distributions of

ensemble models is computationally very demanding. Already a

single simulation of an ensemble model takes minutes, which limits

their application. As ODE-MMs can be simulated orders of

magnitudes faster, it is interesting to analyse whether they suffice

for extracting the key properties of the underlying subpopulations.

To address this question, we consider two scenarios: (1) a cell

population consisting of two homogeneous subpopulations which

do not overlap after stimulation (Figures 2B–D); (2) a cell

population consisting of two heterogeneous, highly-overlapping

subpopulations (Figures 2E–G). In both scenarios the subpopula-

tions differ in their responsiveness k1 to the stimulation u(t). The

remaining parameters, k2 and k3, also vary between individual

cells but have the same probability distributions across the two

subpopulations. The probability distribution of the parameters

k~(k1,k2,k3) in the individual subpopulations and scenarios is

depicted in Figures 2D and G. The initial condition of each cell is

the steady state reached for u~0 and total concentration,

½A�z½B�, equal to one. At t~0, the cells are stimulated, u(t)~1
for tw0, resulting in an increase in the abundance of B.

Representative trajectory samples are shown in Figures 2A and

D. To obtain the artificial measurement data (Figures 2C and F),

the abundance of B is measured for 1,000 cells at t~0, 0:1, 0:2,

0:3, 0:5 and 1:0.

Hypothesis testing. Given the artificial data sets, we first

asked whether ODE-MMs can detect the presence of two

subpopulations and unravel the differences between them. To

address this, we considered four competing hypotheses:

H1 No subpopulations.

H2 Two subpopulations with significantly different

stimulus dependent conversion rates A to B (k1,i for

subpopulation i).

H3 Two subpopulations with significantly different

stimulus independent (basal) conversion rates A to B
(k2,i for subpopulation i).

H4 Two subpopulations with significantly different

conversion rates B to A (k3,i for subpopulation i).

These four scenarios were described using RRE constrained

mixture models. To ensure robustness with respect to the

distribution assumption, we considered normal distribution and

log-normal distributions with the mean parameterized by the RRE

ODE Constrained Mixture Modelling
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as well as log-normal distributions with the median parameterised

by the RRE.

The combination of the 4 hypothesis and the 3 distribution

assumptions yields 12 models. These 12 models were fitted to the

artificial measurement data using multi-start local optimisation.

Components weights were constrained to the interval ½0,1�, reaction

rate constants to ½10{6,104�, and scale parameters (normal

distribution: standard deviation; log-normal distribution: log-

standard deviation) to ½10{2:5,102:5�. A detailed specification of

the models, the maximal value of the log-likelihood function and the

BIC values are provided in Table 1. Based on the BIC values,

hypotheses H1, H3 and H4 can be rejected. The same holds for the

AIC values. The choice of the distribution and its parameterisation

plays a role. However, compared to the different model structures,

the influence is negligible. Thus, ODE-MMs determined robustly

the correct number of subpopulations and even revealed the

differences between the subpopulations.

Reconstruction of subpopulation characteristics. Fol-

lowing the hypothesis testing, the best models were analysed in

greater detail, starting with comparisons of model predictions with

the data. This comparison revealed that the measured means

(Figures 2B and E) as well as the full distributions (Figures 2C and F)

were described well by the selected ODE-MM. Furthermore,

although the data did not contain a label to which subpopulation a

cell belongs, the ODE-MM derived estimates for mean concentra-

tions of ½B� in the subpopulations agreed well with the true means

(Figures 2B and E). For scenario 1 (homogeneous subpopulations)

the true and the estimated subpopulation means were actually

indistinguishable. Hence, ODE-MM derived state estimates for the

subpopulation characteristics can indeed be interpreted as average

subpopulation characteristics.

Interpretation of ODE-MM parameters. Regarding the

parameters, we found for scenario 1 that the ODE-MM estimates

of the parameters k2 and k3 agree with the population average

(Figure 2D). For the subpopulation specific parameter k1, the

ODE-MM estimates correspond to the mean parameter in the

subpopulation. Even the relative size of the subpopulations is

determined well. For scenario 2, in which the subpopulations are

more heterogenous and overlap, the inference of the model

properties is more challenging and the estimate for the subpop-

ulation size is slightly off (Figure 2G). This can however be

explained by the relatively small number of observed cells. As a

reference, the distribution of population size observed when

sampling 1,000 cells is depicted in Figure 2G. Furthermore, for the

subpopulation which responds only weakly to the stimulus, the

ODE-MM estimate of the rate constant k1 does not correspond to

the average rate constant in the subpopulation but overestimates it

by a factor of *1:6. The reason might be a low signal-to-noise

ratio. In this subpopulation the basal rate constant k2 exceeds k1

by a factor of *5. In combination with the large cell-to-cell

variability, this might limit the estimation accuracy.

To assess the uncertainty of the parameters, we computed the

profile likelihoods. The confidence intervals derived from the

profile likelihoods are relatively tight. This indicates that even for

cell populations consisting of heterogeneous subpopulations,

population snapshots provide information about the dynamical

parameters and the subpopulation statistics. Furthermore, for this

artificial example, the average parameters in the subpopulation are

always within the confidence intervals for the parameters of the

ODE-MM. This suggests that the ODE-MM parameters can be

interpreted as average parameters of the subpopulations.

To conclude the simulation example, we found that ODE-MMs

facilitate the simultaneous analysis of several snapshot data sets.

Furthermore, ODE-MMs can be used for hypothesis testing, and

the states of the RREs accurately describe the subpopulations

while their parameters provide estimates for the means of the

underlying biological quantities.

Application example: NGF-induced Erk1/2 signalling
In this section, we use ODE-MMs to perform a data-driven

study of NGF-induced Erk1/2 phosphorylation in primary sensory

neurones. Primary sensory neurones are commonly used as a

cellular model for investigating signalling components mediating

pain sensitisation. NGF is known to induce a strong pain

sensitisation during inflammation, but also to support neuronal

repair during neuropathic pain. Studies showed that NGF binds

and activates the receptor tyrosine kinase TrkA [53]. Activation of

TrkA leads to the induction of the MAPK/Erk kinase pathway

(see Figure 3A) resulting in the phosphorylation of ion channels

and protein expression [53].

Beyond the importance of NGF-induced Erk1/2 phosphoryla-

tion in pain research, primary sensory neurones are well suited for

the evaluation of ODE-MMs as they exhibit a significant degree of

cell-to-cell variability. This variability is no nuisance but relevant

for their biological function [54]. It has been shown that different

neuronal subgroups with different protein abundances and even

phosphorylation levels exist [22,54], namely neurones which

detect mechanical stimuli, heat, cold or chemicals. The detailed

dynamical characteristics of these subpopulations and the causal

differences are largely unknown. In the following, we will employ

ODE-MMs to quantify the characteristics of the NGF responsive

and unresponsive neuronal subpopulations and their sizes, and to

assess reaction rate constants which cannot be obtained experi-

mentally (Figures 3B and C).

Experimental data. The quantitative assessment of signal-

ling in primary and heterogeneous cells is challenging compared to

cell lines as many experimental methods are not applicable. To

study the dynamics of the MAPK/Erk pathway we previously

introduced a quantitative automated microscopy technique [13].

This technique allows for the quantification of Erk1/2 activity in

single cells and provides rich datasets regarding the cell-to-cell

variability. Using this technique we recorded kinetics and dose

responses of NGF-induced Erk1/2 phosphorylation [13]. The

signals we observed represent relative Erk1/2 phosphorylation,

y~s½pErk�, as no calibration curve is employed. The unknown

scaling constant which related absolute Erk1/2 phosphorylation,

½pErk�, and the measured quantity y is denoted by s.

Pathway model. In the literature, it is described that NGF

binds to TrkA, yielding the active signalling complex TrkA:NGF.

TrkA:NGF-induces the activation of the Ras kinase, which

phosphorylates the Raf kinase. The active Raf kinase phosphor-

ylates Mek, which phosphorylates Erk1 and Erk2. In principle the

consideration of all these steps is possible, but experimentally the

activity of the signalling intermediates Ras, Raf and Mek is

difficult to measure in primary sensory neurones as appropriate

antibodies are not available. Therefore, we mainly consider a

simple pathway model which merely accounts for NGF-TrkA

interaction and Erk1/2 phosphorylation. We do not distinguish

between Erk1 and Erk2, as their biochemical properties have been

demonstrated to be nearly identical (see [55] and references

therein). The resulting pathway model A considers five reactions,

R1 : TrkAzNGF?TrkA : NGF, rate~k1½TrkA�½NGF�,
R2 : TrkA : NGF?NGFzTrkA, rate~k2½TrkA : NGF�,
R3 : Erk?pErk, rate~k3½TrkA : NGF�½Erk�,
R4 : Erk?pErk, rate~k4½Erk�,
R5 : pErk?Erk, rate~k5½pErk�,

ODE Constrained Mixture Modelling
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and is illustrated in Figure 3A. The reactions R1 and R2 describes

binding and unbinding of TrkA and NGF. Basal and TrkA:NGF-

induced phosphorylation of Erk are captured by R3 and R4. The

reactions R5 describes the Erk dephosphorylation. By exploiting

conservation of mass,

½TrkA�z½TrkA : NGF�~½TrkA�0
½NGF�z½TrkA : NGF�~½NGF�0

½Erk�z½pErk�~½Erk�0,

Figure 2. Result of an exemplarily study of a conversion process using ODE constrained mixture modelling. For the conversion process
sketched in (A) the cases of homogeneous, non-overlapping subpopulations (B,C,D) and heterogeneous, highly-overlapping subpopulations (E,F,G)
are studied. (B,E) Histograms of artificial data for the reversible conversion process (6 time points, 1,000 cells), the best fit achieved using ODE-MM
and the distribution predicted for the subpopulations. Artificial data have been generated by sampling single cell parameters from parameter
distributions, simulating the single cell model and extracting the concentration of B. ODE-MM was fitted using multi-start local optimisation. (C,F)
Representative samples of single cell trajectories for the two subpopulations, the means of the samples and the means for the subpopulations
predicted by ODE-MM. (D,G) True parameter distributions (grey shaded area) from which single cell parameters are drawn (purple: subpopulation 1;
green: subpopulation 2) and ODE-MM derived parameter estimates including the confidence intervals. Vertical lines mark the maximum likelihood
estimates and the horizontal bars represent the confidence intervals corresponding to different confidence levels (80%, 90%, 95% and 99%)
computed using profile likelihoods. For the population fraction w1, the true value (circle) is shown and the sampling distribution (line) expected for
the measured number of cells (1,000), which provides a measure for the expected estimation error.
doi:10.1371/journal.pcbi.1003686.g002
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and the well justified assumption that the total NGF concentration

is much larger than the total TrkA concentration,

½NGF�0&½TrkA�0, the dynamics of TrkA:NGF and pErk can

be stated as

d½TrkA : NGF�
dt

~k1½NGF�0(½TrkA�0{½TrkA : NGF�)

{k2½TrkA : NGF�

d½pErk�
dt

~(k3½TrkA : NGF�zk4)(½Erk�0{½pErk�)

{k5½pErk�

y~s½pErk�,

with kinetic parameters k~(k1,k2,k3,k4,k5,½TrkA�0,½Erk�0,s). As

the absolute concentrations of TrkA and Erk are unknown, this

system is structurally non-identifiable. To circumvent this we

reformulate the system in terms of x1~k3½TrkA : NGF� and

x2~s½pErk�, yielding the RRE model

dx1

dt
~k1½NGF�0(k3½TrkA�0{x1){k2x1

dx2

dt
~(x1zk4)(s½Erk�0{x2){k5x2

y~x2:

This ODE model merely depends on the products s½Erk�0 and

k3½TrkA�0 and not on the individual parameters (s,½Erk�0) and

(k3,½TrkA�0), respectively. Thus, we obtain the reduced vector of

kinetic parameters k~(k1,k2,k4,k5,k3½TrkA�0,s½Erk�0).

In the remainder, all plots depict the scaled TrkA:NGF and

pErk concentrations, x1 and x2.

Inference of subpopulation structure. We employed the

dynamical pathway model A to assess the population dynamics

and to compare the three hypotheses:

H1 No subpopulations.

H2 Two subpopulations with significantly different Erk

levels (½Erk�0,i for subpopulation i).

H3 Two subpopulations with significantly different

TrkA levels (½TrkA�0,i for subpopulation i).

We only regarded altered abundance of signalling molecules as

potential differences between subpopulations. Differences in

elementary reaction rates would require mutations or differential

post-translational modifications which we consider unlikely. As in

the simulation example, the scenarios were described using RRE

constrained mixture models. For each scenario we considered

normal and log-normal mixture components with means para-

meterised by the RRE as well as log-normal mixture components

with medians parameterised by the RRE. This yielded in total 9

ODE-MMs, which have been fitted using multi-start local

optimisation. Properties of models, goodness of fit statistics and

obtained BIC values are listed in Table 2. Based upon the BIC

(and AIC) values for the different models hypotheses H1 and H2

were rejected compared to H3. Significance levels for the

rejections were very high, indicating the presence of two

subpopulations with different average levels of TrkA receptors.

We note that the rejection of hypotheses H1 and H2 requires

information about the distribution of pErk levels. Even models for

the simplest hypothesis, H1, describe the kinetic and dose response

of the mean pErk level (Figure 3B). This proves that the mean is

not informative enough and implies that simple RRE models are

in general insufficient for determining subgroups. Using the

distribution of pErk levels in combination with ODE-MMs, H1

can be rejected easily (Figure 3C) due to the strong model-data

mismatch for stimulation with 1 nM and 10 nM NGF.

Size and characteristics of subpopulations. The selected

population structure, H3, assumes different concentrations of the

NGF receptor TrkA for the subpopulations. This results in

different concentration of TrkA-NGF complexes and ultimately in

different Erk phosphorylation levels. The overall Erk concentra-

tion, [Erk] + [pErk], is the same for the subpopulations. An

illustration of the models and signalling is provided in Figure 4A.

The ODE-MMs representing H3 explain the kinetic and dose

response measurements of the mean pErk concentration as well as

the pErk distribution. Measurement data and fits for the best two

models, MH3,2 and MH3,3, are depicted in Figures 4B and C.

These two models exploit different parameterisations of the log-

normal distributions (see Table 2). In MH3,2 the mean is

parameterised using the RRE, while in MH3,3 the median is

parameterised. The latter yields a slightly better fit, however, the

differences are minor and not statistically significant. As MH3,3

does not describe the time-dependent mean, splines are used to

obtain Figure 4B (bottom).

The maximum likelihood estimation of the model parameters

provides estimates for the relative size of the subpopulations and

their pErk levels. Roughly 70% of the cells belong to the

subpopulation with low TrkA levels (subpopulation 1) and 30% of

the cells possess high TrkA levels (subpopulation 2). Subpopulation

1 hardly responds to NGF, while subpopulation 2 responds with a

4-fold increase in pERK levels for a 1 nM NGF stimulation. The

maximal response is reached after 10 minutes and the response

amplitude saturates for NGF concentration w1 nM. The differ-

ences between the subpopulations sound large, however, a direct

extraction of these insights from the data is impossible due the the

large overlap of subpopulations. This renders the proposed ODE-

MMs, which incorporate pathway information, essential.

Quantification of kinetic parameters and abundance

differences. Beyond subpopulation differences in observed

pErk levels, ODE-MMs rendered quantities accessible which

could not be measured. In particular the Erk dephosphorylation

rate and the NGF-TrkA affinities could be inferred. Furthermore,

we found a 30-fold difference between TrkA levels in the two

subpopulations. This information is valuable as TrkA antibodies

with high sensitivity and specificity are not available for

immunofluorescence based experiments in cultures of primary

sensory neurones. A practical identifiability analysis using profile

likelihood showed that all estimated parameters – kinetic

parameters, subpopulation sizes and standard deviations – are

identifiable (Figure 4D; and Figures 1 and 2 in Supporting

Information S1). Indeed, the confidence intervals for most

parameters, in particular the subpopulation sizes and standard

deviations, are rather narrow (Tables 2, 3 and 4 in Supporting

Information S1). This and the rather consistent estimates obtained

using different models (Supporting Information S1), indicate the

reliability of the parameter estimates.

The ODE-MMs MH1,2 and MH1,3 for H1 possess 17

parameters while the ODE-MMs MH3,2 and MH3,3 for H3

possess 30 parameters. As the ODE-MMs for H1 possess 13

parameters less than the ODE-MMs for H3 we expected that the

parameters of MH1,2 and MH1,3 are more well determined than

the parameters of MH3,2 and MH3,3. The comparison of

parameter uncertainties for H1 (Figure 3D) and for H3

(Figure 4D) yielded however a surprising, counterintuitive result.

ODE Constrained Mixture Modelling
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While the kinetic parameters of MH1,2 and MH1,3 were mostly

practically non-identifiable, all parameters of MH3,2 and MH3,3

were practically identifiable. A possible explanation is that ODE-

MMs for H1 cannot exploit all information encoded in the

distribution as the model is not flexible enough, rendering the data

less informative and causing non-identifiability of parameters. This

on the other hand means that the informativeness of data depends

on the model used to analyse them. More flexible models might

not only provide deeper insights but also provide more reliable

estimates.

Comparison of pathway models. Pathway model A

(Figure 5A, left) which we studied so far merely accounts for

TrkA and Erk dynamics. In the literature more detailed models for

NGF-induced Erk1/2 activation have been proposed [56–60].

Although these pathway models have been developed for cell lines,

such as the rat pheochromocytoma cell line (PC12), we expect the

structure of the pathway to be similar in primary DRG neurones.

In contrast, protein abundances and reaction rates are most likely

altered, which limits the reusability of the available quantitative

information. In addition, cell lines are most likely more

homogeneous than the primary DRG neurons considered in this

project.

To evaluate the robustness of our predictions with respect to the

choice of the pathway description, we considered two additional

pathway models. Pathway models B and C (Figure 5A, middle and

right) account for the signal amplification cascade and a negative

Figure 3. Models for NGF-induced Erk1/2 signalling without subpopulations. (A) Schematic of model for NGF-induced Erk1/2 signalling.
Arrows represent conversion reactions and regulatory interactions. (B) Mean and standard deviation of measured pErk levels (kinetic: n~4, 18797
cells; dose response: n~4, 12205 cells) as well as simulated mean for the modelsMH1,2 andMH1,3. (C) Histograms of the measured pErk levels (data
of biological replica are pooled) and corresponding distributions computed using modelMH1,2 andMH1,3. Simulation results forMH1,2 andMH1,3

are very similar leading to significant overplotting. pErk levels in (B) and (C) are in arbitrary units of intensity (UI). (D) Maximum likelihood estimates of
parameters and confidence intervals for the parameters of MH1,2 and MH1,3. Vertical lines mark the maximum likelihood estimates and the
horizontal bars represent the confidence intervals corresponding to different confidence levels (80%, 90%, 95% and 99%) computed using profile
likelihoods.
doi:10.1371/journal.pcbi.1003686.g003
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feedback, two key features of the NGF-induced Erk1/2 activation

pathway. These models are therefore more flexible and possess a

larger number of unknown parameters. For details on the models

and their mathematical descriptions we refer to the Supporting

Information S1.

As for pathway model A, we carried out the parameter

estimation and model selection for pathway models B and C

(Supporting Information S1). Interestingly, for all pathway models

we found the same ranking of subpopulation structures. Two

subpopulations with different TrkA concentrations, log-normally

distributed pErk levels and ODE-constrained subpopulation

median (MH3,3) were always preferred. Furthermore, our

comparison of BIC values (Figure 5B) revealed that the influence

of the pathway model on the BIC values is small in comparison

with the influence of the subpopulation structure (H1–H3) and the

distribution assumptions. This indicates that for an accurate

description of the measurement data, the subpopulation structures

is more important than a more detailed description of the

signalling pathway.

The hypothesis testing using different pathway models support-

ed our prediction that TrkA is the key source of cell-to-cell

variability. Moreover, the maximum likelihood estimates for the

size of the responsive subpopulations (Figure 5C) were consistent.

For the kinetic parameters such a comparison was not possible as

(i) the meaning of parameters differ between pathway models and

(ii) many parameters of the pathway models B and C are non-

identifiable. As for more detailed pathway models we expect that

the parameter identifiability becomes even worse, we did not study

the most detailed and sophisticated model for the NGF signalling

pathway [58,59].

Validation of subpopulation structure. To validate the

ODE-MM derived prediction that subpopulations do not possess

different Erk levels (H2) but different TrkA levels (H3), co-labelling

experiments have been performed. In addition to Erk phosphor-

ylation also total Erk is quantified using a second antibody. As

both measurements provide only relative information the scales

are not comparable. For details regarding the experiments, we

refer to the section Materials and Methods in Supporting Information

S1.

Figures 6A and B depict the distribution of pErk and total Erk

levels observed under control conditions and after stimulation with

1 nM NGF for 30 minutes. As expected, cells with high total Erk

levels tend to possess high pErk levels. The Pearson correlation is

0.895 for the control and 0.696 for the stimulation. The significant

correlation decreases after NGF stimulation is caused by the

appearance of a group of cells with high pErk signals. To analyse

the NGF-induced response in more detail we fit a simple 2-

dimensional mixture of normal distribution to the logarithmized

data. Figure 6B shows the level sets of the two mixture

components, which are denoted by subpopulations 1 and 2. By

comparing Figures 6A and B we found that subpopulation 1 is

similar to the control population. Hence, subpopulation 1 hardly

responds to the NGF stimulation. In contrast, subpopulation 2 has

a significantly increased average pErk level.

As subpopulations 1 and 2 have similar total Erk but different

pErk distributions, total Erk is not the cause of the different

activation potentials of the subpopulations. This verifies the

rejection of hypothesis H2, which assumed a predominant role of

the total Erk. The different activation potentials have to be caused

by a further network compound such as TrkA. This partially

validates hypothesis H3. However, the differences could in

principle also be due to intermediate signalling components, such

as Raf and Mek, which are not considered in the model. While a

conclusive proof of H3 would require a simultaneous labelling of
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pErk and TrkA, which is currently infeasible due to the lack of

appropriate TrkA antibodies, there are three – in our opinion

convincing – indications that TrkA causes the population split.

First of all, the available measurement data can be described by

assuming different TrkA levels. Secondly, the estimate for the

fraction of cells with high TrkA levels (&30%) derived via ODE-

MMs from the pErk kinetic and dose response (Figure 4B) agrees

perfectly with the size of the responsive subpopulation found by co-

labelling pErk and Erk (subpopulation 2, Figure 6B). The size of the

responsive subpopulation has been determined from the co-labelling

Figure 4. Models for NGF-induced Erk1/2 signalling with two subpopulations which have different TrkA levels. (A) Schematic of model
for NGF-induced Erk1/2 signalling. Arrows represent conversion reactions and regulatory interactions. The frequency of an object is used to illustrate
its abundance. (B) Mean and standard deviation of measured pErk levels (kinetic: n~4, 18797 cells; dose response: n~4, 12205 cells) as well as
simulated mean for the models MH3,2 and MH3,3 . (C) Histograms of the measured pErk levels (data of biological replica are pooled) and
corresponding distributions computed using modelMH3,2 andMH3,3 . Simulation results forMH3,2 andMH3,3 are very similar leading to significant
overplotting. pErk levels in (B) and (C) are in arbitrary units of intensity (UI). (D) Maximum likelihood estimates of parameters and confidence intervals
for the parameters of MH1,2 and MH1,3. Vertical lines mark the maximum likelihood estimates and the horizontal bars represent the confidence
intervals corresponding to different confidence levels (80%, 90%, 95% and 99%) computed using profile likelihoods.
doi:10.1371/journal.pcbi.1003686.g004
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data using mixture modelling, which yields for this 2D data robust

results as the subpopulations are rather different. Finally, Kashiba et

al. [61] found that 35% of primary sensory neurones are TrkA

positive, which is in good agreement with the size of the responsive

subpopulation we found using ODE-MM and co-labelling.

To conclude, in this section we proved the applicability of

ODE-MMs to practically relevant biological problems. We used

ODE-MMs to study data from primary sensory neurones and to

determine subpopulation characteristics and kinetic rates. Fur-

thermore, we provided a data-driven explanation for the observed

Figure 5. Comparison of three different pathway models for the NGF-induced Erk1/2 activation. (A) Schematics of three model for NGF-
induced Erk1/2 activation. Pathway model A is a simple two component model, while pathway models B and C contain a detailed description of the
signalling cascade. Pathway model C also accounts for a negative feedback from pErk to Ras activation. (B) Comparison of different pathway models
(colour-coded), hypotheses about the cell-to-cell variability (H1, H2 and H3) and distribution assumptions (distribution: normal vs. log-normal; ODE-
constrained: mean or media). BIC values indicate that differences between the pathway models are small compared to differences arising from
different variability hypotheses and distribution assumptions. (C) Maximum likelihood estimates of the subpopulations sizes found for each pathway
model.
doi:10.1371/journal.pcbi.1003686.g005
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cell-to-cell variability and validated this explanation partially using

new experimental data.

Discussion

Most multicellular organisms and microbial colonies consist of

subpopulations with distinct biological functions. A study of

mechanistic differences between these subpopulations and their

functions is crucial for a holistic understanding of such complex

biological systems. In this work, we introduced ODE constrained

mixture models, a novel class of data analysis tools which can help

to detect subpopulations and to analyse differences between them

using population snapshot data. A simulation example illustrates

that ODE-MMs possess a higher sensitivity than classical mixture

models and ODE models, which originates from the simultaneous

exploitation of distribution information and dependencies between

experimental conditions. Furthermore, ODE-MMs provide mech-

anistic insights, e.g., estimates for kinetic parameters and

abundance differences between subpopulations. In contrast to

population models relying on a stochastic description of the

individual cell [62–64] or ensemble models with parameter

distributions [65,66], which can in principle also be used to

analyse systems with different subpopulations, the computation

time is significantly reduced. Furthermore, ODE-MMs are easily

applicable as they merely rely on ODE models, for which

numerical simulation as well as parameter estimation is well

established [33].

To assess and illustrate the properties of ODE-MMs, we studied

the response of primary sensory neurones to NGF stimulation.

Therefore, we considered single-cell data for Erk1/2 phosphory-

lation levels collected by quantitative automated microscopy

(QuAM) [13,18]. Using these data we performed model selection

and found that the cell population consists of two subpopulations

with different abundances of the NGF receptor TrkA. The

responsive subpopulation with high TrkA levels constituted 30% of

the overall population. By performing co-labelling experiments in

which pErk1/2 and total Erk1/2 have been measured, we

validated the existence of two subpopulations and found strong

indications that TrkA is the causal factor for the population split.

Thus, ODE-MMs enabled the inference of the population

structure using only measurement of pErk1/2. Even the estimated

size of the subpopulation with high TrkA expression was consistent

with the newly collected as well as the literature data. This implies

that ODE-MMs have the potential to significantly reduce the

number of different measurements required to analyse heteroge-

neous populations and are even capable of predicting causal

factors for the population split which have not been observed.

Beyond insights in subpopulation substructures, ODE-MM can

improve estimates of kinetic parameters. This has been revealed by

a profile likelihoods based uncertainty analysis of ODE-MMs for

NGF-induced Erk1/2 phosphorylation. We found that kinetic

parameters of ODE-MMs with two subpopulations are better

identifiable than kinetic parameters of ODE-MMs without

subpopulation structure. In many situations additional model

complexity and an increased number of parameters results in

increased parameter uncertainty. This is however not the case if

the more complex model can exploit additional features of the

data. In this case the data are effectively more informative for a

more complex model resulting in a reduced parameter uncertain-

ty. We are not aware of papers which reported this generic

observation.

For our analysis of NGF-induced Erk1/2 phosphorylation we

considered three pathway models. While these models consider

key network motifs, such as an amplification cascade and a

negative feedback loop, they are simple compared to the most

detailed models (see [56–60] and references therein). These more

Figure 6. Two-dimensional analysis of Erk and pErk levels. Joint distribution of pErk levels and total Erk levels under (A) control conditions
and after (B) stimulation with 1 nM NFG for 30 minutes, along with the corresponding histograms (pooled data of n~3 biological replicates, 4134
cells). Measured pErk levels, s1½pErk�, and total Erk levels, s2(½Erk�z½pErk�), are in arbitrary units of intensity. (B) Data measured after stimulation with
1 nM NGF have been fitted with a 2-component normal mixture model, of which the level set and the components weights are depicted. Using the
mixture model the measured cells are assigned to the subpopulations and the corresponding contribution to the histogram are colour-coded.
doi:10.1371/journal.pcbi.1003686.g006
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detailed models have however been developed for cell lines and it

is unclear how well they describe the signalling in primary sensory

neurones. Furthermore, all three models we studied fit the

experimental data and provided consistent predictions for the

population structure, indicating a certain degree of robustness with

respect to the pathway model. However, model extension may

become necessary if the amount of available measurement data for

primary sensory neurones increases, other stimuli are included or

the biological question changes.

In this study we employed reaction rate equation models to

constrained means and medians of mixture components. A further

improvement of the sensitivity of ODE-MMs might be achieved

by using ODE models which capture the cell-to-cell variability

within subpopulations. Possible choices are linear noise approx-

imations [27,28], effective mesoscopic rate equations [29,30] or

moment equations [31,32]. These ODE models allow for an

improved mechanistic description of the single cell dynamics, in

particular the explicit consideration of intrinsic and/or extrinsic

noise [67]. Intrinsic noise is related to the stochasticity of

biochemical reactions. Extrinsic noise can originate from variation

outside the considered signalling pathway and can be related to

cell size, cell cycle state or the history of a cell. A variety of

modelling approaches has been proposed for systems exhibiting

intrinsic noise [1,62–64,68–70], extrinsic noise [51,65,71–73] and

combinations of both [52,74,75]. The aforementioned determin-

istic, ODE-based approximation of these modelling approaches

could build the basis for the description of the subpopulation

dynamics. The consideration of more general ODE constraints

describing the temporal correlation of stochastic processes [76,77]

might even allow for the study of single-cell dynamics based on

time-lapse microscopy data. In this context explicit models of the

measurement noise might be beneficial, which have not been

considered here, as the covariance was nevertheless a free

parameter.

Consistent with our studied biological applications, we consid-

ered the special case of constant population sizes. There are

however many situations in which spontaneous [5] or stimulus-

induced cell-type transitions [5,10,78] occur. While such scenarios

have not been considered in this manuscript and are not captured

by our formulation, ODE-MMs can be generalised to studying

such cell systems. Changing subpopulation sizes might be captured

using parametric functions, splines or dynamic mechanistic

models.

In our studies, ODE-MM parameters have been estimated by

solving the maximum likelihood problem using multi-start local

optimisation. The computational efficiency of this approach could

probably be improved by using expectation maximisation (EM)

algorithms [79]. Also the profile likelihood-based uncertainty

analysis approach we used would profit from this. To obtain

uncertainty bounds not only for parameters but also for model

predictions, prediction profile likelihoods [80] or Bayesian

methods [46] can be used.

The availability of pathway information in databases like

KEGG [81], BioPath [82], BioCyc [83] and others is steadily

increasing. We illustrated that integrating this information with

snapshot data yields additional insights. ODE-MMs are however

not only applicable to pure snapshot datasets but can be used to

analyse mixed sets of snapshot and population average data (e.g.,

Western blots). Furthermore, we expect that the methods scale

well. Solely, the numerical simulation of the ODE models is

critical, but for this, efficient and reliable solvers exist which can

easily handle systems with hundreds of chemical species [84].

Therefore, ODE-MMs should be applicable to large-scale

datasets, such as transcriptomics, proteomics and metabolomics.

This renders ODE-MMs potentially very valuable for the analysis

of heterogeneous groups, not only cell populations, but also patient

cohorts.

Supporting Information

Code S1 MATLAB code used for ODE constrained
mixture modelling. This zip-file contains the MATLAB code

for the simulation example (conversion process) and the applica-

tion example (NGF-induced Erk1/2 phosphorylation) presented in

the paper. We provide implementations for the models, the

parameter estimation, the uncertainty analysis and the model

selection. In addition to the implementation, also all data and

result files (.mat) are included.

(ZIP)

Supporting Information S1 Supplemental notes regard-
ing the computational modelling. This document provides a

detailed description of the different pathway models, the

parameter estimation, the uncertainty analysis and the model

selection. Furthermore, numerical results of the parameter

estimation, the uncertainty analysis and the model selection are

listed and illustrated.

(PDF)
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Characterization of transcriptional networks in blood stem and progenitor cells using

high-throughput single-cell gene expression analysis. Nat Cell Biol 15: 363–372.
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