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Abstract

In the effort to define genes and specific neuronal circuits that control behavior and plasticity, the capacity for high-
precision automated analysis of behavior is essential. We report on comprehensive computer vision software for analysis of
swimming locomotion of C. elegans, a simple animal model initially developed to facilitate elaboration of genetic influences
on behavior. C. elegans swim test software CeleST tracks swimming of multiple animals, measures 10 novel parameters of
swim behavior that can fully report dynamic changes in posture and speed, and generates data in several analysis formats,
complete with statistics. Our measures of swim locomotion utilize a deformable model approach and a novel mathematical
analysis of curvature maps that enable even irregular patterns and dynamic changes to be scored without need for
thresholding or dropping outlier swimmers from study. Operation of CeleST is mostly automated and only requires minimal
investigator interventions, such as the selection of videotaped swim trials and choice of data output format. Data can be
analyzed from the level of the single animal to populations of thousands. We document how the CeleST program reveals
unexpected preferences for specific swim ‘‘gaits’’ in wild-type C. elegans, uncovers previously unknown mutant phenotypes,
efficiently tracks changes in aging populations, and distinguishes ‘‘graceful’’ from poor aging. The sensitivity, dynamic
range, and comprehensive nature of CeleST measures elevate swim locomotion analysis to a new level of ease, economy,
and detail that enables behavioral plasticity resulting from genetic, cellular, or experience manipulation to be analyzed in
ways not previously possible.
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Introduction

Understanding how neuronal circuits are assembled, function,

and change in response to environmental cues is a major challenge

in current neuroscience. Much insight into these issues has been

gleaned from studies in model systems that feature relatively

simple nervous systems amenable to experimental manipulation

[1]. For example, in the nematode Caenorhabditis elegans,
researchers can place specific gene activities or individual neurons

into behavioral circuits to explain the molecular, cellular, and

physiological bases of locomotory control, proprioception, and

environmental influence [2,3].

Deciphering genetic and epigenetic specification of functional

circuits relies on high precision behavioral analysis. In C. elegans,

powerful programs for tracking and measuring crawling on a solid

surface have markedly enhanced the resolution and throughput

with which linear trajectories and turns can be analyzed and by

which subtleties in mutant behaviors can be quantitated [4–11].

Less extensive analysis has been accomplished for locomotion in

liquid, a behavior likely also important in natural environments.

Swimming involves more degrees of freedom of body movement

than crawling, and might utilize circuitry distinct from crawling

[12–19]. In addition, swimming behavior can change to alterna-

tion between swim and quiescent states after long efforts (2 hr)

[12], and swim vigor diminishes markedly as animals age, in part

due to sarcopenic deterioration of muscle [20,21]. Thus, a wealth

of fundamentally interesting aspects of swimming behavior could

benefit from quantitative high-throughput analysis in C. elegans.
Computational analyses of swim behavior that are both

comprehensive and automated are missing from the toolbox of

behavioral analyses for C. elegans. The pioneering work on C.

PLOS Computational Biology | www.ploscompbiol.org 1 July 2014 | Volume 10 | Issue 7 | e1003702

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003702&domain=pdf


elegans swim analysis, although greatly informative [14,15,22–25],

has not yet reached a level of automation and mathematical

precision required for full exploitation of the model. For example,

published analyses have mostly used tracking programs to generate

data on individual swimmers that are interpreted using measure-

ments that involve manual examination. Scoring often involves

evaluation of only part of the body movement (such as a head

bends) and measures focus on evaluation of regular patterns

because arithmetic approaches used are unable to represent

dynamic irregularities in swim patterns such as reversals and

changes in intensity of effort. The consequence of limited swim

locomotion analysis is that important aspects of swim behavior are

missed or not scored, and high-throughput applications have not

been implemented.

To address the need for comprehensive, fully automated, and

biology-driven analyses of C. elegans swim motion, we

developed the program CeleST (C. elegans Swim Test), which

accomplishes multi-animal tracking, measurement, and data

analysis without need for investigator intervention. Key to the

measurement parameters we define are the mathematically-

based analyses of individual curvature maps of swimming

nematodes over time. Evaluating swim posture using this

approach enables calculation of instantaneous measures that

extensively describe behavior, with applications for both single

animals and large sample sets. Here we document examples of

CeleST utility by identifying previously unknown features of

age-related wild-type and mutant swim behavior. We envision

that the CeleST behavioral analysis package (Dataset S1) will be

an invaluable tool for evaluation of mutant phenotypes,

dissection of neuronal circuitry, probing of behavior and

plasticity, and screening for chemical/genetic activities ranging

from anti-helminthic to anti-aging effects.

Design and Implementation

Software tool CeleST provides an automated, quantitative, and

detailed description of C. elegans swimming (Figure 1). The full

package includes: 1) a database, 2) a multi-animal tracking

algorithm, 3) a set of ten automated measures of swim features,

and 4) a plotting tool through which the user can group and

compare all the videos in the database, graphing measures as 1D

charts, 2D plots, or histograms (all with statistical treatment). We

designed the interface of the software to be a user-friendly platform

that facilitates intuitive access to the different CeleST components.

Overall, this automated analysis package constitutes a major

advance in the efficiency and resolution with which swimming

behavior can be analyzed.

Database
We recorded the locomotion of animals in liquid and created a

repository of videos for analysis. The location of each video can

then be imported into the CeleST database, which further

differentiates the video file with the following tags: sample

number (unique identifier), date recorded, investigator, experi-

ment, trial number within the experiment, strain, animal age,

number of animals, and time length of the video. We found that

these tags were sufficient to identify videos to perform multiple

comparisons for a range of purposes, but we note that additional

tags can be added to the database at any point to customize to

application.

Tracking
Our videos typically contained four to five adults in the same

swimming zone to minimize overlapping of animals, which is a

challenge for effective automated tracking. Briefly, the first step of

the tracking (called segmentation in computer vision) required

locating the animals in a single image. This was achieved by

filtering the image with a 5|5 pixel (the typical width of an

animal in our videos) standard deviation filter, which enhanced the

edges of the animals and reduced much of the visual noise

affecting our videos. We then computed a gradient on the filtered

output delineating the edges of the animals. We used a greedy line-

growing method to find the closed contour that maximized the

gradient flow, and the resulting lines gave us the outlines of the

animals. We then measured the inner distance transform of these

outlines: the inner ridge of the transforms were the center body

lines of the animal (lines of lateral symmetry), denoted by P(s,t),
where s~0 is at the tail and s~1 at the head, and t is the time

stamp of the image; the value of the distance transform at P(s,t) is

the half-width of the animal’s body at this location, denoted by

r(s,t). Note that the head-tail differentiation was actually

computed later on; if an animal appeared to be reverse swimming

more than 50% of the time, its head and tail were switched and all

measures were updated. For tracking purposes, the head-tail

differentiation had no effect.

Once we segmented an image, we tracked the resulting animals

in successive frames. Knowing the location of an animal at time

t{1 made the location of the same animal at time t faster.

Swimming motions are mostly lateral from one frame to the

other, and the frame rate we used (18 images per second) ensured

that there was some overlap in the bodies of the animals from

t{1 to t. In particular, we found that it was trivial to identify at

least two stationary points by comparing the intensities of pairs of

consecutive images. We adjusted the rest of the body by a two-

step greedy fitting of P and r to the new image. Although the

tracking was fast, there was always a risk of losing track of parts of

an animal. To ensure we did not lose parts of an animal for long,

we performed a new segmentation every 20 frames and merged

the tracking and segmentation results of these key frames.

We handled contact among animals and self-overlap during the

fitting of the points of the tracking step. From the stationary points,

we computed the extreme envelope of possible body locations and

compared it against all animals. If two animals had envelopes with

overlap, there was potential for cross contact of their bodies or self-

overlap. For each animal, we first fitted the body parts that were

not in the overlapped envelopes. Each new fitting gave us an

improved and smaller envelope of possible body locations. If the

envelopes still remained in contact after fitting the non-contact

points, we fitted the remaining points as normal but the two

animals were flagged as being in contact on these frames. We

automatically rejected these frames from the computation of

measures. However, we enabled the possibility of a human user to

check them after tracking to manually validate them if desired.

We then integrated an automatic quality checker step to

perform simple tests on tracking results. For instance, if the body

length of an animal dropped two standard deviations below the

mean body length of the same animal over the entire video (which

may happen if an animal gets out of the filming zone), the quality

checker flagged this as inappropriate for measures. We chose to

automatically reject any animal with over 20% of its video frames

flagged as inappropriate, however we saw the value of letting the

human user to have the final say on the decision. The recorded

swimming of individual animals can be played back visualizing the

animal’s outline, which is color coded for easy identification of

flagged frames. The user can thus review the tracking if desired

and override automated decisions by switching the validity of

specific frames and/or of the full tracking of an animal.

CeleST Quantitation of C. elegans Swim Behavior
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We performed an evaluation of our tracking method by

manually evaluating the tracking results of 2,020 animals from

404 videos. Abiding by our threshold of a maximum of 20% of

flagged frames per recorded time, our method only discarded

5.9% out of the 2,020 animals examined and successfully tracked

94.1%. The latter animals had valid outlines within 1-pixel

accuracy for 92.1% of the recorded time. With our flag approach,

we prevent tracking errors from interfering with the accuracy of

the measures. Moreover, we emphasize that our tracking method

and our measures are separated. As a result, any existing tracking

method that provides body coordinates and width can be used as

an input for our measures. Similarly, future measures can be

computed on existing results obtained with our tracking method

without the need of re-tracking. This capacity for modular

applications increases the number of options for use of our

software components, making CeleST a particularly valuable

toolbox for biologists and software developers. Additional details

on the tracking method CeleST uses can be found in refs [26,27].

Measures
For each animal, the tracking results provided the coordinates of

the central body line as an open polygon at each time frame t. To

simplify the notations here, we used the continuous curvilinear

coordinate s to locate each body point from tail (s~0) to head

(s~1). In the practical implementation, we discretized s into 12

equally long segments. Each point P(s,t)~(x(s,t),y(s,t)) on the

central body line is associated with the radius r(s,t) of the body at

that location. The curvature k(s,t) of the body at location P(s,t) is

defined as the derivative of the tangent vector with respect to the

curvilinear coordinate, and is computed in Cartesian coordinates

as:

k(s,t)~
x’(s,t)y’’(s,t){x’’(s,t)y’(s,t)

(x’2(s,t)zy’2(s,t))3=2

The short-time two-dimensional Fourier transform F of the

curvature over a time interval ½t0,t0zDt� is defined as:

F t0
k (vs,vt)~

1

2p

ðt0zDt

t~t0

ð1

s~0

k(s,t) exp({i(vs szvt t)) ds dt

where vs is the spatial frequency and vt, the temporal frequency

of the curvature. Since the curvature k(s,t) is non-complex, the

short-time Fourier transform is symmetric with respect to the

origin, and computing it on half of the plane of frequency values is

enough for the subsequent analysis. We chose to restrict to positive

vt. The duration of the time interval Dt increases the resolution of

the time frequency vt computed by the short-time Fourier

transform, but it reduces the amplitude of the mode in F t0
k in case

the nematode changes its behavior during that time interval. As a

tradeoff, we calculated the short-time Fourier transform at every

time t0, with multiple time intervals Dt, specifically 32, 40, 48, 56

and 64 frames. We then re-sampled these five short-time Fourier

transforms so that all had the same time resolution, and averaged

them. We note that swimming motions have a single wave

Figure 1. Summary of CeleST components and usage. Input files are videos of multiple swimming C. elegans. Files are stored in a database that
records identifying features (strain, date, etc.) to permit easy selection of animals to be compared by analysis. After selection of animals to be
compared, swimmers are automatically tracked from videos, and computation from curvature data or posture is used to score ten swim measures in
30 second swim trials (see description in text). Measures from the scored animals are compiled and can be exported in several alternative data
analysis formats, including dot plots, line graphs, histograms and two dimensional comparison (ellipses indicate the principal directions and the
standard deviations of the data). Statistical analysis is automated. A dynamic demonstration of CeleST tracking and computing of measures can be
found in Video S1 1–4 on http://celest.mbb.rutgers.edu.
doi:10.1371/journal.pcbi.1003702.g001
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component (as opposed to a linear combination of waves), but tend

to alter their behaviors over short periods of time. Therefore, a

standard static Fourier analysis would not be suitable for the

analysis of curvature maps since it would not cope with the

swimming motion changes over time.

Based upon computer vision analysis of over 6,000 swimming

nematodes, we developed ten distinct measures that score specific

features of swim behavior. Together, the ten output measures

provide a thorough report on swimming that markedly exceeds

analysis capacity of an unaided human observer.

We demonstrate the ten-parameter evaluations from an

individual swim example in Figure 2 (a dynamic demonstration

is provided in Video S1 1–4, and extreme measures for each

parameter are provided in Video S2 01–10 on http://celest.mbb.

rutgers.edu). Six of the ten scored parameters are based exclusively

on curvature measurements along body segments. Curvature

scores are derived from the inverse of the radius of the best fit

circle for a segment corresponding to
1

12
the body length - i.e.,

small radius is high curvature. 12 body sectors are scored per

frame. Note that the curvature calculation relies entirely on local

body shape changes within the animal - this self-referential aspect

of data collection eliminates the need for threshold determination

for those parameters, and facilitates analysis of data derived from

any tracking program. In other words, although we recommend

use of our powerful multi-tracker, should an investigator prefer to

use another tracker, the data could still readily be subjected to the

measures that we define, which is a major strength of the CeleST

program. We also point out that our metrics are normalized to

animal size, so that image resolution, frame rates, or size/shape of

the animal do not impact measurement scores.

We plotted local curvature scores over time for one swim trial

example in heat map format (Figure 2B). Figure 2C–I and 2M–O

graph the individual measure score vs. time in black, with median

value for the 30 second trial in red. (Note that median scores are

less subject to outlier impact than mean scores, and better reflect

the dynamic aspect of a swim trial.) The ten different measures

that add up to a comprehensive and detailed analysis of C. elegans
swimming are as follows:

1) Wave initiation rate (Figure 2C) is the number of body

waves initiated from either the head or tail per minute (the

latter is a rare occurrence, see Figures 2H, 3E). This

parameter is akin to the rate of body bends/time that scorers

manually record (see Table S1 for comparison of human vs.

computer scores), and can be thought of as analogous to the

stroke rate of a human swimmer. We calculate wave initiation

rate from the time coordinate in the short-time Fourier

analysis of the curvature heat map plots. Because of the

undulatory nature of the nematode swimming motions, the

norm of the short-time Fourier transform DF t0
k D is a single-

mode two-dimensional real function. The mode is located at

coordinates noted v�s (t0) and v�t (t0). The Wave initiation rate

at frame t0 is defined as v�t (t0). The inverse of that frequency

gives the duration of a stroke Dts(t0) at that time, which is

used for several of the remaining measures. In essence, our

approach scores the number of stripe occurrences in the heat

map/time. Strokes propagating from head to tail (left slant)

and tail to head (right slant) have opposite sign in the short-

time Fourier analysis. The overall score we use for the wave

initiation rate measure ignores the sign, and thus indicates all

strokes.

2) Body wave number (Figure 2D) measures the number of

waves in transit through the body at a point in time, and

hence provides a snapshot of the ‘‘waviness’’ of the body

posture. We score body wave number as the spatial

coordinate of the mode in short-time Fourier analysis,

counting how many wave repeat cycles are present in the

body at a given moment. A high score (w2) would reflect

several body bends per animal; a low score (between 0 and 1)

would indicate that a single wave is traveling down the body

or that the wave initiated by an extremity reaches the other

extremity before the next wave is initiated. A negative score

indicates a reverse direction wave. Body wave number is the

absolute value of v�s (t0) defined above.

3) Asymmetry (Figure 2E) evaluates how balanced the swim

posture is per stroke, as measured in the focal plane

perpendicular to the camera. In effect, wave asymmetry

reports on whether the animal bends more toward one side

or the other. We score asymmetry by computing the

average curvature per stroke, which we derive from the

average curvature over the body during the interval

covering two strokes at the current stroke duration Dts(t0)
defined above:

1

2Dts(t0)

ðt~t0zDts(t0)

t~t0{Dts(t0)

ðs~1

s~0

k(s,t)dsdt

An animal bent clockwise from tail to head will have a

positive score, and the stronger the preference for one side,

the higher the absolute value of the score. A perfectly

symmetrical animal, which would bend exactly as much

clockwise and counter-clockwise, would have a score of 0.

Note that for the group score, we use the absolute value of

the asymmetry to avoid canceling out scores for animals

that randomly favor the left or right in relation to the

camera.

4) Stretch (Figure 2F) measures the maximum differences in

curvature that occur between the two most extreme curvature

scores at any part of an animal during a given stroke,

providing a sense of whether body bends are deep or flat and

how much ‘‘stretching’’ effort occurs in a stroke. Thus, we

identify the point of largest range in curvature and plot the

range over time. We calculate the largest range in curvature

at any given time (stretch) from the maximum range of

curvature values from any one body part over the course of

two strokes:

max
s

max
Dt{t0 DƒDts(t0)

k(s,t){ min
Dt{t0 DƒDts(t0)

k(s,t),0ƒsƒ1

( )

5) Attenuation (Figure 2G) measures how well the depth of a

wave is maintained as it propagates down the body. We

compare the range that the tail covers to the range that the

head covered when that wave was initiated. The measure

compares head-to-head deformation to the corresponding tail-

to-tail deformation as movement occurs over time. An

attenuation value of 0% has equal head and tail amplitudes

(no attenuation), a value of 100% corresponds to an animal in

which the head was active but the tail did not move. This

measure gives an idea of how coordinated movement is from

head to tail, and might be particularly valuable for locomotory

mutant analysis. We have noticed that negative attenuation,

or amplification, can be observed during episodes of reverse

swimming. Mathematically, attenuation is the residual ratio of

CeleST Quantitation of C. elegans Swim Behavior
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the maximum range of curve of the tail (defined as the lower

quarter of the body) to that of the head (defined as the upper

quarter) over the course of two strokes (equation below),

which is later converted to percentage.

1{
maxsfmaxDt{t0 DƒDts(t0)k(s,t){minDt{t0 DƒDts(t0)k(s,t),0ƒsƒ

1

4
g

maxsfmaxDt{t0 DƒDts(t0)k(s,t){minDt{t0 DƒDts(t0)k(s,t),
3

4
ƒsƒ1g

6) Reverse swimming (Figure 2H) measures the percentage

of time that an animal swims in reverse, initiating a body

wave from the tail that propagates toward the head (Videos

S3 and S4 on http://celest.mbb.rutgers.edu). On the

curvature vs. time heat map, a reversal is evident as a switch

in direction from a leftward slant to a rightward slant. This

measure detects the precise time frames when reversing

occurs in contrast to a human observer (Table S1), and

summarizes them as a percentage of swimming time. Reverse

swimming is detected as a disagreement in sign between

v�s (t0) and v�t (t0). Since we restricted the computations of

the Fourier transform to positive vt, it is detected as a

negative v�s (t0) (below). The resulting value is later converted

to percentage.

1

ttotal
Cardft : v�s (t)v0, 0ƒtvttotalg

7) Curling (Figure 2I) measures the relative percentage of time

that an animal spends bent around so far that it overlaps with

itself. Swimming C. elegans can sometimes stop and curl up

into a shape that nearly resembles the letter ‘‘O’’ or the

number ‘‘6’’. We detect a curl by computing the distance from

either extremity to the opposite side of the body; ‘‘O’’, ‘‘6’’,

and shapes in between are counted. (We define a 6-shape type

of curling when the distance between opposing extremities is a

third of the animal body length.)

d(head,body)(t)~

minsfd(P(s,t),P(1,t)){r(s,t){r(1,t), 0ƒsƒ1=3g

d(tail,body)(t)~

minsfd(P(s,t),P(1,t)){r(s,t){r(1,t), 2=3ƒsƒ1g

We then calculate curling as follows and present the value as

percentage.

1

ttotal
Cardft : minð d(head,body)(t), d(tail,body)(t)Þ~0g

The sensitivity of CeleST in detecting curling is illustrated in

Video S2 7of10 on http://celest.mbb.rutgers.edu, and

contrasted to that of an aided observer in Table S1.

8) Travel speed (Figure 2M) reflects the distance that an

animal travels during a defined time. Some animals move

over significant distances when they swim, whereas others

remain in one place even though they exhibit considerable

bending activity. To measure travel speed, we identify the

animal’s body center over a two-stroke interval and track its

trajectory:

L
Lt

meanfP(s,t), 0ƒsƒ1, Dt{t0DƒDtsg

This measurement approach cancels out the small back-and-

forth lateral motions that are caused by stroking—lateral

movements do not contribute to directional longitudinal

traveling score.

9) Brush stroke (Figure 2N) reports on the area that the body

of the animal would ‘‘paint’’ (the number of pixels covered) in

a single complete stroke, giving an indication of the depth of

the movement and the extent to which the animal has flexed

in a given stroke. Specifically, we derive this measurement

from the residual ratio of the number of pixels covered during

two strokes to the number of pixels of the animal body

(below), with averages of successive pairs of strokes over time

represented in the graphic output.

1{

Card
pixels

S
fP(s,t)zr(s,t), 0ƒsƒ1,Dt{t0DƒDtsg

Card
pixels

S
fP(s,t0)zr(s,t0), 0ƒsƒ1g

The brush stroke measure is complementary to the curvature-

based measures above. Curvature-based measures consider

local body deformations independently of their effects on the

animal’s location; the brush stroke measures the local body

locations independently of which body part was actually

deforming.

10)Activity index (Figure 2O) sums up the number of pixels

that are painted by the body during the time that it takes an

animal to do two strokes to provide a sense of how vigorously

the animal bends while swimming over time. Thus, the

Activity index is the Brush stroke normalized by the time

taken to perform the two strokes:

Figure 2. Examples of ten CeleST measure outputs for an individual C. elegans swim trial. All measures reflect analysis of a 30 second
video recording of an individual swim captured at 18 frames/sec, with C–G calculated from analysis of radius of curvature over 12 body segments
(curvature plot vs. time example is in B). For C–G and M–O, instantaneous values are plotted in black; the median value for each swim is drawn in
red, and the 10–90 percentile range of values is shown in gray; median and range over the 30 s trial are listed on the right. Note that although this
panel demonstrates analysis of measurements of a single animal swimming, the CeleST program score multiple animals simultaneously and can
compile data from thousands of individual swim trials (examples in Figure 3). A, Scored animal at three indicated time points in the video, with the
curvature measure superimposed on the body; color key shown in B. B, Curvature heat map of an individual swim trial. Map is of curvature at a given
body point (Y axis) as a function of time (X axis), with head curvature score at the top and tail curvature at the bottom on the Y axis, deep bend in one
direction dark blue, and in the other direction dark red. Lines indicate posture of the animal depicted at that time point in panel A. Note that the
posture of an individual at any point in time could be reconstructed from the measure of curvature over body position. Further details on each
parameter measurement C–O are given in Text S1. Informative videos (Videos S2 01–10) that feature extreme examples for each measure can be
found on http://celest.mbb.rutgers.edu.
doi:10.1371/journal.pcbi.1003702.g002
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1

2Dts

1{

Card
pixels

S
fP(s,t)zr(s,t), 0ƒsƒ1, Dt{t0DƒDtsg

Card
pixels

S
fP(s,t0)zr(s,t0), 0ƒsƒ1g

0
@

1
A

Note that two measures, Reverse swimming and Curling, are

different from other measures in that scores correspond to

binary categorical data (in reverse or not, curled or not) over

time; we summarize these measures as the percentage of time

during which an animal displayed either behavior. Moreover,

we emphasize that for each measure except Reverse

swimming and Curling, the values are computed per frame,

producing time series reflecting the swimming behaviors and

their changes ‘‘as-they-happen’’. We summarize these time

series using temporal medians because dynamic changes

Figure 3. CeleST analysis reveals features of C. elegans swimming ” considerable individuality, gait preference, and reverse
swimming. A–C, C. elegans exhibit diverse swimming abilities, despite genetic and environmental homogeneity. CeleST can plot scores for two
parameters against each other, for example: A, Travel speed vs. Asymmetry; B, Body wave number vs. Activity index; C, Brush stroke vs. Stretch. Data
for n~353 WT 4-day old animals from 9 independent trials are plotted. D, C. elegans swim at specific wave initiation rates. We plotted in the form of
line histograms the distribution of median Wave initiation rates (WIR) in wild-type animals as occurs over a 30 second interval. WIR values are binned
to integers and the plot line delineates the contour of the bins in the histogram. X axis is median WIR, Y axis is the number of individuals exhibiting
the indicated WIR. Data in this panel are combined to represent 3,372 animals ranging from 4 to 20 days old from 9 independent trials to emphasize
the peaked distribution. Although animals in this large population do swim over the range of possible median WIRs (see Figure S1F for example),
CeleST analysis reveals an unexpected bias for particular ‘‘gaits’’ in a subset of the population (about 14% total appear in favored WIRs). Older animals
swim at lower median WIRs than young adult animals, but the preferred WIRs remain. WIR distributions for specific individual ages are depicted in
Figure S1. Note that mean WIR rates do not exhibit a distribution bias (Figure S1F), so this study emphasizes the value of also considering median
scores in swim behavioral analysis. E–G, For brief periods, swimming animals reverse, with the tail initiating the body wave. Reverse swimming is
illustrated in Videos S3 and S4 on http://celest.mbb.rutgers.edu. In 4-day old animals, the glr-1(ky176) mutant, lacking a neuronal glutamate receptor,
reversal frequency is increased relative to WT (E), although the trend to increased time spent in reverse is not statistically significant (P~0:184) (F).
Unexpectedly, glr-1 mutants swim more symmetrically than WT at day 4 (G). n~101 from 3 independent trials for each strain. Data for all 10
measures, young and old age are shown in Figure S2. Error bars show SEM, **** Pv0:0001.
doi:10.1371/journal.pcbi.1003702.g003
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during swim trials impact mean scores in a way to skew mean

values away from the most common behavior. The median

score provides a more faithful picture of the animals’

behaviors.

As is evident from Figure 2, the ten measures are computed

continuously over time, for each frame of the video, so that the

trace record reflects the behavior of an individual animal ‘‘as-it-

happens’’. We noticed that many animals are not consistent during

30 s for several of the measures. For example, the Wave initiation

rate might drop for a few seconds and go back up again

(Figure 2C), or the Activity index might oscillate (Figure 2O). We

anticipate that the variations detectable in CeleST single animal

reports may provide the basis for novel insight into temporal

patterns of swimming behaviors. The range of values reached

during a swimming trial reflects the consistency of an individual’s

behavior, which we illustrate with the 10–90 percentile range in

light gray in swim trial reports (exemplified in Figure 2). The

temporal variation report format also makes possible visual

comparison across measures. For example, we have observed

cases of simultaneous lower attenuation, lower wave initiation rate,

and negative amplitude during reverse swimming. For quantitative

population studies, we focus on the median value swim behavior of

each animal over a 30 second period.

Results

Wild-type exhibits a broad range of dynamic swimming
abilities

In the course of CeleST development, we examined single and

combined parameter scores for thousands of animal swims

(examples in Figure 3A–C). (Animal growth conditions and swim

analysis are detailed in Text S2.) Two-dimensional plots that reflect

scores of two distinct measures of individual swimmers emphasize

that individual C. elegans swim with a striking diversity of styles,

which was initially unexpected given the genetic homogeneity of C.
elegans and the uniform environment in which they are raised.

Despite these differences in swim skill level or vigor of effort,

however, we find that wild-type (WT) animals exhibit a definitive

preference for specific median Wave initiation rates (WIR)

(Figure 3D). We plotted the median WIR vs. the number of

animals that adopted that given WIR to note that rather than

swimming over the full range of possible WIRs, animals dispropor-

tionately adopt specific WIRs, revealing a previously unknown

preference for particular swim ‘‘gaits’’. At young ages, animals more

often select high WIRs, and at older ages, they more often swim at

slower WIRs, although distinct WIR preferences, rather than a full

range of WIRs, are apparent through most of adult life (Figure S1).

Interestingly, the median WIR is the only parameter for which we

noted distinct preferences—other parameters exhibit graded scores,

and this trend is not apparent when mean WIR is visualized (Figure

S1F). The existence of different gaits between crawling and

swimming [17,18,28,29], or for different food availability conditions

[30,31] have been previously debated, but the finding of selective

swim WIRs is novel.

C. elegans can reverse and briefly swim backwards, albeit
infrequently

C. elegans have been noted to swim ‘‘backwards’’, initiating a

body wave from the tail that travels toward the head [32], but

quantitative scoring of swim reversals has not been reported. Our

data analyses firmly establish that WT animals do swim backwards

for brief periods (Figures 2H, 3E,F; Videos S3 and S4 on http://

celest.mbb.rutgers.edu). In young adult C. elegans, *15% of 30s

swim trials include a brief reverse (Figure 3E), although on average

only *1–2% of swim time is spent in reverse (Figure 3F).

Backward swimming may not have been previously analyzed in

locomotion analyses because existing programs were not written to

accommodate irregularities in swim behavior. We emphasize that

CeleST has the capacity to evaluate all possible curvatures and

thus can detect any specific locomotion pattern of interest, even if

irregular. Thus, the CeleST program could be exploited to select

for, or identify, highly specific deficits in swim pattern in genetic or

pharmacological screens.

New phenotypes of a neuronal signaling mutant
Our expectation is that CeleST will uncover subtle phenotypes

not readily apparent to the observer. For example, we studied glr-
1(ky176) (disrupted for a neuronal glutamate receptor subunit), for

which modest changes in crawling reversal frequency in response

to food [30] and swim turning [32] have been reported. We find

that in young adults, glr-1 mutants swim similarly to WT except

for an unexpected increase in how symmetric the swim behavior is

(Figure 3G). We also detect an increase in the number of glr-1
mutants that exhibit a reverse while swimming (Figure 3E), but the

overall difference in percent of time spent swimming in reverse is

not statistically significant (Figure 3F). Differences in multiple

parameters, however, become evident later in life (day 11),

suggesting that glr-1, defective for neuronal signaling, has

accelerated ageing decline (Figure S2). Our data suggest glr-1
promotes a swim-side preference in young adults, reveal that glr-1
(and presumably the accompanying glutamate-driven neuronal

activity) is important for adult maintenance of behavioral integrity,

and support that CeleST can point out differences that may be

subtle and transient.

Details of age-associated behavioral changes in
swimming prowess

As in the debilitating human sarcopenia [33,34], C. elegans
diminish in locomotory vigor as they age [20,35,36], a phenom-

enon that tracks with physical deterioration of muscle [20,37] and

synapses [38]. To further test how robustly CeleST programs

could reveal subtle changes in swimming behavior, we quantitated

behavioral changes over lifespan (Figures 4, S4, S5). We find that

Wave initiation rate (Figure 4A), Travel speed (Figure 4H), Brush

stroke (Figure 4I), and Activity index (Figure 4J) decline to a large

degree with age, whereas Body wave number (Figure 4B),

Asymmetry (Figure 4C) and Curling (Figure 4G) increase with

age. Stretch (Figure 4D) and Reverse swimming (Figure 4F)

increase only modestly and Attenuation (Figure 4E) changes

relatively little over adult life. These data identify specific measures

as having the greatest dynamic range for measurement of age-

associated locomotory decline.

We also compared same chronological age C. elegans popula-

tions judged to have aged well (by crawling assessment and life

expectancy tests; Class A [20]) to those judged to have aged badly

(Class C) (Figure 4K–M; full study in Figure S5). We find that

Class A animals maintain youthful profiles for Activity index

(Figure 4K), Wave initiation rate, Brush stroke, Travel speed,

Asymmetry (Figure 4L), Body wave number and Curling, but are

not greatly changed for Attenuation (Figure 4M). Class C animals

score similarly to extremely aged animals for these parameters.

Our data validate the use of specific CeleST measures as

indicators of quality of locomotory healthspan.

We also examined swim behavior in insulin pathway mutants

that are long-lived (reduction-of-function mutations in the age-1
PI3 kinase) or progeric (daf-16/FOXO) [39–44]. CeleST analysis

supports that age-1 mutants maintain swimming prowess later into
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lifespan than WT and daf-16 mutants are diminished in swim
features, especially as compared later in life (Figure 4N, full study
in Figure S6). At the same time, data also reveal previously
unappreciated details of locomotory phenotypes. For example, by
several measures the age-1 mutant swims more robustly than WT
in early adult life—indicating that this mutant begins adulthood
with more overall vigor than WT. Since age-1 enters adult life at a
higher capacity level, part of its apparent high maintenance

phenotype during aging may derive from its high starting point, a
mechanistic aspect that has not previously been considered.

Availability and Future Directions

We report mathematically-based, automated, high-resolution,

high-throughput measures for quantitative description of C.
elegans swim behavior, which convey novel information on wild-

Figure 4. CeleST reveals novel information on aging phenotypes. A–J, Age-associated changes in swimming parameters in wild-type adults.
A, Wave initiation rate; B, Body wave number; C, Asymmetry; D, Stretch; E, Attenuation; F, Reverse swimming; G, Curling; H, Travel speed; I, Brush
stroke; and J, Activity index. n~353 from 9 independent trials, for each age day 4 and day 11. Data for ages ranging from day 4 to day 20 are
presented in Figure S4. K–M, CeleST reports great differences in graceful agers vs. poor agers for measures that change with age. We selected
animals that appeared to have robust crawling capacity (Class A, graceful agers) and those that had decrepit crawling capacity (Class C, poor agers) at
day 11 and compared swim behavior. K, Activity index; L, Asymmetry; M, Attenuation. n~37 from 3 independent trials, for each class. Data for all ten
measures in this series are shown in Figure S5. N, Locomotory changes under life-extending and progeric insulin signaling pathway manipulation
suggest complex influences of signaling over the lifetime. Activity index, WT: blue line (middle dashed line); long lived age-1(hx546): green (top line);
short-lived daf-16(mgDf50): red (bottom line). Note that the age-1 mutant has a higher activity index in young adult life as compared to WT, which
suggests differences in swim performance are not limited to aging. Also, at day 15, WT and age-1 scores appear increased, which we suggest reflects
the preferential death of the poorest swimmers, rather than an actual increase in average swimming of individuals. n~62 in each data point from 4
independent trials. Data on all measures are presented in Figure S6. Error bars show SEM, *** Pv0:001, **** Pv0:0001.
doi:10.1371/journal.pcbi.1003702.g004
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type and mutant swimming locomotion, and report on behavioral

change. We describe ten measures that are each designed to

quantify a specific aspect of swimming behavior, with a

mathematical justification for each. These measures operate over

a large range of scales, and report from instantaneous behavior to

large temporal patterns, and from single animal analysis to the

statistical comparison of thousands of animals throughout their

lifespans. The source code together with demonstrations of

CeleST is available as Dataset S1 and on http://celest.mbb.

rutgers.edu. The source code is distributed under the MIT license

as open source. It was developed under MATLAB 2011 with

Statistics toolbox. There is no additional pre-requisite to run our

program on a computer other than the availability of MATLAB

for the specific operating system.

Advances in analysis of swim motion
While crawling motions have been successfully defined and

measured [4–11], broadly applied approaches for more complex

swimming motions are not well described in the literature.

Previous work based on pixel counts [25–27] or curvature

measures [14,15] have definitively advanced capacity to evaluate

swim locomotion. However, the most sophisticated approaches

available to date stop short of automated analysis programs that

are applicable to all animal postures and lack measurements that

have a precise meaning in terms of behavior. A current common

practice is to manually screen and reject videos or data from

animals with irregular swim patterns because existing measures

cannot address changes within a behavior [14,22,23]. By

calculating curvature scores along the body over time and using

short-time Fourier transform to describe the range of body

movements that occur during swims, we have mathematically

defined a set of measures that can be directly interpreted in terms

of phenotype and swimming behavior. Using curvature score-

based calculations, we can evaluate irregular swim patterns in the

same way as regular ones, and we can score a broad range of body

changes as they occur during a swim trial. This introduces the

capacity to track dynamics of a swim as well as changes in pattern,

which have not been features of previous programs.

A design for broad application in research labs
An important feature of CeleST is that the program is designed to

run with work-horse instrumentation already on hand in many labs.

We captured images at 18 frames/second with image resolution of

0.02 mm/pixel, which does not require an expensive camera.

Higher image resolution might improve the robustness of the

tracking, but would have no impact on measure analysis, as scores

are normalized to worm pixel imprint. The tracking program

measures animals as they swim in an area limited by a buffer drop

on an inexpensive slide, although scoring in a microfluidic chamber

can readily be accomplished. CeleST can track multiple animals

simultaneously (we use 5/drop but more are possible), and can

import data from other trackers to score measures. Moreover, the

program can easily run on long timeframes (minutes to hours, only

limited by computer memory), as might be of interest for scoring

activity - quiescence patterns that initiate after *1.5 hours of

continuous swimming [12]. Patterns of activity - lower activity/

complete inactivity are also readily identified if short-term video is

used after a 1.5 hours time point (CIV, data not shown).

Extendibility
Although we have established a broad baseline for monitoring

swim behaviors, we note that the nature of our measures permits

custom building of scoring rubrics according to experimental

design or phenotype sought. Modest changes could adapt the

CeleST program for crawling analysis. Pattern recognition

applications and modeling can be added in the future, for

example, for in-depth temporal pattern analysis [12] or for social

interaction analysis. The CeleST software can be used as a

platform, and with application-specific tracking methods and

measures, other cellular or animal behaviors can be analyzed

(sperm mobility, zebrafish swimming, etc.) for any application that

can use video (mating, sleeping, feeding, foraging, etc.).

Overall, the CeleST program constitutes an accessible and

comprehensive approach for C. elegans locomotory quantitation

that translates analysis of complex swimming patterns to a new

level of resolution and efficiency. As such, CeleST should be a

powerful tool for a high-throughput, high-precision analysis of

molecules, neuronal circuits, behavior, and plasticity to advance

the effort toward understanding dynamic control of behavior.

Supporting Information

Figure S1 Distributions of Wave initiation rates. We

plotted in the form of line histograms the distribution of median

Wave initiation rates (WIR) in wild-type (WT) animals as occurs

over a 30 second interval. WIR values are binned to integers and

the plot line delineates the contour of the bins in the histogram. X

axis is median WIR, Y axis is the number of individuals exhibiting

the indicated WIR. Data are for age-specific adults: day 4 (A), day

8 (B), day 11 (C), day 15 (D) and day 18 (E), as measured from the

hatch. Peaks are positioned at the same median WIR scores over

much of adult life. Although the mean WIR (in blue) encompasses

a continuum of scores (F), the median (in red) exhibits ‘‘preferred’’

peaks at specific WIR values, unexpectedly revealing that a

disproportionate number of animals swim at similar median WIR.

(DOCX)

Figure S2 Locomotory behavior of glr-1(ky176) adults
on days 4 and 11. Error bars, s.e.m. n~65 in each data point

from 2 independent trials. A, Wave initiation rate; B, Body wave

number; C, Asymmetry; D, Stretch; E, Attenuation; F, Reverse

swimming; G, Curling; H, Travel speed; I, Brush stroke; and J,

Activity index. Statistical analysis on pages 2 and 3 follows set of

graphs. ns indicates not significant; * P~0:01{v0:05;

** P~0:001{v0:01; *** P~0:0001{v0:001; **** Pv0:0001.

(DOCX)

Figure S3 Representative lifespan of wild-type control
(N2), age-1(hx546) and daf-16 (mgDf50) aging mutants.
Wild type in blue (n~90, 1 censored), age-1(hx546) in green

(n~90, 0 censored) and daf-16(mgDf50) in red (n~90, 6

censored). Censored animals were removed from the lifespan

data set as they were lost from the plate via desiccation or early-

age bursting.

(DOCX)

Figure S4 Age-related locomotory changes in wild-type
adults. Error bars, s.e.m. (n~127 in each data point from 8

independent trials). A, Wave initiation rate; B, Body wave

number; C, Asymmetry; D, Stretch; E, Attenuation; F,

Reverse swimming; G, Curling; H, Travel speed; I, Brush

stroke; and J, Activity index. Statistical analysis follows set of

graphs. ns indicates not significant; * P~0:01{v0:05;

** P~0:001{v0:01; *** P~0:0001{v0:001; **** Pv0:0001.

(DOCX)

Figure S5 Locomotory patterns of same age A and C
class adults. Error bars, s.e.m. (n~27 in each data point from

two independent trials). A, Wave initiation rate; B, Body wave
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number; C, Asymmetry; D, Stretch; E, Attenuation; F, Reverse

swimming; G, Curling; H, Travel speed; I, Brush stroke; and J,
Activity index. Statistical analysis follows set of graphs. ns indicates

not significant; * P~0:01{v0:05; *** P~0:0001{v0:001; ****

Pv0:0001. n/a, non applicable in cases for curling and reverse

swimming parameters that only one animal out of 27 curled or

swam in reverse.

(DOCX)

Figure S6 Age-related locomotory changes in wild-type
adults (in blue), and in aging mutants age-1(hx546) (in
green) and daf-16(mgDf50) (in red). Error bars, s.e.m. (n~62
in each data point from four independent trials). A, Wave initiation

rate; B, Body wave number; C, Asymmetry; D, Stretch; E,

Attenuation; F, Reverse swimming; G, Curling; H, Travel speed; I,

Brush stroke; and J, Activity index. Statistical analysis follows

set of graphs. ns indicates not significant; * P~0:01{v0:05;

** P~0:001{v0:01; *** P~0:0001{v0:001; **** Pv0:0001.

(DOCX)

Table S1 Comparison of manual and CeleST scores. A,

Average of manually scored head bends is analogous to CeleST

Wave initiation rate. Sample size (n) is 108 day 4 adults for manual

score of head bends and 101 for automated analysis with CeleST.

B, CeleST is more sensitive scoring Reverse swimming and

Curling, especially for brief events. n~108 for manual score of

Reverse swimming, n~36 for manual score of Curling, and

n~101 for CeleST automated analysis of Reverse swimming and

Curling. All manual scores were executed on a computer screen

using recorded videos of the same animals recorded by CeleST. *

CeleST automatically measures 10 parameters in a single analysis

of one video in about 5 min. The 13.3 min is an estimate of the

time CeleST takes to analyze one parameter for 101 animals in 27

videos.

(DOCX)

Dataset S1 Zip package containing source code and
demos of the software CeleST.

(ZIP)

Text S1 Further details on each of the ten parameter
measurements extracted with CeleST (panels C–O of
Figure 2).

(DOCX)

Text S2 C. elegans strains, growth and swim analysis
methods.

(DOCX)
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