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Abstract

Cancers arise from successive rounds of mutation and selection, generating clonal populations that vary in size, mutational
content and drug responsiveness. Ascertaining the clonal composition of a tumor is therefore important both for prognosis
and therapy. Mutation counts and frequencies resulting from next-generation sequencing (NGS) potentially reflect a tumor’s
clonal composition; however, deconvolving NGS data to infer a tumor’s clonal structure presents a major challenge. We
propose a generative model for NGS data derived from multiple subsections of a single tumor, and we describe an
expectation-maximization procedure for estimating the clonal genotypes and relative frequencies using this model. We
demonstrate, via simulation, the validity of the approach, and then use our algorithm to assess the clonal composition of a
primary breast cancer and associated metastatic lymph node. After dividing the tumor into subsections, we perform exome
sequencing for each subsection to assess mutational content, followed by deep sequencing to precisely count normal and
variant alleles within each subsection. By quantifying the frequencies of 17 somatic variants, we demonstrate that our
algorithm predicts clonal relationships that are both phylogenetically and spatially plausible. Applying this method to larger
numbers of tumors should cast light on the clonal evolution of cancers in space and time.
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Introduction

Many clones exist within each cancer, and selective pressure

imposed by environmental factors, most notably treatments

directed at tumor eradication, favors the emergence of clones

that grow increasingly resistant to successive rounds of therapy.

Incorporating this intra-tumor heterogeneity into strategies for

planning, monitoring, and revising cancer treatment could

improve outcomes for oncologists and their patients. Therefore,

methods for estimating the number, size and mutational content of

clones within a patient’s tumor are being explored.

New approaches are being developed to assess the clonal

content of a given tumor. Methods based on the interrogation of

individual cells have relied on the use of fluorescent markers [1,2]

or single cell sequencing [3–6]. Whereas fluorescence-based

approaches are inevitably limited by the relatively small number

of features they can accommodate, single cell sequencing brings

the highest possible resolution to characterizing an individual

patient’s tumor. Nonetheless, single cell sequencing also faces

obstacles to its widespread implementation. Evaluating sufficiently

large numbers of single cells to obtain statistical power can be

prohibitive, for technical or financial reasons. Additionally, it is

often difficult to ascertain the identity of the cells being sequenced,

and details regarding the spatial positioning of cells relative to each

other and to other cells in the tumor are lost when the single cells

are obtained. These disadvantages pose significant challenges to

the widespread adoption of single cell sequencing as a means for

assessing tumor heterogeneity.

Complementing single cell approaches are efforts to deconvolve

clonal subpopulations based on the frequencies of mutated alleles

within one or more bulk tumor specimens. Shah et al. [7], who

sequenced a breast cancer at the time of diagnosis and nine years

later, after metastasis, pointed out that allele frequencies of the

mutations shared between the two samples could be used to

segregate primary mutations into those that occur in a dominant

versus subdominant clone. This insight is the basis for a variety of

approaches that apply clustering algorithms to mutation allele

frequencies, including kernel density estimation [8] and Dirichlet

process modeling applied either to the allele frequencies [9] or to a

combination of allele frequency, loss-of-heterozygosity status and

copy number [10–13].

Clearly, statistical power to infer variants and, ultimately, clonal

composition, is increased if multiple samples are available for

analysis. Accordingly, various studies have examined the progres-

sion of cancer within one or more patients over time. Sets of

variants that exhibit similar allele frequencies within a single

sample are suggestive of a clonal population. Hence, clustering

methods to identify groups of mutations associated with a single
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clone have been applied. For example, kernel density estimation

has been applied to allele frequencies from tumor-relapse pairs

from eight acute myeloid leukemia (AML) patients [14] and from

seven secondary AML patients [15].

An orthogonal approach taken by Newberger et al. [16]

employs triplet samples of neoplasia, matched normal and

carcinoma from six patients to infer lineages of various genetic

events. They characterize each locus in terms of a binary vector

representing the presence of the mutation across the various

samples and then group the loci into classes on the basis of these

vectors. After filtering low frequency classes, the classes are used to

manually construct a phylogenetic tree. The focus of the study is to

identify the shared characteristics of the evolutionary process

across six patients with breast cancer.

In the current study, we adopt an alternative approach to

identify clonal structure. Rather than measuring allele frequencies

in multiple samples from the same patient over time, we physically

subdivide a single breast cancer specimen and measure allele

frequencies within each subsection (Figure 1). We are aware of two

previous studies that have adopted such an approach. Yachida et

al. [17] analyzed seven metastatic pancreatic cancers, sequencing

from multiple samples per patient. Clones are initially defined

relative to sample types (peritoneal, liver and lung metastases).

Subsequently, the tumors from two patients are resected and a

clonal phylogeny is inferred manually. More recently, Gerlinger et

al. [18] carried out exome sequencing followed by targeted deep

sequencing on samples from four patients with renal carcinoma.

Each primary tumor was divided into 9 regions, and a phylogeny

was manually constructed by assuming that higher alternate allele

frequencies correspond to earlier mutations. In neither of these

studies was an algorithm proposed to automatically infer from

such data both the clonal genotypes and the relative frequencies of

the clones within each subsection.

The method proposed here bears some similarity to the recently

proposed Tree Approach to Clonality (TrAp) method [19]. The

TrAp algorithm aims to identify the number, relative frequencies

and genotypes of clones within a tumor using a formalism

somewhat similar to ours, based on matrix decomposition.

However, rather than analyzing data from multiple sections, the

authors use as input a single set of variant allele frequencies and

then constrain the resulting optimization problem by introducing a

series of four assumptions about cancer evolution. It is not clear

whether the method can easily generalize to analysis of data from

multiple sections or multiple time points.

Here we describe a generative binomial model that incorporates

information from multiple sections from a single tumor at a single

time point to infer the frequencies and genotypes for a specified

number of clones. An implementation of our algorithm is available

through Bioconductor as an R package called Clomial (http://www.

bioconductor.org/packages/release/bioc/html/Clomial.html). We

use Clomial version 1.1.7 to apply this approach to a breast cancer

specimen and demonstrate that the results from our model predict

relationships that are phylogenetically and spatially plausible.

Results

1 Inferring the clonal architecture of a tumor
We assume that a tumor is comprised of multiple populations of

cells (‘‘clones’’), each with a unique genotype, and that these

populations are heterogeneously distributed within the tumor

itself. We collect, from several physical subsections of the tumor,

shotgun sequencing reads. We also collect sequencing data from a

non-tumor subsection from the same patient. Using the called

genotypes from the normal subsection, and restricting ourselves to

positions that are homozygous in the normal subsection, each read

from a tumor subsection exhibits either a normal allele or a variant

allele at each location. We exclude positions that exhibit

homozygous normal alleles in all of the tumor subsections. Our

goal is to infer, from the remaining N mutated positions, the

genotype of each clonal population and their relative frequencies

within each physical subsection of the tumor.

Formally, the problem can be stated as follows. Note that we use

bold face letters for random variables, and that Ai and Aj

respectively denote the ith row and the jth column of matrix A. We

are given two primary input matrices RN|M and XN|M , where N
is the number of mutated loci, M is the number of subsections (of

which one is normal and M{1 are tumor), Ri,j is the total

number of reads (i.e., the coverage) at locus i in subsection j, and

Xi,j is the number of cancerous reads (those supporting the

mutation) at locus i in subsection j. We assume, without loss of

generality, that the first of the M subsections corresponds to

normal tissue, and that the remaining M{1 subsections are from

the tumor. In addition, we consider C, the number of distinct

clones in the tumor, as a hyperparameter, and train a model based

on a given value of C. We assume that the first clone corresponds

to the normal cell population and the tumor is composed of C{1
tumor clones. Later, we will discuss whether C can be estimated

from the data. Our task is to infer two matrices: a clone frequency

matrix PC|M in which Pc,j is the proportion of cells of clone c in

subsection j, and a genotype matrix ZN|C in which Zi,c~1 if clone c
has the variant allele at locus i, and Zi,c~0 otherwise. The first

column of Z contains all zeroes because it represents the ‘‘normal

clone.’’ By definition, each column of P sums to 1. Also, by

construction, the first column of X corresponds to the normal

subsection and hence consists almost entirely of zeroes, although

small non-zero counts may be possible due to contamination from

tumor or due to sequencing error. If the first column of X
consisted entirely of zeroes, then we would expect the first column

of P to be of the form (1,0, . . . ,0), but in order to allow for the

possibility that the allegedly normal subsection can have slight

tumor contamination, we infer the first column of P (as well as the

other M{1 columns).

Author Summary

Cancers arise from a series of mutations that occur over
time. As a result, as a tumor grows each cell inherits a
distinctive genotype, defined by the set of all somatic
mutations that distinguish the tumor cell from normal
cells. Acertaining these genotype patterns, and identifying
which ones are associated with the growth of the cancer
and its ability to metastasize, can potentially give clinicians
insights into how to treat the cancer. In this work, we
describe a method for inferring the predominant geno-
types within a single tumor. The method requires that a
tumor be sectioned and that each section be subjected to
a high-throughput sequencing procedure. The resulting
mutations and their associated frequencies within each
tumor section are then used as input to a probabilistic
model that infers the underlying genotypes and their
relative frequencies within the tumor. We use simulated
data to demonstrate the validity of the approach, and then
we apply our algorithm to data from a primary breast
cancer and associated metastatic lymph node. We dem-
onstrate that our algorithm predicts genotypes that are
consistent with an evolutionary model and with the
physical topology of the tumor itself. Applying this
method to larger numbers of tumors should cast light
on the evolution of cancers in space and time.

Inferring Clonal Composition of a Breast Cancer
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We propose to solve this problem using a generative model

whose parameters are learned via expectation-maximization (EM)

[20]. Accordingly, we define a matrix of hidden variables ZN|C

representing the unknown genotypes of the clones; for instance, if

Zi,c~1, then the cth clone has a tumor allele at the ith locus. We

assume that each Zi,c follows an independent Bernoulli distribu-

tion with parameter mi,c, i.e.,

Zi,c*Bern(mi,c): ð1Þ

We also assume that if a mutation is present in a particular

clone, then at that locus the clone is heterozygous with copy

number equal to 1. Therefore, for subsection j, if clone c has a

mutation at locus i (Zi,c~1), then its contribution to the observed

count of cancer alleles is by
1

2
Pc,j , half of its proportion in the

subsection. Conversely, if a clone does not have a mutation at i
(Zi,c~0), then it does not contribute to the count of variant

alleles. By summing up the contributions of all clones, we obtain

the total probability that an observed read corresponds to a

variant allele rather than a normal allele. Therefore, the

probability that a read contains the variant allele at locus i in

subsection j is given by

pi,j~
1

2
Zi
:Pj , ð2Þ

where Zi is the ith row of Z, and Pj is the jth column of P.

Finally, we introduce a matrix XN|M of random variables

representing the observed data, where Xi,j is the number of reads

exhibiting the variant allele at locus i in subsection j. This matrix

encodes our primary assumption about the distribution of the

data: for each i and j, we observe an independent sample of Xi,j

that has a binomial distribution with two parameters Ri,j and pi,j ,

i.e.,

Xi,j*Bin(Ri,j ,pi,j): ð3Þ

The first parameter of this distribution Ri,j is the (known) total

number of reads at locus i in subsection j. The second parameter,

pi,j , is the probability of observing a variant allele; it will be

inferred by EM.

Given the joint distribution Pr(X,ZDh) over observed variables

X and latent variables Z, governed by parameters h~(P,m), our

goal is to maximize the likelihood function Pr(XDh). We do so

using EM, exploiting three assumptions: (1) that each subsection

contains non-zero normal contamination, i.e., P1,jw0 for all j, (2)

independence of the M subsections from each other, and (3)

independence of mutations from each other. The first assumption

is based on the widely accepted difficulty associated with obtaining

perfectly pure samples of tumor cells [21,22]. The two indepen-

dence assumptions essentially state that each locus and each

sample is informative. These assumptions are unavoidable: in the

presence of very high dependence, only very limited information

about the underlying clonal composition of the tumor would be

provided by the loci and samples. Furthermore, it is worth noting

that these independence assumptions are made conditional on the

parameters in the model: that is, the elements of X are

independent conditional on Z and P. In other words, if we knew

the true underlying parameters for the model (that is, the true

genotypes for the clones, and the true proportion of each clone

present in each sample), then the actual number of ‘‘tumor’’ reads

that we would observe for each locus-sample pair would be

independent.

While the formulation of our inference problem shows some

similarity to well-studied matrix factorization problems [23–25],

such techniques cannot be directly applied here. Unlike most

matrix factorization techniques, which assume a normal distribu-

tion, our observations are binomially distributed. Moreover, the

elements of the latent matrix Z are binary, and each column of P
must sum to 1. These constraints required us to develop a

customized inference algorithm.

2 Log likelihood
To frame the EM optimization, we consider the following

complete-data log likelihood function of the model:

Figure 1. Inference of tumor clonal content. A collection of subsections of a tumor are subjected to next-generation sequencing to measure,
across a common set of genomic loci, counts of two alleles—the normal allele that was observed in a matched normal sample at that locus, and a
variant allele. The resulting counts matrices are provided as input to an inference procedure that estimates the clonal genotypes and frequencies.
doi:10.1371/journal.pcbi.1003703.g001
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L~log Pr(X,ZDh), ð4Þ
which can be computed as follows (for details see Note S4 in Text

S1):

L~
X

i,j

log
Ri,j

Xi,j

 !
zXi,j log(pi,j)z(Ri,j{Xi,j)log(1{pi,j)

 !

z
X

i,c

Zi,clog(mi,c)z(1{Zi,c)log(1{mi,c)
� �

,

ð5Þ

where pi,j~
1

2
Zi
:Pj .

3 Expectation maximization (EM) algorithm
Our goal is to find the parameters h~(P,m) which maximize the

likelihood. Because our model involves the hidden variable Z, we

cannot directly maximize the L given in Equation 5 with respect to

h. Instead, we use the EM algorithm to fit the model to the data

[26]. EM is an iterative algorithm with two steps—E (for

expectation) and M (for maximization)—in each iteration. In the

E step, we use the current estimates of the parameters, hold, to

compute the conditional expectation ofL. In the M step, we find the

new parameters hnew that maximize the conditional expectation.

Overview. In this section, we present an overview of the EM

algorithm, followed by the specific details of the E and M steps for

our application.

1. Randomly initialize the parameters hold.

2. Repeat the following until a convergence criterion is satisfied

(such as insignificant improvement in the log likelihood; see

Equation 12).

(a) E Step. Evaluate the posterior Pr(ZDX,hold) using the

current parameter values. Because each locus is indepen-

dent, we will compute Pr(Zi DXi,h
old) for 1ƒiƒn. This can

be done by Bayes’ theorem,

Pr(Zi DXi,h
old)~

Pr(Xi DZi,h
old)Pr(Zi Dhold)P

z[f0,1gC
Pr(Xi DZi~z,hold)Pr(Zi~zDhold)

:ð6Þ

(b) M Step. Evaluate hnew from

hnew/ argmax
h

Q(hDhold)

where Q(hDhold) is the following expected log likelihood with

respect to Z conditioned on X and hold:

Q(hjhold)~
ZjX,hold log Pr(X,Zjh)½ �

~
X

Z

Pr(ZjX,hold)log Pr(X,Zjh):
ð7Þ

(c) Update the parameters by

hold/hnew:

Computation for the E step. To compute the posterior

Pr(ZDX,hold), we need to compute Pr(Zi Dhold) and Pr(Xi DZi,h
old)

for the ith locus (see Equation 6). The latter is equal to the product

of binomial probabilities because the samples are assumed to be

independent. Using Equations 2 and 3, we have

Pr(XijZi,h
old)~P

M

j~1
Pr(Xi,j jZi,h

old)

~P
M

j~1

Ri,j

Xi,j

 !
1

2
Zi
:Pj old

� �Xi,j

1{
1

2
Zi
:Pj old

� �Ri,j{Xi,j

:

ð8Þ

Also, Pr(Zi Dhold) is the product of Bernoulli probabilities. From

Equation 1, we have that

Pr(Zi Dhold)~ P
C

c~1
(mold

i,c )Zi,c (1{mold
i,c )1{Zi,c :

Computation for the M step. To get hnew, we maximize

Q h hold
��� �

defined in Equation 7. First, we split Q h hold
��� �

into two

terms such that one term depends only on P, and the other term

depends only on m. This simplifies the process of finding the

optimal parameters.

Q(hjhold)~
ZjX,hold log Pr(X,Zjh)½ �

~
ZjX,hold log Pr(XjZ,h)Pr(Zjh)ð Þ½ �

~
ZjX,hold log Pr(XjZ,P)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W(P)

z
ZjX,hold log Pr(Zjm)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Y(m)

,

ð9Þ

where we let W(P) :~E
ZjX,hold log Pr(XjZ,P)½ � and Y(m) :~

E
ZjX,hold log Pr(Zjm)½ � for simplicity of notation. Similar to

Equation S7 in Note S4 in Text S1, we have used the fact that

conditional on Z and P, X is independent of m, as well as the fact

that conditional on m, Z is independent of P.

Computing mnew Now that we have separated Q h hold
��� �

into

two terms, we can first update P by only maximizing W Pð Þ. We

solve the following constrained optimization problem to get Pnew

(for details see Note S5 in Text S1):

Pnew :~ argmax
P

W(P)

such that Vj,c : 0ƒPc,j and Vj :
PC
c~1

Pc,j~1:

8>><
>>: ð10Þ

We solve our simplified optimization problem using a quasi-

Newton method called BFGS-B [27,28]. The original BFGS

algorithm uses the gradient to approximate the Hessian matrix of

second derivatives; therefore, the algorithm is very efficient when

the gradient is available [29,30]. BFGS-B is a variant that can

handle simple box constraints. We compute the first derivative of

W with respect to each entry of V by the chain rule, and provide it

to BFGS-B for faster convergence (Note S2 in Text S1).

Computing mnew Recall that Y mð Þ~ Z X,holdj log Pr Z mjð Þ½ � is

the only part of the expected log likelihood which is a function of m
(see Equation 9). Therefore, we can compute mnew by maximizing

Y mð Þ. Because we are assuming that conditional on m, the

elements of Z are independent, we just need to maximize each

Inferring Clonal Composition of a Breast Cancer
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term in the following sum:

Y(m)~
ZDX,hold ½log Pr(ZDm)�~

XN

i~1

XC

c~1
ZDX,hold ½log Pr(Zi,cDmi,c)�:

The first column of Z corresponds to the normal cells, Zi,1~0,

hence mi,1~0 for all i. For 1vcƒC, we need to maximize, with

respect to mi,c,

ZjX,hold
½log Pr(Zi,cjmi,c)�

~Pr(Zi,c~1jX,hold) log Pr (Zi,c~1jmi,c)

zPr (Zi,c~0jX,hold) log Pr (Zi,c~0jmi,c)

~Pr (Zi,c~1jX,hold) log(mi,c)

z(1{Pr (Zi,c~1jX,hold)) log(1{mi,c):

ð11Þ

By single-variable calculus, the value of mi,c that maximizes (11)

is Pr(Zi,c~1DX,hold). For the cth clone, the probability

Pr(Zi,c~1DX,hold) can be computed by marginalizing Zi over all

other clones:

Pr(Zi,c~1DX,hold)~
X

Zi[ f0,1gC jZi,c~1
� 	Pr(Zi DX,hold):

Because the posteriors Pr(Zi DX,hold) are easy to compute by

Bayes’ rule (Equation 6), mnew can be updated as follows:

mnew
i,c ~

X
Zi[ f0,1gC jZi,c~1
� 	Pr(Zi DX,hold),1ƒiƒN,1vcƒC:

In principle, for each solution, the genotype matrix Z can be

obtained by rounding the inferred m. However, in practice, the

inferred values in m were always exactly 0 or 1 (with observed

differences v10{20).

Initialization and convergence. We initialize elements of

PC|M with values independently sampled from a Uniform 0,1½ �
distribution. Then we standardize each column such that the sum

of the proportions of each clone in a subsection is 1. Similarly, we

randomly initialize the matrix mN|C with values independently

sampled from a Uniform 0,1½ � distribution. In practice, we run EM

to convergence from multiple random initializations for m and P,

and we choose the run that results in the highest likelihood.

The convergence criterion is based on the change in the

expectation of the complete-data log likelihood. Specifically, we

stop the EM iterations if:

ZDhnew Lnew½ �{
ZDhold Lold


 �
ZDhold Lold


 � va ð12Þ

where a is a small positive number. We set a~10{3 in our

experiments. Using Equation 5, we can compute ZDh L½ � in each

iteration as follows:

Zjh L½ �~

X
i

½X
j

log
Ri,j

Xi,j

 !
zXi,j log(pi,j)z(Ri,j{Xi,j)log(1{pi,j)

 !

z
X

c

mi,c log(mi,c)z(1{mi,c)log(1{mi,c)
� ��:

ð13Þ

where the sums are over locus indices 1ƒiƒN, subsection

indices 1ƒjƒM, and clone indices 1ƒcƒC. We used the fact

that Zi,c is binary and Pr(Zi,c~1Dh)~mi,c to derive the above

equation.

4 Simulation results
To validate our implementation of the EM optimization

procedure and to understand our model’s behavior, we produced

simulated deep sequencing data and measured the extent to which

the model successfully recovers the true clonal structure of the

data.

For each simulation, we began by randomly generating four

matrices. First, we generated a simulated matrix RN|M of total

read counts with respect to a fixed number (N~20) of loci and a

fixed number (M[f3, . . . ,15g) of subsections with a mean

coverage of 1000 reads per locus. The matrix was generated

by independently sampling each column (corresponding to a

single subsection) from a multinomial distribution

Multinomial(1000N,
1

N
, . . . ,

1

N
), where the parameters 1000N

and
1

N
correspond to the total number of trials, and the

probability of success for each of the N loci, respectively.

Second, for any clone number C[fcD3ƒcƒ5 and cƒMg, we

generated a corresponding Boolean matrix ZN|C , in which the

entry at row i and column c indicates whether locus i exhibits the

variant allele in clone c. Entries in Z were generated

independently from a Bernoulli distribution with a probability

of success m~0:7, with the exception of the first (‘‘normal’’)

column of Z, which contains all zeroes. Third, we generated a

clone frequency matrix PC|M as follows: each element of P is

independently drawn from a Uniform ½0,1� distribution, and then

each column of P was divided by the column sum, so that the

columns summed to 1. We then set P1~(1,0, . . . ,0) so that the

first column of P corresponds to the normal subsection. Finally,

for each locus i and subsection j, we generated the observed

number of variant alleles Xi,j by sampling from a binomial

distribution with parameters Ri,j (representing the total number

of reads) and
1

2
Zi
:Pj (representing the probability that a given

read corresponds to the variant allele). This last step complies

with our primary assumption about the distribution of the data

(Equation 3).

We ran the EM algorithm using the simulated data R and X
and then evaluated the extent to which the estimated clone

frequency matrix P̂P and mutation probability matrix m̂m differed

from the corresponding true matrices P and Z. Specifically, we

computed the genotype error eZ , defined as

eZ~
1

NC

XN

i~1

XC

c~1

m̂mi,c{Zi,c

�� ��
and the clone frequency error eP,

Inferring Clonal Composition of a Breast Cancer
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eP~
1

CM

XC

c~1

XM
j~1

P̂Pc,j{Pc,j

�� ��:

Note that, because we did not know which columns of m̂m
correspond to which columns of Z, we compared Z to every

permutation of the columns of m̂m and selected the permutation that

resulted in the smallest genotype error. The selected permutation

was then also used in the calculation of the clone frequency error.

Our simulation results (Figure 2) exhibit two primary trends.

The overall error rate, as measured by either genotype or clone

frequency error, decreases systematically as the number of

subsections increases, and increases as the number of clones

increases. Overall, both error rates are low, especially for C~3.

The observed trends are expected: for a fixed number of clones,

the availability of more subsections leads to more accurate

estimation of the true parameter values; and for a fixed number

of subsections, the presence of more clones leads to a greater

number of parameters that must be inferred, leading to greater

error in estimation.

To assess the affect of sequencing error on the performance of

Clomial, we added noise to the simulated data and repeated the

above experiments. Specifically, we modeled noise by Bernoulli

random variables with probability of success interpreted as the

probability that a non-tumor allele is read as a tumor allele or vica

versa. Running the EM algorithm on the noisy data revealed that

Clomial is robust with respect to noise for all reasonable levels of

sequencing error (Figure S6) in Text S1.

5 Application to a primary breast cancer
We obtained breast cancer tissue from a 44 year old

premenopausal female with infiltrative ductal carcinoma (IDC)

with ductal carcinoma in situ (DCIS), stage pT1c pN1, Grade II/

III, estrogen receptor (ER) positive, progesterone receptor (PR)

positive and Her2 negative. Axillary lymph node dissection

revealed that one out of 13 nodes was positive for metastatic

disease. A total of 6 tissue sections were obtained, including 2

sections from adjacent normal breast tissue, 3 from the primary

breast cancer, and 1 from the positive lymph node. The tumor

content, including both IDC and DCIS, ranged from 40% to 55%

in the primary tumor and axillary lymph node tissue sections based

on pathological examination. For subsequent analysis, each tissue

section was subdivided into subsections (Figure 3).

To identify mutations and quantify allele frequencies, we

performed two rounds of DNA sequencing. Initially, DNA was

extracted from each individual subsection and subjected to exome

capture followed by Illumina sequencing. Variants were detected

independently in each subsection using the SeattleSeq Annotation

Server. We focused on single nucleotide variants and short indels

that exhibited a coverage of w15 reads in at least one of the

subsections, ranking them using DeepSNV [31] and Fisher’s exact

test (Methods). This analysis produced an initial set of 281 variants

(Dataset S1).

To better quantify the allele frequencies at these loci, we

designed primer pairs surrounding each locus and used these

primers to perform a second round of targeted DNA sequencing.

This experiment successfully sequenced 244 of the 281 loci, with a

mean and median coverage of 1615 and 1118, respectively, reads

per locus. Each of these loci was individually validated by visual

inspection using the Integrative Genomics viewer (IGV). Manual

inspection showed that many of the initially identified mutations

were flanked by homopolymer repeats, suggesting that the

alternate alleles were read calling errors, rather than true

mutations [32]. For all downstream analysis we focused on a set

of 17 confirmed somatic variants. For clarity of presentation, we

refer to each somatic variant by the chromosome where it resides,

appending a letter if more than one somatic variant occurred

within a chromosome (Table S1 in Text S1). The targeted

sequencing thus produced two 17-by-12 matrices containing,

respectively, the total coverage and the tumor allele count at each

locus (Table S1 in Text S1). Visual inspection of the allele

frequency profiles shows, not surprisingly, a markedly different

pattern of allele frequencies among the subsections from primary

and metastatic sites (Figure 3). In addition, several of the samples

(e.g., P1-4 and P3-1) exhibit consistently lower frequencies across

all loci, presumably indicating a higher prevalence of normal cells

within these samples.

We applied our EM optimization procedure to the two counts

matrices, varying the number of assumed clones from C = 3 up to

C = 6. For each value of C, we ran EM 100,000 times from

different random initializations, and we selected the solution with

the highest likelihood (Figure 4). The resulting three-clone solution

identifies two mutations, chr4a and chr9b, that occur in both the

primary and metastatic samples and segregate the remaining

mutations into nine that occurred in the primary tumor and six

that occurred in the metastatic lymph node. The four- and five-

clone solutions further subdivide the primary tumor mutations,

and the six-clone solution separates the two metastatic mutations

into distinct clones.

To better understand the inferred clonal landscape, we

investigated the relationship between clone frequencies and the

anatomy of the three primary and one metastatic tumor sections.

We hypothesized that clone frequencies should vary smoothly

between adjacent subsections, reflecting the physical spread of

successful clonal populations. This hypothesis is supported by the

data (Figure 5 and Figure S1 in Text S1). The trends are most

striking in sections P1 and P2, for which we obtained four separate

subsections. In each case, the primary clone frequencies vary in a

monotonic fashion as we traverse the sample. Given that the EM

inference procedure was provided with no information about

which subsection was derived from which section, nor the relative

orientation of the subsections to one another, the smoothly varying

frequencies among adjacent subsections provides evidence that the

method has successfully identified true clonal variation.

6 Tumor phylogeny
Cancer progression is an evolutionary process in which clones

accrue mutations over time, forming new clones. Accordingly, it

should be possible to organize the clonal progression of a tumor

into a phylogenetic tree with the founder clone at the root. We

therefore investigated whether the clones inferred by our EM

procedure obey some simple phylogenetic constraints, with two

complementary goals. First, because our EM procedure makes no

use of phylogenetic constraints, this analysis can provide further

evidence for the validity of our inferred solutions. Second, the

phylogenetic analysis has the potential to provide significant

insights into the clonal and mutational history of this specific

cancer.

We started with the C = 3 solution to our EM algorithm,

manually constructing a phylogenetic tree in which each node is a

clonal population, and edges are marked with the mutations that

occurred in the evolution from the parent clone to the offspring

(Figure 6A). This particular tree shows two founder mutations,

chr4a and chr9b, occurring prior to metastasis, six mutations

occurring along the metastatic lineage, and nine along the primary
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lineage. This is the only phylogenetic tree that is consistent with

the inferred clonal genotypes.

In contrast, for the solutions inferred from the EM algorithm

assuming C = 4 through 6, we found that it is not possible to

construct a tree without requiring that the same mutation occur

independently along multiple branches. We therefore considered

all possible ‘‘nearby’’ trees (where ‘‘nearby’’ means that, among

the distinct rows of the genotype matrix, the two trees differ by

only one bit) that produce a valid phylogenetic tree with no

repeated mutations. For example, for the C = 4 solution, we

evaluated the likelihood of six nearby trees, yielding log-likelihoods

of 228482, 221282, 27500, 26692, 25659, and 24333 (Table

S2 in Text S1). The highest of these likelihoods is 24333,

compared to 24244 for the solution initially inferred by EM. The

selected solution requires changing only one bit in the genotype

matrix from ‘‘0’’ to ‘‘1’’ (indicated by asterisks in Figure 4). The

resulting phylogenetic tree (Figure 6B) closely resembles the C = 3

tree, except that one mutation initially assigned to the metastatic

clone C3 is instead assigned to clone C2 in the C = 4 tree. Also, the

nine mutations associated with the primary section in the C = 3

tree are further subdivided into three that occur shortly after

metastasis and six that lead to clone C1. Reassuringly, the C = 5

and C = 6 solutions, constructed in a similar fashion (Figure 6C–

D), are largely consistent with this story, each introducing a

subdivision among the existing sets of mutations to produce a

larger set of clones. Among these trees, the only inconsistencies

concern (1) three mutations (chr5, chr9a and chr20b) that occur

later according to the C = 4 solution than according to the C = 5

or C = 6 solutions and (2) two mutations (chr1 and chr4b) that are

assigned their own branch, directly off the normal clone, in the

C = 5 and C = 6 solutions. In practice, the chance that a randomly

generated genotype matrix would produce a valid phylogenetic

tree is vanishingly small (Note S3 in Text S1). Therefore, the fact

that each of our inferred solutions very nearly produce a valid

phylogenetic tree provides evidence for the validity of these

solutions.

We also investigated the extent to which the observed mutation

frequencies obey the phylogenetic tree. In principle, a mutation

that occurs earlier in the evolution of the cancer should have a

higher frequency than mutations that occur later along the same

lineage because a child clone necessarily contains all of the

mutations belonging to its parent clone. This investigation is

hampered, however, by copy number variation. In practice, we

cannot directly compare the allele frequencies of two distal sites

because the observed allele frequencies are actually the product of

mutation frequency and copy number. Empirically, we observe

variation in copy number along the genome and differences in

copy number variation from one subsection to the next (Figure S2

in Text S1). A consistent duplication of a large portion of

chromosome 8 is known to occur commonly in breast cancer [33].

We were lucky, however, that two of our mutated loci occur quite

close to one another on chromosome 9 (chr9a and chr9b,

separated by only 3.3 Mbp). Given the observed data, the

likelihood that a change in copy number occurring between these

two loci is small, thereby allowing us to safely compare the

corresponding mutation frequencies. Across all nine primary

tumor subsections, we observe that the frequency of the parent

mutation (chr9b) is higher than that of the child mutation (chr9a).

Hence, these mutation frequencies are consistent with the inferred

phylogeny.

To assess the stability of our inference, we performed leave-one-

out analysis and compared the inferred phylogenies as follows. We

held out each of the 12 tumor subsections one at a time and

trained the model using the data from only 11 subsections for the

case of C = 4. When samples p1-1 or p1-3 were excluded, the

inferred genotypes were exactly the same as the genotype obtained

from the full data. Excluding any of the other of 10 subsections

resulted in a genotype which was different only in one bit; namely,

the mutation chr4a was predicted to be present in all clones.

However, this difference did not affect the inferred phylogeny

because the change of this bit was in fact required to build a valid

phylogenetic tree (Figure 4). In other words, by excluding any of

the 12 tumor subsections, the inferred genotype always led to the

same valid phylogenetic tree, which suggests that our algorithm is

stable.

Discussion

Once a tumor has been resected, clinicians pay a great deal of

attention to characterizing its anatomy. Features such as necrosis,

extension beyond normal anatomical boundaries, and microvas-

cular invasion convey important prognostic information. In

addition, the cancer cells within any given tumor are frequently

heterogeneous with respect to features such as differentiation state,

the fraction of cells undergoing mitosis (as determined by Ki67

Figure 2. Simulation results. The figure plots the mean (A) genotype error eZ and (B) clone frequency error eP as a function of the number of
subsections. Each mean is computed over 100 simulated data sets. For each data set, the EM optimization is repeated from 10 different random
initializations, and the results corresponding to the largest log likelihood are reported.
doi:10.1371/journal.pcbi.1003703.g002
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Figure 3. Anatomic locations of the sections, and corresponding allele frequencies. The figure shows (top) the anatomic locations of the
three primary and one metastatic sections and (bottom) the corresponding alternative allele frequencies for each subsection. The full coordinates for
each of the 17 loci are provided in Dataset S2.
doi:10.1371/journal.pcbi.1003703.g003
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staining), or (for breast cancer) the fraction of cells expressing

HER-2 or estrogen receptor. The method described here provides

a framework for linking a tumor’s molecular anatomy to its

structural anatomy as well as its phylogenetic evolution.

Several lines of evidence support the validity of the clonal

genotypes and relative frequencies inferred by our model. One

prediction from our phylogenetic reconstruction is that somatic

variants at the trunk will be present at higher frequencies

throughout all tumor subsections than variants appearing at the

branches. While copy number variation across the somatic

genome complicates these comparisons, one of two closely

juxtaposed somatic variants (chr9b) is positioned at the trunk of

our phylogenetic tree, while its neighbor (chr9a) arises in one of

the branches. Consistent with this representation, the variant allele

Figure 4. Inferred clonal genotypes and frequencies. The top table lists, for each of the 17 loci, the inferred clonal genotypes using the EM
procedure, assuming C = 3, 4, 5 and 6. In each case, the normal clone (C0) is omitted from the inferred matrix Z, because its genotype consists entirely
of zeroes by construction. For reference, each distinct genotype pattern per locus is assigned a unique color according to the scheme from Figure 6.
In the table, bits with asterisks were flipped based on the phylogenetic analysis. The corresponding inferred clonal frequencies are listed in the
bottom table, where each block shows a matrix P for a value of C, and C0 denotes the normal clone.
doi:10.1371/journal.pcbi.1003703.g004
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frequencies for chr9b are consistently higher than for chr9a in all

ten tumor subsections examined.

Interestingly, phylogenies can be built from the inferred

genotypes even given the relatively low purity of the tumor

sections: contamination with normal tissue was w50% in 9 out of

12 subsections in our data (Figure 4, C~3). In particular,

although we estimate that the metastatic subsections contained

v20% tumor cells in M1-1 and v30% in M1-2, the correspond-

ing branch of the phylogenies is stable and consistent.

Similar to phylogenetic analysis, reassembly of the tumor

subsections indicates that our assignment of mutations to clones

produces spatial representations that are anatomically reasonable.

With further refinements, our method should enable reconstruc-

tions that layer a tumor’s phylogeny on top of its spatial

organization.

While our results underscore the potential power of this new

method, our study also has several limitations. Our assessments

were confined to heterozygous somatic variants, and did not take

into account the many chromosomal structural changes that were

present in the tumor we examined. A comparison of exome copy

numbers between primary tumor and lymph node indicates that

the vast majority of these chromosomal changes preceded the

divergence shown in our phylogenetic tree (Figure S2 in Text S1).

In theory, one could imagine generalizing our generative model to

take copy number variations into account by replacing the 2 in the

denominator of Equation 2 with a hidden random variable for

each locus, but without some form of aggressive regularization,

this formulation would lead to a prohibitively complex and overfit

model.

Additionally, a key characteristic of our method is the

requirement to specify the number of clones C prior to the EM

inference procedure. It is important to recognize that this choice

should depend upon properties of the data set itself, rather than

fundamental properties of the cancer. After all, each cell division

results in multiple mutations, such that every cancer cell

constitutes a distinct clone. Consequently, a picture of the full

clonal history of a cancer would consist of a phylogenetic tree with

one leaf for each cancer cell. In practice, such a tree would be of

Figure 5. Clone frequencies vary smoothly across adjacent subsections. The panels display the pattern of inferred clone frequencies across
subsections (A) P1, (B) P2, (C) P3 and (D) M1. Each bar plot shows the relative frequencies of tumor clones in the corresponding subsection after
accounting for normal contamination. Clones are numbered as in Figure 4, and the normal clone, C0, is not shown. This figure shows the C~4
solution; Figure S1 in Text S1 shows the C~5 and C~6 solutions.
doi:10.1371/journal.pcbi.1003703.g005
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limited utility and, more importantly, could not be accurately

estimated from any reasonably sized data set. Perhaps the most

useful definition of a tumor clone is a population of cells that

exhibit distinct spatial or functional properties. Our approach

allows the user to specify the number of clones and, hence, the

resolution at which the clonal history is viewed.

Because Clomial does not impose any assumption on the

distribution of mutation frequencies, the number of inferred clones

may not exceed the number of samples; otherwise, the resulting

optimization problem will be under-constrained.

In the particular cancer studied here, the three-clone solution

appears to provide an inaccurate view of the clonal history. The

placement of the chr17c mutation along the path leading to

metastatic clone C2 is surprising, given that this particular locus

has such low counts for both metastatic subsections (2 counts for

subsection M1-1 and 0 counts for M1-2, Table S1 in Text S1).

This apparent anomaly can be explained by the small counts

associated with chr17c in four out of the 10 primary tumor

subsections (3 counts in P1-3, 4 in P1-4, and 21 in each of P2-1

and P2-2). Faced with the choice of what genotype profile to assign

to this particular locus, the inference procedure selected a solution

in which only two subsections, rather than four, are inconsistent.

However, given the flexibility of a 4-clone model, the anomaly is

resolved, and chr17c defines a novel clone C2 that occurs in the

primary tumor samples and is completely absent from the

metastatic samples.

In practice, it may be possible to estimate how many clones the

data set can resolve using a method such as the Bayesian

Information Criterion (BIC), with a smaller BIC value indicating a

better fit to the data [34–36]. This approach has been used

previously for estimating tumor clonal composition [37,38]. BIC

analysis of our model on simulated data suggests that, on average,

the BIC accurately estimates the true number of clones, even in

the presence of sequencing noise (Figure S3A–B in Text S1).

We also computed the BIC for models trained on our real breast

cancer data (Figure S3C in Text S1) and observed a large decrease

in BIC (45%) when C increases from 3 to 4, suggesting that the

C~3 model is too simple to describe the data. However, the

subsequent improvements of the BIC are smaller: 29%, 20%, 9%,

and 3% respectively, as C grows from 4 to 8. In general, one

should avoid increasing the complexity of the model when the BIC

improvement is small because, in such situations, adding to the

Figure 6. Cancer phylogenies. Each panel shows the inferred clonal phylogeny assuming (A) C~3, (B) C~4, (C) C~5 and (D) C~6 clones, where
C0 corresponds to the normal clone. Nodes correspond to inferred clonal populations, and edges are annotated with mutations that occur between
the parent and child clones. Two mutations are grouped into a colored box if they both occur on the same branch in all four phylogenies.
doi:10.1371/journal.pcbi.1003703.g006
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number of free parameters of the model can potentially lead to

over-fitting [39–47]. Note that, as an alternative to a BIC

approach, one could instead take an approach motivated by

cross-validation, as has been explored in the context of matrix

factorization models [48–50].

Running the EM algorithm is very fast. In practice, using a

2.40 GHz processor with 2 GB memory, training a single EM

instance on the real data set takes a few seconds up to several

minutes, depending on the value of the hyperparameter C (Figure

S4 in Text S1). However, because the optimization problem in the

M step is non-convex, many EM instances must be trained from

different random initializations to avoid local optima.

We first noted that Clomial achieved good results on simulated

data using only 10 random initializations when C~3 (Figure 2).

Then, to further assess the appropriate number of EM instances to

run, we revisited the solutions from all of our 100,000 EM

instances, counting how many instances are required to achieve

the best observed model (Figure S5 in Text S1). In practice, while

1000 EM instances is sufficient to find the optimum solution when

C~2 or 3, a larger number of random initializations is required as

the number of clones grows. This is an expected phenomenon

because the complexity of the model grows significantly with C,

resulting in an optimization surface with many more local optima.

Consequently, despite the highly parallel nature of the computa-

tion, scaling up to analysis of larger data set with larger numbers of

clones will likely require improved EM training strategies, such as

noise injection or regularization.

Finally, although we used a simple phylogenetic tree construc-

tion procedure to evaluate the quality of our inferred clonal

genotypes, the EM inference procedure described here does not

explicitly model tumor evolution. Ultimately, we aim to produce a

model that automatically infers not only clonal genotypes and

clonal frequencies, but also the number of clones and the

phylogenetic tree relating them.

Our method differs significantly from other approaches. A

recent characterization of 21 breast cancers defined clones by

clustering mutations with similar variant allele frequencies [9].

The success of this strategy hinges on characterizing the

frequencies of large numbers (hundreds or thousands) of somatic

variants. In contrast, our method can reconstruct clonal phylog-

enies based on accurately measuring alleles of much smaller

numbers of somatic variants. The view afforded by our method

may provide novel insights into tumor biology. In particular,

results from Nik-Zainal and colleagues [9] were interpreted to

indicate that cancers become clinically apparent only after one of

the competing clones has achieved clonal dominance. In contrast

to this ‘‘winner takes all’’ hypothesis, our model suggests that some

cancers might be more accurately regarded as ecosystems, in

which clones may be subject to spatial influences that affect their

competitive fitness, or may even collaborate to support tumor

growth.

An important difference between our method and many other

methods based on clustering [8,9,12] is our explicit probabilistic

modeling of the random selection of normal and variant alleles

during sequencing, according to a binomial distribution. By taking

into account not just the relative frequency of the two alleles but

the separate counts of normal and variant alleles, our model

automatically assigns less importance to a locus with lower

coverage, even if the locus yields the same variant allele frequency

as a high-coverage locus.

While this manuscript was under review, two methods called

PyClone [13] and PhyloSub [51] were published, which do model

allele counts using a binomial distribution. These methods attempt

to simultaneously infer not only clonal genotypes and frequencies,

as Clomial does, but also infer the number of clones and their

phylogeny. Furthermore, PyClone and PhyloSub are not limited,

as Clomial is, to situations in which the number of inferred clones

is less than or equal to the number of available samples. How is

this possible? To make these inferences feasible, these clustering

methods must make certain distributional assumptions about the

data. Specifically, PyClone assumes a Dirichlet Process prior for

clone frequencies, where the base distribution is Uniform ½0,1� and

the concentration parameter is Gamma distributed with shape and

scale parameters equal to 1 and 0:001, respectively. PhyloSub

extends PyClone by using a tree-structured stick-breaking process

[52] to directly account for phylogenetic relationships during the

inference. In principle, these assumptions enable PyClone and

PhyloSub to infer information about a large number of clones

from only a single sample. On the other hand, when multiple

samples are available, Clomial can draw accurate inferences

without requiring these distributional assumptions. In practice, our

comparison showed that Clomial and PhyloSub produce similar

results on three previously described chronic lymphocytic leuke-

mia (CLL) cases [53] (Tables S3–S5 in Text S1).

We note that if ei is the sequencing error rate at locus i, then the

probability of observing a variant allele at this locus in subsection j
is estimated by pi,j(1{ei)z(1{pi,j)ei. In principle, sequencing

noise could be incorporated into our model by replacing pi,j ,

defined in Equation 2, with pi,j(1{2ei)zei in the likelihood and

EM algorithm. However, given the robustness of the current

method to noise (Figures S6 and S3C in Text S1), we opted to

keep our model simple. In future applications, it may be beneficial

to model noise in data produced by sequencing technologies that

exhibit high error rates (w0:02%) such as PacBio RS [54].

The EM algorithm is not the only option for maximizing the

log-likelihood for the observed data. In particular, one could

instead treat both Z and P as optimization variables and seek to

maximize L(XDZ,P) with respect to Z and P. This would amount

to iteratively updating Z and then updating P until convergence,

similar to the iterative algorithms typically used for matrix

factorization models [23–25,50]. However, this alternative ap-

proach would not have any computational advantage in terms of

the update for P, which would still not have a closed-form

solution, and would need to be solved using BFGS-B or an

equivalent approach. Furthermore, the update for Z would be

very complicated under the constraint that Z is a binary matrix.

Therefore, we developed a customized inference algorithm based

on EM.

Whereas genetic testing for cancer patients today focuses on

mutations affecting a relatively small number of cancer-associated

genes, most cancers are sustained by networks of aberrantly

regulated genes that collaborate to promote tumor growth. The

ability to assign mutations to clones, and to layer a tumor’s clonal

content on top of its structural anatomy in space and over time,

can provide new insights into the mechanisms that enable cancers

to invade, metastasize and escape treatment.

Materials and Methods

Ethics statement
This research was reviewed and approved by the Cancer

Consortium Institutional Review Board (IRB) located at the Fred

Hutchinson Cancer Research Center (FHCRC). The FHCRC has

an approved Federalwide Assurance on file with the Office for

Human Research Protections (number 00001920). The Federal-

wide Assurance is a formal written, binding commitment that

assures that the FHCRC promises to comply with the regulations

and ethical guidelines governing research with human subjects, as
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stipulated by the U.S. Department of Health and Human Services

under 45 CFR 46. Because this study involved the use of de-

identified specimens obtained from an IRB-approved repository,

we did not interface with patients. Patient consent was adminis-

tered, in compliance with 45 CFR 46, by investigators who

maintain the repository. Patients gave their consent for their

specimens to be stored in the repository and subsequently used for

research in cancer. The FHCRC IRB deemed that our research

was in concordance with the purpose of the registry and the

patient informed consent.

Breast cancer tissue sample
We obtained breast cancer tissues from the Breast Cancer

Biospecimen Repository of Fred Hutchinson Cancer Research

Center after IRB approval. The patient was a 44 year old pre-

menopausal woman diagnosed with infiltrative ductal carcinoma

(IDC) and ductal carcinoma in situ (DCIS), stage pT1c pN1,

Grade II/III, ER positive, PR positive and Her2 negative. Axillary

lymph node dissection revealed that one out of 13 nodes was

positive for metastatic disease. A total of 5 pieces were obtained

from surgical samples including 1 tissue section from adjacent

normal breast tissue (N1), 3 tissue sections from the primary breast

cancer (P1, P2, P3), and 1 tissue section from the positive axillary

lymph node (M1). Each section is about 1 cm by 1 cm by 0.5 cm.

The tumor content, including both IDC and DCIS, ranges from

40% to 55% in the primary tumor and axillary lymph node tissue

sections based on pathological examination (P1 55% IDC, P2 45%

IDC, P3 40% IDC and 15% DCIS, M1 50% IDC).

Tissue DNA extraction
Each individual section was subdivided into multiple subsec-

tions, and the anatomic locations of all the subsections were

recorded (Figure 3). Using Qiagen AllPrep DNA/RNA Micro Kit,

DNA was extracted from one normal subsection (N1-1), seven

primary subsections (P1-2, P1-3, P1-5, P2-1, P2-3, P3-3, P3-4) and

one metastatic subsection (M1-1). After quantification, all the

DNA samples were subjected to exome capture followed by

Illumina sequencing.

Whole exome sequencing
Next generation sequencing was carried out at the Northwest

Genome Center at University of Washington on the normal

subsection, seven primary subsections, and one metastatic

subsection. For each subsection, one microgram of genomic

DNA was used to construct the random-shearing library per

standard protocol with Covaris acoustic sonication. Libraries then

underwent exome capture using the *36:5 Mb target from

Roche/Nimblegen SeqCap EZ v2.0 (*80,000 exons and flanking

sequence). Since each library was uniquely barcoded, samples

were performed in multiplex. Massively parallel sequencing was

carried out on the HiSeq sequencer.

Read processing
Sequence reads were processed with a pipeline consisting of the

following elements: (1) base calls generated in real-time on the

HiSeq instrument (RTA 1.12.4.2); (2) Perl scripts developed in-

house to produce demultiplexed fastq files by lane and index

sequence; (3) demultiplexed BAM files aligned to a human

reference (hg19) using BWA (Burrows-Wheeler Aligner; v0.5.9)

[55]. Read-pairs not mapping within +2 standard deviations of

the average library size (*125+15 bp for exomes) are removed.

All aligned read data were subjected to the following steps: (1)

‘‘duplicate removal’’ was performed, (i.e., the removal of reads

with duplicate start positions; Picard MarkDuplicates; v1.14); (2)

indel realignment was performed (GATK IndelRealigner; v1.0-

6125) resulting in improved base placement and lower false variant

calls; (3) base qualities were recalibrated (GATK TableRecalibra-

tion; v1.0-6125). All sequence data then underwent a previously

described quality control protocol [56].

Variant detection
Variant detection and genotyping were performed using the

UnifiedGenotyper tool from GATK (v1.0-6125). Variant data for

each sample were formatted (variant call format) as ‘‘raw’’ calls

that contain individual genotype data for one or multiple samples,

and flagged using the filtration walker (GATK) to mark sites that

are of lower quality/false positives, e.g., low quality scores (ƒ50),

allelic imbalance (§0:75), long homopolymer runs (w3) and/or

low quality by depth (QD v5).

Calling single nucleotide variants (SNVs) and indels
Most of the commonly used software for calling SNVs and

indels, including SNVMix [57] and VarScan [58], requires tumor

content w80%. To allow identification of low frequency alleles

that occur in only one or a few subsections, we did not pool all of

the data together. Instead, we designed a method that is

appropriate for multiple samples from one patient, with relatively

low tumor content, ranging from 45% to 55%. At each

chromosomal position (locus), we considered six mutually exclusive

possible outcomes: A, C, G, T, deletion, and unknown. The counts

of these six outcomes at each locus between normal and each of

the multiple tumor subsections were compared with a 2|6
Fisher’s exact test. To correct for multiple testing, we used the

qvalue R package to convert p{values to q{values. Only those

chromosomal loci with qv0:1 in at least one comparison between

normal and tumor samples were accepted for downstream

analysis. This analysis identified 6310 loci.

For each accepted locus, we used a heuristic procedure to identify

which of the six alleles differed between the tumor and normal

sample. For each subsection, we carried out six 2|2 Fisher’s exact

tests, one for each of the six possible alleles. Thus, each such test

compared one allele’s counts to the sum of the counts for the other

five alleles. Using a p-value threshold of 0.01, an allele was declared

to be increased, decreased, or unchanged in the tumor subsection as

compared to the normal sample. The changes that were classified as

‘‘increased’’ and had a normal count of zero were called tumor-

specific mutations. This procedure identified a total of 268 such

tumor-specific mutations, with a mean and median sequencing

depth of 92 and 75, respectively. Corresponding annotations were

obtained from SeattleSeq (http://snp.gs.washington.edu/

SeattleSeqAnnotation137).

In parallel, we also analyzed our data using deepSNV [31] by

comparing the normal subsection to the 8 tumor subsections. We

ran deepSNV on the loci with total coverage across all samples

more than 50, which resulted in the identification of 29 loci with

qƒ0:1. The union of the two lists yielded 281 loci for further

validation (Dataset S1).

Targeted deep sequencing
Mutations were validated by targeted deep sequencing of DNA

derived from one normal subsection (N1-1), 10 primary subsec-

tions (P1-1, P1-2, P1-3, P1-4, P2-1, P2-2, P2-3, P2-4, P3-1, P3-2)

and two metastatic subsections (M1-1 and M1-2). The subsections

were selected to have low normal content and to span the tumor

anatomy. Genomic DNA was prepared as described for the initial

exome sequencing. A HaloPlex probe capture library for selective

capture of 281 target loci was generated with SureDesign (Agilent
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Technologies). Target enrichment for deep sequencing was

carried out with the HaloPlexTM Target Enrichment System

from Agilent Technologies following the manufacturer’s

protocol. Triplicate enrichments were performed for each sample.

Target-enriched samples were sequenced using a MiSeq (Illu-

mina). Of the 281 target loci, 244 were successfully sequenced with

coverage more than 100 reads for the normal sample. The mean,

median, and the standard deviation of the coverage were 1615,

1118, and 1600, respectively (Dataset S2).

All 244 loci were visualized using the Integrative Genomics

Viewer [59,60]. A set of 17 loci were selected based upon three

criteria: (1) at least 3 reads cover the locus in the normal sample,

(2) the variant allele is not present in the normal tissue (allowing for

a few variant counts, which may reflect sequencing error) and (3)

there are no nearby clustered mutations, indicative of sequencing

or mapping error. Independently, the data were also analyzed

using deepSNV. Applying a q{value threshold of pƒ10{6

yielded 19 loci, including all 17 of the initially selected loci. The 17

loci were retained for downstream analysis (Table S1 in Text S1).

Bayesian Information Criterion analysis
We computed BIC using the following formula:

BIC~{2L�z(NCzMC{M)log( Rk k1), ð14Þ

where L� is the expectation of the complete-data log likelihood,

which is maximized in the last M step (see Equations 7 and 13).

Also, (NCzMC{M) represents the total number of free

parameters, and Rk k1~
P
i,j

Ri,j is the total number of counts.

Supporting Information

Dataset S1 Dataset S1 includes, for each of the 281 targeted

loci, the following information: (1) the chromosomal coordinates of

the locus, (2) the variant allele, (3) for the 268 targeted loci

identified by Fisher’s exact test, the number of reads supporting

the mutation and the coverage of the locus in each subsection, (4)

the q{value from the 2|6 Fisher’s exact test, (5) the minimum

p{value from the six 2|2 Fisher’s exact tests, and (6) the q-value

for each of the 29 target regions identified by deepSNV.

(XLS)

Dataset S2 Dataset S2 lists, for each of the 281 sequenced target

regions, the following information: (1) the chromosomal coordi-

nates of the locus, (2) the integer counts for each of the five possible

alleles (A, C, G, T, -, where ‘‘-’’ denotes deletion or insertion) in

each of the ten primary subsections, two metastatic subsections,

and the normal subsection, (3) for each subsection, the deepSNV

p{value for the test that the subsection has a mutation on each

specific locus, and (4) the mnemonic for each of the 17 mutations

used in our inference procedure.

(XLS)

Software S1 Software S1 is an R package called Clomality that

implements the EM algorithm described in this paper.

(GZ)

Text S1 Text S1 includes five supplementary notes, six

supplementary figures and five supplementary tables.

(PDF)
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