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Abstract

Synchronization between neuronal populations plays an important role in information transmission between brain areas. In
particular, collective oscillations emerging from the synchronized activity of thousands of neurons can increase the
functional connectivity between neural assemblies by coherently coordinating their phases. This synchrony of neuronal
activity can take place within a cortical patch or between different cortical regions. While short-range interactions between
neurons involve just a few milliseconds, communication through long-range projections between different regions could
take up to tens of milliseconds. How these heterogeneous transmission delays affect communication between neuronal
populations is not well known. To address this question, we have studied the dynamics of two bidirectionally delayed-
coupled neuronal populations using conductance-based spiking models, examining how different synaptic delays give rise
to in-phase/anti-phase transitions at particular frequencies within the gamma range, and how this behavior is related to the
phase coherence between the two populations at different frequencies. We have used spectral analysis and information
theory to quantify the information exchanged between the two networks. For different transmission delays between the
two coupled populations, we analyze how the local field potential and multi-unit activity calculated from one population
convey information in response to a set of external inputs applied to the other population. The results confirm that zero-lag
synchronization maximizes information transmission, although out-of-phase synchronization allows for efficient
communication provided the coupling delay, the phase lag between the populations, and the frequency of the oscillations
are properly matched.

Citation: Barardi A, Sancristóbal B, Garcia-Ojalvo J (2014) Phase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled
Neuronal Populations. PLoS Comput Biol 10(7): e1003723. doi:10.1371/journal.pcbi.1003723

Editor: Christopher J. Honey, University of Toronto, Canada

Received January 15, 2014; Accepted June 1, 2014; Published July 24, 2014

Copyright: � 2014 Barardi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the European Commission through the FP7 Marie Curie Initial Training Network 289146, NETT: Neural Engineering
Transformative Technologies, the Ministerio de Economia y Competividad (Spain, project FIS2012-37655), and the Generalitat de Catalunya (project
2009SGR1168). JGO acknowledges support from the ICREA Academia programme. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jordi.g.ojalvo@upf.edu

Introduction

Brain function emerges from the collective dynamics of coupled

neurons, the structural connectivity among which enables

correlations between their firing activities. As a result of these

correlations, effective neuronal networks function collectively on a

mesoscopic scale, comprising thousands of coupled neurons that

operate together, giving rise to emergent behavior. In awake

animals, this collective dynamics takes the form of recurrent series

of high and low network activity, corresponding with repetitive

epochs of increased excitation over inhibition followed by boosts of

inhibition. This leads to the appearance of rhythmicity at certain

frequency bands. In particular, oscillations in the gamma-band

(30Hz{90Hz) are observed in several cortical areas in relation

with cognitive tasks [1].

Synchronized oscillations can increase the functional connec-

tivity between neural assemblies by coherently coordinating their

firing dynamics. This hypothesis, known as communication

through coherence (CTC), was proposed [2] as a mechanism by

which gamma-band synchronization could regulate routing of

information between brain areas. Since neuronal oscillations are

associated with the dynamics of the excitatory-inhibitory balance,

they represent periodic modulations of the excitability of neurons,

which are more likely to spike within specific time windows (i.e.

when inhibition is low). If two neuronal populations oscillate with

a constant phase difference, then an effective transmission of

information between the two groups of neurons is achieved

provided the spikes sent by a population reach systematically the

other population at the peaks of excitability. In that way,

modulation of the relative phases of the emerging rhythms might

dynamically generate functional cell assemblies [3–5].

A key requirement of the CTC mechanism is the existence of a

constant phase difference between the two neuronal networks that

reliably allows their binding, favoring communication. This

coordination can be expected to arise from the synaptic coupling

between the neurons of the two populations. But this coupling is

not instantaneous, since propagation times between different

cortical regions can reach up to several tens of milliseconds [6].

Previous CTC studies have mainly concentrated on describing the

dependence of the coherence on the phase lag between the
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neuronal populations [2,3,7], without examining systematically the

relationship between the actual coupling delay and the phase lag at

which the coherence is maximal. In fact, coupled nonlinear

oscillators are known to adjust their phases upon frequency

locking, leading under certain conditions to either in-phase (zero

phase lag) or anti-phase synchronization (p-phase lag) [8]. Anti-

phase patterns in cortical networks, for instance, have been widely

studied [9]. Zero-lag synchronization, in turn, has been experi-

mentally observed between gamma oscillations emerging from

separated brain areas [10–12]. The conditions leading to zero-lag

synchronization in neuronal oscillations are however somewhat

stringent, requiring non-trivial spiking dynamics [13] or complex

network architectures [14,15]. In particular, zero-lag synchroni-

zation between two cortical areas has been shown to be possible

even with long axonal delays [15,16], provided the two areas

interact through a third oscillator, which could correspond to the

thalamus [17,18].

But in contrast with most nonlinear oscillators neuronal

populations are highly complex, since they contain a very large

number of degrees of freedom (corresponding to the individual

neurons), their oscillations are a pure collective phenomenon (the

individual neurons in the population do not oscillate), and they

operate in a broad frequency range. Additionally, neuronal

populations are connected by a large number of axons, and

inhomogeneities in the properties of those axons affect differen-

tially the propagation speed of action potentials and lead to a wide

spectrum of axonal delays rather than a uniform distribution [19].

It thus becomes necessary to study systematically the conditions

under which two such complex oscillators synchronize (i.e. lock

their frequencies), what is the resulting phase difference between

them, how does this phase difference relate with the coupling delay

(and with the frequency band being considered), and how is the

efficiency of the communication between the two cortical areas

affected by the delayed coupling. We address these questions in

what follows.

As mentioned above, within the CTC scenario effective

communication arises when spikes from the emitting neuronal

population reach the receiver population during the windows of

maximum excitability. For this to happen two conditions have to be

met: (1) the two coupled oscillators should be frequency locked, and

(2) the transmission delay, the oscillation frequency, and the phase

difference between the two oscillations should match. In particular,

if the networks and the inter-connectivity is symmetric the second

condition should hold in the two directions of spike propagation.

The time delay (or rather, the distribution of time delays) is fixed as

given by the anatomical connectivity. Therefore, it is the frequency

of the oscillation spectrum what determines the particular phase lag

that meets the matching condition. We have investigated whether

this condition only occurs at specific rhythms, or if it holds at all

frequencies. To this aim, we have represented mathematically two

reciprocally connected identical neuronal populations using con-

ductance-based models for both excitatory and inhibitory cells, and

have studied how the heterogeneous axonal delays between the

populations affect their synchronization.

We have characterized the collective dynamics through a

variable comparable to the local field potential (LFP) recordings

[20]. In agreement with experimental data, the power of the

modeled LFP decays with increasing frequencies [21]. Here we

have focused on the particular dynamical regime in which the

collective oscillations show a prominent contribution in the

gamma range arising from the inhibitory (GABAergic) synaptic

decay time constants [22]. Lower frequency bands contain a

strong component arising from the noisy Poissonian distribution of

interspike intervals (ISI), which affect the synaptic activation and

hence do not reflect the intrinsic dynamics of the network. On the

contrary, higher frequency bands of small amplitude reflect the

fast dynamics of the action potentials, also affecting the synapse

activation time course.

The modeled neuronal networks exhibit other well-known

features of cortical dynamics, such as coexistence of irregular firing

at the single-neuron level with collective rhythmicity at the

population level, arising from the synaptic recurrent connections

between the excitatory and inhibitory neurons [23] (see Figure 1).

The excitatory and inhibitory synaptic currents are balanced by

compensating the higher number of excitatory neurons (80% of

the whole network) with fast spiking inhibitory neurons and with

strong inhibitory synaptic conductances. As a consequence, the

neurons remain excitable but spent most of their time with a

membrane voltage that fluctuates under the firing threshold. The

gamma rhythm emerges from the periodic changes of this

balanced synaptic current, which leads to periodic modulation of

the distance to threshold. We have characterized the global

activity of the network by means of averaging measures such as the

aforementioned local field potential (LFP) and the multi-unit

activity (MUA). We first used these measures to quantify phase

coherence between the oscillatory activity of the two delay-coupled

populations at varying mean axonal delays, observing transitions

between in-phase and anti-phase dynamics. We next used

information theory to quantify the response of one population

(the receiver) to a varying external input impinging originally on

the other population (the emitter). Our results show that

information transmission is enhanced at zero-lag (in-phase)

synchronization, and decreases at long delays for which commu-

nication occurs through anti-phase dynamics.

Results

In-phase synchronization of collective oscillations under
instantaneous coupling

We start by considering an isolated population of 2000 neurons,

of which 80% are excitatory and 20% are inhibitory. Each neuron

forms on average 200 random connections within the network,

and all pairs of coupled neurons exhibit a certain time delay, taken

Author Summary

The correct operation of the brain requires a carefully
orchestrated activity, which includes the establishment of
synchronized behavior among multiple neuronal popula-
tions. Synchronization of collective neuronal oscillations, in
particular, has been suggested to mediate communication
between brain areas, with the global oscillations acting as
‘‘information carriers’’ on which signals encoding specific
stimuli or brain states are superimposed. But neuronal
signals travel at finite speeds across the brain, thus leading
to a wide range of delays in the coupling between
neuronal populations. How the brain reaches the required
level of coordination in the presence of such delays is still
unclear. Here we approach this question in the case of two
delay-coupled neuronal populations exhibiting collective
oscillations in the gamma range. Our results show that
effective communication can be reached even in the
presence of relatively large delays between the popula-
tions, which self-organize in either in-phase or anti-phase
synchronized states. In those states the transmission
delays, phase difference, and oscillation frequency match
to allow for communication at a wide range of coupling
delays between brain areas.
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from a gamma distribution whose scale and shape parameters are

both equal to unity. All neurons receive an external Poisson-

distributed spike train whose instantaneous firing rate follows an

Ornstein-Uhlenbeck process with a mean value set to

7300spikes=s. This input and the excitatory recurrent synaptic

activity are balanced by the recurrent inhibitory synaptic flow,

since the GABAergic conductances are stronger than the

glutamatergic AMPA ones. Furthermore, the inhibitory neurons

fire at higher rates than the excitatory cells. Therefore, the

membrane voltage of the neurons fluctuates below threshold,

occasionally crossing it [24]. Despite the fact that the neurons fire

sparsely and irregularly (see Figure 1A), a rhythmicity emerges

when considering the dynamics of multiple action potentials

elicited by thousands of neurons [23]. These oscillations represent

the transient synchronized activity of neuronal assemblies, and can

be revealed by population measures such as the local field

potential (Figure 1B) and the multi-unit activity (Figure 1C),

defined in the Materials and Methods section. In the computa-

tional model used throughout this work, the collective oscillatory

dynamics exhibit a prominent gamma rhythm (Figure 1D), whose

period is mainly determined by the decay time constant of

inhibition [23,25,26].

Another way of understanding the emergent gamma oscillations

is by looking at the coupling between the MUA and the LFP.

Since the LFP mainly captures the synaptic currents impinging on

the pyramidal neurons (see Materials and Methods section), it is a

measure of the excitability of the network. Hence, at those

intervals in which inhibition is low (i.e. the inhibitory synaptic

current fades away), the probability of firing is high. Due to the

recurrent connections between the excitatory and inhibitory

neurons, both the initiation and termination of the population

bursts occur with a certain periodicity. Here this oscillatory pattern

is around *45Hz due to the inhibitory decay time constants [22].

The LFP and MUA are mutually locked to this frequency

(Figure 2A), and the spikes occur with higher probability close to

the troughs of the LFP (i.e. the minimum of inhibition, Figure 2B).

We next consider two bidirectionally coupled neuronal

networks of the type described above. Connections between the

two areas are excitatory: 60% of the excitatory neurons of each

network project randomly to 10% of the neurons belonging to the

other pool. Although these parameter values cannot be general-

ized to any two separate brain areas, for which the specific

connectivity might determine their interactions, it is known that

the probability of connection decays with distance [27–29]. Here

we assume that the connectivity within a network is 2-fold the

connectivity across networks, neglecting heterogeneity across

neurons. Moreover, in order to obtain a certain amount of phase

coherence between the two networks, we consider that the

majority of excitatory neurons project onto the other network. A

stronger (weaker) coupling will lead to unrealistically higher (lower)

phase coherence values [30]. We have introduced time delays in

the coupling between networks, assuming that the inter-areal

delays are larger than the intra-areal delays due to long-range

connections. We also consider that the inter-areal delays are

distributed heterogenously across the system [19], following a

gamma distribution whose mean and variance increase systemat-

ically with the mean delay [15]. This accounts for the variability of

transmission delays through axons with heterogeneous properties

Figure 1. Collective oscillations of a population of 2000 neurons. (A) Raster plot of 2000 neurons (in red the excitatory and in black the
inhibitory neurons) for a 1500{ms interval. (B) LFP time trace in a 1500{ms interval for an external mean rate of 7300 spikes=s. (C) MUA signal
calculated counting the number of spikes of the neural population per unit time. (D) LFP power spectrum calculated using the Welch method
averaged over 200 trials. The gray horizontal bar delimits the gamma peak band (30Hz{52Hz).
doi:10.1371/journal.pcbi.1003723.g001
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(see Materials and Methods for the definition of the gamma

distribution parameters). The mean inter-areal delay shown in the

figures, hereafter termed taxo, accounts for the latency between the

generation of a spike in a presynaptic neuron from one network

and the elicitation of a postsynaptic potential in the other network.

When coupled, the LFP power spectra of the two networks show

the same gamma profile as in the absence of coupling, while the

corresponding time series exhibit a substantial degree of correla-

tion (Figure 3A inset). We next asked whether the broad spectrum

of these neuronal oscillations allows for partial phase coherence to

arise in specific frequency regions. Our phase coherence measure,

described in the Materials and Methods section, quantifies

between 0 and 1 the reliability of the phase difference Dw between

pairs of oscillations, at a given frequency. Figure 3B shows the

phase coherence between the LFPs of the two populations for

instantaneous coupling (taxo~0ms). According to the regions of

statistical significance observed experimentally [30], we considered

phase coherence values above 0:08, which mainly occurs within

the gamma band around the peak of the LFP power spectrum

(horizontal gray bar in Figure 3B). This threshold corresponds to

around four times the average phase coherence of the uncoupled

case (see black dashed line in Figure 3B).

We have also computed the time lag tlag between the two

signals (i.e. the time shift separating two equal phases of the

coupled LFPs arising from each population) for all frequencies

(Figure 3C), still in the case taxo~0ms. This time lag is only

meaningful for significant phase coherence values that lead to a

consistent Dw across trials (red crosses in Figure 3B). The figure

shows that for frequencies at which the phase coherence is

significant, the LFP gamma rhythms of the two populations

oscillate in phase (tlag&0), i.e. the two LFPs are synchronized at

zero lag. The error bars in Figure 3B,C represent the standard

deviation across trials of phase coherence and tlag respectively,

and are only shown for the region of significant phase coherence,

since outside that region the phase distribution is very broad due to

the variability across trials. Even within the significant region the

standard deviation of tlag can be seen to decrease with increasing

values of phase coherence, which confirms the inverse relation

between phase coherence and the broadness of the phase

distribution.

Phase-coherence transitions for increasing coupling
delay

The fact that the two populations synchronize at zero lag when

the coupling delay is zero is to be expected, and we now ask what

happens in the presence of time delays. Figure 4 shows the phase

coherence spectrum between the LFP oscillations for three

different values of taxo. While phase coherence is again significant

only around the gamma band (Figures 4A,C,E), the time traces

look very different for small and large delays, with mostly in-phase

dynamics for small delays (Figure 4B), whereas the populations are

mostly in anti-phase for large delays (Figure 4F). For intermediate

delays, interestingly, two coherence peaks appear (Figure 4C), and

the corresponding time series exhibit both in-phase and anti-phase

episodes (Figure 4D). These results indicate that in-phase

dynamics seems to persist for non-zero coupling delays, eventually

transitioning to an anti-phase regime with smaller, although still

significant, phase coherence. Both types of dynamics seem to

coexist for intermediate delays.

In order to verify these conclusions, we have extended the

analysis to a range of axonal delays, from 0ms to 30ms, calculating

the phase shift for the frequencies corresponding to both the peak

of the power and the phase coherence spectra, termed fmax.

Figure 5A shows the value of the frequency at which the power

spectrum is maximum, Fc, as a function of the coupling delay taxo.

Note that varying taxo does not change the frequency peak of the

Figure 2. Phase locking between LFP and MUA of a network. (A) LFP-MUA phase coherence for a single population. (B) Angle histogram of
the phase difference between the LFP and MUA. The measures are averaged over 200 trials.
doi:10.1371/journal.pcbi.1003723.g002

Phase-Coherence Transitions between Delay-Coupled Neuronal Populations

PLOS Computational Biology | www.ploscompbiol.org 4 July 2014 | Volume 10 | Issue 7 | e1003723



LFP power spectrum, which remains around 45 Hz for all

coupling delays. We have added a gray bar delimiting the

maximum power spectrum range within the gamma band

corresponding to the extent of this local peak, highlighting the

fact that the LFP gamma rhythm expands over a range of

frequencies between approximately 30{52Hz.

On the other hand, taxo clearly affects the frequency fmax at

which phase coherence is maximal, as shown by Figure 5B. In

particular, fmax exhibits a discontinuous jump around a coupling

delay *9ms, where two peaks of phase coherence coexist

(consistent with the result shown in Figure 4C). The phase

coherence values themselves are shown in color code in Figure 5C

for different frequencies (vertical axis) and for varying taxo

(horizontal axis). We have superimposed in that plot the line

shown in panel A, which marks the maximum of the LFP power

spectrum (black dashed line) within the gamma range, Fc, as well

as the whole extent of the peak (vertical gray bar). The local peaks

of phase coherence fmax (black lines) corresponding to panel B are

also superimposed to Figure 5C.

For taxo~0ms (as in Figure 3) the peak of phase coherence

almost coincides with the peak of power spectrum. For increasing

taxo, below 9ms, only the coherence peak at the lower frequency is

significant, whereas between 10ms and 22ms only the coherence

peak at the faster frequency is above threshold. The transition

between these two regimes involves a coexistence of the local

coherence peaks. We also observe that in both branches the

frequency at which phase coherence is maximum fmax decreases

with the axonal delay, becoming clearly smaller than the gamma

frequency peak Fc (dashed black line in Figure 5C). Making taxo

greater than 22ms, which approximately matches the period of the

power spectrum peak Tc (1=Fc&22ms), a new branch of phase

coherence appears, thus leading again to coexistence of the two

regimes. This emerging pattern is shown in Figure 5C for large

inter-areal axonal delays and it is not marked in Figure 5B because

the phase coherence is under the threshold. Hence, as taxo exceeds

Tc, the scenario of relative phases is repeated but now with cycle

skipping.

The phase coherence patterns shown in Figure 5C are affected

by the inter-areal delay variability. If taxo is fixed to a constant

value, the region of coexistence between the in-phase and anti-

phase coherence patterns increases, and for delays approaching

the oscillation period Tc the new peak emerging at Fc (detectable

in Figure 5C and corresponding to in-phase dynamics in

Figure 5E) becomes significant. This is shown in Supplementary

Figure S1C, which displays the phase coherence for constant

taxo~20ms (blue line), in comparison with the case taxo~0ms
(black line) and the one with taxo drawn from a gamma

distribution with mean 20ms (red line).

Figure 3. Collective oscillations of two coupled bidirectionally neural populations. The inter-areal axonal delay taxo between the two
neuronal pools is zero. (A) LFP time trace of the two populations in a 1000{ms interval, for an external mean rate of 7300spikes=s. The inset shows
the averaged time correlation of 200 LFP pairs. (B) Phase coherence between the LFPs of the two networks for varying frequency. The measure is
averaged over 200 trials. The black dashed line represents the threshold (0:08) above which the phase coherence is considered significant (in red). (C)
Time shift between the LFP oscillations of the networks for varying frequency. Red crosses show the time shifts corresponding to the frequencies at
which the phase coherence is above threshold. The time shift is calculated as tlag~Dw=2pfmax, where Dw is the phase difference at the frequency fmax

of maximum phase coherence. The gray bar delimits the gamma peak band (30Hz{52Hz). The measure is averaged over 200 trials.
doi:10.1371/journal.pcbi.1003723.g003
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According to Figure 5C, maximum values of phase coherence

fmax appear at different frequencies for each taxo. Significant

values of phase coherence at a certain frequency can occur

provided that there is a certain amount of spikes being

simultaneously and reliably sent between the two networks. Since,

by construction, the two neuronal pools are identical, the

information flow can only be symmetrically transmitted for an

in-phase, Dw~0, and/or an anti-phase, Dw~p, relationship

between the two LFPs. Therefore, for any taxo we can obtain

the corresponding fmax that satisfies 2ptaxofmax~0 or p. From this

expression we can thus expect that larger taxo leads to smaller fmax

and that the anti-phase configuration is given by taxo equal to half

the period corresponding to fmax, not to be mistaken with Tc=2,

half the gamma period and equal to 11 ms.

To verify the aforementioned remarks we have next calculated

the time shift tlag between the two coupled LFPs as
Dw

2pf
. Figure 5D

shows that, at the peak of the LFP power spectrum (here f ~Fc),

tlag is zero for low (0msƒtaxoƒ5ms) and large delays

(17msƒtaxoƒ26ms). On the other hand, for intermediate

(6msƒtaxoƒ16ms) and large delays (taxo§27ms) tlag corre-

sponds to half the period of the gamma rhythm (Tc=2~1=(2Fc)

&11ms). As mentioned before (see Figure 2), at frequency Fc the

MUA and the LFP in each population are frequency locked.

Therefore, for any axonal delay, the presynaptic spikes arrive

within the troughs of the postsynaptic LFP. We can interpret these

sharp transitions from in-phase to anti-phase oscillations, appear-

ing with a periodicity given by Tc, as the way by which the system

keeps the symmetry for any taxo.

Since the maximum of phase coherence fmax does not coincide

with Fc, we have also obtained tlag along the peaks of phase

coherence. Figure 5E confirms that only two patterns arise: in-

phase and anti-phase, which can simultaneously occur in the

region between 9ms and 10ms. The lowest frequency branch

corresponds to tlag&0ms, and thus to zero-lag synchronization.

On the other hand, the highest frequency branch corresponds to a

tlag value that matches half the period of the corresponding

frequency, i.e. 1=(2fmax) (labeled by a red line in the plot), and thus

corresponds to anti-phase synchronization.

The full values of the time shift for all frequencies are shown in

color code in Figure 5F. The region of zero-lag synchronization

disappears as the delay increases, giving way to a region of anti-

phase synchronization. Due to the oscillatory dynamics, for taxo

greater than Tc, frequencies close to the gamma peak are again

Figure 4. Phase coherence of two coupled bidirectionally neural populations for three different values of the inter-areal axonal
delays taxo. Phase coherence spectrum and corresponding representative time series for taxo~3ms (A,B), 9ms (C,D), and 17ms (E,F). The inter-areal
delays follow a gamma distribution with a mean equal to corresponding inter-areal axonal delay taxo. The gray bars on the x-axes of plots A, C, and E
delimit the gamma peak band (30Hz{52Hz). The phase coherence measure is averaged over 200 trials.
doi:10.1371/journal.pcbi.1003723.g004
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compatible with an in-phase pattern. However, it is important to

note that phase coherence is strongly decreased as the cycle is

repeated again (taxo§ Tc), probably due to loss of temporal self-

coherence of the oscillations themselves.

Thus, provided that the LFP-LFP phase coherence is significant,

an effective coupling exists at which the two populations oscillate

with a constant phase difference, which depends on the frequency

and on the axonal delay. In particular, only two possible phase

shifts are allowed, namely zero-lag (tlag&0ms) and an anti-phase

(tlag&1=(2f )) synchronization.

Figure 5C shows that the frequency at which maximum phase

coherence occurs, fmax, might not correspond to the predominant

gamma rhythm at Fc*45Hz, although it is close to it and within

the extent of the gamma peak (gray vertical bar). Thus, phase

coherence is bounded by the region in which spikes are still phase

locked to the LFP (Figure 2). The separation between fmax and Fc

is clear when taxo varies between 0 and Tc=2. Phase coherence is

achieved at slower rhythms that still reliably carry the action

potentials. Hence, the spikes elicited by each population system-

atically reach the other one at its excitability windows. Moreover,

lower fmax implies larger excitability windows and allows the

networks to be synchronized in phase. For larger taxo, corre-

sponding slower frequencies lying outside the gamma peak do

not efficiently transmit spikes, due to the bounded region in

which MUA is locked to the LFP. Therefore, at large taxo

the system moves towards an anti-phase configuration, where

the time lag matches and compensates for the inter-areal axonal

delay.

Figure 5. Phase coherence and time shift behavior in the case of bidirectional symmetric coupling for increasing inter-areal axonal
delays taxo. (A) Frequency Fc(black arrow) at which the power spectrum is maximum and extent of the gamma peak (gray bar) (results for only one
population are shown, since they are the same for both populations). (B) Frequencies at which the phase coherence exhibits local maxima, fmax. (C)
Phase coherence, in color code, as a function of frequency (y-axis) and of the inter-areal axonal delay taxo (x-axis). (D) Time shift tlag at the peak
frequency Fc of the power spectrum. (E) Time shift tlag at fmax, the frequencies labeled in (B). The red line corresponds to 1=(2fmax). The labels in
panels B and E correspond to panels of Figure 4. (F) Time shift tlag , in color code, as a function of frequency (y-axis) and of the inter-areal axonal delay
taxo (x-axis). The solid black lines in panels C and F show fmax (as in panel B) and the dashed black line represents the power spectrum maximum
within the gamma range shown in panel A. In plots A, B, and C the total extent of the gamma peak is displayed as a vertical gray bar. In plot D, the
arrows point at the gamma period and half of it, Tc being 1=Fc . The measures are averaged over 1000 trials for each taxo.
doi:10.1371/journal.pcbi.1003723.g005
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From phase coherence to communication
The LFP oscillations studied so far are complex rhythms that

convey a wide range of frequencies with a predominant

component in the gamma range. We have seen before that the

axonal delay taxo determines the relative dynamics of the coupled

neuronal pools, which fall in either an in-phase or an anti-phase

pattern. The phase relationship set by the two LFP signals is

proposed to regulate the effectiveness of communication [2]. In

other words, a stable phase difference Dw determines the response

of a neuronal population to inputs perturbing directly another

area. Therefore, depending on the phase difference Dw between

two coherent LFPs, the response of the unperturbed population

will replicate to a certain extent the response of the other

population to the perturbation. We next study how, in the two

different synchronization scenarios described above, inter-areal

axonal delays affect information transmission during temporal

windows, in which the phase difference and the frequency cannot

be independent of each other. Note here the difference between

phase coherence and effective communication. Rigorously speak-

ing, communication occurs whenever spikes from one population

arrive to the other one, and this is guaranteed provided that there

is some coupling across networks. In contrast, effective commu-

nication refers to a more specific situation in which information

about the stimulus is being carried by the coupled populations.

We can obtain a good proxy for communication by quantifying

the response of a neuronal population (the receiver) to a

perturbation that affects indirectly its dynamics via a second

population coupled to it (the emitter), and which receives directly

the perturbation. The success in communication can be observed

in the transient amplification of the neuronal oscillations of the

receiver [31]. The perturbation simulates different stimulus

features, and consists of increases in the mean firing rate of the

background synaptic activity impinging on a subpopulation of the

emitter. We have examined, at different inter-areal axonal delays

taxo, how well the LFP and MUA power spectra of the receiver

convey information about the external stimulus being applied to

the emitter.

Since the connectivity within and between the two neuronal

networks exhibits a certain degree of clustering, exciting a

subpopulation of adjacent excitatory neurons from an area in

the emitter population triggers a response in a well-defined

subpopulation of neighboring neurons in the receiving population.

We have chosen a set of different input intensities,

S~8300,8800,9300,9800,10300,10800,11300 spikes=s, affecting

400 long-range excitatory neurons from the emitter population

during a 2-second time window. As a consequence of this

perturbation, the amplitude of the LFP power spectrum increases

with the strength of the perturbation (Supplementary Figures

S2A,B, S3A,B and S4A,B), without altering the position of the

gamma frequency peak (Fc*45Hz), consistent with the results

were reported in [20].

Perturbing one of the populations breaks the symmetry of the

system, since now the firing activity of the emitter is enhanced with

respect to the receiver. As shown by the maps of phase coherence

plotted in Figure 6, an increase of the external firing rate boosts

phase coherence between the two LFPs. Moreover, the two

frequency bands where phase coherence is significant merge into a

single region at larger values of S concentrating closer to the

gamma frequency peak Fc*45Hz. The corresponding tlag values

are shown in Figure 7 (note the different ranges of the axes, which

now concentrate on the significant values of phase coherence to

better observe the transition to the out-of-phase regime).

At the gamma frequency peak Fc the system undergoes a

transition from in-phase to anti-phase dynamics as taxo increases.

Small taxo lead to time shifts tlag*0 of the emitter’s LFP relative

to the receiver’s LFP (Figure 7A-B) and thus, the two signals

oscillate approximately in phase. However, the route to the anti-

phase configuration changes as S is strengthened. In particular

higher S trigger smoother transitions and the anti-phase regime

becomes narrower. Figure 8B shows tlag values tracked at the

gamma frequency peak Fc~45Hz. Here, larger S leads to a

leader-laggard configuration in which the emitter LFP precedes

the receiver LFP by a time lag that equals the axonal delay (see

dashed black lines). Supplementary Figures S2C,D, S3C,D and

S4C,D show the phase coherence and time shift for taxo~3,9, and

17ms (the same delays as Figure 4) for the whole range of

frequencies.

The dependence of the phase coherence on taxo for different S
values is shown in Figure 6A–D, corresponding to a shift from a

symmetric to an effectively asymmetric coupling. As the extra

perturbation is applied only to one of the populations, the effective

coupling approaches an unidirectional connectivity, although the

structural links are not changed. This can be further explained by

carrying on the same analysis in a structural unidirectional

scenario, in which only one population projects onto neurons from

the other network. Supplementary Figure S5A shows that

increasing the delay taxo of the unidirectional transmission, the

networks keep the phase difference constant at approximately the

same frequency close to the power spectrum peak frequency. This

represents a leader-laggard configuration and is similar to what

happens in Figure 6D, where an over-excited subpopulation is

driving the coupling between the two networks, still bidirectional

but strongly asymmetric. The decrease of phase coherence with

axonal delay is due to the variability in delay times: fixing taxo to a

constant value of 20ms leads to maximal phase coherence values

comparable to the case of no delay (Supplementary Figure S1A).

Figure S5B shows that for increasing inter-areal axonal delays taxo,

the time shift between the two synchronized networks (at

frequencies corresponding to the significant phase coherence of

Figure S5A) increases as long as taxo is smaller than half the period

of LFP oscillation (1=fmax) and then approaches zero, thus leading

again to a transition from in-phase to anti-phase synchronization

at frequencies close to that of the power spectrum peak Fc.

Phase coherence can influence the transmission of information

between neuronal populations. As mentioned in the Introduction,

the CTC hypothesis [2] suggests that phase relations between

coupled areas modulate the response of a receiver area to

presynaptic input coming from an emitter area. In order to

maximize this response, the axonal delay taxo, the frequency f of

the oscillations and the phase difference Dw should verify

Dw~2ptaxof . When this relationship holds, spikes fired in the

emitting population at a specific phase of the signal (for instance at

the troughs of the LFP, which correspond to the maxima of

excitability) arrive at the receiving area at the same phase (and

thus at the same excitability maximum), triggering a maximal

response in the receiving area. On the contrary, if Dw does not

fulfill the relationship given above (or if it randomly varies),

effective communication will not be achieved [31]. This condition

is relevant at the frequencies at which the MUA and the LFP are

phase locked (Figure 2). Otherwise, the troughs of the LFP do not

correspond to intervals of maximum firing within the same

population, and the peaks of MUA do not occur reliably with the

same periodicity as the LFP.

In order to quantify the efficiency of communication, we have

computed the mutual information I(S; Rf ) (defined in the

Material and Methods section) between the power spectrum Rf

at a frequency f of both the LFP and MUA of the receiver and the

set of stimuli S applied to the emitter. This definition of
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information does not require any assumption about the stimulus

features being encoded by the neural signals [32,33]. I(S; Rf )

quantifies the reduction of the uncertainty in predicting the

applied stimulus given a single observation of the triggered

response, and is measured in units of bits (1bit means a reduction

of uncertainty of a factor of two). Several experiments have been

done with this tool to characterize information transmission in the

primary visual cortex of macaques in response to a naturalistic

stimulus [33]. Several other studies have been performed using the

LFP power spectrum as a measure of mutual information, showing

the usefulness of this approach both experimentally and compu-

tationally [20]. The advantages of this approach are described in

detail in [34,35].

To compute I(S; Rf ), we have run extensive simulations to

properly estimate the conditional probabilities used in mutual

information measures. The techniques adopted in order to reduce

the bias error of the estimation of conditional probability due to

the finite number of samples are explained in the Material and

Methods section. Figure 9 shows that the mutual information is

non-negligible only within the gamma range (pv0:05; bootstrap

test), in a narrow region around the peak of the power spectrum

Fc. This is consistent with the fact that the emitter encodes the

different stimulus strengths in the gamma band, i.e. other regions

of the LFP power spectrum are not affected (Figure S2–S4A).

Therefore, information transmission occurs within the gamma

peak (the mutual information spectrum of the two networks,

computed from the LFP, for taxo~3,9,17ms is plotted in

Supplementary Figures S2E–S4E). Moreover, functional interac-

tions between coupled neuronal populations can be maximized

if their phase difference is close to zero, i.e. for short axonal

delays.

While I(S; Rf ) is lower when computed for the LFP power

spectrum (Figure 9A) than for the MUA power spectrum

(Figure 9B), it decreases monotonically in both cases for increasing

axonal delays. This behavior contrasts with the one shown in

Figure 5C, in which the maximum phase coherence in the absence

of stimulus occurs at varying frequencies fmax for different taxo.

Moreover, fmax lies outside the significant mutual information

spectrum. However, at large enough S the phase coherence

pattern (Figure 6D) closely resembles the mutual information

dependency with taxo (Figure 9), since here fmax~Fc.

Mutual information encoded in the power spectrum is bounded

to the frequencies at which spikes are maximally frequency locked

(Figure 2). Although this measure does not take into account the

Figure 6. Phase coherence in the case of bidirectional asymmetric coupling for increasing extra inputs. Phase coherence between LFPs
of the two networks, in color code, as a function of frequency (y-axis) and of the inter-areal axonal delay taxo (x-axis) for different stimuli: (A) 8300, (B)
9300, (C) 10300, (D) 11300 spikes=s. The measures are averaged over 200 trials for each taxo and stimulus.
doi:10.1371/journal.pcbi.1003723.g006
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phase difference between the two LFP signals, their dynamics

clearly rely on their relative time lag. Therefore, significant phase

coherence is needed in order to reliably connect in time the

excitability time windows of both networks, but it is not sufficient

to achieve a maximal response of the receiver. In order to meet

this second requirement, the frequency at which phase coherence

is obtained needs to carry a precise timing of the action potentials,

otherwise the presynaptic current will not elicit a postsynaptic

response. Even the emitter population can only encode the

stimulus strength as variations in the amplitude of the gamma

frequency peak, since it is at Fc that changes in the LFP represent

synchronized alterations in the MUA.

A symmetric coupling scenario allows for two emerging stable

regimes, in-phase Dwlag~0 and anti-phase Dw~p, while in an

asymmetric regime the most excitable network leads the dynamics

(tlag~taxo). Therefore, in the presence of axonal delays, the latter

case is not compatible with the in-phase/anti-phase condition.

The symmetry breaking allows for tlag to follow taxo, increasing

phase coherence at the gamma rhythm and thus the receiver’s

response. In summary, efficient communication needs a sufficient

locking between the spikes being transmitted and the LFP, the

carrier of this information. This is maximized at the gamma

frequency peak Fc, here *45Hz, at which changes in the power

spectrum due to external stimuli become particularly evident. The

coupling axonal delay taxo modulates the level of phase coherence

within all the gamma range, and strong driving of one of the

populations precisely favors the *45Hz frequency channel. As

observed above, the variability of axonal delay affects the regions

where the phase coherence maximum is significant. Supplemen-

tary Figures S6A,B show the LFP and MUA mutual information

in the unidirectional case. As in the case of bidirectional coupling,

the flow of information occurs at Fc, where the MUA and LFP are

frequency locked and the emitter encodes the stimulus strength.

Specially, mutual information is higher at small taxo, when the

networks are synchronized in phase. In the unidirectional

configuration the mutual information shows a strong dependence

on taxo, as in the case of phase coherence discussed above. This is

due again to the variability of axonal delays. For a fixed time

delay, the mutual information in the unidirectional coupling case

does not show a substantial decrease for increasing taxo

(Supplementary Figure S1B). The bidirectional configuration also

exhibits a less significant decrease of the mutual information

Figure 7. Time shift in the case of bidirectional asymmetric coupling for increasing extra inputs. Effective time shift in milliseconds
between LFPs of the two networks, in color code, as a function of frequency (y-axis) and of the inter-areal axonal delay taxo (x-axis) for different
stimuli: (A) 8300, (B) 9300, (C) 10300, (D) 11300 spikes=s. The measures are averaged over 200 trials for each taxo and stimulus.
doi:10.1371/journal.pcbi.1003723.g007
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maximum for constant increasing taxo (Supplementary Figure

S1D). This is consistent with the phase coherence peak

corresponding to in-phase dynamics that persists for increasing

constant delay (Supplementary Figure S1C).

Our results show that phase coherence cannot be taken as a

precursor of information transmission. Phase coherence can be

achieved in a broad range of frequencies around the gamma peak

Fc (Figure 6). Therefore, the spikes impinging on each network are

able to bound the two populations in a constant phase relationship,

constrained by the symmetry of the effective coupling. However, in

order to communicate, presynaptic spikes must trigger a postsyn-

aptic response. This requires that the presynaptic action potentials

are synchronized in time to facilitate the integration of the synaptic

currents. Hence, changes in the LFP and MUA amplitude occur

precisely at Fc and mutual information does the same (Figure 9).

Stimulus that are able to modify the response of a population within

a wider frequency range (i.e. not frequency specific) could possibly

alter the situation here described.

Figure 8. Time shift behavior at the peak of power spectrum for increasing inter-areal axonal delays for different extra inputs. Effect
of the external input perturbation on the coupled neuronal populations for increasing stimulus strengths S~8300,8800,9300,9800,10300,10800,
11300 spikes=s. (A) Frequency of the power spectrum peak. (B) Time shift corresponding to spectral peak frequency. The dashed lines show the ideal
cases for which tlag~taxo and its anti-phase equivalent.
doi:10.1371/journal.pcbi.1003723.g008

Figure 9. Mutual information carried by LFP and MUA power spectrum of the receiver. Mutual information between the set of stimuli
S~8300,8800,9300,9800,10300,10800,11300 spikes=s and the neural response given by the LFP (A) and MUA (B) power spectra for increasing
coupling delays taxo . The gray arrow in the color scale refers to significance threshold (pv0:05, bootstrap test). The measures are averaged over 200
trials for each taxo and stimulus.
doi:10.1371/journal.pcbi.1003723.g009
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Discussion

Here we have examined how heterogeneous inter-areal

synaptic delay influences the coupling between the collective

dynamics of two neuronal populations. To that end, we first used

population measures such as the local field potential and the

multi-unit activity, by analogy with experimental studies, to

capture the collective oscillatory dynamics of individual neuronal

populations. In the presence of excitatory coupling, the LFP and

MUA activities of two identical delayed neuronal networks

oscillate in the gamma range, with a significant broad peak

between 30 and 52Hz, which does not depend on the axonal

delay taxo. The emergence of this gamma peak in the isolated

populations is due to the recurrence between excitatory and

inhibitory synaptic activity, as revealed by the phase locking

between the LFP and MUA signals (Figure 2). In contrast with

the power spectrum, phase coherence is strongly affected by the

axonal delays between the populations. We have seen that in-

phase and anti-phase patterns occur at various frequencies for

different ranges of taxo, with high values of phase coherence

occurring at frequencies below the gamma frequency peak Fc

(Figure 5).

The phase coherence pattern shown in Figure 5C corresponds

to a pure symmetrical connectivity, in which both the structural

and functional coupling are equal in both directions (in contrast

with the unidirectional case of Figure S5). The reciprocity between

the feedback and feedforward pathways across cortical areas is not

an unrealistic assumption [36], although the specificity of such

synapses might differ in each direction in order to account for the

different effects of the top-down and bottom-up projections. Here

we show that increasing axonal delays taxo lead to either an in-

phase or anti-phase synchronization with a vanishing maximal

phase coherence at frequencies fmax below Fc although lying

within the gamma peak. Hence, in basal conditions, there is always

a certain reliable phase relationship, provided taxo is small, relative

to the period Tc.

The interesting point raised by the communication through

coherence hypothesis [2], is whether phase coherence can forecast

efficient communication between two populations in the presence

of a stimulus. According to the modulatory role of the top-down

pathway, attention can determine which visual cues we are aware

of [37,38]. In principle two situations can arise: either a stimulus

catches our attention (such as an unexpected noise or object) or we

are being attentive to an expected stimulus (such as waiting the

traffic light to turn green). In the first situation the communication

outline between a primary cortical area and the associative areas is

driven by the stimulus, while in the second case it is due to the

internal cognitive state. The firing activity in visual areas has been

shown to significantly increase even in the attentive state prior to

the stimulus presentation [39]. Hence our results, in which we

progressively increase the firing rate impinging on one population,

could be viewed as arising from the alteration of the underlying

attentional state.

The experimental study of [38] shows that a neuronal cell

assembly in V4 is phase coherent with an area in V1 that responds

to a selected stimulus, while it is not with a V1 area that is not

driven by the input. Here we have not modeled a competitive

scenario between two networks. Instead we have focused on the

mechanisms by which two neural pools can modulate their

communication when they are simultaneously oscillating in the

gamma band. We have quantified the efficiency of communication

between the two neuronal networks as the ability of a population

to encode information of an input which perturbs directly another

coupled population. Mutual information measures between either

the LFP or MUA power spectrum and the set of applied stimuli S
show that significant values concentrate around the gamma

frequency peak (& 45Hz). Mutual information decreases for long

inter-areal axonal delays, and is slightly lower when the neural

response is characterized by the LFP power spectrum than by the

MUA power spectrum.

Despite the fact that the LFP reflects the afferent and local

synaptic currents within a given neuronal network, and that the

MUA only captures the action potentials within this network, these

two signals are closely related. As mentioned above, the gamma

LFP rhythm reflects the dynamics of the excitatory balance.

Increases in inhibition silence the spiking activity and therefore the

MUA signal, although the GABAergic current is enhanced.

Decreases in inhibition boost the spiking activity and therefore the

MUA signal, although the GABAergic current is reduced. The

peak at 45Hz in the LFP-MUA phase coherence (Figure 2) reveals

this phase locking between the two signals.

The arrival of each set of presynaptic spikes perturbs the

postsynaptic LFP and might or might not elicit a postsynaptic

suprathreshold response (captured by the postsynaptic MUA)

depending on the mean distance to the excitatory threshold of the

populations. Bursts of activity occur at each pool with a

periodicity that fluctuates within the gamma band and are locked

to the troughs of the LFP at this frequency. According to the

CTC hypothesis, maximum communication requires that spikes

from each population reach the peaks of excitability of the target

area simultaneously in both coupling directions. Thus, efficient

communication is restricted to the gamma peak, as revealed by

the mutual information (Figure 9) and preferentially at relatively

small taxo. This condition is only met for in-phase or anti-phase

synchronization of the gamma rhythm: small axonal delays taxo

are able to tie two LFP troughs only at zero-lag synchronization,

while larger taxo require anti-phase synchronization. In principle,

as taxo increases zero-lag synchronization could again mediate

communication by skipping one cycle. However, due to loss of

phase consistence, mutual information decays with increasing

taxo.

Here we show that phase coherence emerges spontaneously due

to the excitatory coupling between areas without the need of

further constrains (Figure 5C). Higher stimulation of a particular

population (the emitter), which enhances the LFP power spectrum

amplitude of the gamma peak, increases the range of phase

coherence to larger axonal delays (Figure 6D). The delay

determines the phase shift between the two signals, with the

emitter leading the oscillations. According to [38], phase

coherence is revealing communication in the sense of spike

propagation, which in our case extends to frequencies within the

gamma peak. However, efficient communication in the sense of the

information encoding in the postsynaptic response, is restricted to

a narrower band (Figure 9) that maximizes spike synchronization.

Adopting a spectrum of delays with increasing variability for

increasing values of taxo, instead of an (unrealistic) constant delay,

affects quantitatively the results of phase coherence and mutual

information but does not produce any strong qualitative change in

the findings of the paper. However the effect of variability cannot

be ignored, given the dispersion of axonal delays observed in

experimental studies [19].

Figure 10 shows a schematic diagram of the two oscillatory

LFPs filtered around the gamma frequency peak

(1=Fc~Tc~22 ms) with the bursts of spikes locked at their

troughs in agreement with Figure 2. For a delayed coupling, zero-

lag synchronization does not lead to a symmetric configuration

demanding that the two oscillations are reciprocally influenced at

the same phase. Therefore the system rapidly shifts toward an
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anti-phase synchronization at which taxo roughly equals half of

the period of the LFP (Figure 10B). Importantly, when the

symmetry of the system is broken (for instance by perturbing just

one of the populations), the possible stable solutions are no longer

the in-phase or the anti-phase regime. In this case, phase

coherence can be achieved through a leader-laggard configura-

tion in which the time lag equals the inter-axonal delay. Without

the symmetry constraint, this situation is achieved at the gamma

frequency peak, for which the spikes of each population are

preferentially locked to the LFP and changes in their power

spectrum are maximized.

In conclusion, we have studied two neuronal populations

coupled synaptically with non-negligible delays. Our modeling

results show that the populations organize their joint collective

dynamics in patterns of in-phase or anti-phase synchronization,

depending on the delay. Unidirectional couplings, either structural

or functional, lead to a leader-laggard configuration with an out-

of-phase synchronization determined by the axonal delay. Our

study shows the dichotomy between phase coherence and

communication. Whereas phase coherence arises due to LFP

phase perturbations through the propagated spikes, communica-

tion is caused here by an increase in the firing response. The first

occurs at different frequencies for every taxo in order to conserve

the functional connectivity. The second requires the spikes to be

tightly locked to the LFP and at a faster frequency Fc to enable

spike integration, and hence a signal response that can be

synaptically propagated.

Materials and Methods

Computational model
We consider two populations of 2000 neurons, 80% of which

are excitatory while the remaining 20% are inhibitory [40]. Each

neuron connects on average with 200 other cells through only

chemical synapses. The structural connectivity is built according

with the Watts-Strogatz small-world algorithm [41]. The rewiring

probability is set to 0:5, so that the connectivity shows a certain

degree of clustering, which favors the connections between

neighboring neurons. Coupling between the two networks is

mediated by 60% of the neurons of one population making

random long-range excitatory projections with 10% of the neurons

belonging to the other population. Here we assume that the

connectivity within a network is 2-fold the connectivity across

networks, neglecting heterogeneity across neurons. Moreover, in

order to obtain a certain amount of phase coherence between the

two networks, we consider that the majority of excitatory neurons

project onto the other network. A stronger (weaker) coupling will

lead to unrealistically higher (lower) phase coherence values [30].

We introduced a synaptic transmission delay within and among

the networks, taken from a gamma distribution, assuming that

internal delays (taken from a gamma distribution whose scale and

shape parameters are fixed to 1) are smaller than the inter-area

delays. The axonal delays, termed taxo in the paper, stand for the

time between the generation of a spike in a presynaptic neuron

from one network and the elicitation of a postsynaptic potential in

Figure 10. Carriers of information and signals. Diagram of two oscillatory LFPs filtered around the power spectrum peak (&45Hz), with a short
spike train locked at their troughs for different taxo: (A) taxo~3ms, representing zero-lag synchronization and (B) taxo~9ms, representing anti-phase
synchronization.
doi:10.1371/journal.pcbi.1003723.g010
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the other network. These delays are taken from a gamma

distribution whose mean and variance increase with increasing

taxo. We choose the scale parameter of the distribution equal to

unity, so that the shape parameter equals taxo. In this way the

coefficient of variation (CV) decreases for increasing mean as

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
mean
p

. In our analysis we systematically vary taxo between

0ms and 30ms.

Each neuron is dynamically described by the Hodgkin and

Huxley (HH) model. The dynamics of the membrane voltage is

given by:

C
dV

dt
~{gNam3h(V{ENa){gkn4(V{Ek)z

{gL(V{EL)zIextzIsyn,
ð1Þ

where C~0:25nF (0:50nF) is the membrane capacitance for

inhibitory (excitatory) neurons, the constants gNa~12:5mS,

gK~4:74mS, and gL~0:025mS are the maximal conductances

of the sodium, potassium, and leakage channels, respectively, and

ENa~40mV, EK~{80mV, and EL~{65mV stand for the

corresponding reversal potentials. According to the HH formula-

tion, the voltage-gated ion channels are described by the following

set of differential equations

dm

dt
~am(V)(1{m){bm(V )m, ð2Þ

dh

dt
~ah(V )(1{h){bh(V)h,

dn

dt
~ah(V )(1{n){bn(V)n,

where the gating variables m(t), h(t) and n(t) represent the

activation and inactivation of the sodium channels and the

activation of the potassium channels, respectively. The voltage-

dependent transition rates are

am(V )~0:1
(Vz16)

1{ exp ({(Vz16)=10)
, ð3Þ

bm(V )~4 exp ({(Vz41)=18),

ah(V )~0:07 exp ({(Vz30)=20),

bh(V )~ 1z exp ({V=10)½ �{1,

an(V )~0:01
(Vz20)

1{ exp ({(Vz20)=10)
,

bn(V )~0:125 exp ({(Vz30)=80):

Given that m activates rapidly, we replace it by its steady-state

value m?~
am

amzbm

.

In Equation (1) Isyn is the synaptic current coming from the

neighboring neurons impinging on a neuronal cell:

Isyn(t)~gsyn(t)(V (t){Esyn) ð4Þ

where gsyn(t) is the synaptic conductance and Esyn is the reversal

potential of the synapse. For positive values of Esyn the synapse is

depolarizing or excitatory (Esyn~0mV for glutamate receptors),

otherwise it is hyperpolarizing or inhibitory (Esyn~{70mV for

GABA receptors). In the equation (4) the synaptic conductance is

described by:

gsyn(t)~
ĝgsyn

tdecay{trise

e

{t{tj
tdecay {e

{t{tj
trise

" #
, ð5Þ

where tdecay and trise are the decay and rise synaptic time,

respectively, and ĝgsyn is tuned in order to obtain a balance between

excitation and inhibition. The constant ĝgsyn is set to maintain the

postsynaptic potential (PSP) amplitudes within physiological

ranges. All parameters values can be found in [26,42].

In equation (1) Iext represents an heterogenous Poisson train of

excitatory presynaptic potentials with a mean event rate that varies

following an Ornstein-Uhlenbeck process (see Supplementary

Figure S7). This incoming external current mimics the direct input

from any other area external to the network considered here. The

instantaneous rate, l(t), of the external excitatory train of spikes is

generated according to an Ornstein-Uhlenbeck process, as

considered in [20]:

dl

dt
~{l(t)zs(t)

ffiffiffi
2

t

r
g(t) ð6Þ

where s(t) is the standard deviation of the noisy process and is set

to 0:6 spikes=s. t is set to 16ms, leading to a power spectrum for

the l time series that is flat up to a cut-off frequency

f ~
1

2pt
~9:9Hz. g(t) is a Gaussian white noise.

The model has been integrated using the Heun algorithm [43],

with a time step of 0:05ms. All simulations represent 2:0 seconds of

activity. The connectivity, initial conditions and noise realization

were varied from trial to trial.

LFP and MUA
We quantified the activity of the network in two different ways.

We calculated the multi-unit activity (MUA) as the total number of

spikes per unit time in the population, and the local field potential

(LFP) as the sum of the absolute values of the excitatory and

inhibitory synaptic currents acting upon the excitatory neurons,

averaged over this population [20]:

LFP~ReSDIAMPADzDIGABADT, ð7Þ

where S:::T denotes the average over all excitatory neurons. The

term IAMPA accounts for both the external excitatory heteroge-

neous Poisson spike train and the recurrent excitatory synaptic

current due to the network, while IGABA corresponds to the

recurrent inhibitory synaptic current. Re represents the resistance

of a typical electrode used for extracellular measurements, here

chosen to be 1 MV.
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Spectral analysis
We computed the power spectral density of LFPs and MUAs

using the Welch method: the signal is split up into 256 point

segments with 50% overlap. The overlapping segments are

windowed with a Hamming window. The modified periodogram

is calculated by computing the discrete Fourier Transform, and

then computing the square magnitude of the result. The modified

periodograms are then averaged to obtain the PSD estimate,

which reduces the variance of the individual power measurements.

The code has been implemented in MATLAB. Spectral quantities

are averaged over 200 trials and phase coherence over 1000 trials.

Phase coherence
Phase coherence is calculated as in [30]:

Cxy(f )~D 1NXN

n~1

Sxy(f ,n)

DSxy(f ,n)DD, ð8Þ

where x and y denote the two signals, and Sxy(f ,n) is the cross-

spectrum between them. Since in each trial the cross spectral

density is normalized by its amplitude, each term of the sum is a

unit-length vector representation of the phase relation Dw(f ,n). In

other words, Dw(f ,n)~wy{wx is the phase lag between the two

signals at frequency f in the data segment n. Hence Cxy(f )

quantifies how broad is the distribution of Dw(f ,n) within the 2p-

cycle. Averaging Dw(f ,n) across all N data segments provides a

mean angle Dw(f ). In our work Dw(f ) is converted into a time

shift, termed tlag in the paper, dividing by the corresponding

frequency t(f )~
Dw(f )

2pf
. This quantity measures the time separa-

tion between an LFP maximum in one population and the

following maximum belonging to the other population.

Mutual information
An important mathematical tool to quantify information

transmission in noisy systems is provided by information theory.

We calculate the Mutual Information I(S; R) between the

stimulus S and the response R as follows. The broadband LFP

signal reproduces the variations in neural population activity over

a wide range of time scales [44]. Thus LFPs signals are useful to

qualitatively characterize mechanisms of information processing,

because it is possible through them to verify if there are priviliged

time scales for information processing. We can think that

information is spread over all frequencies, or that each frequency

contributes separately to the information representation. Given

that we are interested in how the collective dynamics of the

population carries information, we quantify the neural response

Rf as the power of either the LFP or the MUA at frequency f , and

we consider as stimuli different external firing rates impinging on

one of the two populations. We compute the information between

the stimulus S and the response Rf as:

I(S; Rf )~
X

s

P(s)
X

rf

P(rf Ds) log2

P(rf Ds)

P(rf )
, ð9Þ

where P(s) is the probability of presenting stimulus s (equal to the

inverse of the total number of different external firing rates,

namely of stimuli), P(rf ) is the probability of observing power rf

across all trials in response to any stimulus, and P(rf Ds) is the

probability of observing power rf at frequency f in response to a

single stimulus s. I(S; Rf ) quantifies the reduction of uncertainty

about the stimulus that can be gained from observing a single-trial

neural response, and we measured it in units of bits (1 bit means a

reduction of uncertainty of a factor of two) [35]. This measure

allows us to evaluate how well the power Rf of either the LFP or

MUA encodes the stimulus at a certain frequency f .

To facilitate the sampling of response probabilities, the space of

power values at each frequency was binned into 6 equipopulated

bins [33]. We used seven different firing rates of the external

Poisson-distributed input, for a time T~2s. An important issue to

be solved regarding the calculation of the theoretical mutual

information is that it requires knowledge of the full stimulus-

response probability distributions, and obviously these probabilities

are calculated from a finite number of stimulus-response trials. This

leads to the so-called limited sampling bias, which corresponds to a

systematic error in the estimate of information. We used the method

described in [45] to estimate the bias of the information quantity

and then we checked for the residual bias by applying a bootstrap
procedure in which mutual information is calculated when the

stimuli and responses are paired at random. If the information

quantity is not zero (it should be in the case of non finite samples),

this is an indication of the bias and the bootstrap estimate of this

error should be removed from the mutual information. After

applying these procedures, the information quantity estimation

could be defined as significant. Several toolboxes provide different

bias-correction techniques, which allow accurate estimates of

information theoretic quantities from realistically collectable

amounts of data [46,47]. In order to accomplish those tasks, we

used the Information Breakdown Toolbox (ibTB), a MATLAB

toolbox implementing several information estimates and bias

corrections. It does this via a novel algorithm to minimize the

number of operations required during the direct entropy estimation,

which results in extremely high speed of computation. It contains a

number of algorithms which have been thoroughly tested and

exemplified not only on spike train data but also on data from

analogue brain signals such as LFPs and EEGs [47].

Supporting Information

Figure S1 Phase coherence for constant inter-areal
delay. (a) Phase coherence between the two LFP oscillations in

the unidirectional coupling configuration when taxo~0ms (black

line), taxo~20ms (blue line) and taxo is taken from a gamma

distribution of mean 20ms (red line). (b) Mutual information

between the set of stimuli S~8300,8800,9300,9800,10300,10800,
11300 spikes=s and the neural response given by the LFP in the

same unidirectional coupling configuration. (c) Phase coherence

and (d) mutual information in the bidirectional coupling

configuration. Phase coherence measures are averaged over

1000 trials. Mutual Information measures are averaged over 5
sets of 200 trials for each stimulus.

(EPS)

Figure S2 Effect of external stimulation for small
coupling delay. (a) LFP power spectrum of the directly

stimulated population for different external rates (8300,
8800,9300,9800,10300,10800,11300 spikes=s). (b) LFP power

spectrum of the second population. (c) Phase coherence between

the two LFPs for different external rates. (d) Effective time delay

between the two pairs of LFP oscillations at frequencies where the

phase coherence is significant for different external rates. (e)

Mutual information between the LFPs of the two populations. Red

dashed line corresponds to significance threshold (pv0:05;

bootstrap test) for information. The mean inter-delay between

the pools is &3ms. The measures are averaged over 200 trials.

(EPS)
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Figure S3 Effect of external stimulation for intermedi-
ate coupling delay. The meaning of the plots is the same as in

Suppl. Fig. S2. The mean inter-delay between the pools is here

&9ms.

(EPS)

Figure S4 Effect of external stimulation for large
coupling delay. The meaning of the plots is the same as in

Suppl. Fig. S2. The mean inter-delay between the pools is here

&17ms.

(EPS)

Figure S5 Phase coherence and time shift in the case of
unidirectional coupling. (a) Phase coherence, in color code, as

a function of frequency (y-axis) and of the inter-areal axonal delay

taxo (x-axis) in the case of unidirectional coupling from the emitter

to the receiver. (b) Time shift tlag, in color code, as a function of

frequency (y-axis) and of the inter-areal axonal delay taxo (x-axis)

in the case of unidirectional coupling from the emitter to the

receiver. The measures are averaged over 1000 trials consistently

with the symmetric coupling.

(EPS)

Figure S6 Mutual information in the case of unidirec-
tional coupling. Mutual information between the set of stimuli

S and the LFP (A) and MUA (B) power spectra for increasing

coupling delays taxo when the coupling is unidirectional from the

emitter to the receiver. Note the different colorbar scales in the two

cases. The gray arrow in the color scale refers to significance

threshold (pv0:05, bootstrap test). The measures are averaged

over 200 trials for each taxo and stimulus.

(EPS)

Figure S7 External population input. Time-varying rate of

Poissonian spike trains representing the external inputs to a

neuron in the network (black). The mean firing rate is shown in

blue. The noise is modeled as an Ornstein-Uhlenbeck process.

(EPS)
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