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Abstract

Understanding microbial nutritional requirements is a key challenge in microbiology. Here we leverage the recent
availability of thousands of automatically generated genome-scale metabolic models to develop a predictor of microbial
minimal medium requirements, which we apply to thousands of species to study the relationship between their nutritional
requirements and their ecological and genomic traits. We first show that nutritional requirements are more similar among
species that co-habit many ecological niches. We then reveal three fundamental characteristics of microbial fastidiousness
(i.e., complex and specific nutritional requirements): (1) more fastidious microorganisms tend to be more ecologically
limited; (2) fastidiousness is positively associated with smaller genomes and smaller metabolic networks; and (3) more
fastidious species grow more slowly and have less ability to cooperate with other species than more metabolically versatile
organisms. These associations reflect the adaptation of fastidious microorganisms to unique niches with few cohabitating
species. They also explain how non-fastidious species inhabit many ecological niches with high abundance rates. Taken
together, these results advance our understanding microbial nutrition on a large scale, by presenting new nutrition-related
associations that govern the distribution of microorganisms in nature.
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Introduction

Microbial nutrition influences global ecosystems, food produc-

tion, and human disease. However, most microbes in nature are

difficult or impossible to cultivate, and have thus traditionally been

nearly impossible to study [1]. Recent cultivation-independent

methods such as metagenomic sequencing have changed this,

revealing inner mechanics of microbes in samples from whole

environments, even if these microbes cannot be individually

accessed. This has inspired several thousand studies over the last

few years, which have begun to extract order out of previously

inscrutable ecosystems [2,3,4,5].

Meanwhile and in parallel, broad insights into microbial

lifestyles have begun to emerge through a number of new

computational strategies [6,7,8,9]. Particularly notable is Genome-

Scale Metabolic Modeling (GSMM), which allows analysis of the

full metabolic requirements of microorganisms, but until recently

was restricted to a selected group of intensively studied microor-

ganisms [10,11]. GSMMs have been used in the past to determine

potential nutrient needs of organisms, including attempts to

determine minimal nutrient requirements of Haemophilus influ-

enza [12] and the neglected tropical parasite Leishmania major
[13], and critical (i.e., impossible-to-replace) functions in Esche-
richia coli [14]. Media prediction methods have also been used

recently in context of automated model building efforts [15].

A breakthrough in GSMM modeling occurred with the

development of model-SEED, a resource of automatically built,

functioning GSMMs for thousands of microbes, ranging from the

barely to the exhaustively studied (the SEED: [16,17]). SEED

models have been used to analyze metabolic capacities of dozens

of species of the antibiotic-producing phylum Actinobacteria

[18,19], and have also been combined with large-scale ecological

data to reveal cooperation and competition patterns among

microbes, including a previously unobserved phenomenon in

which unidirectional loops are formed among sets of organisms

that each require a metabolite produced by another [7]. The

detection of such patterns requires large scale data and the ability

to integrate it in a meaningful fashion – a capability that is only

now, through these new tools, becoming available.

It is in the context of these new capabilities that we use an

expanded set of several thousand SEED models to investigate

systems features of the ecological lifestyles of microorganisms,
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searching for new potential associations that relate central

metabolic and ecological variables to the minimal nutritional

needs of microbes. We focus on minimal needs because many

microorganisms in nature are oligotrophs, i.e., they cannot survive

in rich media [20,21]. We first develop a method to predict

minimal growth media as a kind of specific nutritional signature

for these organisms. This method is akin to the ‘minimal reaction

sets’ method of Burgard et al. [22], which determines the smallest

number of metabolic reactions that can be active while still

enabling biomass production over a certain target level. We apply

a similar methodology but focus on minimizing the number of

exchange reactions, which allows us to determine the smallest

number of compounds that can be taken up by a cell while still

enabling some target production of biomass. We next compare

these nutritional signatures across organisms from different

ecological niches, and find a striking similarity between patterns

of environmental co-growth and minimal nutrient sets. We then

explore our minimal nutritional predictions in the context of

various genomic and environmental factors, and develop new

insights into the relationships between microbial nutritional

fastidiousness (i.e., the complexity and specificity of nutritional

needs of an organism), environmental versatility, interspecies

cooperation, and environmental co-growth. These insights hint at

fundamental patterns that might govern microbial growth, and lay

a foundation for future development of model-guided chemically

defined growth media.

Results

MENTO, a predictor of microbial nutritional fastidiousness
In order to relate microbial nutrition to ecological distributions

and lifestyles, it was first necessary to develop a nutritional

predictor that could be universally applied across many organisms.

Keeping in mind that many (perhaps most) microbes in nature are

oligotrophs [23], we chose to focus on the minimal nutritional

needs of microorganisms. Developing a minimal medium predic-

tor in itself is an important basic question that could have a broad

and significant impact in microbiology [21].

To develop such a predictor, we leveraged genome-scale

metabolic models from SEED and developed a new algorithm,

the Minimal ENvironment TOol (MENTO), to predict minimal

nutritional requirements for microorganisms. MENTO employs a

mixed-integer linear programming (MILP) algorithm with a

GSMM in order to determine the least number of compounds

possible to be in an environment while still enabling growth of a

specific microorganism. Production of a nominal level of biomass

is enforced during this procedure, which ensures that all of the

components needed for cell growth can be produced (see

methods). The number of individual compounds in a minimal

medium computed by MENTO is a natural measure of nutritional

fastidiousness, as a higher number of compounds in the computed

environment/medium denotes that an organism is more fastidious,

i.e., that it requires a larger set of specific nutrients to survive (and

hence is a nutritional specialist, whereas less-fastidious organisms,

which would typically have small MINENVs, are nutritional

generalists).

We observed that minimal environments computed by

MENTO contain two types of metabolites: a unique core of

critical metabolites that must be present in any predicted minimal

or non-minimal growth media environment for a given microor-

ganism, and then a periphery of ‘replaceable’ metabolites that

provide essential elements to the microorganism in the given

solution but may not appear in other, equally minimal (in terms of

total number of nutrients) media solutions. To standardize

predicted minimal environments for cross-species analysis, we

therefore developed a set of unique minimal environment

predictions for each species (hereafter referred to as MINENVs),

which contain the number of compounds predicted by MENTO

to be the minimal possible, but preferentially include low

molecular weight compounds for nutrient sources (this is achieved

by solving a second MILP problem, which reduces the total

molecular weight of compounds in an organism’s MINENV, while

not exceeding the number of compounds predicted by the first

MILP optimization in MENTO – see Methods).

The MINENVs were thus predicted aspiring to find the simplest
basic compounds that organisms can be predicted to grow on. All

subsequent analyses are based on these unique, simplified

MINENVs unless otherwise noted. Overall, MENTO was applied

to compute the constitution of the MINENVs and critical

metabolites for 2529 microorganisms in SEED, and the results

can be seen in Tables S1–S3, with an analysis of the essentiality of

the different components provided in Figure S1 in File S3. We

found these MINENVs to be relatively invariant to small changes

in a metabolic model (single gene removals in E. coli only altered

the minenv in 6% of cases, and changed the size of the MINENV

in only 4% of cases), and so serve as a reasonable yardstick for

comparison across species.

Comparing predicted MINENVs to known experimental
lab media

Media have been developed in the past for culturing a large

number of microorganisms in the lab. To test and validate our

minimal environment predictions, we reconstructed known

compositions of defined media for a subset of microorganisms in

our dataset from published media in the Leibniz Institute DSMZ

media/strain collection (see Methods). We then compare our

predicted minimal environments to these known experimental lab

media to determine if MINENVs we predict follow the trends of

actual medium compositions.

It was important to first understand the degree to which

compounds we predicted to occur in MINENVs are common in

established lab media, and to understand where possible

Author Summary

Understanding microbial nutrition is critical for under-
standing microbial life, and thus has a major influence in
many areas of biology. In recent years, the traditional
methods of studying microbial nutrition, which rely on
culturing bacteria and assessing their nutritional needs
through extensive experiments, have been augmented by
the development of genome-scale metabolic models,
which enable in-depth analysis and prediction of nutrition
for a few well-studied organisms. Recently, a pipeline was
developed for generating genome-scale metabolic models
automatically (the SEED). Here, we leverage models built
from this pipeline in order to develop a novel predictor of
microbial minimal medium requirements, which we then
apply broadly for thousands of microbes across the tree of
life. We first show that nutritional requirements are more
similar among microorganisms that co-habit many eco-
logical niches. We then use our medium predictions to
examine the fastidiousness of organisms (i.e., their need
for complex/specific media), and suggest an explanation
for certain observed features of microbial abundance
patterns. This study is one of the first to leverage genome-
scale models on a large (.1000 species) scale, and sets the
potential for a new host of strategies for understanding
microbial nutrition and ecology in the future.

Microbial Fastidious Predictor Reveals Growth and Nutritional Trends
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discrepancies lay. We therefore compared the frequency of

appearance of metabolites in the MINENVs we had computed

versus the frequency of their appearance across all fully defined

media in the DSMZ media database, a set that includes 791

distinct media. Metabolites shared between MINENVs and the

DSMZ media were more abundant in both datasets than

metabolites that were not shared (p = 5.6e-5 and p = 7.6e-8 in

ranksum tests on frequencies in MINENVs and DSMZ media,

respectively). Furthermore, among the 90 metabolites shared

between the two datasets (out of 227 in DSMZ and 372 in the

MINENVs), the frequency of metabolite appearance across the two

spaces correlates significantly (Spearman rho = 0.48, p = 1.8e-6;

see Figure 1a).

To better understand the roles of different metabolites, we

manually classified metabolites in the set shared by the DSMZ

media and the MINENVs into typical biological and chemical

roles (non-defined media components, such as ‘yeast extract’ were

excluded from this analysis). Notably, the most prevalent

metabolites in both datasets are metal ions, followed by coenzymes

(see Figures 1a and 1b). Nucleic acid compounds, such as

nucleotides and nucleosides, tend to appear frequently in

MINENVs but not in DSMZ media, as do amino acids

(Figure 1a), whereas simple alcohols tend to be more prevalent

in DSMZ media than in MINENVs. Amino acids also came up as

the most differentiating metabolites between organisms living in

different ecological environments and lifestyle categories (see

Figure 1. Metabolite prevalence in u-minenvs across organisms. (A) Frequencies of appearance are compared for all metabolites shared
between the DSMZ known lab media and minenvs. Each metabolite is classed into one of 4 categories, as noted, and a trendline is shown. (B) The
most common metabolites in minenvs and DSMZ media are listed, along with their compound class and their frequency in both spaces. Metabolites
are sorted based on the sum of DSMZ media usage and minenv usage.
doi:10.1371/journal.pcbi.1003726.g001
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analysis in File S1). These observations point to areas in which

SEED metabolic models should be refined, but also areas of

potential improvement in developing oligotrophic lab media, such

as the increased usage of amino acids. The full results of this

analysis are provided in Table S1 in File S2.

There was of course no guarantee that the MINENVs we

predict, which are not unique among minimal media, would look

like the lab media, which are chemically defined but are not

necessarily minimal. Nevertheless, we expected that there would

be some trend of similarity of MINENVs and DSMZ media per

microorganism. To directly test this, we recalculated MINENVs

for each microorganism, this time preferentially choosing

compounds that are indeed present in the DSMZ media collection

as nutritional sources for that strain (see methods). Comparing the

re-calculated MINENVs versus the DSMZ media for all 71

DSMZ lab media on which organisms in our MINENV dataset

grow, we found that MINENVs are closer to the proper DSMZ

medium per microorganism than expected by chance (p = 0.003 in

a non parametric test of # significant p-values across the set of 71;

see methods). This small but significant trend indicates that the

calculated MINENVs do capture some of the DSMZ features.

However, more work will be required in the exchange capabilities

of the SEED models before they are able to fully and reliably

recapitulate known lab media.

MINENVs are predictive of viable media compositions,
but are not highly selective between organisms

To assess the predictive potential of the MENTO algorithm, we

used MINENV predictions to form minimal lab media for each of

5 commonly grown heterotrophic bacteria: Escherichia coli,
Agrobacterium tumefaciens, Bacillus subtilis, Pseudomonas aeru-
ginosa, and Serratia marcescens. We transferred the predictions to

lab-realizable media using them as a base, and considering typical

metabolite concentrations from M9 minimal medium (e.g., see

formulation of P. aeruginosa medium in Figure S4a–b in File S3).

We then experimentally grew each of these microorganisms in

microwell batch cultures in each of the media to assess the

computational predictions (See Figure S4c in File S3 and

methods). Reassuringly, each microorganism grew on the medium

based on its own MINENV prediction. However, we far under-

predicted growth of microorganisms on media not designed for

them (only 6 of our 17 negative predictions turned out to be

correct). This result may partially be a reflection of an intrinsic bias

towards nutritional flexibility among heterotrophic microorgan-

isms (such as the bacteria that we tested), but it also may point to

trend of higher true nutritional flexibility than our models predict.

To check whether inaccuracy in the predictions may have

arisen because of errors in the SEED models, we also assessed

growth in silico in human curated models of E. coli, B. subtilis,
and P. aeruginosa on the five lab media. These models predicted

significant growth under many more media conditions than the

SEED models (consistent with what was seen in vitro), but

displayed less precision, and were not overall better predictors (see

Figure S4c in File S3). However, the higher numbers of positive

growth phenotypes among these models supports the hypothesis

that the SEED models tend to be more pessimistic predictors of

growth, and thus that they may require more improvements

before they can reliably predict the selectivity of new media. It is

also acknowledged that even in the best studied bacteria, not all

nutrient scavenging pathways have been characterized [24], and

the automatic gap-filling of SEED models is focused on biomass

production but does not attempt to incorporate all potential

carbon sources, as this would often require addition of an

unacceptably large number of reactions to fill gaps [16].

Metabolic requirements are more similar among
environmentally co-growing organisms

Organisms that co-grow in an ecological environment must

make do with the same set of nutrients. Therefore, we expected

that organisms sharing many ecological niches would have similar

minimal nutritional needs. To test this, we mapped microorgan-

isms from the SEED database to operational taxonomic units

(OTUs) from Greengenes, a database of ecological distributions of

microbes. Distributions of microorganisms as reported in Green-

genes have been grouped previously into ecological environments

(see [7,25], and methods). We binned organism pairs based on

similarity of their ecological distributions, and within each

ecological distance bin, we assessed the percent of organism pairs

whose MINENVs are similar above some threshold (MINENV

and greengenes similarities were calculated by Jaccard metrics; see

methods). Using these criteria, we found a strong correlation

between similarity of MINENVs and similarity of ecological

distributions for organism-organism pairs [e.g., r$0.70, p,1e-14

in Spearman test with MINENV similarity thresholds of 30–70%;

see Figure 2, and methods; if we removed insufficiently sampled

ecological distance bins (i.e., those with less than 1000 org-org

pairs out of the possible ,3 million), we obtained significant

correlations even up to MINENV similarity threshold of 99%

(rho = 0.54, p = 1.9e-4)].

Having established this trend, we next explored the association

between nutritional needs of organisms and co-growth within

individual environments. To do this, we formed ‘‘aggregated’’

MINENVs for groups of microorganisms by taking the union of

their MINENV metabolites, i.e., by including in an aggregate

MINENV all compounds present in all of the MINENVs of

organisms making up the aggregate. We observed that aggregate

MINENVs computed for two groups of microorganisms from

within the same environment tend to be more similar than

aggregate MINENVs computed from two random sets of organisms

(p = 3.8e-3 in t-test for lower average distance of MINENVs of

within- vs. outside-environment organisms across 43 environments,

using half the number of organisms per environment to form

groups; see Figure 2b and methods; also re-confirmed using only 5

organisms to form the aggregate MINENVs, as shown in Figure S5

in File S3). Finally, we observed that organisms from within an

environment grow in silico on the aggregate media of that

environment more often than randomly picked organisms (see

Figure 2c; p = 3.9e-2 in t-test for difference in survival using FBA,

and p = 8.3e-12 for a model-free test using DSMZ media, as shown

in Figure 2d and explained in methods). Taken together, these

results indicate that the minimal nutritional needs of organisms

correlate strongly with ecological co-growth, and highlight this

property as a potential avenue for developing new growth media for

yet uncultivable microorganisms.

Metabolic requirements reflect the breadth of ecological
distributions

The size of a given MINENV denotes the minimal number of

distinct metabolites an organism needs in order to proliferate.

Thus, MINENV size of a given organism can be interpreted as a

measure of its nutritional fastidiousness, which is a useful yardstick

for comparison with other features of microbial lifestyle. One

trend we were interested in investigating is the relationship

between fastidious growth requirements and environmental

versatility, with the hypothesis that more fastidious microorgan-

isms will display less diversity in the environments they live in than

less fastidious ones. Certain strong exemplars of this hypothesis

exist, including the obligate parasitic species Mycoplasma, which is

Microbial Fastidious Predictor Reveals Growth and Nutritional Trends
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Figure 2. Nutritional requirements are more similar among ecologically co-distributed organisms. (A) Similarity of ecological
distributions (in Greengenes) and also similarity of MINENVs were calculated for each of ,3 million organism-organism pairs, using jaccard metrics
(see methods). Org-org pairs were then binned by ecological distance (x-axis), and the ratio of pairs in each bin with a MINENV similarity above some
percentage threshold (i.e., 100*jaccard similarity) was determined (y-axis). A range of MINENV similarity thresholds were explored; three are shown on
the plot, along with the correlation coefficients between ecological and MINENV similarities. Each dot on the plot represents all org-org pairs falling
into a given ecological distance bin. (B) microorganisms from within each Greengenes environment are split into two groups 100 times, and distances
between aggregate minenvs for each group are compared (each green dot is an environment; see methods). This was repeated each time for the

Microbial Fastidious Predictor Reveals Growth and Nutritional Trends
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known to require extensive nutrition to survive, and the

notoriously ubiquitous species Pseudomonas aeruginosa, which

can survive on a minimal salts medium using a wide variety of

single carbon sources [26,27]. As a starting point, we compared

the number of compounds present in the MINENVs of 25

Mycoplasma species versus 28 Pseudomonas species in our data set,

and observed reassuringly that Pseudomonas species have many

fewer MINENV components than Mycoplasma species (medi-

ans = 12 and 32 metabolites, respectively; ranksum test p = 3e-10;

see Figure 3a).

To check if our predicted MINENVs show this trend across a

broader range of microorganisms, we next mapped microorganisms

in our study to a previously developed set of 5 lifestyle categories,

whose rank reflects the breadth of environments each microorgan-

ism can live in, with higher rank indicating more breadth (categories

are based on and updated from [28]; see Table S6 in File S2).

Against this categorization, we obtained a significant negative

correlation vs. the number of compounds in the MINENV of each

microorganism, indicating that the size of MINENV corresponds

negatively to the breadth of environments an organism lives in, as

expected (Spearman rho = 20.41, p = 1.4e-20; see Figure 3b).

We next compared the number of compounds in the MINENV

of each microorganism directly against the number of ecological

environments each microorganism lives in. To do this, we turned

again to the Greengenes database of ecological distributions of

organisms. Consistent with our observations from the lifestyle

categorizations, we found that MINENV size negatively correlates

(though to a weaker extent) with the number of environments that a

species is found in (Spearman rho = 20.17, p = 6e-18; see Figure 3c).

This upholds the general observation that environmental versatility

scales negatively with nutritional fastidiousness.

Most microorganisms required 11 to 14 metabolites in their

MINENVs (see Figure 3d), but there is a long tail of microorganisms

that require many more metabolites. As a rule, we found that

microorganisms requiring a very large number of metabolites live in

a small number of ecological environments (p = 4.6e-6 in ranksum

test of the number of environments for microorganisms with . = or

,20 metabolites in their MINENV, Figure 3d). Of the 33

microorganisms requiring over 35 metabolites, 14 are species of

the genus Borrelia, which are known to have highly specific and

fastidious nutritional requirements [29]; 4 have the taxonomic

designation Candidatus, since they have not been grown in pure

culture; and the rest, which include 9 species of Mycoplasma, are

similarly either obligate intracellular bacteria or are known to have

highly fastidious nutritional requirements. The microorganism with

the very highest number of compounds in its MINENV is

Mycoplasma genitalium, which is an obligate parasite with one of

the most minimized genomes known. These results strongly suggest

that more fastidious microorganisms tend to be more ecologically

limited, and that obligate intracellular parasites have highly

fastidious nutritional requirements, reflected in their MINENV size.

Nutritional fastidiousness scales negatively with genome
size and interspecies cooperation

Our observation that MINENV size correlates with the breadth

of ecological niches led us to seek other potentially interesting

variables that might be associated with nutritional fastidiousness.

To do this, we compared MINENV size to several common

genomic and metabolic metrics. We found that MINENV size

correlates strongly negatively with several key genomic metrics,

including number of metabolic reactions, number of metabolic

genes, and genome size (rhos, = 20.69 for all three in Spearman

test; see Figure 4a–c). Fastidiousness hence is associated with small

metabolic networks and small genomes. This is plausible,

considering that a genome size of at least ,1.75 Mb is required

to produce all essential compounds in a cell endogenously [30].

In addition to these genomic measures, we also checked two

lifestyle measures published previously by our group: average

competitiveness score, which measures the tendency of organisms

to compete for resources, and average cooperation score, which

measures the tendency of organisms to benefit from co-growth due

to nutrient sharing (see: [7], and methods). We found that

MINENV size does not correlate with organism competitiveness,

whereas it does correlate negatively with cooperation (rho = 2

0.41, p = 7.4e-7 in Spearman test; see Figure 4d–e). The latter

observation suggests that with an increased range of niches

available to metabolically-versatile non-fastidious organisms, there

is increased chance for mixing between different species, and

hence a greater advantage in the ability to share nutrients and be

more cooperative. Indeed, the cooperation score correlates more

strongly with lifestyle class than with any of the other metrics we

tested (see Figure 4g), which supports this hypothesis.

Less fastidious organisms grow faster and are more
abundant even within specific niches

In addition to the above correlations, we found that MINENV

size correlates significantly negatively with growth rate (rho = 2

0.35, p = 4.8e-3 in Spearman test; Figure 4f). Thus not only are

less fastidious organisms more able to share nutrients, but they also

grow faster than the more fastidious ones. This suggests a

mechanism that might contribute to the current distribution of

organisms in niches, in which certain highly metabolically versatile

organisms tend to dominate across large numbers of niches.

Indeed, an analysis of organism abundances for 1408 organisms

across 18 human body sites shows a strong association between the

number of environments an organism is found in and the

abundance of the organism on those environments (rho = 0.78,

p = 4.6e-290 for max abundance vs ubiquitousness across organ-

isms; see Figure 4i and 4j; data taken from HMP 16S data freeze

in 2010; [31]). The higher growth rates of less fastidious organisms

might thus contribute to their dominance even in many

environments in which fastidious organisms have found their

specific niches.

This observation also has broad implications for efforts to

culture difficult-to-culture organisms. Aside from the fact that

many of these organisms are oligotrophs and thus will require

minimal media to grow at all, overly rich media will be more likely

to also enable growth of more ubiquitous organisms, which with

their higher growth rates will outcompete the more fastidious ones

in culture. This phenomenon has been seen quite commonly in

microbiology labs (e.g., fast-growing Methanosarcina spp will

outcompete Methanosaeta in culture [23]), and is among other

same number of organisms but not from within the given environment (orange dots). Errorbars denote standard deviations over multiple trials and
dots denote means. (C) FBA is performed to determine what percentage of organisms from within an environment (green dots) or outside an
environment (orange dots) are able to grow in silico on aggregated MINENVs built from half of the organisms within an environment (organisms used
to build environments are never used for the test). (D) The test of growth from (C) is repeated, but aggregate environments are composed from
unions of DSMZ media of 50% of organisms from within an environment, and ‘growth’ is assessed by whether an organism’s DSMZ medium is
contained fully within the environmental aggregate.
doi:10.1371/journal.pcbi.1003726.g002
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Figure 3. Nutritional fastidiousness scales negatively with breadth of ecological environments. This trend is shown (A) between species
of Mycoplasma and Pseudomonas, (B) between five lifestyle categorizations with ascending environmental breadth, and (C) in environmental
distributions in Greengenes. (D) shows a histogram of the number of organisms with different sized minenvs. Species on the extreme ends are listed.
doi:10.1371/journal.pcbi.1003726.g003
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Figure 4. Nutritional fastidiousness scales with various ecological and lifestyle factors. The plots compare minenv size to (A) the number
of metabolic reactions, (B) the number of metabolic genes, (C) the size of the genome, (D) cooperation score, (E) competition score, and (F) growth
rate for all organisms we were able to map. Cooperation and competition scores were computed as averages per organism of all organism-organism
scores from [7], and empirical growth rates were taken from [38]. A higher cooperation(competition) score denotes more cooperation(competition).
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things a common cause of contamination. Developing the most

minimal possible medium for a given organism is therefore a

worthy goal in any effort to culture difficult-to-culture organisms.

The predicted MINENVs may serve as a rational starting point for

developing such media.

Discussion

Using a simple new predictor of minimal media for

microorganisms, this study explores potential new associations

describing the relation between microbial nutritional needs and

other central metabolic attributes on a large scale. To this end

we developed MENTO, which estimates potential minimal

media for thousands of microorganisms based on analysis of

genome-scale metabolic models built automatically by SEED.

We tested MINENVs predicted by MENTO using laboratory

experiments with new designed media and by comparing it to

known lab media, and also showed that the predicted

nutritional needs of microorganisms that tend to co-grow in

nature are more similar than for those that rarely co-grow. We

then used predicted MINENVs to explore how nutritional

fastidiousness relates to breadth of ecological niches, genome

size, and interspecies cooperation, and identify several inter-

esting associations that characterize their relationship. Next, we

showed that fastidious organisms tend to live only in specific

niches, and that they grow less abundantly than less fastidious

organisms even within those same niches, This may contribute

to forming the distributions of organisms among populations

that are currently observed.

As nutritional yardsticks, MINENVs reveal a number of

interesting ecological trends. As a source for developing usable

minimal growth media, however, the MENTO method still

needs further refinement. Notably, because MENTO deter-

mines the lowest number of compounds that can be used to

fulfill the nutritional needs of a microorganism, it will

sometimes ‘pack’ multiple nutritional needs into a single

complex compound, such as including 2,3-cyclic CMP as the

simultaneous carbon, nitrogen, and phosphorous source for E.
coli (see Figure S4 in File S3). This may yield unrealistically

‘simplified’ media, which are in fact harder for an organism to

grow on than if these nutritional needs were filled by multiple

compounds.

Indeed, we also gain noise directly because of our use of

SEED models. Although these are the only models available

that are appropriate for ecological analysis across many

species, they are draft models that are not as refined as

manually built GSMMs, and inevitably add a significant

amount of uncertainty to our analyses. Some of this noise

could be eliminated in the future by re-doing model gap-filling

so as to maximize the parsimony between low confidence parts

of models for different species, and ensuring that differences

are related to the high-confidence parts of the models, in the

way that this has been shown manually for the species P.

aeruginosa and P. putida [32]. This work is a large

undertaking on its own and obviously beyond the scope of

the current project. Because of these caveats, one must be

careful in interpreting results gained from SEED models.

Topological analyses or discovery of broad trends are more

appropriate goals than dissection of the biology of specific

organisms for new insights, especially in lower-confidence

models (such as many used in this study, which are based on

genomic information and computational gap-filling, with no

tuning from phenotypic information). In light of this, we have

focused in this work on broad trends that are likely insensitive

to noise.

Despite these shortcomings, a large amount of genomic data

can now be obtained for uncultivated microorganisms using

single-cell genomics or metagenomics, and MENTO may be a

useful tool in designing culture media for them. The fact that

in lab tests our new media turned out to be less selective than

desired should be acknowledged, and points to the limited

accuracy of current automatically-built metabolic models.

Addition of trace metabolites, as well as certain uncommon

compounds (e.g., phenol and asparagines-glycine for B.
subtilis), were required to get some of the models to display

in silico growth on media they grew on in vitro. This indicates

a need for careful curation of trace metabolite usage in the

SEED, as well as plugging of probable gaps in some of the

models. Yet MENTO-predicted media may serve as initial

recommended starting points in the search for minimal media,

and their overall permissiveness to growth of non-target species

(as shown in Figure S4c in File S3) might be mitigated by

multiple dilutions as done for Sar11 [33], or by providing

additional selective constraints such as growth temperature,

salinity and antibiotic supplementation, which may guarantee

the survival of the desired species.

We therefore supply the MINENV predicted media as a

database for use by the research community (see Table S2 in

File S2). We expect that future studies will elaborate and

improve on the results presented in this work, and will

hopefully reveal further associations that underlie microbial

distributions and growth. Some of the organisms for which we

provide MINENVs are currently challenging to culture (e.g.,

some strains of Prochorococcus and Pelagibacter), and in

addition, methods are being developed for determining full or

near-full genomes of unculturable organisms [34]. With

sequenced genomes of such organisms, the SEED pipeline

can produce metabolic models that we can then analyze using

MENTO, and hopefully speed the development of new culture

media. Because of the tight connections between oligotrophy,

fastidiousness, and development of new highly minimal media,

MENTO may thus become a key addition towards this

important and timely goal.

Materials and Methods

Metabolic models from SEED
We obtained 3286 strain-specific genome-scale metabolic

models from SEED, spanning all microorganisms with genomes

in the SEED database as of late 2011. All microorganisms could

obtain biomass in silico when grown on rich medium. This list was

shortened to 2529 models by taking only those built from the

biggest genome that mapped to each taxon ID, as these typically

represented the most complete genomes from multiple iterative

Lines in each plot denote robust Lowess fits. (G) shows the Spearman rhos for the cooperation score against various other measures; ** denotes
significance with p,1e-4. Notably, cooperation score correlates better with lifestyle class than the other metrics tested. (H) shows organism max
abundance of each organism (y-axis) versus the count of environments in which the organism was present (i.e., ubiquitiousness; x-axis) in the Human
Microbiome Project (HMP) dataset (from the OTU abundance table in the 2010 HMP data freeze). Dots represent individual OTUs. (I) depicts average
abundances of all organisms with a given ubiquitiousness score in a given environment (dots), with a different color and a trendline for each
environment. All lines in (H) and (I) are exponential fits.
doi:10.1371/journal.pcbi.1003726.g004
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sequencing/assembly efforts, and would therefore include fewer

gap-filled (and thus low-confidence) reactions.

MENTO: a method to formulate MINENVs and critical
metabolites

MENTO is an algorithm for predicting minimal media

components, which proceeds in two steps:

(1) Non-unique minimal environments are determined via a

mixed integer linear programming (MILP) solve for the least

number of distinct metabolites that can enable production of

biomass in the SEED model for an organism.

(2) Unique MINENVs (these are what we refer to as ‘MINENVs’

throughout the paper) are computed through a second MILP

optimization, which minimizes the sum of molecular weights

of compounds in the minimal environment, while keeping the

same number of compounds determined in the first MILP

solve. In order to improve consistency, compounds with the

same molecular weights are always chosen by MENTO in the

same order.

To check that the ordering of metabolites would not lead to

degenerate solutions (i.e., choosing one compound of a given

molecular weight when another could have been used instead),

we took the unique MINENVs we calculated from this step

and searched for any single compounds from any of them that

could be switched out with another single compound of the

same molecular weight. Reassuringly, we found that across all

of the organisms for which we calculated MINENVs, no

compounds could be thus exchanged while still maintaining

the minimum required biomass production.

Critical metabolites are the metabolites within MINENVs that

cannot be exchanged for any other compound under any

condition in which a cell can produce biomass. MINENVs and

critical metabolites may be defined for different biomass cutoffs.

Unless otherwise noted, a ‘nonzero biomass’ cutoff of biomass .

= 0.1 was used.

The first optimization of MENTO is formulated as a mixed

integer linear program (MILP) as follows:

max
X

i[V

hi

Subject to :

SV~0

fj,minƒfj ƒfj max

fBM§Minimal biomass

fi §fi,min 1{hið Þ

hi [f0,1g

i[V (i~index of reaction flux across all

exchange reactions in V )

j[V (j~index of reaction flux across all

reactions in V )
fj ,fi[V

Where: S is the stoichiometric representation of the metabolic

model, where the columns represent the reactions in the model. V
is a vector that represents the fluxes for all reactions in the model,

and fj represents the flux of reaction j in the stoichiometric matrix.

fBM represents the flux of the biomass reaction in the metabolic

model.

Here, in addition to the usual FBA constraints, there is:

(i) a constraint on minimal growth rates, fBM$Minimal_bio-
mass. The minimal biomass value can be specified as a

value or a certain percentage of the maximal biomass the

organism can reach in an optimal media (unless otherwise

specified, the biomass cutoff was a small nominal value of .

= 0.1 absolute flux units).

(ii) a constraint expressing whether or not an exchange

metabolite exchanged by fi is consumed: fi$fi,min(1-qi),
where fi, is the flux running through the exchange reaction i,
and fi#0 when the metabolite associated with the flux of the

exchange reaction fi is consumed (negative flux). Here, the

binary variable qi attains a value of 1 if metabolite i is not

consumed (fi, $0) by any of the organisms, and 0 otherwise.

It should be stated that every exchange reaction is associated

with a single metabolite, which can either be taken up or

secreted.

Identifying a minimal set of exchange reactions and their

associated metabolites in a medium then amounts to maxi-

mizing the sum of the qi variables over all exchange reaction

fluxes in V{fi}. From this calculation we get the minimal

number of metabolites needed for the microorganism to grow

at least with fBM-$Minimal_biomass. This minimal num-

ber of metabolites is what we use as our measure of

fastidiousness, and the set of metabolites making up the

minimal environment after solving are referred to as ‘non-

unique minimal environments’ (since there could be various

sets of compounds that could equivalently be output by the

optimization). These ‘non-unique minimal environments’ are

only briefly analyzed and mentioned, in preference for the

MINENVs calculated in the next step.

The second optimization in MENTO is formulated as follows:

min
X

i[V

hiMolar Index of Vi

Subject to :

SV~0

fj,minƒfj ƒfj max

fBM§Minimal biomass

fi §fi,min 1{hið Þ

hi [f0,1g

i[V (i~index of reaction flux across all

exchange reactions in V )

j[V (j~index of reaction flux across all

reactions in V )
fj ,fi[V
X

i[V

hi~Minimal amount of metabolites needed

found in previous step

Here we have changed the objective function and added an

additional constraint, which limits the number of up-taken

external metabolites in the media to the number found in the
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previous step. The molar_index_of_fi is the index of the

exchange metabolite in a vector where all metabolites are sorted

by their molar weight in an ascending order. The output of this

phase of MENTO is a list of metabolites needed for the

microorganism to grow at least with fBM$Minimal_biomass.

We call this list of metabolites a MINENV.

Computing the critical metabolites. To compute critical

metabolites, we check the essentiality of each metabolite found in a

MINENV, while allowing uptake from all other external

metabolites. If the microorganism cannot grow in this condition,

then the metabolite is essential under any condition and is thus

regarded as a critical metabolite.

Mapping SEED models to ecological environments from
Greengenes

Ecological distributions of microorganisms were obtained from

the Greengenes database [35] using mappings developed in [25].

Greengenes holds 16S rRNA sequences for microorganisms found

in samples reported in hundreds of scientific papers. We used a

sample-to-environment mapping developed in [25], in which

keywords in the greengenes sample descriptions were used along

with a mapping to the ENVO database [25] to determine an

environment corresponding to each sample. The result of these

previously developed mappings is a set of rRNA sequences,

representing operational taxonomic units (OTUs), distributed

among a set of ecological environments in which they were found

to occur.

Sequences of 16S rRNA for all sample OTUs were mapped to

microorganisms from SEED using BLASTP (with cutoffs of e-

value, = 10e-10 and amino acid identity . = 99%). Finally,

SEED microorganisms mapped to environmental 16S sequences

were assigned to the appropriate environments. To investigate

artifacts caused by mappings of multiple SEED models to a single

16S sequence, we employed certain filters in mapping species for

some of our analyses. Typically, a single microorganisms was

chosen to represent each 16S sequence, in order to eliminate

redundancy.

Growth on selective media in vitro
Media were designed based on minenv predictions, with

some compound substitutions to make the media easier to

produce or to make them more selective, as shown in Figure S4

in File S3. Compositions of the 5 media are shown in Table S5

in File S2. Tests of manual models were done using iMO1056

[27], iBsu1103 [36], and iAF1260 [37] for P. aeruginosa, B.
subtilis, and E. coli, respectively. A minimal number of extra

metabolites (phosphate, nh4, mn2, zn2, cu2, ca2, cl, k, mg2,

cobalt2, and fe3) was added to each model in all conditions in

order to allow in silico growth.

Bacterial species of interest (Escherichia coli, Pseudomonas
aeruginosa, Agrobacterium tumefaciens, Bacillus subtilis, and

Serratia marcescens) were grown overnight in LB to stationery

phase, then washed in sterile NaCl (0.9% w/v) solution and

diluted 6100 into the required media. Each species was

inoculated to each of 5 specific minimal growth media as well

as in LB (positive control). The bacteria/media combination

was then grown overnight at 37 degrees C with shaking. Two

types of growth assays were used:

A. End point assays: 1 ml of each bacteria/media suspension

was aliquoted to duplicate 15 ml tubes; absorbance at

595 nm was measured after 24 hours using a spectropho-

tometer.

B. Kinetic assays. 200 ul of each bacteria/strain combination

was aliquoted to duplicate wells in a 96-well plate. Plates were

incubated in a Lumitron plate-reader and Abs595 absor-

bance recorded every 15 minutes.

Calculating distance metrics
The typical similarity metric used in this study is the Jaccard

similarity, which is calculated for two binary vectors thus:

Sim~
S1\S2

S1|S2

Where S1 and S2 represent sets of binary properties of two

microorganisms. Jaccard similarities are calculated for a number

of properties: notably, MINENVs (each property in the sets

representing presence or absence of a given metabolite in the

microorganism’s MINENV) and ecological distribution (each

property representing presence of a microorganism in a given

environment). When other metrics are used, we describe them.

Reconstructing known lab media from DSMZ
PDF files for the DSMZ media were downloaded from: http://

www.dsmz.de/?id = 441. Files were manually parsed to extract

media components, and components were then manually linked to

SEED compounds. The mapping of media to organisms that grow

on them was kindly provided by DSMZ.

Analysis of cooperation and competition scores for
species

To obtain single scores for each species, we averaged

cooperation or competition scores over all pairings with other

species (118 species total) from [7].

Supporting Information

File S1 Supplementary text. This contains a number of

supplementary methods and results sections, as well as figure

legends for the supplementary figures (in File S3).

(DOCX)

File S2 Supplementary tables. This contains supplementary

tables S1 through S5, as referenced in the main text.

(XLSX)

File S3 Supplementary figures. This contains supplementa-

ry figures S1 through S8, as referenced in the main text. Legends

for these figures are provided in Supplementary Text File S1.

(PPT)

Acknowledgments

We thank Chris Henry for providing SEED models, troubleshooting, and

feedback, and Dr. Hans-Peter Klenk of the DSMZ for kindly providing the

mapping of organisms to DSMZ media.

Author Contributions

Conceived and designed the experiments: MAO RZ ER UG. Performed

the experiments: MAO RZ LR. Analyzed the data: MAO RZ.

Contributed reagents/materials/analysis tools: UG LR. Contributed to

the writing of the manuscript: MAO UG ER RZ.

Microbial Fastidious Predictor Reveals Growth and Nutritional Trends

PLOS Computational Biology | www.ploscompbiol.org 11 July 2014 | Volume 10 | Issue 7 | e1003726

http://www.dsmz.de/?id=441
http://www.dsmz.de/?id=441


References

1. Piel J (2011) Approaches to capturing and designing biologically active small

molecules produced by uncultured microbes. Annu Rev Microbiol 65: 431–453.
2. Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, et al. (2004)

Characterization of vaginal microbial communities in adult healthy women
using cultivation-independent methods. Microbiology 150: 2565–2573.

3. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3: 470–478.

4. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. (2007) A
metagenomic survey of microbes in honey bee colony collapse disorder. Science

318: 283–287.
5. Baldrian P, Head IM, Prosser JI, Schloter M, Smalla K, et al. (2011) Ecology

and metagenomics of soil microorganisms. FEMS Microbiol Ecol 78: 1–2.

6. Borenstein E, Kupiec M, Feldman MW, Ruppin E (2008) Large-scale
reconstruction and phylogenetic analysis of metabolic environments. Proc Natl

Acad Sci U S A 105: 14482–14487.
7. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, et al. (2011) Competitive

and cooperative metabolic interactions in bacterial communities. Nat Commun
2: 589.

8. Papp B, Notebaart RA, Pal C (2011) Systems-biology approaches for predicting

genomic evolution. Nat Rev Genet 12: 591–602.
9. Borenstein E, Feldman MW (2009) Topological signatures of species interactions

in metabolic networks. J Comput Biol 16: 191–200.
10. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale

metabolic reconstructions. Mol Syst Biol 5: 320.

11. McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genome-
scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9: 661.

12. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of
Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor

Biol 203: 249–283.
13. Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems

analysis of metabolism in the pathogenic trypanosomatid Leishmania major.

Mol Syst Biol 4: 177.
14. Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction

essentiality and synthetic lethality analysis. Mol Syst Biol 5: 301.
15. Brooks JP, Burns WP, Fong SS, Gowen CM, Roberts SB (2012) Gap detection

for genome-scale constraint-based models. Adv Bioinformatics 2012: 323472.

16. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, et al. (2010) High-
throughput generation, optimization and analysis of genome-scale metabolic

models. Nat Biotechnol 28: 977–982.
17. Henry CS, Overbeek R, Xia F, Best AA, Glass E, et al. (2011) Connecting

genotype to phenotype in the era of high-throughput sequencing. Biochim
Biophys Acta 10: 967–977.

18. Zakrzewski P, Medema MH, Gevorgyan A, Kierzek AM, Breitling R, et al.

(2012) MultiMetEval: comparative and multi-objective analysis of genome-scale
metabolic models. PLoS ONE 7: e51511.

19. Alam MT, Medema MH, Takano E, Breitling R (2011) Comparative genome-
scale metabolic modeling of actinomycetes: the topology of essential core

metabolism. FEBS Lett 585: 2389–2394.

20. Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the
ubiquitous SAR11 marine bacterioplankton clade. Nature 418: 630–633.

21. Schut F, Prins, Rudolf A, Gottschal, Jan C (1997) Oligotrophy and pelagic

marine bacteria: facts and fiction. Aquatic marine ecology 12: 177–202.
22. Burgard AP, Vaidyaraman S, Maranas CD (2001) Minimal reaction sets for

Escherichia coli metabolism under different growth requirements and uptake
environments. Biotechnol Prog 17: 791–797.

23. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of

‘unculturable’ bacteria. Fems Microbiology Letters 309: 1–7.
24. Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernan-

dez-Chavez G, et al. (2012) New insights into Escherichia coli metabolism:
carbon scavenging, acetate metabolism and carbon recycling responses during

growth on glycerol. Microb Cell Fact 11: 46.

25. Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of
coexisting microbes from environmental and whole-genome sequence data.

Genome Res 20: 947–959.
26. Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, et al. (2009) A

genome-scale metabolic reconstruction of Mycoplasma genitalium, iPS189.
PLoS Comput Biol 5: e1000285.

27. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA (2008)

Genome-scale metabolic network analysis of the opportunistic pathogen
Pseudomonas aeruginosa PAO1. J Bacteriol 190: 2790–2803.

28. Parter M, Kashtan N, Alon U (2007) Environmental variability and modularity
of bacterial metabolic networks. BMC Evol Biol 7: 169.

29. Doern GV (2000) Detection of selected fastidious bacteria. Clin Infect Dis 30:

166–173.
30. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, et al.

(2003) Genome sequence of the cyanobacterium Prochlorococcus marinus
SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A

100: 10020–10025.
31. Proctor LM (2011) The Human Microbiome Project in 2011 and beyond. Cell

Host Microbe 10: 287–291.

32. Oberhardt MA, Puchalka J, Martins dos Santos VA, Papin JA (2011)
Reconciliation of genome-scale metabolic reconstructions for comparative

systems analysis. PLoS Comput Biol 7: e1001116.
33. Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, et al. (2002)

SAR11 clade dominates ocean surface bacterioplankton communities. Nature

420: 806–810.
34. Hongoh Y, Toyoda A (2011) Whole-genome sequencing of unculturable

bacterium using whole-genome amplification. Methods Mol Biol 733: 25–33.
35. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006)

Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Appl Environ Microbiol 72: 5069–5072.

36. Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome-

scale metabolic model of Bacillus subtilis based on SEED annotations. Genome
Biol 10: R69.

37. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. (2007) A
genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that

accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3: 121.

38. Vieira-Silva S, Rocha EP (2010) The systemic imprint of growth and its uses in
ecological (meta)genomics. PLoS Genet 6: e1000808.

Microbial Fastidious Predictor Reveals Growth and Nutritional Trends

PLOS Computational Biology | www.ploscompbiol.org 12 July 2014 | Volume 10 | Issue 7 | e1003726


