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Abstract

A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an
important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in
the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise
inherent in the system. Encoding the raw sensory signal itself is also problematic, because it contains distortion and noise.
The optimal solution would be constrained further by limited biological resources. Here, we analyze a simple theoretical
model that incorporates these key aspects of sensory coding, and apply it to conditions in the retina. The model specifies
the optimal way to incorporate redundancy in a population of noisy neurons, while also optimally compensating for sensory
distortion and noise. Importantly, it allows an arbitrary input-to-output cell ratio between sensory units (photoreceptors)
and encoding units (retinal ganglion cells), providing predictions of retinal codes at different eccentricities. Compared to
earlier models based on redundancy reduction, the proposed model conveys more information about the original signal.
Interestingly, redundancy reduction can be near-optimal when the number of encoding units is limited, such as in the
peripheral retina. We show that there exist multiple, equally-optimal solutions whose receptive field structure and
organization vary significantly. Among these, the one which maximizes the spatial locality of the computation, but not the
sparsity of either synaptic weights or neural responses, is consistent with known basic properties of retinal receptive fields.
The model further predicts that receptive field structure changes less with light adaptation at higher input-to-output cell
ratios, such as in the periphery.

Citation: Doi E, Lewicki MS (2014) A Simple Model of Optimal Population Coding for Sensory Systems. PLoS Comput Biol 10(8): e1003761. doi:10.1371/journal.
pcbi.1003761
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Introduction

Barlow’s hypothesis of sensory coding posits that neurons should

encode sensory information by reducing the high degree of

redundancy in the raw sensory signal [1–6], and when applied to

natural images, it predicts oriented receptive field organizations

[7–9]. These results qualitatively match response properties of

simple-cells in the primary visual cortex [10–13], but not those of

retinal output neurons (retinal ganglion cells; RGCs) that exhibit a

center-surround type receptive field [14–16]. The optic nerve

poses a far greater bottleneck for the amount of visual information

initially available at cone photoreceptors [17,18], so why does the

non-redundant code not match the neural representation in the

retina? Alternatively, if the retina does use an optimal code, what is

it optimized for?

Although redundancy reduction has been a guiding principle for

understanding sensory coding, there are some important compu-

tations and constraints that have not fully been taken into account.

The first is that the signal initially available to the sensory system is

already degraded, often significantly, and hence forming a non-

redundant code of this raw signal does not fully capture the goals

of sensory coding. In the retina, for example, the projected image

is already degraded by the optics of the eye [19], which is further

degraded by photoreceptor noise [20–22] (Figure 1). Ideally, those

degradations should be counteracted as early as possible in the

visual system to avoid representing and processing ‘‘noise’’ in

subsequent stages. For this reason, it has been suggested that de-

blurring [23,24] and de-noising [20,24–27] should be important

aspects of retinal coding (the latter probably best known by Atick

and his colleagues’ work).

A second issue is that redundancy reduction does not, by

construction, introduce redundancy in a neural population to

compensate for neural noise. Neural precision is inherently limited

and the information capacity is estimated to be a few bits per spike

[18,28]. Such a limited representational capacity might lead us to

hypothesize that individual neurons should represent non-

overlapping, independent visual features in order to encode as

much information as possible [1,7,8]. It has been argued, however,

that some redundancy could be useful to convey visual information

reliably with noisy neurons [4,29–32], and there is some

physiological evidence of redundant codes in neural systems

[33–36].

Another issue in predicting optimal codes is that different

perceptual systems make different trade-offs to achieve behavioral

goals with minimal resources. The most direct way for a system to

affect this trade-off in the neural code is to vary the size of the

neural population. This, along with the neural precision,

determines the total information capacity. In the primate retina

this resource constraint is readily apparent. In the fovea, the ratio

of cone photoreceptors to RGCs is about 1:1, but in the periphery
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the number of RGCs is far more limited – only about 1 RGC for

every 25 photoreceptors, for instance (Figure 2). One would

expect the optimal neural code to vary significantly across such

different conditions, but this issue has not been investigated.

It has also been suggested that resources consumed by neural

signaling and connectivity play a role in determining the form of

the optimal retinal code [37–45]. Any code must extract and

transform information from the incoming signal, but there is an

inherent cost to doing so, both in terms of the energy to transform

and transmit the information and in terms of the physical

connections between neurons that subserve the information

processing. Energy is always a limited resource, but the physical

dimension required for the neural circuits might also be

constrained, particularly in the retina where the neural tissue

appears to be extremely packed in a highly restricted space. These

resource constraints should be balanced against the aforemen-

tioned goals of counteracting sensory degradations and forming

codes robust to neural noise.

In this article we examine optimal coding of the underlying

environmental signal subject to all the aforementioned aspects of

sensory systems (signal degradation, neural capacity, and resource

constraints) and find that the proposed simple model can account

for basic response properties of retinal neurons. Our goal here is to

develop a simple model that incorporates key aspects of sensory

systems in a unified optimization framework. To achieve this, we

make idealizations so that the problem can be analytically well

characterized and scales to model large input and output

dimensionalities while also accounting for basic properties of

sensory systems. In the following, first we systematically contrast

the proposed model with a traditional, redundancy reduction

model. We find that the optimal model conveys more information

about the underlying, original signal, although redundancy

reduction can be near-optimal under some conditions. Next, we

apply the proposed framework to retinal conditions and find that

the concentric center-surround structure of retinal receptive fields

can be derived from the optimal model with a constraint of the

spatial locality [25], but not with previously examined constraints

such as sparse synaptic weights [41] or sparse neural responses

[7,8]. Finally, the proposed model makes a novel prediction that

the adaptive change of receptive field structure with different light

levels should be much smaller in the periphery than in the fovea

due to the much higher cone-to-RGC convergence ratio. An early

version of this study was presented as a conference paper [46], and

a minimal theoretical analysis of the model was published in [47].

Results

The model
The proposed model is illustrated in Figure 3. The model forms

an optimally robust code in the sense that the original sensory signal

can be reconstructed from the neural representation with minimum

mean squared error (MSE) despite sensory degradation, neural

noise, and a limited number of neurons. The model assumes that the

environmental or original signal is degraded by blur followed by

additive noise (sensory noise) resulting in the observed signal. The

neural representation is computed with the optimal linear transfor-

mation (neural encoding) of the observed signal. Limited neural

precision is modeled with additive noise (neural noise), which sets a

constant signal-to-noise ratio (SNR) for individual neurons. To

quantify coding fidelity, a reconstructed signal is computed from the

neural representation with an optimal linear estimator (decoding).

Note that the decoding aspect of the model is only implicit. The

Figure 1. Degradation of sensory signal. Here we illustrate
degradation of the image signal in the eye. The original signal is a
portion of an unaltered standard test image. The blurred signal is
computed with the blur function measured at 30u eccentricity of the
human eye [50]. The observed signal (also called the raw sensory signal)
simulates the noisy response of cone photoreceptors in a square lattice
by adding white gaussian noise to the blurred signal.
doi:10.1371/journal.pcbi.1003761.g001

Figure 2. The number of output neurons is far more limited in
the peripheral retina. The graph shows the number of cone
photoreceptors per midget RGC as a function of eccentricity in the
macaque retina. The data at the fovea (%) and periphery (.) are from
[93] and [70], respectively, and the smooth curve was a fit to the data
using a cubic spline.
doi:10.1371/journal.pcbi.1003761.g002

Author Summary

Studies of the computational principles of sensory coding
have largely focused on the redundancy reduction
hypothesis, which posits that a neural population should
encode the raw sensory signal efficiently by reducing its
redundancy. Models based on this idea, however, have not
taken into account some important aspects of sensory
systems. First, neurons are noisy, and therefore, some
redundancy in the code can be useful for transmitting
information reliably. Second, the sensory signal itself is
noisy, which should be counteracted as early as possible in
the sensory pathway. Finally, neural resources such as the
number of neurons are limited, which should strongly
affect the form of the sensory code. Here we examine a
simple model that takes all these factors into account. We
find that the model conveys more information compared
to redundancy reduction. When applied to the retina, the
model provides a unified functional account for several
known properties of retinal coding and makes novel
predictions that have yet to be tested experimentally. The
generality of the framework allows it to model a wide
range of conditions and can be applied to predict optimal
sensory coding in other systems.

A Simple Model of Optimal Population Coding for Sensory Systems

PLOS Computational Biology | www.ploscompbiol.org 2 August 2014 | Volume 10 | Issue 8 | e1003761



neural portion of the model ends with the neural representation.

Finally, various resource constraints can be added further without

affecting the reconstruction error, which we will examine later. A

formal description of the model is given in Methods.

Stimulus reconstruction from the neural representation
First, let us observe the advantage of using the proposed model

which forms an optimally redundant neural representation. We

compare it with a traditional, whitening model which forms a

minimally redundant representation. In the whitening model, the

encoding filters were chosen to de-convolve and de-correlate the

raw sensory signal under the idealized assumption of zero sensory

noise [8,48,49] (see eq. 8 for the definition; note that whitening is

the optimal solution for information maximization over noisy

gaussian channels with zero sensory noise). Both models were

evaluated with the fidelity of the stimulus reconstruction from the

respective neural representations under the same problem settings

(i.e., encoding the same ensemble of natural images subject to the

same sensory degradation, neural noise, and neural population

size). The reconstructed signal was computed with the optimal

linear estimator for each model.

Figure 4 shows reconstruction examples. The sensory noise level

was varied from 210 to 20 dB to simulate dark to bright

conditions. The neural population size was also varied to illustrate

the effect of cell ratio on coding fidelity. Here, we examine two

retinal conditions: in the fovea condition, the ratio of pixels (cones)

to encoding units (RGCs) was 1:1; and 16:1 in the periphery

condition. The same optical blur was used for both conditions (30u
eccentricity of the human eye [50]) to examine the effect of cell

ratio alone. Neural noise was added so that the SNR for each

neuron was 10 dB, corresponding to 1.7 bits of information

capacity which is consistent with estimates of neural capacity [28].

From these examples, we can make a number of observations.

First, the optimal model always (and often significantly) yields

better reconstruction than whitening, as should be expected by

construction. For example, at the fovea and in the 0 dB sensory

noise condition, the reconstructed signal from the whitening model

has 82.0% error (in which the boat is barely visible), whereas the

proposed model has only 31.4% error. Note that the observed

signal initially contains 73.0% error relative to the original signal

due to the optical blur and sensory noise. This leads to the second

observation that the reconstructed signal can be cleaner than the

signal available to a sensory system. It would be useful to recall

that our problem is different from a simple, de-noising and de-

blurring problem because the reconstruction is also con-

strained by the limited capacity of the neural representation.

Third, the relative advantage of using the optimal code over

whitening is higher in the fovea than in the periphery. Under

Figure 3. The sensory coding model. (a) Network diagram. Nodes represent individual elements of the indicated variables (noise variables
indicated by small gray nodes); lines represent dependencies between them. Bold lines highlight, respectively, a point spread function of the blur
from a point in the original signal to the observed signal, an encoding filter (or receptive field) that transforms the observed signal into the neural
representation in a single neuron (encoding unit), and a decoding filter (or projective field) which represents the patten of that neuron’s contribution
in the reconstructed signal (its amplitude is given by the neural representation). In this diagram, the number of coding units at the neural
representation is smaller than that of sensory units at the observed signal, which is called an undercomplete representation. Note that the proposed
model is general and could form an optimal code with an arbitrary number of neurons, including complete and overcomplete cases. (b) The block
flow diagram of the same model using the model variables defined in Methods. Each stage of sensory representation is depicted by a circle; each
transformation by a square; each noise by a gray circle.
doi:10.1371/journal.pcbi.1003761.g003
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the same, 0 dB condition but in the periphery, the recon-

structed error with whitening is 42.9%, whereas the error is

38.3% with the optimal, proposed model – the relative

advantage in the periphery is not as significant as in the

fovea. Finally, the error is consistently smaller in the fovea than

in the periphery with the proposed model, which should be

expected because there are more neurons available in

the fovea. Interestingly, however, this is not the case with the

whitening model when the sensory SNR is low, such as

at 0 dB, which we will explain in more detail in the next

section.

The trends of two conditions shown in Figure 4 can be

generalized to a continuous range of cell ratios. Figure 5 plots the

reconstruction error for the proposed model (solid lines) and

whitening model (dashed lines) over a range of population sizes,

from large numbers of neurons to very few. The plots show that

the relative advantage of the optimal codes is greatest at the 1:1

cell ratio and diminishes as the cell ratio increases (i.e., the neural

population size decreases). Note that the whitening model is not

defined for an overcomplete case. In contrast, the proposed model

is defined for any cell ratio and is able to reduce the reconstruction

error by increasing the population size, up to the limiting case of

Figure 4. Image reconstruction examples. We compare reconstructions from two different codes: whitening and the proposed, optimal model.
The original signal (1216121 pixels) is degraded with blur and with different levels of sensory noise (210 to 20 dB), resulting in the observed signals,
where the percentage indicates the MSE relative to the original signal. These are encoded under two different cell ratios: 1:1 (fovea) and 16:1
(periphery) for each noise level. The reconstructed signals are obtained with the optimal decoding matrices, where the percentage indicates the MSE
relative to the original signal, which can also be read out in Figure 5 (labeled by open and closed triangles for the respective eccentricities).
doi:10.1371/journal.pcbi.1003761.g004
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an infinite population (1 : ? cell ratio). In this limit, there is no

loss of information in the neural representation, but there is some

error still present inherent to sensory noise and blur [47]. It is also

clear that the optimal code yields a large benefit compared to

whitening when the level of sensory noise is high. This is also to be

expected, because the proposed model takes sensory noise into

account while the redundancy reduction model does not. Note

that, depending on the sensory SNR, the error reaches an

asymptote level with different population sizes. For high SNRs,

there is an advantage to having more RGCs relative to cones,

whereas for lower SNRs, lower numbers of RGCs are sufficient to

encode the available information.

Mechanisms of optimal representation and
reconstruction

We have seen that the proposed model forms an optimal neural

representation for the stimulus reconstruction while whitening fails

to do so. To understand how, we can analyze these two models in

the spectral domain. The spectral analysis is sufficient to

characterize the mathematical mechanisms of both proposed

and whitening models that produce different reconstruction errors,

because the errors can be expressed solely with the spectral

components (see Methods for a formal description). Here, we

illustrate the mechanisms using spectral analysis with an idealized

model signal (Figure 6).

First, let us examine the fovea (complete code) condition under

low sensory noise (20 dB, Figure 6 first row). The observed signal,

which consists of the blurred signal (blue curve) and sensory noise

(red curve), is transformed by the neural encoding. The spectra of

the neural encodings (dashed and solid curves for the proposed

and whitening models) represent modulations of the signal in the

frequency domain with the respective neural populations. The

neural encoding spectrum is a unique characteristic of a

population of spatial receptive fields, and we will discuss the

characteristics of the spatial form below. In the whitening model,

the neural encoding transforms the blurred signal such that the

resulting spectrum becomes flat (or white, hence called whitening).

In the neural representation, however, the encoded signal (dashed

blue curve) is not entirely flat, because it contains the transformed

sensory noise in addition to the transformed (whitened) blurred

signal. Note that the curve of the whitening neural encoding is by

construction vertically symmetric to that of the blurred signal. As a

result, whitening amplifies the higher frequency components. This

is problematic because the SNR of the observed signal is lower at

the higher frequencies. Consequently, in the neural representation,

the higher frequencies of the encoded signal have large variances

relative to those of neural noise (red curve), but as we have seen,

these are the components dominated by the sensory noise. The

ideal strategy should be the other way around, which is the one

implemented by the proposed, optimal model (see solid blue curve

vs. red curve in the neural representation plot).

Specifically, there are two factors underlying the optimal

reconstruction in the proposed model. First, highly noise-

dominated components at the high frequencies in the observed

signal are not encoded at all by the neural encoding, which is

truncated roughly where the blurred signal falls below the sensory

noise (the exact location of this cut-off frequency was shown to

depend on the details of the problem setting [47]). This allows the

neural population to allocate its limited representational capacity

to high SNR components of the observed signal. This important

Figure 5. The reconstruction error as a function of neural population size. Two x-axes represent, respectively, the cone: RGC ratio (top) and
the corresponding retinal eccentricity in the macaque retina (bottom; see Figure 2). The problem settings are the same as in Figure 4 with extended
cell ratios; the common cell ratios (1:1 and 16:1) are indicated by the same labels (open and closed triangles, respectively). The signal dimension is
1216121 = 14,641 for all condition; the number of neurons with 16:1 cell ratio is 915.
doi:10.1371/journal.pcbi.1003761.g005
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characteristic is also demonstrated with the two-dimensional toy

problem (Text S1 and Figures S1-S5): the optimal receptive fields

of two neurons in a population become identical under certain

conditions, predicting the most redundant form of code called a

repetitive code [51]. The second factor is that the optimal model

tends to transform the redundant (non-flat) spectrum of the

blurred signal into a less redundant (closer to flat) spectrum of the

encoded signal, but unlike whitening, this flattening is incomplete

(it is exactly halfway when there is no sensory noise, hence called

half-whitening [47]). With this, the high SNR components of the

observed signal have large variances relative to those of neural

noise, which is in sharp contrast to whitening.

The basic trends described above also hold with high sensory

noise (e.g., 210 dB as in Figure 6 second row) where there are a

greater number of low SNR components in the observed signal. The

shape of the optimal neural encoding changes accordingly, but that

of whitening is identical across different sensory noise levels up to

scaling (and hence they are identical up to the vertical translation in

the log-log plot). This scaling is a mere reflection of the neural

capacity constraint (i.e., the sum of variances in the neural

representations is maintained to be a constant while the variance

of the observed signal changes with different amounts of sensory

noise). With a large amount of sensory noise (210 dB), nearly 100%

of sensory information is lost in the whitening model, because in the

neural representation, only high frequency components are greater

than neural noise, but they are already corrupted by sensory noise.

Next, we examine the periphery (undercomplete code) condi-

tion (Figure 6 bottom two rows). The whitening encoding is

exactly the same as in the foveal case except that it has only 1=10th

as many components. Notably, this acts as a thresholding

mechanism which helps alleviate the aforementioned problem of

whitening for the fovea case in which the limited neural capacity

was wasted on the noise-dominated, high frequency components.

Solely because of this, whitening in the periphery yields an error

closer to the optimal value, resulting in (ironically) better

reconstruction than whitening in the fovea. This mechanism can

Figure 6. Spectral analysis of the proposed model compared to whitening. Every stage of sensory representations and their transformations
are illustrated (cf. Figure 3). The signal is 100-dimensional, and the fovea and periphery conditions differ only in the neural population size (100 and
10, respectively). Each is analyzed under two sensory noise levels (20 and 210 dB). The horizontal axes represent the frequency (or spectrum) of the
signal and are common across all plots. The vertical axes of the open plots (e.g., original signal) are common and represent the variance of the
indicated sensory representations; those of the box plots (e.g., blur) are also common and represent gain (or modulation) with the indicated
transformation, where the thin horizontal line indicates unit gain. The original signal (s, yellow) is assumed to have a 1=f 2 power spectrum where f is
the frequency of the signal. The blur (H, black) is assumed to be low-pass gaussian. The observed signal (x~Hszn) is shown component-wise, i.e., the
blurred signal (Hs, blue) and the sensory noise (n, red). The observed signal is transformed by the neural encoding (W, black). Solid and dashed lines
indicate the gain as a function of frequency for the proposed and whitening model, respectively (and the same line scheme is used in the other
plots). The neural representation (r~Wxzd) is also shown component-wise, i.e., the encoded signal (Wx, blue) and neural noise (d, red). The optimal
decoding transform (A, black) is applied to the neural representation to obtain the reconstructed signal (̂ss~Ar; blue), which is superimposed with the
original signal (yellow); the percentage shows the MSE of reconstruction. Note all axes are in logarithmic scale. It is useful to recall that transforming a
signal with a matrix is multiplicative, but it is simply summation in a logarithmic scale, and thus one can visually compute, for example, the blurred
signal as the sum of the original signal and blur curves.
doi:10.1371/journal.pcbi.1003761.g006
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be understood more intuitively in the spatial domain. With the

unavoidable thresholding effect caused by an undercomplete

encoding, the filtering is largely low-pass, which in the spatial

domain corresponds to pooling over many pixels. This pooling

acts to average out sensory noise and selectively encodes low

frequency components. The result is roughly equivalent to

encoding only the high SNR components as discussed above.

Although these coding mechanisms are common between the

proposed and whitening models, it is only the proposed model that

adapts its encoding to changes in the sensory noise level (from 20

to 210 dB), leading to a substantial improvement in reconstruc-

tion error over whitening (compare errors in the reconstructed

signal column).

Finally, this analysis would not be complete without examining

an overcomplete case. As observed earlier, the proposed model

can have a greater number of encoding units relative to sensory

units, and it optimally minimizes the error to the bound set by the

sensory degradation (Figure 5). Because the encoding units are

noisy, it is beneficial to increase the population size in order to

better compensate for the neural noise. The model makes optimal

use of added neurons by decreasing the effect of the neural noise in

the population, which increases the representational capacity [47].

This highlights an important notion that the neural code is not

determined by the ratio of sensory units to encoding units per se,

but depends on many factors (see Text S1 and Figures S1–S5 for a

comprehensive analysis).

Predicting retinal population coding
The proposed model predicts how the original signal is

optimally encoded in a neural population. The solution is uniquely

specified in the spectral domain, however, it does not predict a

unique spatial organization of the receptive fields. In other words,

there are multiple ways to implement the optimal spectral

transform (see Methods for a mathematical explanation of why

this arises from the model). Figure 7a shows a subset of optimal

encoding (and decoding) filters of the proposed model with no

additional constraints. This is a randomly chosen one out of many

optimal solutions, and the receptive fields are generally unstruc-

tured. Additional constraints are necessary to determine the exact

spatial form of the receptive fields.

We investigated three constraints that are relevant to limited

biological resources. The first maximized the sparsity of the

receptive field weights [41,43], which could provide an energy-
efficient implementation of the optimal solution given that

synaptic activities are metabolically expensive [52]. This did not,

however, yield the types of concentric, center-surround receptive

fields found in the retina (Figure 7b).

The second constraint maximized the sparsity of neural

responses. This can be justified either by the energy efficiency of

the resulting code or from the sparse structure of natural images

[7,8]. This also did not yield concentric center-surround receptive

fields, but rather oriented, localized Gabor-like filters which

resemble receptive fields found in primary visual cortex (Fig-

ure 7c).

Finally, we examined a constraint that maximized the spatial

locality of the computation (receptive fields), motivated by the

notion that the neural systems generally, and the retina in

particular, have limited space and thus should minimize the

volume and extent of the neural wiring required to compute the

code [39,42,44,53]. With this locality constraint, the model yielded

a center-surround receptive field structure, similar to that found in

the retina (Figure 7d).

With this last constraint, we further examined the details of

receptive field structure and organization. Figure 8 shows the

prediction at two retinal eccentricities, 0u (fovea) and 50u
(periphery). To better model the conditions in the retina, we took

into account the optical blur of the human eye [50] and the cell

ratio (Figure 2) at the respective eccentricities. As above, we

modeled different mean light levels by various sensory SNRs.

(Additional information in Methods.)

In the fovea condition, the encoding filters vary from the large,

so-called center-only type (210 dB) to the small, difference-of-

gaussian type (20 dB) [15,54,55]. This can be expressed in the

spectral domain as the transition from low-pass to band-pass

filtering (cf. Figure 6). As a result, the overlap of the central region

of the receptive fields is very large at the lower SNR, implying that

neighboring neurons are transmitting information about a highly

overlapped region of pixels at the expense of transmitting

independent information. This overlap, however, is optimal for

counteracting the high level of sensory noise and encoding the

underlying original signal (cf. Figure 4).

In the periphery condition, a similar adaptive change was

observed but to a lesser extent. The shape of the receptive field

looks similar across all sensory SNRs. More specifically, with the

change from 20 to 210 dB, the number of cones inside the central

subregion increases only by a factor of 25% in the periphery

compared to 780% in the fovea. As was seen in the spectral

analysis (Figure 6), the degree of adaptation is limited by the

highly convergent cone-to-RGC ratio.

Discussion

In this article we presented a simple theoretical model of

optimal population coding that incorporates several key aspects of

sensory systems. The model is analytically well characterized

(Figure 6; see also Text S1, Figures S1–S5) and scales to systems

with high input dimensionality (Figures 4–5). We found that the

optimal code conveys significantly more information about the

underlying environmental signal compared to a traditional

redundancy reduction model. It has long been argued that some

redundancy should be useful [4,25,27,29–32,56–59]. Here we

provide a simple and quantitative model that optimally incorpo-

rates redundancy in a neural population under a wide range of

settings. In contrast to earlier studies [24–27,56,60], the proposed

model allows for an arbitrary number of neurons in a population,

providing previously unavailable insights and predictions: the

degree to and the mechanisms by which the error can be

minimized with different input-to-output cell ratios (Figure 6); the

conditions in which the redundancy reduction model is near-

optimal (Figure 5); the degree of adaptation of receptive fields at

different eccentricities to different light levels (Figure 8). We

observed that the optimal receptive fields are non-unique, as in

other models [8,25,59–61], and found that the additional

constraint of spatial locality of the computation [25], but not

previously examined constraints such as sparse weights [41] or

sparse responses [7,8], yielded receptive fields similar to those

found in the retina (Figure 7).

A number of other studies have also investigated different

optimal coding models that extended the basic idea of redundancy

reduction, but with different assumptions and conditions. A

commonly assumed objective is information maximization, which

maximizes the number of discriminable states about the environ-

mental signal in the neural code [6,25,27,56,57,59,62–64],

whereas the present study assumed error minimization, which

minimizes the MSE of reconstruction from the neural code

[24,31]. These objectives can be interpreted as different mathe-

matical approaches to the same general goal (some predictions

from these different objectives are qualitatively similar [24,62]; an

A Simple Model of Optimal Population Coding for Sensory Systems
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equivalence can be established between the two under some

settings [65]). Recently, Doi et al. [59] showed that the

physiologically estimated retinal transform [66] is on average

80% optimal, but note that this model did not uniquely predict

concentric center-surround receptive field structures, and that the

change of receptive field structure under different conditions (e.g.,

sensory SNRs and cone-to-RGC ratios) was not examined. Some

consequences that arise from the choice of the objective are worth

mentioning. One is that de-blurring emerges from error minimi-

zation but not from those information maximization models

[25,27,59], because the error is defined with respect to the original

signal prior to blurring. (In [25,27,59], the information is defined

with respect to the original signal, but it is equivalent to the

information about the blurred signal under the model assumptions

(eq. 1–2): I (r; s)~H(r){H(rDs)~H(r){H(rDHs)~I (r; Hs),
where I and H denote the mutual information and the entropy,

respectively.) Another is that, in the limit of zero sensory noise, the

optimal neural transform for information maximization is

whitening (i.e., redundancy is reduced) [25,27,59,64] while that

for error minimization is half-whitening (i.e., redundancy is half-

preserved) [47].

In many theoretical studies, the input-to-output cell ratio is

assumed to be 1:1, i.e., a complete representation [8,24,25,27].

Although this assumption may be valid in some specific settings

such as in the fovea [25], there are many settings in which this

assumption is not valid, such as in the periphery (Figure 2). By

being able to vary the cell ratio to match the conditions of the

system of interest, the proposed model showed that the retinal

transform of sensory signals and the resulting redundancy in

neural representations vary with the retinal eccentricity. Another

common assumption related to the cell ratio is that neural

encoding is the inverse of the data generative process [7,8], where

individual neurons are noiseless and represent independent

features or intrinsic coordinates of the signal space. In this view,

the number of neurons should match the intrinsic dimensionality

of the signal. In contrast, in the proposed model the number of

neurons may be seen as a parameter for total neural capacity and

can be varied independently of the signal’s intrinsic dimensional-

ity. Consequently, it is even possible that, while representing an

identical signal source, two neurons in the proposed model

adaptively change what they represent by changing their receptive

fields with different sensory or neural noise levels (Figures S3–S4;

notably, two neurons can have identical receptive fields in some

extreme cases).

While the current study is based on several simplifying

assumptions such as linear neurons with white gaussian neural

noise, some recent studies have incorporated more realistic neural

properties to investigate the optimality of retinal coding, so it is

important to contrast these with the proposed model. Borghuis et

al. [57] included instantaneous nonlinearities of neural responses

and found that the physiologically observed *2s spacing of RGC

receptive field arrays [67,68] is optimal. This is consistent with the

prediction of the proposed model under the retinal conditions they

studied (i.e., high cone-to-RGC ratios; we estimate the ratio is

roughly *100, given the reported receptive field size and tiling

[57] and the cone density in the guinea pig retina [69]). However,

the model presented here predicts that the *2s spacing is not

optimal in all conditions (Figure 8). Also note that the center-

surround structure in their study was assumed, and did not emerge

as a result of an optimization as presented here. Pitkow & Meister

[64] investigated efficient coding in the retina using a spike count

representation and studied the functional role of instantaneous

nonlinearity, neither of which was included in this study. Like in

the previous study [57], the center-surround receptive fields were

measured, not derived. In addition, their analysis assumed zero

sensory noise, which as we have shown here can play a significant

Figure 7. A variety of equally optimal solutions obtained under different resource constraints. Each panel shows a subset of five pairs of
neural encoding (top, W) and decoding (bottom, A) filters in the foveal setting at four sensory SNRs (columns, 210 to 20 dB) in four conditions
(rows): (a) No additional constraint (i.e., the base model). (b) Weight sparsity. (c) Response sparsity. (d) Spatial locality. Only the spatial locality
constraint yields center-surround receptive fields. See Figure S6 for the resource costs in respective populations. Note that in (d) the center-surround
structure is seen only in the filters, which transform the observed signal into the neural code (and hence correspond to receptive fields). The
decoding filters have a different, gaussian-like structure. These features are used to optimally reconstruct the original signal from the neural code.
doi:10.1371/journal.pcbi.1003761.g007
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role in the form of retinal codes. Karklin & Simoncelli [63]

proposed an algorithm for optimizing both receptive fields and

instantaneous nonlinearities. While they did not assume additional

resource constraints or examine different cone-to-RGC ratios

systematically, their predictions in certain conditions are consistent

with those presented here. Some differences are significant, for

Figure 8. Predicting different retinal light adaptations at different eccentricities. Each panel consists of three plots. Top: The (smoothed)
cross section of a typical receptive field through the peak. The horizontal line indicates the weight value of zero. Middle: The intensity map of the
same receptive field. The bright and dark colors indicate positive and negative weight values, respectively, and the medium gray color indicates zero.
Superimposed is the outline of the center subregion (the contour defined by the half-height from the peak) along with the average number of pixels
(cones photoreceptors) inside the contour. Bottom: The half-height contours of the entire neural population which displays their tiling in the visual
field. Two neurons are highlighted for clarity (one of which corresponds to the neuron shown above). The pixel lattice is depicted by the orange grid.
doi:10.1371/journal.pcbi.1003761.g008
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example, in their model different types of receptive fields were

derived under different sensory and neural SNRs. Further

investigations are necessary to bring clarity to these differences.

Overall, it is fair to say that there is no model that incorporates all

aspects of retinal coding with realistic assumptions, and developing

such a model is an open problem for future research. We would

point out, however, that there are advantages to simpler models,

especially if they can account for important aspects of sensory

coding. Some issues that arise with more realistic (and more

complex) models are whether they can be analytically character-

ized, scale to biologically relevant high-dimensional problems, or

provide insights beyond simpler models. The proposed model may

be seen as a first-order approximation to a complex sensory system

and can be used as a base model for developing and comparing to

models with more realistic properties. Moreover, the optimization

of the model is convex, implying that the optimal solution is

guaranteed and can be obtained with standard algorithms.

The proposed model made a novel prediction that the change of

receptive field structure and organization with different light levels

is much greater in the fovea than in the periphery of the macaque

midget RGCs (Figure 8). This prediction has not been tested

directly because, to the best of our knowledge, all physiological

measurements from RGCs with different light levels have carried

out either in cat [15,54,55] or rabbit [67] retinas, where the

reported adaptive changes were marginal. This observation seems

to be consistent with our prediction for the periphery, where the

cone-to-RGC ratio is high. Note that in the cat retina, the cone-to-

RGC ratios (specifically with respect to the most numerous beta

RGCs) range from 30 to 200 across eccentricity [70]; in the rabbit

retina, we estimate the ratio to be greater than *100, according to

the cone density [71], receptive field sizes, and their tiling [67]. If

the prediction of larger changes in receptive field structure in fovea

conditions (cone-to-RGC ratios near 1:1) is confirmed by

physiological measurements, it would be a strong test of the

theory. Note also that some studies have reported larger changes

in receptive fields sizes [15,54], but these were measured between

scotopic and photopic conditions. Like previous approaches, here

we have only considered cone photoreceptors which implicitly

assumes photopic conditions. To include scotopic conditions, one

would need to model the rod system [72,73], which has yet to be

incorporated into an efficient coding framework.

The proposed model incorporated a broad range of properties

and constraints for sensory systems. It is an abstract model and

hence predictions can be made for a wide range of sensory systems

by incorporating system-specific conditions. Although we have

only modeled conditions for the midget RGCs in the macaque

retina, the same framework could be applied to other cell types

(e.g., parasol RGCs [68]) or retinas of other species (e.g., cat

[15,54] or human [70]) by incorporating their specific conditions

(e.g., cone-to-RGC ratios and optical blur functions). The model

can also be applied to other sensory systems, as nothing in the

proposed model is specific to the retina. Auditory systems have

been approached in the same framework of efficient coding [74–

77], but the factors introduced in this study have not fully been

incorporated into previous models. For example, the cell ratio of

sensory units (inner hair cells) to encoding units (auditory nerve

fibers) is 1 : 15*20 [78], i.e., the neural representation is highly

overcomplete, which is very different from the retina (Figure 2).

Further, the auditory signal is filtered by the head-related transfer

function [79], which could be modeled by the linear distortion in

the proposed framework. Olfactory systems have also been studied

in an efficient coding framework (e.g., [80,81]; for reviews, [82–

84]). It is possible that the optimal redundancy computed with the

proposed model may provide insights into olfactory coding beyond

decorrelation [81]. Finally, the sensory SNR models the varied

intensity of environmental signals relative to the background noise,

and the neural SNR models the neural capacity, both of which are

broadly relevant. The application of the proposed model to

different retinal conditions and other sensory modalities would be

a powerful way to investigate common principles of sensory

systems.

Methods

The problem formulation
We define the linear gaussian model (Figure 3), a functional

model of neural responses on which both the proposed and

whitening models are constructed. The observed signal x[RN is

generated by

x~Hszn ð1Þ

where s[RN is the original signal, H[RN|N is a linear distortion in

the sensing system such as optical blur in vision or the head-related

transfer function in audition, and n*N (0,s2
nIN ) is the sensory

noise with variance s2
n , where IN denotes the N-dimensional

identity matrix. The covariance of the original signal is defined by

Ss. We assume that the original signal is zero mean but need not

be gaussian (as in [85]). The sensory SNR is measured in dB,

10 log10 tr HSsH
T

� �
=(Ns2

n)
� �

, where tr (:) denotes the trace of a

matrix. We set the sensory noise variance, s2
n , such that the sensory

SNR varies from 210 to 20 dB, which covers the physiological

range measured in fly photoreceptors (22.2 to 9.7 dB) [20]. The

neural representation r[RM is generated by

r~Wxzd ð2Þ

where W[RM|N is the encoding matrix whose row vectors are the

encoding filters (or linear receptive fields), and d*N (0,s2
dIM ) is

the neural noise with variance s2
d. The neural SNR is also

measured in dB, 10 log10 tr WSxWT
� �

=(Ms2
d)

� �
, where Sx is the

covariance of the observed signal, and WSxWT is the covariance

of the encoded signal, Wx. We set the neural SNR to 10 dB so

that its information capacity, 1.7 bits, is approximately matched to

the values of information transmission estimated in various neural

systems (0.6–7.8 bits/spike) [28]. The reconstruction of the

original signal from the neural representation is computed by a

linear transform A[RN|M

s~Ar ð3Þ

that minimizes the MSE

E~SEŝs{sE2
2T ð4Þ

where S:T indicates sample average and E:E2 L2-norm, given the

covariances of signal and noise components in the neural

representation (i.e., WHSsH
T WT and s2

nWWTzs2
dIM , respec-

tively). In other words, the decoding matrix A is the Wiener filter

which estimates the original signal s from its degraded version r
with the linear transform WH and additive correlated gaussian

noise Wnzd [24,47]. The proposed, optimal encoding, Wopt,

achieves the theoretical limit of the MSE under the linear gaussian

model subject to the neural capacity constraint. This constraint

can be defined either for the neural population, i.e., with respect to
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the total variance of neural responses (total power constraint),

tr Wopt(HSsH
Tzs2

nIN )WT
opt

h i
~P, ð5Þ

or more strictly for the individual neurons, i.e., with respect to the

individual neural variance (the individual power constraint),

diag Wopt(HSsH
Tzs2

nIN )WT
opt

h i
~
P
M

1M ð6Þ

where diag(:) is the diagonal components of a matrix, and 1M is

the M-dimensional vector whose elements are all 1. Note eq. 6

implies eq. 5. Importantly, the minimum MSEs under those two

conditions are identical [47]. The difference between the two

solutions is only in the left orthogonal matrix of the singular value

decomposition of the encoding matrix,

Wopt~PVET , ð7Þ

where P is some M-dimensional orthogonal matrix, V is a unique

diagonal matrix whose diagonal elements are the modulation

transfer function (or the gain in the spectrum domain) of the

encoding, and E is the eigenvector matrix of the original signal

covariance. To summarize, the minimum value of MSE, the

coordinates of the encoding (E), and its power spectrum (V) are

uniquely determined and in common with the optimization

problems with total or individual power constraints. For the

derivation of Wopt, readers should refer to [47].

The whitening matrix, Ww, removes all the second-order

regularities, both of the signal statistics and of the signal blur [48],

and the resulting covariance is the identity matrix with a scaling

factor c,

WwHSsH
T WT

w~cIM : ð8Þ

This scaling is computed such that the neural capacity

constraint is satisfied just as in the proposed model (i.e., eq. 5 or

6), namely, c~ P{s2
ntr(WwWT

w )
� �

=M. Note that whitening is

defined independent of the level of sensory noise s2
n up to this

scaling factor, and that the higher is the noise level, the smaller the

scaling. This leads to the vertical translation of the whitening

spectra at different sensory SNRs (see Figure 6). Finally, whitening

for an undercomplete case, MvN, is computed with respect to

the first M principal components of the original signal as in the

prior ICA studies [85].

Multiplicity of the optimal solution
In general there exist multiple encoding matrices Wopt that

achieve the optimal MSE. Note the MSE (eq. 4) is invariant with

orthogonal matrix P (eq. 7), and so is the total power constraint

(eq. 5). Therefore, subject to the total power constraint, Wopt is

optimal with any choice of P. On the other hand, in order to

satisfy the individual power constraint (eq. 6), some specific P
needs to be chosen [47]. The proposed model assumes the

individual power constraint so that individual neurons have the

same, constant neural precision.

To examine the MSE and the spectrum, there is no need to

choose a specific P because they are independent of P. The

reconstructed signal depends on the choice of P in a weak manner.

(The singular value decomposition of the optimal A has PT as the

right orthogonal matrix, so P cancels out in the multiplication,

AW. The reconstructed signal is expressed as ŝs~AWxzAd, so

the choice of P makes a difference only in the second term of the

reconstruction, i.e., how the neural noise appears in the

reconstruction.) In Figure 4 we used a random orthogonal matrix

for P in favor of a large scale image reconstruction; see [46] for

reconstructions subject to the individual power constraint but with

small image patches.

The receptive field structure depends on the choice of P, as

illustrated in Figure 7. We examined three kinds of additional

constraints (on the top of the individual power constraint) to

choose P: (i) weight sparsity measured by the L1-norm of the

receptive field weights,

g1(j)~
XN

k~1

DWjk D ð9Þ

where Wjk denotes the (j,k)th entry of W; (ii) response sparsity
measured by the negative log-likelihood with a sparse generalized

gaussian distribution,

g2(uj Db)~c(b)Duj=suD2=(1zb)zconst: ð10Þ

where uj is the jth neuron’s representation before neural noise is

added, u~Wx, su~
ffiffiffiffiffiffiffiffiffiffiffiffi
P=M

p
is the standard deviation of

the individual neural response, b a parameter to define the

shape of the distribution (we used b~2), and c(b)~

½C½3=2(1zb)�=C½1=2(1zb)�1=(1zb)
[86]; (iii) spatial locality mea-

sured by the weighted L2-norm of the squared receptive field

weights,

g3(j)~
XN

k~1

dk(j)W 2
jk ð11Þ

where dk(j) is the weighting (or penalty) defined for each neuron, j,
by the squared distance between the kth entry and the one with the

peak value in Wjk,k~1, � � � ,N.

An algorithm to derive the solution with an additional
constraint

Solutions in Figure 7 which respectively satisfy (a) no additional

constraint, (b) weight sparsity, (c) response sparsity, or (d) spatial

locality, are derived as follows. Let the individual power constraint

of the jth neuron,

g0(j)~(wjSxwT
j {s2

u)2 ð12Þ

where Sx~HSsH
Tzs2

nIN is the covariance of the sensory

representation, x.

1. Initialize W~PVoptE
T with some M-dimensional orthogo-

nal matrix P.

2. Update W�~WzDW where

DWjk~{
L

LWjk

½g0(j)zraga(j)� ð13Þ

is the gradient of the individual power constraint and the

additional constraint, with ra, a~f0,1,2,3g is a parameter which

sets the importance of the additional constraint, ga (see eq. 9–11)

relative to the individual power constraint, g0. The additional
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constraint is selected by the index a, with ra~0 when a~0 (no

additional constraint). Note that W� is better in terms of satisfying

the constraints than W, but is no longer guaranteed to be optimal

in terms of MSE.

3. Project W� onto the optimal MSE solution manifold subject

to the total power constraint, which is parameterized by the M-

dimensional orthogonal matrix P. This is solved algebraically by

finding the M -dimensional orthogonal matrix P� that corresponds

to the closest point in the solution manifold in the Euclidean

distance,

P�~ min
P

EW�{PVoptE
TE2

F ð14Þ

with E:EF the Frobenius norm [59,87].

4. Update the solution as W~P�VoptE
T .

5. Repeat until W satisfies the convergence criteria for the

individual power and additional constraints.

This algorithm is not guaranteed to find a solution, but we

observed that it could find solutions with reasonable tolerance for

the individual power constraint (i.e., #1% of violation; note the

total power constraint is exactly satisfied thanks to eq. 14). Figure

S6 shows that the additional desired properties (weight sparsity,

response sparsity, or spatial locality) were optimized in the

respective populations. Finally, we observed that the algorithm is

susceptible to local minima.

An alternative algorithm for the solution with spatial
locality

If we could express the desired additional properties of a

population of receptive fields in a matrix form, W�, then the

optimal solution W (subject to the total power constraint) closest to

W� can readily be derived with eq. 14. An important example of

this method is with W�~IN in the complete case. It has been

proposed that the retinal transform should minimally change the

observed signal to generate the neural representation [88], i.e., W
should be as close as possible to the identity, IN . In this case,

P�~E, and the encoding matrix is given by W~EVoptE
T . This

‘‘symmetric’’ solution was examined earlier with information

maximization [25] and with whitening [88,89] (which is also called

ZCA in the literature [8]).

This algorithm is not limited to the complete case. To derive a

spatially localized solution in an undercomplete case, one can set rows

of W� with uniformly tiled gaussian bumps (which may be seen as a

generalization of the identity in the undercomplete case). In this study,

the locations of the bumps were computed with k-means algorithms

with respect to the uniformly distributed samples in the visual field, and

the sigma of the gaussians was set by w=4 where w~N=
ffiffiffiffiffiffiffiffi
Mp
p

is the

radius of ideal (but unrealizable) circles that completely pack the visual

field. We examined different values of the sigma from w=16 to w, and

found that w=4 results in the best average locality (eq. 11). The resulting

solution is comparable with the one derived with an explicit spatial

locality constraint (eq. 11); the spatially localized solutions presented in

this article were derived with this alternative algorithm.

Simulating retinal conditions
There are about twenty types of RGCs in the primate retina

which subserve a variety of visual tasks and computations [90].

Here, as in the earlier studies [24,25], we focus on the

computational problem of accurately encoding the image signal

with high spatial resolution which is thought to be carried out by

the so-called midget type, although the model does not make

distinctions among different cell types.

According to the measured cell ratio (Figure 2), we set the

number of cone photoreceptors (namely, the number of pixels in

the small image region) and that of model RGCs as

15|15 ~225ð Þ : 225 (the ratio is 1:0) at the fovea, and

35|35 ~1,225ð Þ : 45 (the ratio is 27.2) at the periphery. The

image sizes were chosen to maintain the number of elements in the

encoding matrix to be computationally manageable.

Natural image statistics
Both the proposed and whitening models are adapted to the

second-order statistics. Therefore, the solution can be computed

only with the covariance matrix of the original signal, Ss. Let

Ss~ELET using the eigenvalue decomposition, where E is the

eigenvector matrix and L is a diagonal matrix consisting of the

eigenvalues (or the power spectrum).

For the image reconstruction of 1216121 pixel images

(Figures 4–5), the power spectrum of the original signal (L) is

assumed to be 1=f 2 with f the spatial frequency. The spectrum at

f = 0 (i.e., the DC component) is set to zero because the signal is

assumed to be zero-mean. The eigenvectors (E) are assumed to be

the two-dimensional discrete Fourier basis with the size of 1216121.

These two components define a high-dimensional (14,941-dimen-

sional) covariance matrix. Employing this covariance model allowed

us to examine image reconstructions in a much larger scale than

those in the previous studies (e.g., 868 pixel image patches in [31]).

In this article we report the MSE in percent error relative to the

original signal variance: 100|E=SEsE2
2T.

For the predictions of the retinal code, the signal covariance Ss is

empirically computed with 507,904 image patches (15615 or 35635

pixels) randomly sampled from a calibrated 62 natural image data set

[91]. Each image consists of 5006640 pixels with the human L cone

spectral sensitivity and the cone nonlinearity. We assigned one pixel

to one cone photoreceptor, which corresponds to a sampling density

of the human cone photoreceptors of 120 cycle/degree at the fovea

and 25 cycle/degree at the periphery (50u eccentricity) [92]. To

derive the solution with response sparsity, however, higher-order

statistics are required; in this case, we sampled data from the same

natural image data set during the optimization.

Supporting Information

Figure S1 The optimal solution as a function of signal
correlation.

(EPS)

Figure S2 The optimal solution in the case of no blur.
These should be compared with the first two cases in Figure S1.

(EPS)

Figure S3 The optimal solution as a function of sensory
SNR.

(EPS)

Figure S4 The optimal solution as a function of neural
SNR.

(EPS)

Figure S5 The optimal solution with different neural
population sizes. Row 1: one neuron in the population, or

undercomplete case. Rows 2 & 3: three neurons in the population,

or overcomplete case. These are two different, but equally optimal,

solutions. The number labels indicate the corresponding encoding

vectors, the axis of neural representations, and the decoding

vectors. The two neuron (or complete) case is shown in the middle

row of Figure S4.

(EPS)
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Figure S6 Resource costs in equally-optimal solutions.
Resource costs are computed with the solutions presented in

Figure 7 with the same labels indicating the type of additional

constraints. Each row presents the additional fraction of resource

cost relative to the optimized population, i.e., weight sparsity (top,

optimized in b), response sparsity (middle, optimized in c), and

spatial locality (bottom; optimized in d). Each plot indicates the

mean (dot) and the 5th to 95th percentile range (bar), respectively.

(EPS)

Text S1 Characterization of the optimal solution with a
two-dimensional signal.
(PDF)
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