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Abstract

Simple models of therapy for viral diseases such as hepatitis C virus (HCV) or human immunodeficiency virus assume that,
once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug
effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced
varying-effectiveness (VE) model is studied mathematically in the context of HCV infection. We show that while the model is
linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can
be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are
defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under
therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted
viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE) models. We
introduce a general method for determining the time at which the transition between decay phases occurs based on
calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find
approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of
second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy,
whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness
with time.
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Introduction

Chronic hepatitis C virus (HCV) infection affects between 150

and 180 million people world-wide and is a major cause of chronic

liver disease, cirrhosis and hepatocellular carcinoma. A number of

agents have been approved for treating HCV infection including

pegylated interferon-alpha (PegIFN) and ribavirin (RBV); the

HCV protease inhibitors telaprevir, boceprevir, and simeprevir;

and the HCV polymerase inhibitor sofosbuvir [1]. A large number

of other agents are being tested in clinical trials [2].

An early model of HCV infection and treatment developed by

Neumann et al. [3] showed that the effectiveness of antiviral

therapy in blocking HCV production from infected cells could be

estimated from the kinetics and extent of viral decline during the

first few days of therapy. Neumann et al. [3] also showed that if

plasma HCV RNA levels were measured frequently after

treatment initiation with interferon one observed a biphasic

decline after a short delay when the logarithm of HCV RNA/ml

was plotted versus time on treatment (Fig. 1). This type of biphasic

decline has now been observed with many different types of HCV

treatments including those employing PegIFN and RBV, and a

variety of HCV protease and polymerase inhibitors [4–10].

The Neumann et al. model [3] assumed that there was delay

before interferon became active followed by a period in which it

had constant effectiveness. Under reasonable assumptions, this

leads to a model described by a set of linear, constant coefficient,

ordinary differential equation that can easily be solved [3].

Models, such as that of Neumann et al., in which the drug

effectiveness is constant or constant after a delay have been called

constant effectiveness (CE) models [11,12]. In the case of

interferon therapy we now know that the delay is caused by

pharmacokinetics of the drug as well as the time needed for the

drug to bind cell surface interferon receptors and cause

upregulation of interferon stimulated genes, whose gene products

then lead to reduced viral replication.

For pegylated interferon, which is approved for once weekly

dosing, the pharmacokinetics of the drug lead to a loss of

effectiveness towards the end of the dosing interval in many

patients [13,14]. To account for this, a combined pharmacoki-

netic/viral kinetic model was introduced by Powers et al. [13] and

fit to both drug concentration and HCV RNA data by Talal et al.

[14]. However, in most clinical studies drug concentration data is

not available for each patient. A phenomenological time-varying

effectiveness (VE) model was therefore introduced by Shudo et al.

[11,12] and studied numerically. Guedj at al. [6] studying the

effects of the HCV protease inhibitor telaprevir on viral decay

kinetics showed that a VE model fit clinical data better than a CE

model as assessed by the Akaike Information criterion, which

PLOS Computational Biology | www.ploscompbiol.org 1 August 2014 | Volume 10 | Issue 8 | e1003769

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003769&domain=pdf


allows one to compare the ability of models with different numbers

of parameters to fit data [15].

This study was followed by two others by Guedj et al. using VE

models to analyze the HCV RNA decay kinetics observed with the

nucleoside polymerase inhibitor mericitabine [16], and with the

HCV nucleotide polymerase inhibitors sofosbuvir and GS-0938

[17]. In these cases, the VE model accounted for the fact that these

drugs need to be triphosphorylated intracellularly to become active

[18]. More recently, Canini et al. [19] used a VE model to analyze

the viral kinetics seen in a different set of patients treated with the

drug silibinin, which appears to have activity as both a polymerase

and entry inhibitor [20,21]. In all of these studies employing VE

models, numerical methods were used to solve the time-varying

equations. Here, we show how a previously used and prototypic

VE model can be analyzed mathematically. We obtain an analytic

solution to the time-varying problem in terms of modified Bessel

functions, and a set of approximate solutions involving exponential

decay functions.

Models

We model HCV viral dynamics at the initiation of treatment by

modifying the standard constant effectiveness viral dynamic model

of Neumann et al. [3]. For infected cells, I , and viral load, V , the

model differential equations are

dI

dt
~(1{g)bTV{dI

dV

dt
~(1{e(t))pI{cV :

ð1Þ

We assume the number of target cells, T , is constant and takes

on its pre-therapy steady-state value, T0~cd=pb. This is an

approximation that is commonly made when analyzing clinical

trial data obtained over a period of one or two weeks. In the case

of Neumann et al. [3], it was used to analyze data collected over

two weeks.

In the model given by equation (1), target cells are infected by

virus, V , with mass-action infectivity b. Infected cells die at rate d
per cell and virus clears at rate c per virion. The infection process

may be hampered by drug treatment; the efficacy of treatment in

blocking infection is given by g, 0ƒgƒ1. Infected cells produce

virus at rate p per cell. Drug treatment may also interfere with

viral production, with efficacy e, 0ƒeƒ1. In the constant

effectiveness (CE) model the drug efficacy is assumed to be

constant, e(t):e. In this case the solution for the viral load

dynamics from (1) is

V (t)~V0 Ae{lztz(1{A)e{l{t
� �

ð2Þ

where V0 is the viral load at t~0, l+~

(czd)+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c{d)2z4(1{")(1{g)cd

q� ��
2, and A~ ec{l{ð Þ=

lz{l{ð Þ [3,21]. Here we assume the drug efficacy in blocking

viral production, e, is time dependent, i.e. e~e(t), with a build-up

of activity to a maximum

e(t)~emax(1{e{kt), ð3Þ
where emax is the maximum drug efficacy obtained with the

concentration of drug used and the exponential scale k determines

the speed at which the drug efficacy reaches its maximum

(e(0)~0, limt?? e(t)~emax). In principle, the effectiveness of

treatment in blocking infection, g, could also be time dependent.

Here we have chosen to ignore this possibility as no published data

is available to guide such modeling efforts.

At treatment initiation (t~0) we assume the system is in steady

state. Let the initial viral load, i.e., pre-treatment viral load set-

point, be given by V (0)~V0. Since we assume that pre-treatment
dV

dt
~0, then pI(0){cV (0)~0 and I(0)~cV0=p: Further,

dI

dt
~0, so that bT0V (0){dI(0)~0. Since V (0)~V0 and

I(0)~cV0=p, bT0~cd=p:
Substituting for bT0, our system becomes

dI

dt
~(1{g)

cd

p
V{dI

dV

dt
~(1{e(t))pI{cV :

ð4Þ

Now let y~pI , and for notational convenience let z(t)~V (t)
and z0~V0

dy

dt
~d(c(1{g)z{y)

dz

dt
~(1{e(t))y{cz

Author Summary

Fitting simple models of therapy for viral diseases, such as
hepatitis C virus (HCV) or human immunodeficiency virus,
to patient data has yielded significant insights into the
underlying viral dynamics. In general, these models
assume that, once therapy is started, the drug has a
constant effectiveness. More realistic assumptions are that
drug effectiveness either depends directly on the drug
concentration or varies over time. Here a previously
introduced varying-effectiveness (VE) differential equation
model is studied in the context of HCV infection. We show
that the previously-unsolved VE model can be transformed
into a Bessel equation and derive an analytic solution in
terms of modified Bessel functions with time-varying
arguments. These analytic solutions can be more readily
used to fit the model to patient data than the underlying
differential equations. We also find approximate solutions
and establish the asymptotic behavior of the system.
Typically viral load measurements exhibit a biphasic
decline after therapy initiation. We show that the rate of
second phase decay is determined by the death rate of
infected cells multiplied by the maximum effectiveness of
therapy, whereas the rate of first phase decline may
depend on multiple parameters, resulting in differing first
phase declines across various HCV therapies.

Figure 1. Example of a biphasic decline of HCV, following a
short delay, after initiation of interferon-a therapy at t~0. Fit of
Neumann et al. model (solid line) to data for Patient 1E (dots) from [3].
doi:10.1371/journal.pcbi.1003769.g001
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with initial conditions y(0)~cz0 and z(0)~z0. In the next section

we will find an analytic solution for our model using this

formulation.

Results

Analytic solution
We are interested in solving the system of ODEs

dy

dt
~d(c(1{g)z{y)

dz

dt
~(1{e(t))y{cz

ð5Þ

with initial conditions y(0)~cz0, z(0)~z0, where e(t) is the time-

dependent drug efficacy e(t)~emax(1{e{kt): Assume that gv1;

we treat the g~1 case separately below. We can re-write this as a

linear system,

d~pp

dt
~A(t)~pp

where ~pp(t)~( y z )T and A(t)~
{d cd(1{g)

1{e(t) {c

� 	
.

n{dimensional systems for nw1 of the form
d~xx

dt
~A(t)~xx have

solutions, Magnus expansions, that are infinite series, which only

collapse to a single term giving a closed for solution if, for any t1,

t2, A(t1)A(t2)~A(t2)A(t1) [22,23]. Since A(t1)A(t2)=A(t2)A(t1),
our system of equations (5) has no closed form solution.

However we can still recover a solution. We begin by writing

the system (5) as a second-order differential equation. First, let

w(t)~d(c(1{g)z{y): Then

dw

dt
~d c(1{g)

dz

dt
{

dy

dt

� 	

~cd (1{g)(1{e(t)){1½ �y{(czd)w:

Our system of equations (5) then becomes

dy

dt
~w

dw

dt
~cd((1{g)(1{e(t)){1)y{(czd)w:

ð6Þ

Since w~
dy

dt
,

dw

dt
~

d2y

dt2
and from (6) we recover the second

order equation corresponding to the system of ODEs (5),

d2y

dt2
z(czd)

dy

dt
zcd(1{(1{g)(1{e(t)))y~0 ð7Þ

with initial conditions y(0)~cz0,
dy

dt






t~0

~{cdgz0:

We now employ some convenient changes in the dependent and

independent variables. Let y(t)~e{(czd)t=2u(t): Then (7) becomes

d2u

dt2
{

1

4
(czd){4cd 1{ 1{gð Þ(1{e(t))ð Þð Þu~0:

Then let x~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdemax(1{g)

p
e{kt=2=k (recall that e(t)~

emax(1{e{kt)), so that d=dt~{(k=2)xd=dx and d2
�

dt2~

(k2
�

4)(x2 d2
�

dx2zxd=dx), to obtain

x2 d2u

dx2
zx

du

dx
{ x2z

(czd)2{4cd emaxz(1{emax)gð Þ
k2

 !
u~0:

Finally let n~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd emaxz(1{emax)gð Þ

q
=k, to simplify

the equation

x2 d2u

dx2
zx

du

dx
{ x2zn2
� 


u~0: ð8Þ

Equation (8) is the modified Bessel differential equation [24],

with solutions

u~c1In(x)zc2Kn(x),

where In(x) and Kn(x) are the modified Bessel functions of the

first- and second-kind of order n. As they represent infinite series,

Bessel functions are not closed-form solutions. Note that the order

n is real: since 0ƒemaxƒ1, 0ƒgv1, the factor

emaxz(1{emax)gð Þ varies between max(emax,g) and 1. Thus

(czd)2{4cd emaxz(1{emax)gð Þ§(czd)2{4cd~(c{d)2
w0:

Then since y(t)~e{(czd)t=2u(t), the solution of equation (7) is

y(t)~e{(czd)t=2 c1In x(t)ð Þzc2Kn x(t)ð Þ½ � ð9Þ

where x(t)~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdemax(1{g)

p
e{kt=2=k:

We can use the solution (9) and the initial conditions y(0)~cz0,
dy

dt






t~0

~{cdgz0, to solve for the constants c1, c2. Let x0~x(0)

and note that
dx

dt
~{kx(t)=2, so that

dy

dt






t~0

~{kx0=2. Then,

noting that
d

dt
In x(t)ð Þ~½(n=x(t))In x(t)ð ÞzInz1 x(t)ð Þ� dx(t)

dt
and

d

dt
Kn x(t)ð Þ~½(n=x(t))Kn x(t)ð Þ{Knz1 x(t)ð Þ� dx(t)

dt
,

y(0)~c1In(x0)zc2Kn x0ð Þ~cz0

dy

dt






t~0

~c1 {
czdzkn

2

� 	
In(x0){

kx0

2
Inz1(x0)

� �

zc2 {
czdzkn

2

� 	
Kn(x0)z

kx0

2
Knz1(x0)

� �
~{cdgz0

and

c1~
cz0 2gd{c{d{knð ÞKn(x0)zkx0Knz1(x0)ð Þ

kx0 In(x0)Knz1(x0)zInz1(x0)Kn(x0)ð Þ ,

c2~
{cz0 2gd{c{d{knð ÞIn(x0){kx0Inz1(x0)ð Þ

kx0 In(x0)Knz1(x0)zInz1(x0)Kn(x0)ð Þ :

A HCV Virus Infection Model with Time-Varying Drug Effectiveness
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Since In(x0)Knz1(x0)~1=x0{Inz1(x0)Kn(x0) [24] the con-

stants can be written more simply as

c1~
cz0

k
2gd{c{d{knð ÞKn(x0)zkx0Knz1(x0)ð Þ,

c2~
{cz0

k
2gd{c{d{knð ÞIn(x0){kx0Inz1(x0)ð Þ:

ð10Þ

To recover z(t), recall that w(t)~dy=dt and

z(t)~(wzdy)=(cd(1{g)). Therefore

z(t)~
dyz

dy

dt
cd(1{g)

,

with y(t) given by (9),

dy

dt
~e{(czd)t=2 c1 {

czdzkn

2

� 	
In(x(t)){

kx(t)

2
Inz1(x(t))

� ��

zc2 {
czdzkn

2

� 	
Kn(x(t))z

kx(t)

2
Knz1(x(t))

� ��
:

Thus the viral load, z(t), is given by

z(t)~
e{(czd)t=2

cd(1{g)
c1

d{c{kn

2

� 	
In(x(t)){

kx(t)

2
Inz1(x(t))

� ��

zc2
d{c{kn

2

� 	
Kn(x(t))z

kx(t)

2
Knz1(x(t))

� ��
,

ð11Þ

where c1, c2 are given by (10), n~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd emaxz(1{emax)gð Þ

q
=k, and x(t)~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdemax(1{g)

p
e{kt=2=k:

Solution for general varying effectiveness model
The varying effectiveness model employed above is a simplifi-

cation of the more general time-varying effectiveness model,

e(t)~
0, 0ƒtvt0

e1z(e2{e1)(1{e{k(t{t0)), t§t0

�
, ð12Þ

which has been useful in cases where the viral load shows no

measurable decay until time t0 [6,16]. Since at low values of the

effectiveness no change in viral load may be discerned due to low

assay sensitivity and noise, one assumes the effectiveness has value

e1 at the time viral load declines become measurable. With e1~0,

e2~emax, and t0~0 we recover the simpler form, equation (3).

The analytic solution for this more general VE model can be

found following the approach described above, yielding

y(t)~
cz0, 0ƒtvt0

e{(czd)(t{t0)=2 c1In x(t{t0)ð Þzc2Kn x(t{t0)ð Þ½ �, t§t0

�

where x(t) is now given by x(t)~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cd(e2{e1)(1{g)

p
e{kt=2=k,

and the order n is n~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd e2z(1{e2)gð Þ

q
=k (as before

with e2~emax). The constants c1, c2 are still given by (10) but with

x0~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cd(e2{e1)(1{g)

p
=k instead.

Analytic solution for g~1
The parameter g, 0ƒgƒ1, represents the drug’s effectiveness in

interfering with new cell infection with g~0 indicating no efficacy

and g~1 indicating perfect efficacy. The analytic solution (11)

assumes gv1. Perfect drug efficacy, g~1, is not a biologically

reasonable assumption. However, for drugs or drug combinations

with very high effectiveness in blocking viral production, viral

loads fall profoundly after therapy initiation and new cell infections

become rare. Under such circumstances, the solution with g~1
(i.e. no new infections after therapy is initiated) may be a

reasonable approximate model [25,26].

Given g~1 the equation for infected cells, y(t), from (5)

becomes
dy

dt
~{dy. With initial condition y(0)~cz0 the solution

is y(t)~cz0e{dt. Then the equation for viral load, z(t), from (5)

becomes

dz

dt
~(1{e(t))cz0e{dt{cz

with initial condition z(0)~z0. We can re-write this equation,

using an integrating factor, as

d

dt
ectzð Þ~(1{e(t))cz0e(c{d)t,

where e(t) is given by (3). Integrating, we obtain

z(t)~z0
c(1{emax)

c{d
e{dtz

cemax

c{d{k
e{(dzk)t

�

z {
c(1{emax)

c{d
{

cemax

c{d{k
z1

� 	
e{ct

�

~z0
c(1{emax)

c{d
e{dt{e{ct
� 


z
cemax

c{d{k
e{(dzk)t{e{ct
� 


ze{ct

� �
:

ð13Þ

For the more general varying effectiveness model given by (12),

the analytic solution given g~1 for y(t) and the viral load, z(t), is

y(t)~
cz0, 0ƒtvt0

cz0e{d(t{t0), t§t0

�

z(t)~

z0, 0ƒtvt0

z0
c(1{e2)

c{d
e{d(t{t0)z

c(e2{e1)

c{d{k
e{(dzk)(t{t0)

�

z {
c(1{e2)

c{d
{

c(e2{e1)

c{d{k
z1

� 	
e{c(t{t0)

�
,

t§t0

8>>>>><
>>>>>:

z(t)~

z0, 0ƒtvt0

e{(czd)(t{t0)=2

cd(1{g)
c1

d{c{kn

2

� 	
In(x(t{t0)){

kx(t{t0)

2
Inz1(x(t{t0))

� ��

zc2
d{c{kn

2

� 	
Kn(x(t{t0))z

kx(t{t0)

2
Knz1(x(t{t0))

� ��
,

t§t0

8>>>>><
>>>>>:

(13)
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We note for both VE models there exist three time-scales given

by the exponential decay rates {d, {d{k, and {c{d.

Transition time calculation
As noted before, in biologically reasonable parameter regimes

this model predicts that, after initiation of antiviral therapy, viral

load usually undergoes a biphasic decay, consistent with observa-

tions on many different types of HCV treatments [3,6,16].

Examples are given in Figs. 1 and 2, which show the log of the

viral load after treatment initiation at time t~0. The transition

time between the fast- and slow- decay phases, marked by a

dashed line in Fig. 2 is also of clinical interest. For example, with

silibinin treatment the transition time has been shown to vary with

the patient’s disease progression state (chronic HCV, compensat-

ed/decompensated cirrhosis) [19].

At the transition time, the viral load curve has maximal

curvature (c.f. Fig. 2). The curvature of the plane curve

f (t)~ log (V (t)), k(t), is given by

k(t)~
f 00(t)

1z f 0(t)ð Þ2
� �3=2

: ð14Þ

[27]. Therefore, to calculate the transition time, t, we calculate

the time when the curvature k(t) is maximized. To do this we

numerically solve k0(t)~0 using the analytic solution for

f (t)~ log10 (V (t)), where V (t)~z(t) from (11).

We can use this curvature-based approach to analytically

calculate the transition time for the CE model (2). Maximizing the

curvature k(t) (14) for the CE model (2), the transition time t is the

solution of

for t with h~Ae{lztz(1{A)e{l{t (in (2), V (t)~V0h). The

solution of (15) is lengthy and is not included here for brevity.

Supporting Fig. S1 shows patient data and model fits from [3] with

the transition times marked.

Parameters: Typical behaviors of different drug classes
The model (1), with varying drug efficacy (12), has been used to

investigate a number of drug treatments for HCV. Here we discuss

therapy with four drugs: the protease inhibitors (PIs) telaprevir and

danoprevir, the nucleoside polymerase inhibitor (NPI) mericita-

bine, and silibinin, a compound extracted from milk thistle seed.

Silibinin is intriguing because, in addition to interfering with viral

production as with the PIs and NPIs, it also appears to have some

cell infection interference capabilities [21,28]. This additional

capability is modeled by the g term in (12), g~0 for telaprevir,

danoprevir, mericitabine, and sofosbuvir. Table 1 gives published

estimates for model and drug parameters, obtained by fitting VE

models to patient data, under the different treatment types, and

when available different dosing regimens. The therapy durations

were all two weeks or less so the assumption of a constant level of

target cells was made in the primary publications from which the

parameter estimates were obtained.

In the following section we analyze the analytic solution of (1),

given by (11), in order to gain some insight into long- and short-term

behavior. Knowledge of the magnitude and relative size of model

parameters is very helpful in such analyses. Table 1 reveals that

estimates from different studies are not always consistent: observe

that estimates for the hepatocyte death rate d are an order of

magnitude smaller for the mericitabine fits relative to the telaprevir,

danoprevir, silibinin, and sofosbuvir. This discrepancy arises from

the patient data used in model fitting: patients on telaprevir,

danoprevir, silibinin, and sofosbuvir were treatment naı̈ve, while

patients put on mericitabine had already experienced PegIFN and

RBV treatment failure. Regardless, we note that

1. Final drug efficacy is quite high, e2 close to 1 (e2 in the general

VE model (12) is equivalent to emax in the simpler VE model

(12)).

2. Viral clearance rate c & infected cell death rate d (also the case

for the constant effectiveness model [3]

3. The rate of effectiveness increase k w infected cell death rate d

across all cases. We will exploit these relationships in the

asymptotic analysis below.

We also note that the rate of effectiveness increase, k, can vary

by orders of magnitude between drug types. For example, k~

29:1 days{1 in the case of danoprevir treatment, k[O(1) day for

telaprevir and silibinin treatments. Analysis of viral dynamics in

patients on mericitabine revealed two distinct biphasic viral curve

Figure 2. HCV viral load undergoes biphasic decay upon initiation of silibinin treatment at time t~0. The transition time between the
first and second phases, t, is calculated by maximizing the curvature k(t) in equation (14), and is marked by a vertical dashed line. VE model fit of
Canini et al. [19] (solid line) and HCV viral load data (dots) for (a) Patient 46, with transition time t~2:61 days, and for (b) Patient 48, with transition
time t~3:47 days.
doi:10.1371/journal.pcbi.1003769.g002
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types across patients: the first with a flat second phase, the second

with a non-flat (decaying) second phase [16]. The covariate

distinguishing these two groups remains unclear. But the fits

suggest the distinction lies with the parameter k, since non-flat

second phases have k[O(1) and flat second phase patients have

k[O(10{1) [16]. In the following analysis we will consider k across

orders of magnitude.

Approximations to the analytic solution; short- and long-
time behavior

The argument of the modified Bessel functions in (11) is

x(t)~x0e{kt=2, where x0~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdemax(1{g)

p
=k. For small x(t) we

can use the following approximations [24] for modified Bessel

functions with small argument x,

In(x)&
(x=2)n

C(1zn)
and

Kn(x)&

1

2
C(n)

x

2

� �{n

zC({n)
x

2

� �nh i
, 0vnv1

1

x
z

x

2
ln

x

2

� �
, n~1

C(DnD)
2

x

� 	DnD
1

2
{

x2

8DnD{8

� �
, nw1

8>>>>>>>><
>>>>>>>>:

:

We will neglect the n~1 case since it is highly unlikely

that a set of realistic parameters will yield n~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd e2z(1{e2)gð Þ

q
=k~1 exactly. The approximation

for nw1 is actually valid for DnDw1 but since nw0 we can drop the

absolute value signs D:D: Since x(t)?0 monotonically as t?? we

expect the approximations to hold for long times. Note that

x(t)v1 for tw2 ln (x0)=k and x0!1=k, so we anticipate that the

approximations are appropriate even at short times for sufficiently

large k. Applying the approximations to (11),

The order n for each treatment regimen shown in Table 1 is

given in Supporting Table S1 for reference. Fig. 3a shows a

comparison between the approximation (16) and the analytic

solution (11) for parameters characterizing silibinin (Table 1). Near

t~0 the error in the log of the approximation is 5% and improves

significantly with increasing t (see Fig. 3b). This improvement is not

surprising: the approximations are for small x(t) and x(t)*e{kt=2

grows smaller with increasing t. Therefore we can use the

approximation to gain insight into the long-time behavior.

We may also be able to use the approximation to gain some

insight into the short-time behavior; although the errors near t~0

are not negligible, the approximation remains within the right

order of magnitude, and away from t~0 the slope of the solutions

appear similar with these parameters, see Fig. 3a. The approxi-

mation does not however capture the shoulder in the analytic

solution near t~0.

Long-time behavior. From (16) we note three (for 0vnv1)

or four (for nw1) distinct exponential decay rates:

({kn{c{d)t=2, ({k(nz2){c{d)t=2, (kn{c{d)t=2, and,

for nw1, (k(n{2){c{d)t=2. Since all parameters are positive

and nw0, the slowest decay corresponds to e(kn{c{d)t=2. Recall

that n~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd emaxz(1{emax)gð Þ

q
=k. If the maximum

drug efficacy, emax, is close to 1,

kn{c{d

2
~{dz

cd(1{g)

c{d
(1{emax)zO (1{emax)2

� 


In the long term, viral load decays approximately as *e{dt.

Further, if c&d as it is for HCV (cf. Table 1) then

(kn{c{d)=2~{d(g(1{emax)zemax), which is &{emaxd for

emax close to 1. Not surprisingly, this is equivalent to the long-term

decay rate {ed previously predicted by the CE model using

similar parameter values [3].

Short-time behavior. Away from t~0 the approximate

solution and analytic solution show good matching, and have

similar first-phase slopes (Fig. 3). The approximation may

therefore give us some insight into the first-phase decay rate. Let

A represent the term in equation (16) that contains e({kn{c{d)t=2,

B the term containing e({k(nz2){c{d)t=2, C the term containing

e(kn{c{d)t=2, and D the term containing e(k(n{2){c{d)t=2. D is only

present in the approximation for nw1. As before, since

n~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd emaxz(1{emax)gð Þ

q
=k and emax is near 1, to

leading order the exponential decay rates are

A :
{kn{c{d

2
~{c{

cd(1{g)

c{d
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B :
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Fig. 4 shows the terms A, B, C, and D plotted against time for

sibilinin parameters (nw1; see Table 1), compared to the exact

solution (11). Note that for long times, C dominates (exponential

decay rate &{d), as discussed above. For short times (before the

transition between phases at t&1) the dominant decay rate is not

so obvious. It is somewhat represented by D (exponential decay

rate &{d{k), as shown in Fig. 4a. But only when we add the A
(exponential decay rate &{c) and C (exponential decay rate

&{d) terms do we obtain a reasonable approximation (Fig. 4b).

The first phase decay time scale is therefore set by d, k and c, with

the initial shoulder not captured by the approximation.

For 0vnv1, Figs. 5a,b show A, B, and C plotted versus time

for danoprevir parameters (see Table 1), compared to the exact

solution (11). Note that for long times, again, C dominates

(exponential decay rate &{d). For short times (before the

transition between phases at t&2) the dominant decay rate is

given by A (exponential decay rate &{c). In this case the first

phase decay time scale is therefore set by c. This is not entirely

surprising: as k grows large the VE model increasingly resembles

the CE model, and for the CE model the first phase time scale is

given by c and the second by d [3], Note that, while it’s not

obvious from the log-scale in Figs. 5a,b, the initial shoulder, which

is now very short, is still not captured by the approximation.

Interestingly, examining the dynamics under telaprevir treat-

ment reveals that there are arguably three phases, see Figs. 5c,d.

Note from Fig. 5c that the full approximation (16) is very good. As

shown in Fig. 5d, the initial dynamics are well captured by A
(exponential decay rate &{c), and the long-term dynamics - as

always - by C (exponential decay rate &{d). But between the two

there is a decay well described by D (exponential decay rate

&{d{k). Numerically for telaprevir treatment these three

exponential decay rates are {d~{0:58 days{1, {d{k~

{3:44 days{1, and {c~{13:4 days{1 (see Table 1), separated

by an order of magnitude, so it is not surprising that we discern

three phases. We similarly discern three predicted phases under

mericitabine treatment in patients characterized as ‘‘non-flat’’, see

Figs. 6b,c.

When there are more than two decay phases, for example as

shown in Figs. 5c,d, the transition time calculation becomes more

complicated. We compute the transition time as the time when the

curvature k(t) of the log-viral load decay curve is maximized,

treating the curvature maximization problem as a non-linear root

finding problem, i.e. solving k0(t)~0 for t. Multiple phase decay

would yield multiple transition time solutions, with transition times

indicating transition between decay regimes (e.g. under telaprevir

treatment, dominance of c, dzk, or d, as in Figs. 5c,d).

Unfortunately, if the intermediate phase is not sufficiently distinct

from the decay phases preceding and following it, the viral load

decay may become too rounded, and our method may not give

correct transition times.

The approximations (16) are valid for x(t)~x0e{kt small, and

therefore we expect the approximations to improve for smaller x0

and larger k (so that x(t)?0 faster). For example, the approxi-

mation under telaprevir treatment is better than that for silibinin

treatment (compare Fig. 3a and 5c); for telaprevir, x0~0:3 and

k~2:86, while for silibinin, x0~1:06 and k~2:12. In the next

section we will look at a series expansion of the exact solution to

show what may be missing from these approximations.

Series expansions of exact solution
The modified Bessel functions are infinite series and can be

expressed as follows:

In(x)~
X?
n~0

(x=2)2nzn

n!C(nz1zn)
and Kn~

p

2 sin (pn)
I{n(x){In(x)ð Þ:

For simplicity let z(t)~e{(czd)t=2(EIn(x)zFxInz1(x)zGKn(x)

zHxKnz1(x)) with x(t)~x0e{kt=2 (E, F , G, and H are the

constant coefficients in equation (11)). Using the series expressions

for Bessel functions we can re-write (11) as a series of exponential

functions,

Since n~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(czd)2{4cd emaxz(1{emax)gð Þ

q
=k and the maxi-

mum drug efficacy, emax, is close to 1, the exponents can be written

as

k(n{2n){c{d

2
~{d{nkz

cd(1{g)

c{d
(1{emax)zO (1{emax)2

� 

~{d{nk{

Figure 3. Approximate and analytic solution of VE model. (a) Comparison of analytic solution (equation (11)) and the approximation
(equation (16)) assuming sibilinin treatment (see Table 1 for parameters) and initial viral load of 106 IU=mL. (b) Relative error in log10 of
approximation.
doi:10.1371/journal.pcbi.1003769.g003

z(t)~
p

2 sin (np)

x0

2
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1

n!22n
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{

2H

C(n{n)

� 	
x2n
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z
x0

2

� �nX?
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{
k(nz2n)zczd

2
~{c{nk{

cd(1{g)

c{d
(1{emax)zO (1{emax)2

� 

~{c{nkz ,

n~0,1,2, . . ., where is the sum of the remaining terms in the

Taylor series expansion, ~(c{d{kn)=2[O 1{emaxð Þ. We can

re-write the series expansion for the exact solution (11) as

since c[O(1{emax). As c&d, z(t)*e{dt as t??. Short term

behavior is more difficult to discern as it depends on the

magnitude of k. We can use this series expansion to evaluate

parameter regimes within which the approximation (16) is valid

with regards to the parameter k.

The exact solution (19) depends on the exponential decay rates

{(dznk) and {(cznk) where n~0,1,2, . . .. The approxima-

tion (16) for small argument x depends on the exponential decay

rates {d, {c, {c{k, and {d{k (the latter in the nw1 case

only). For these to be the most slowly decaying rates of the exact

solution (19), k is constrained (recall c&d):

N For 0vnv1, dzkwczk [ cvd which is never satisfied.

N For nw1, dz2kwczk [ kwc{d, which is not satisfied for

any treatment regimen (see Table 1).

However, from Figs. 3, 5a, 5c, and 6a,b, it is clear that in spite

of the fact that k does not satisfy the relevant condition, the

approximations can be reasonably good. Direct examination of the

numerical values of parameters reveals the source: the relative

value of k. A summary of how the approximations behave with k

is given in Table 2.

Discussion

Viral dynamic models of infection and treatment have frequently

described the effect of therapy by a parameter, e, the effectiveness of

therapy, where 0ƒeƒ1. For example, if therapy blocks production

of new virus from infected cells, then the rate of production p under

therapy is modeled as (1{e)p, so that when the drug is 100%

effective, e~1 and no viral production occurs. This type of

formulation has been used in modeling treatment for HIV [29,30],

HBV [31–33], HCV [3,7], and influenza [34]. However, the

effectiveness of a drug frequently depends on its concentration and

more complex models incorporating drug pharmacokinetics (PK)

and drug pharmacodynamics (PD) have also made their way into

viral dynamic modeling [13,14,17,35–37].

In many cases, drug concentrations are not measured and

detailed PK/PD modeling cannot be performed. Nonetheless, it is

clear that variations in time occur in drug concentration. Further,

drug activity can also be time-dependent particular when the drug

given is a ‘‘pro-drug’’ that needs to be metabolized into an active

compound. For example, nucleoside or nucleotide reverse

transcriptase inhibitors and polymerase inhibitors need to phos-

phorylated intracellularly to become active inhibitors [38,39]. One

mechanism to account for time dependent changes in drug activity

is to assume that the drug effectiveness, e, rather than being

constant is time dependent. Here we have studied in detail an

HCV model in which the effectiveness increases with time to a

maximum, assuming either e(t)~emax(1{e{kt) or a more general

form e(t)~e1z(e2{e1)(1{e{kt), where e2 plays the role of emax.

We showed that the HCV model with time-varying effectiveness,

previously used in [6,11,12,16,17], can be solved explicitly in

terms of modified Bessel functions.

One reason the model equations can be solved analytically is

that the assumption T = constant is made, linearizing the mass-

action infection term bTV . The assumption of constant T has

typically been made when short-term (2 week or less) clinical trials

are examined. However, the obtained solution may be more

general, particularly for direct-acting antivirals. When therapy is

very potent so the viral load rapidly decays many logs during the

first days of therapy, as seen for example with daclatasvir, where V
decays 3 logs in the first 12 hrs of therapy [26], the term bTV no

longer significantly influences the dynamics. Thus, after a very

brief transient, whether T is constant or not may have no practical

effect on the underlying viral dynamics. Guedj et al [26] showed

this to be the case for daclatasvir by finding an extremely accurate

approximate solution to the viral dynamic model they used by

assuming there were no new infections after therapy started, i.e.

that bTV = 0.

Plotting the solution for the viral load, V (t), on a logscale we

noticed that the virus appeared to decay with time on treatment in

Figure 4. Different exponential terms in approximate solution
(16) compared with the exact solution and for silibinin
treatment parameters, for which nw1 (see Table 1). (a) Expo-
nential terms from (16) plotted separately. (b) Exponential terms from
(16) plotted in combined form.
doi:10.1371/journal.pcbi.1003769.g004
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a biphasic manner for certain parameters of interest. Such

biphasic declines have been observed in HCV patients treated

with many different therapies and the lengths of each phase and

the rates of decay during each phase are of biological interest [19].

We characterized the transition between phases as the point of

maximum curvature in the solution, which can be computed from

the solution. However, in order to ascertain the dominant decay

rates during these two observable phases, we wanted to find

approximations in terms of exponentials. While the model

differential equations are sufficient to fit the data, the analysis

that permits us to characterize the decay phases is only possible

given the analytic solution. To this end, we examined classic

approximations to Bessel functions as well as series expansions and

showed that the long-time decay is dominated by the rate of loss of

HCV-infected cells, d, as had previously been shown in constant

effectiveness models [3]. This is not surprising since at long times,

t&1=k, the drug effectiveness approaches a constant value, its

maximum. At short times, the constant effectiveness model

predicts the rate of viral decay is governed by the rate of viral

clearance, c. Here with the variable-effectiveness model we find

Figure 5. Approximate and analytic solution of the VE model under danoprevir (0vnv1) or telaprevir (nw1) treatment with patient
data. (a,c) Approximate solution (16) compared to the analytic solution (11) for (a) danoprevir or (c) telaprevir treatment. (b,d) Different exponential
terms in approximate solution compared with the exact solution, with decay phases indicated, for (b) danoprevir or (d) telaprevir treatment.
Danoprevir treatment: data from patient 04-94XD (dosing 200 mg tid) in [25] with associated parameter estimates for VE model
z0~3:63|106 IU=mL, d~0:33 days{1 , c~7:32 days{1 , k~29:08 days{1, t0~0 days, e1~0, and e2~0:9996 [unpublished]. Telaprevir treatment:
data from patient 6 in [6] with associated parameter estimates z0~1:27|106 IU=mL, d~0:49 days{1 , c~15:04 days{1 , k~2:82 days{1,
t0~0:1052 days, e1~0:9622, and e2~0:9972 [6].
doi:10.1371/journal.pcbi.1003769.g005

Figure 6. Approximation to viral dynamics compared to exact dynamics under mericitabine treatment, 750 mg qd, nw1. (a) For
patient 92102 from [16], characterized as ‘‘flat’’. (b) For patient 92103 from [16], characterized as ‘‘non-flat’’. (c) Different exponential terms in
approximate solution (16) compared with the exact solution for patient 92103, characterized as ‘‘non-flat’’. Parameter estimates from [16]: For patient
92102, z0~107:14 IU=mL, d~0:021 days{1 , c~6 days{1 , k~0:20 days{1 , t0~0:5 days, e1~0:27, and e2~0:91; for patient 92103,
z0~106:53 IU=mL, d~0:021 days{1, c~6 days{1 , k~1:07 days{1 , t0~0:5 days, e1~0:67, and e2~0:807.
doi:10.1371/journal.pcbi.1003769.g006
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that this need not be the case and more complex relationships

between c, k and d govern the short-term behavior. Using

parameters estimated in previously published drug-treatment

studies we showed how different combinations of parameters

govern the short-term decay for different drug therapies. For

example, when k is large compared to c and d, as had been

previously found for the HCV protease inhibitor danoprevir, the

effectiveness rapidly approaches a constant and the first phase

decline is essentially governed by c as in the constant effectiveness

model. However, when k is comparable to or small than c this is

no longer the case and k then plays a role in determining the first

phase decay. We discovered for parameters governing the HCV

protease inhibitor telaprevir, where cwkwd that three distinct

exponential phases appeared to govern the viral load decay, with

rates of c, dzk, and d. Viral decline under telaprevir treatment

had been previously described as biphasic [6]; it is only through

the approximations to the analytic solution that the middle, dzk,

phase was revealed.

The model upon which we based our analysis, while derived for

HCV, applies to a number of viral infections. For example,

essentially the same model can be used for protease inhibitor

treatment of HIV, since HIV protease inhibitors reduce the rate of

production of infectious virus. Similarly, neuraminidase inhibitors

used to treat influenza A virus infection also reduce the rate of

production of infectious virus and again our results would apply.

HIV reverse transcriptase inhibitors act to block infection. To

analyze this situation would require a generalizationq of our

current model in which the parameter g rather than being

constant was allowed to be time-varying. This remains an

interesting problem for the future.

Supporting Information

Figure S1 Transition times between decay phases for HCV viral

load decline after initiation of interferon-a therapy. Fit of

Neumann et al. model (solid line) to data (dots) from [3], with

transition time calculated by maximizing the curvature k(t) (14)

(cross) of the CE model (2), for patients (a) 1B, (b) 1E, (c) 1F, (d)

2D, (e) 2E, (f) 3A, (g) 3D, and (h) 3F.

(EPS)

Figure S2 Approximate and analytic solution of VE model

assuming sofosbuvir treatment (see Table 1 for parameters) and

initial viral load of 106IU=mL. (a) Comparison of analytic solution

(equation (11)) and the approximation (equation (16)). (b) Relative

error in log10 of approximation. Note the error near t~0 is

*10%. (c) Comparison of analytic solution (equation (11)) and the

approximation (equation (16)) with k~c~5:76 days21. (d)

Relative error in log10 of approximation in the case k~c~5:76
days21. Note the error near t~0 is *20%.

(EPS)

Table 2. Goodness of approximation, Eq. (16), for ranges in the parameter k.

Case Treatment types Interpretation of phases

kvc Telaprevir The approximation gives a reasonable fit but misses the shoulder. Short-time behavior is given by a combination
of {c and {d{k decay rates, with long-term behavior given by the {d decay rate. For k sufficiently small, viral
load decay appears tri-phasic, with {c, {d{k as two separate phases, for example for telaprevir and
mericitabine in ‘‘flat’’ patients (see Figures 5c and 6b). Otherwise viral load decay appears biphasic, as with
silibinin, see Figure 3a. Shoulder fit improved with inclusion of additional terms, see Figure 7.

Mericitabine, qd 750 mg, flat

Mericitabine, qd 750 mg, non-flat

Mericitabine, qd 1500 mg, flat

Mericitabine, qd 1500 mg, non-flat

Mericitabine, bid 750 mg, flat

Mericitabine, bid 750 mg, non-flat

Mericitabine, bid 1500 mg, flat

Mericitabine, bid 1500 mg, non-flat

Silibinin

kwc Danoprevir, 100 mg The approximation gives a good fit. First phase decay rate {c, second phase decay rate {d. In general if kwc

time scales separate sufficiently so that fits will be good, for the example of danoprevir see Figure 5a.

Danoprevir, 200 mg

Danoprevir, 300 mg

k*c Sofosbuvir The approximation gives a poor fit for short-time behavior, see Supporting Fig. S2. In this case the time scales
separate poorly. To capture any short term behavior, more terms from the series solution (19) are required.

doi:10.1371/journal.pcbi.1003769.t002

Figure 7. Truncated series solutions for the VE model
compared with the exact solution (11) under silibinin treat-
ment (nw1; see Table 1 for parameters). Legend: (i) Series terms
with exponents {d, {d{k, {c, and {c{k terms, included in the
approximation (16), from the series solution (19); (ii) Series terms with
exponents from (i) and also the {d{2k and {d{3k terms missing
from the approximation.
doi:10.1371/journal.pcbi.1003769.g007
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Table S1 Modified Bessel function order n for the different

treatment regimens in Table 1. n is the order of the modified

Bessel functions In(x) and Kn(x) in the solution (11). The

approximation to the analytic solution that we use depends on

whether nv1 or nw1 (cf. (16)).

(PDF)

Acknowledgments

We thank Harel Dahari and Jeremie Guedj for their suggestions that

improved this manuscript.

Author Contributions

Conceived and designed the experiments: JMC ASP. Performed the

experiments: JMC ASP. Analyzed the data: JMC ASP. Contributed to the

writing of the manuscript: JMC ASP.

References

1. Schneider M, Sarrazin C (2014) Antiviral therapy of hepatitis C in 2014: Do we

need resistance testing? Antiviral Res 105: 64–71.

2. Pawlotsky J (2013) Treatment of chronic hepatitis C: current and future. Curr

Top Microbiol Immunol 369: 321–342.

3. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, et al. (1998)

Hepatitis C dynamics in vivo and the antiviral efficacy of interferon-a therapy.

Science 282: 103–107.

4. Dixit NM, Layden-Almer JE, Layden TJ, Perelson AS (2004) Modelling how
ribavirin improves interferon response rates in hepatitis C virus infection. Nature

432: 922–4.

5. Guedj J, Neumann AU (2010) Understanding hepatitis C viral dynamics with

direct-acting antiviral agents due to the interplay between intracellular

replication and cellular infection dynamics. J Theor Biol 267: 330–40.

6. Guedj J, Perelson AS (2011) Second-phase hepatitis C virus RNA decline during

telapravir-based therapy increases with drug effectiveness: implications for

treatment initiation. Hepatology 53: 1801–1808.

7. Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Rapid emergence of

protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2: 30ra32.

8. Shudo E, Ribeiro RM, Perelson AS (2008) Modelling hepatitis C virus kinetics

during treatment with pegylated interferon alpha-2b: errors in the estimation of

viral kinetic parameters. J Viral Hepat 15: 357–62.

9. Shudo E, Ribeiro RM, Perelson AS (2008) Modelling the kinetics of hepatitis C

virus RNA decline over 4 weeks of treatment with pegylated interferon alpha-2b.

J Viral Hepat 15: 379–82.

10. Snoeck E, Chanu P, Lavielle M, Jacqmin P, Jonsson E, et al. (2010) A

comprehensive hepatitis C viral kinetic model explaining cure. Clin Pharmacol

Ther 87: 706–713.

11. Shudo E, Ribeiro RM, Talal AH, Perelson AS (2008) A hepatitis C viral kinetic
model that allows for time-varying drug effectiveness. Antivir Ther 13: 919–26.

12. Shudo E, Ribeiro RM, Perelson AS (2009) Modeling HCV kinetics under

therapy using PK and PD information. Expert Opin Drug Met 5: 321–32.

13. Powers KA, Dixit NM, Ribeiro RM, Golia P, Talal AH, et al. (2003) Modeling

viral and drug kinetics: hepatitis C virus treatment with pegylated interferon alfa-
2b. Semin Liver Dis 23 Suppl 1: 13–8.

14. Talal AH, Ribeiro RM, Powers KA, Grace M, Cullen C, et al. (2006)

Pharmacodynamics of PEG-IFN alpha differentiate HIV/HCV coinfected

sustained virological responders from nonresponders. Hepatology 43: 943–53.

15. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach. New York: Springer, 2nd edition.

16. Guedj J, Dahari H, Shudo E, Smith P, Perelson AS (2012) Hepatitis C viral

kinetics with the nucleoside polymerase inhibitor mericitabine (RG7128).

Hepatology 55: 1030–1037.

17. Guedj J, Pang PS, Denning J, Rodriguez-Torres M, Lawitz E, et al. (2014)

Analysis of hepatitis C viral kinetics during administration of two nucleotide

analogues: sofosbuvir (GS-7977) and GS-0938. Antivir Ther 19: 211–220.

18. Ma H, WR J, Robledo N, Leveque V, Ali S, et al. (2007) Characterization of the

metabolic activation of hepatitis C virus nucleoside inhibitor beta-D-29-Deoxy-

29-fluoro-29-C-methylcytidine (PSI-6130) and identification of a novel active 59-
triphosphate species. J Biol Chem 282: 29812–29820.

19. Canini L, DebRoy S, Mariño, Conway JM, Crespo G, et al. (2014) Severity of

liver disease affects hepatitis C virus kinetics in patients treated with intravenous

silibinin monotherapy. Antivir Ther: In press.

20. Dahari H, Guedj J, Perelson AS (2011) Silibinin’s mode of action against
hepatitis C virus: a controversy yet to be resolved. Hepatology 54: 749.

21. Guedj J, Dahari H, Pohl RT, Ferenci P, Perelson AS (2012) Understanding
silibinin’s modes of action against HCV using viral kinetic modeling. J Hepatol

56: 1019–24.

22. Magnus W (1954) On the exponential solution of differential equations for a
linear operator. Commun Pur Appl Math VII: 649–673.

23. Blanes S, Casas F, Oteo J, Ros J (2009) The Magnus expansion and some of its
applications. Physical Reports 470: 151–238.

24. Spanier J, Oldham KB (1987) An Atlas of Functions. USA: Hemisphere
Publishing Corporation.

25. Rong L, Guedj J, Dahari H, Coffield Jr DJ, Levi M, et al. (2013) Analysis of

hepatitis C virus decline during treatment with the protease inhibitor danoprevir
using a multiscale model. PLoS Comp Biol 9: e1002959.

26. Guedj J, Dahari H, Rong L, Sansone N, Nettles R, et al. (2013) Modeling shows
that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter

estimate of the hepatitis C virus half-life. Proc Natl Acad Sci USA 110: 3991–

3996.
27. Edwards CH, Penney DE (1998) Calculus with Analytic Geometry. 5th edition.

USA: Prentice-Hall Inc.
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