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Abstract

The biological effects of interventions to control infectious diseases typically depend on the intensity of pathogen
challenge. As much as the levels of natural pathogen circulation vary over time and geographical location, the development
of invariant efficacy measures is of major importance, even if only indirectly inferrable. Here a method is introduced to
assess host susceptibility to pathogens, and applied to a detailed dataset generated by challenging groups of insect hosts
(Drosophila melanogaster) with a range of pathogen (Drosophila C Virus) doses and recording survival over time. The
experiment was replicated for flies carrying the Wolbachia symbiont, which is known to reduce host susceptibility to viral
infections. The entire dataset is fitted by a novel quantitative framework that significantly extends classical methods for
microbial risk assessment and provides accurate distributions of symbiont-induced protection. More generally, our data-
driven modeling procedure provides novel insights for study design and analyses to assess interventions.
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Introduction

Hosts exposed to disease-causing agents respond in accordance

to the challenge dose. Therefore dose-response curves contain

information about disease processes that can be extracted by

suitable analytic frameworks. Early examples concerning micro-

bial risk assessment include counting lesions caused by tobacco

mosaic virus on plant leaves [1], as well as human responders to

experimental challenge with polio viruses [2], Vibrio cholerae [3]

and Streptococcus pneumoniae [4], for escalating challenge doses.

Dose-response models have been in use for analyses and

extrapolation of experimental datasets [5].

Models that account for the sigmoidal shape in log-linear scale

of the typical dose-response curve have been derived mechanis-

tically, based on the assumption that each individual pathogen has

a probability of infection independent of others, the so-called

independent action hypothesis [6]. This results in a one-parameter

exponential-function model [7]. The frequent observation of

shallower-than-exponential, or overdispersed, relationships has

then prompted the implementation of heterogeneity in the

probability of infection of individual hosts [8–10].

In the 1960s, Furumoto and Mickey [9] developed a dose-response

model that could accommodate both shallow and steep increases in

the response by considering the probability of infection of individual

hosts described by a Beta-distribution. Although a mechanistic

justification for this specific distribution has not been given, the model

has been widely applied in microbial risk assessment due to its ability

to outperform the simple exponential model [5].

Susceptibility distributions other than Beta have also been

considered and are more commonly used in frailty models adopted

in survival analysis [11], where the data consist of survivor counts

over time in host groups that are constantly subject to a hazard

[12,13]. These frailty models appeared in the 1980s and have since

been adapted to infection hazards, where surviving signifies

remaining uninfected [14–16]. While most informative when the

exposure is continued or repeated over time, these formalisms

would be inadequate for estimating distributions of susceptibility to

infection from instantaneous challenge protocols.

The importance of accounting for time between challenge and

observable toxicity responses to pathogens or other agents has

been recognized. Recent models in ecotoxicology [17,18],

consider explicit kinetics within exposed organisms. Also in

microbial risk analysis, previous studies [19,20] have included

time postinoculation as an additional parameter in classic dose-

response models, although using an approach that conceptually

allows for a different susceptibility distribution at each time point.

Here we present a schema to infer a distribution of host

susceptibilities to infection that holds consistently across dose

and time. We introduce an experimental design and inference

framework that enables such inferences by analyzing simulta-

neously a collection of survival curves, each representing a

different challenge dose. The resulting Beta distributions are

compared against those obtained by classic dose-response models

based on single day measurements.

Recent evidence for symbiotic interactions that reduce host

susceptibility to pathogens has stimulated the development of

quantitative frameworks to assess the levels of individual and

population protection attributable to specific symbionts. The

intracellular bacterium Wolbachia, found among many arthropod

species including Drosophila melanogaster, is one such symbiont
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[21,22]. To analyze the protection conferred by Wolbachia to D.
melanogaster, we apply our inference framework simultaneously to

two sets of time-dependent dose-response data: in one set the flies

carry the symbiont bacterium Wolbachia (Wolb+); while in the

other they do not (Wolb2). In this instance we extract the Beta

distribution that best describes individual protection attributable to

Wolbachia, as well as population statistics valid across entire dose

ranges.

Methods

Survival data
We used virus free D. melanogaster lines with DrosDel w1118

background, with or without the endogenous Wolbachia strain

wMelCS [21,23,24]. Flies were reared in standard food at 25uC.

To assure that potential for heterogeneities are minimized by the

experimental procedure, we used fifty 3–6 days old adult males per

group, 10 per replicate and 5 replicates. To study the response to

viral infection, we anesthetized with CO2 and pricked flies with

different doses of Drosophila C virus (DCV). We used tenfold serial

dilutions – from 1010 TCID50/ml to 104 TCID50/ml – in Tris-

HCl buffer, pH 7.5. Controls were pricked with buffer solution

only. We used the pricking protocol described in [24], produced

and titrated virus as in [21]. After pricking, we kept flies at 18uC
and checked daily survival until day 80 and twice a week until the

end of the experiment. Food was changed every 5 days. We

summarized the data in 16 dose-response curves (8 per group,

including control) from day 0 after treatment until day 139

(Dataset S1).

Dose-response model
Starting from established models, we refine the occurrence of

mortality from infection, i.e. the response, as a function of the

concentration of infectious units given to hosts, i.e. the dose. We

present a step-by-step derivation of descriptions that integrate

dimensions that are usually treated separately as well as the

motivations for doing so.

Assuming independent action of infectious units, each unit

has probability p of causing an infection, while for d infectious

units infection occurs with a probability described by

Binomial(d, p). Given further considerations about the distri-

bution of infectious units in a homogeneous solution (see [9] for

a complete derivation of the expression), the number of units

causing infection can be described by a Poisson distribution,

resulting in the exponential dose-response model [7], that

describes the probability of infection in a host challenged with

pathogen dose d:

phom~1{e{pd : ð1Þ

This most basic formulation is hereafter referred to as the

homogeneous dose-response model.

Furumoto and Mickey [9] expanded this formulation by

allowing the probability of infection to be described by a

parametric distribution, specifically the Beta distribution. To

facilitate normalization across datasets, here we maintain the

probability p fixed across individual hosts (as in [25]), and

introduce a multiplicative parameter, the susceptibility factor

0vxv1, to describe any natural or induced effect that decreases

susceptibility. We assume that susceptibility to infection is Beta-

distributed so as to describe the variation of susceptibility in the

host population. Thus, we obtain the probability phet that a host

contracts infection as

phet~1{

ð1

0

e{xpd q(x) dx, ð2Þ

where q(x)~xa{1 1{xð Þb{1
.

B(a,b) and B is the Beta function. We

refer to this formulation as the heterogeneous dose-response model.

At last we introduce a small parameter e to account for a small

probability of ineffective challenge, such that M*Binomial n,ð
1{eð ÞpÞ is the random variable representing the number of

infected hosts, in a group of n hosts challenged with a given dose.

Assuming that an ineffectively challenged host behaves like a control

host with regard to death rates, the probability that m hosts are dead

a number of days after challenge is then

P(M~m)~
n

m

� �
1{eð Þp½ �m 1{ 1{eð Þp½ �n{m

, ð3Þ

where p is either phom (1) or phet (2) depending on which dose-

response model is adopted.

The parameters to be estimated for this dose-response model

are the maximum probability of infection per infectious unit (p),

the shape parameters for the Beta distribution that describes the

susceptibility factor (a, b), and the probability of ineffective

challenge (e ).

These models require a choice of how many days post-challenge

cumulative mortality should be measured, which is difficult to

establish for host-pathogen systems where times to death from

infection or other causes overlap significantly. To overcome this

difficulty, we develop a model that integrates an explicit

representation of time to death with the dose-response process

for infection just described. It should, however, be noted that time

is introduced with the main purpose of enabling the use of survival

curves to obtain robust estimates for probabilities of infection given

different challenge intensities and consistently infer susceptibility to

infection. From this perspective, parameters defined from now on

should be regarded as auxiliary and will be implemented as simply

as possible.

Author Summary

While control options for plant, animal, and human
pathogens are emerging rapidly, reliable assessment of
the effect of interventions in biological systems presents
many challenges. A major question is how to connect
laboratory experiments and measurements with the
relevant process in natural settings, where hosts are
subject to pathogen exposures that vary in time and
geographical location. With this aim, measures of protec-
tion that are invariant under varying exposure intensity
need to be developed and integrated with mathematical
models. In this article, we introduce a method to assess
host susceptibility to pathogens, and apply it to survival of
Drosophila melanogaster challenged with different doses
of Drosophila C virus. By replicating the procedure in
groups of flies that carry the symbiont Wolbachia, we are
able to estimate how the viral protection induced by this
intracellular bacterium is distributed in the host popula-
tion. Our results disentangle host infection status from
observed mortality, accounting naturally for time since
exposure. The multiple-dose design proposed challenges
traditional study designs to assess interventions.

Unveiling Time in Dose-Response Models
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Time-dependent model for control group
We first consider a survival model for a control group of flies

pricked with buffer solution only (no DCV), subject to two

hazards: h0, an age-dependent death hazard rate; and hk, a

background age-independent death hazard rate. The overall death

hazard rate for uninfected hosts is therefore

hU (t)~h0(t)zhk(t): ð4Þ

Denoting TU the random variable representing time to death of

control hosts, we have

P TU~tð Þ~P Tk~tð ÞP T0wtð ÞzP T0~tð ÞP Tkwtð Þ, ð5Þ

where T0 and Tk are the times to death from h0 and hk,

respectively. Their corresponding distributions are assumed to be

T0*Gamma m0, s0ð Þ and Tk*Uniform(1=k) , where k is the

background mortality rate, m0 is the mean time to death, and s0 is

the shape parameter for the Gamma distribution of day of death

from aging.

Time-dependent dose-response model
Hosts challenged with pathogen can become infected or remain

uninfected and this infection status is hidden. If uninfected, they

are subject to the age-dependent hazard rate that affects control

hosts, hU ; if infected, they are subject to an infection hazard rate,

h1, and the age-independent background mortality. Thus the

overall hazard rate of infected hosts is

hI (t)~h1(t)zhk(t): ð6Þ

Now let I * Binomial n, 1{eð Þpð Þ be the random variable

representing the number of hosts infected by challenge with a

given pathogen dose. Then the probability that i hosts are infected

after n hosts were challenged is

P I~ið Þ~
n

i

� �
1{eð Þp½ �i 1{ 1{eð Þp½ �n{i

, ð7Þ

where p is either phom (1) or phet (2) depending on which dose-

response model is adopted.

Let T be the random variable representing the time to death of

hosts challenged by a given pathogen dose. The probability density

of observing a death event at time t given that i hosts are infected is

P T~tjI~ið Þ~ (n{i)

n
P TU~tð Þz i

n
P TI~tð Þ, ð8Þ

where TI denotes the distribution of time to death of infected

hosts, given by

P TI~tð Þ~P Tk~tð ÞP T1wtð ÞzP T1~tð ÞP Tkwtð Þ ð9Þ

and T1 is the distribution of times to death from the infection

hazard rate h1. This distribution is assumed to follow

T1 * Gamma m1, s1ð Þ, where m1 is the mean time to death of

infected hosts, and s1 is the shape parameter for the Gamma

distribution of day of death from infection.

In setting the priors for parameter estimation we note that

background mortality is small and therefore k is kept small by

setting 1=k to be much greater than the last day of the

experiment. To enforce that deaths due to infection occur earlier

than deaths due to aging, we constrain the mean time to infection

death to be lower than old-age death, i.e. m1vm0, and the

probability of dying before the end of the study to be greater for

infected hosts, i.e. P T0ƒtmaxð ÞƒP T1ƒtmaxð Þ, where tmax is the

last day of the experiment.

To construct the likelihood to be maximized by the parameter

estimation procedure, we let Dj be the random variable denoting

the day fly j died and S the random number of survivors up to

tmax. Then the likelihood of observing the actual number of

survivors s and the times of death d~ d1, . . . , dn { s½ �, for a

given dose is

P(S~s, D~d) ~
Xn

i~1

P(S~s,D~djI~i)P(I~i)

~
Xn

i~1

P(TwtmaxjI~i)sP
n{s

j~1
P(dj{1vTvdj jI~i)

2
4

3
5P(I~i)

ð10Þ

Since the observations for each dose are independent, taking the

product of the likelihoods over the different doses yields the global

expression for the likelihood of the entire dataset.

In this time-dependent dose-response model, the parameters to

be estimated are the maximum probability of infection per

infectious unit (p) used for normalization purposes, the Beta

distribution shape parameters to describe variation in susceptibility

factor (a,b), the parameters that control death due to aging (m0, s0),

infection (m1, s1), and background mortality (k ), as well as

probability of ineffective challenge (e ). Parameters k and e are

typically small and were introduced to improve performance of the

likelihood.

Parameter estimation
Model parameters were estimated using Markov chain Monte

Carlo sampling implemented with the PyMC package [26] (code

available from [27]). The prior distributions considered are

listed in Table 1. Initial values were chosen so as to start with a

non-zero likelihood. Using Metropolis-Hastings algorithm, we

ran two separate chains for 252,000 iterations. The first 27,000

iterations were discarded. The recording interval was set to 250

so that the autocorrelation between samples was negligible.

Convergence was assessed by inspection of the trace plots. All

analyses were performed on the pooled samples from the two

replicate chains.

Results

Groups of Wolbachia-negative (Wolb2) and positive (Wolb+) D.
melanogaster flies were challenged with a range of DCV doses and

survival curves were traced as shown in Figure 1. This dataset was

analyzed by applying the models introduced in Methods.

Susceptibility distribution from selected day mortality
To emphasize the importance of day selection to infer

distributions of susceptibility to infection by classic dose-response

models [5] we have applied these procedures to mortality data

observed by two specific days (30 and 50). Parameter estimates

from these models are listed in Table 2. The model fits to the

mortality data at the selected days are shown in Figure 2, as well as

the associated distribution of Wolb+ susceptibilities and the

posterior samples for the Beta distribution shape parameters. For

simplicity we have adopted the homogeneous model for Wolb2

and focus on comparing susceptibility distributions of Wolb+

inferred at different days. Mean protection conferred by

Unveiling Time in Dose-Response Models
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Wolbachia in this illustration is estimated as 79% and 56%, based

on mortality measurements at day 30 and 50, respectively.

Moreover, the distributions have fundamentally different shapes,

with the appearance of a high susceptibility group as time

progresses. This sensitivity to the day by which mortality data are

collected is a concern that raises the need to disentangle infection

status from the associated time-dependent mortality. In the

following sections, infection and mortality are estimated explicitly

using the integrated time-dependent model described in Methods.

The procedure is illustrated in Figure 3.

Aging and background mortality
Control curves from Wolb2 and Wolb+ flies pricked with buffer

solution (no DCV) were compared with the Kaplan-Meier method

using the log-rank test and no significant difference was found

(with a p-value of 0.47). By fitting the uninfected time-dependent

model (4–6) to the control survival curves (Figure 1) we estimated

the parameters describing aging (m0, s0) and background (k)

mortality (Table 3).

Susceptibility distribution from survival curves
For each group of flies (Wolb2 and Wolb+), the time-dependent

dose-response model constructed in Methods was fitted simulta-

neously to the entire dataset of survival curves (one for each DCV

challenge dose), fixing across doses the distribution of times to death

from infection (mI , sI ) and aging (m0, s0), while estimating the

susceptibility parameters (p, a, b) that govern the dependence of

response on challenge dose according to the adopted dose-response

model. The estimated parameter values are listed in Table 4. The

deviance information criterion (DIC) [28] favored the homogeneous

model for the Wolb2 group and the heterogeneous model for Wolb+

(Text S1). Mean time to death from infection is 9 and 14 days in the

Wolb2 and Wolb+ groups, respectively. The variance in time to

death from infection is lower for Wolb2, with a standard deviation of

2 days, compared to 6 days in the Wolb+. Figure 4 compares fitted

with observed survival curves.

The fitted dose-response curves that result from this analysis are

shown in Figure 5A, while the inferred distribution of Wolb+

susceptibilities normalized by the Wolb2 measure is displayed in

Figure 5B and the corresponding posterior distribution of the Beta

shape parameters is in Figure 5C. Given the homogeneity in the

Wolb2 group, the distribution of susceptibility in Wolb+ provides a

direct indication of how antiviral protection conferred by

Wolbachia is distributed among its carriers. Typically defined as

1 { RR, where RR is the risk reduction attributed to the

susceptibility modifier (Wolbachia in this case), we determine the

mean protection conferred by the symbiont to its host as 85%

(with a 95% HPD of 60–93%).

Comparison with selected day mortality
To assess the best possible performance of classic methods [5] in

the inference of susceptibility distributions (for Wolb+ in the case)

Table 1. Model parameters and their corresponding prior distributions.

Symbol Meaning Prior

m0 Mean time to death from aging U 0, 140ð Þ
s0 Shape of the Gamma distribution for death from aging U 0, 500ð Þ

m{
1 , mz

1
Mean time to death from infection (for Wolb2 and Wolb+, respectively) U 0, m0ð Þ

s{
1 , sz

1
Shape of the Gamma distribution for death from infection (for Wolb2 and Wolb+) U 0, 100ð Þ

p Per viral particle probability of causing infection U 0, 1ð Þ
a, b Shape parameters of the Beta distribution for the susceptibility to infection of Wolb+ U 0:1, 10ð Þ
k Background mortality rate, from causes other infection or aging U 10{6, 10{2

� �
e Probability of ineffective challenge N 0:001, 0:00125ð Þ 0,1½ �

U(x,y) is a Uniform distribution from x to y. N(x,y)[w,z] is a normal distribution with mean x and standard deviation y truncated so its values are always between w and z.
doi:10.1371/journal.pcbi.1003773.t001

Figure 1. Survival curves for Wolb2 (A) and Wolb+ (B) groups of D. melanogaster. Dots represent experimental data. Dark blue curves show
the model fit to the survival of control flies. Shaded areas represents 95% CI (credible intervals).
doi:10.1371/journal.pcbi.1003773.g001

Unveiling Time in Dose-Response Models
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we must have previously reduced the set of survival curves to a set

of effectively infected proportions - one entry per challenge dose.

To search for a range of days in which absolute mortality might

provide an approximate indication of infection, we compare the

estimated proportions effectively infected by each challenge dose

with the mortality proportion measured at each day. Using a

normalized Euclidean distance between these two measures, a

day-selection score is provided by the red curve in Figure 6. We

identify day 30 as optimal and 17–46 as the interval of days in

which the score is at least 95% of the optimal. Reassuringly, the

optimal day appears to coincide with the saturation of infection-

induced mortality (see position of vertical dash-dotted gray line in

relation to the Gamma distributions). We now recall Figure 2 and

Table 2 for the inferences based on day 30 mortality data to

confirm that classic dose-response models can in principle infer

susceptibility distributions that are consistent with those obtained

Table 2. Estimated parameters by applying dose-response models to selected day mortality.

Mortality data Parameter Median 95% HPDa

30 dpcb p 2.33 1026 [1.67 1026, 3.13 1026]

a 0.30 [0.21, 0.41]

b 1.10 [0.29, 2.53]

e 1.78 1023 [4.90 1024, 3.49 1023]

50 dpcb p 2.65 1026 [1.82 1026, 3.47 1026]

a 0.34 [0.24, 0.51]

b 0.42 [0.12, 0.93]

e 1.83 1023 [3.60 1024, 3.32 1023]

aHigh posterior density interval.
bDays post-challenge.
doi:10.1371/journal.pcbi.1003773.t002

Figure 2. Dose-response curves and susceptibility distributions inferred from mortality measurements 30 and 50 days post-
challenge. Dose-responses models adopted here are the standard formulations (1–3). A,D, Curves represent the fitted dose-response model to
mortality on selected day post-challenge (dots), for Wolb2 (black) and Wolb+ (blue). Shaded areas represent the 95% CI. B,E, Distribution of
susceptibility to infection in Wolb+. The posterior median distribution is the curve and the shaded area is the 95% CI. C,F, Posterior samples of the
Beta-distribution shape parameters describing Wolb+ susceptibility in blue. Red dot mark the median of the respective distributions. The
homogeneous model was adopted for Wolb2.
doi:10.1371/journal.pcbi.1003773.g002

Unveiling Time in Dose-Response Models
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under our extended model (Figure 5). A major issue, however, is

that results are sensitive to a day-selection criterion that relies on

having previously carried out the entire procedure. The appearance

of a high susceptibility group in distributions inferred at later days

are an artifact due to the accumulation of background mortality that

should be factored out. These results highlight the importance of

adequately representing the time dimension in the analysis.

Discussion

Dose-response models have become standard quantitative

frameworks in microbial risk assessment. Less recognized is their

ability to estimate host trait distributions. Here we illustrate the

concept by extracting host susceptibility distributions from

mortality measured as a function of pathogen challenge dose,

but similar procedures can be developed for measures of infection

or infectiousness (instead of mortality), and can be made a function

of other environmental variables such as temperature or humidity

(instead of dose). Understanding how to detach host trait

distributions from environmental variables is crucial for the

Figure 3. Schematic illustration of the proposed experimental design and inference procedure.
doi:10.1371/journal.pcbi.1003773.g003

Table 3. Estimated parameters governing time to death from
causes other than DCV infection.

Parameter Median 95% HPD

m0 117.18 [114.99, 119.84]

s0 118.93 [80.19, 166.15]

k 1.14 1023 [5.36 1024, 1.96 1023]

doi:10.1371/journal.pcbi.1003773.t003

Table 4. Parameters governing estimated number infected per
dose of DCV challenge and time to death from infection using
time-dependent dose-response models described in Methods.

Parameter Median 95% HPD

p 1.73 1026 [9.58 1027, 2.67 1026]

a 0.47 [0.25, 0.85]

b 3.21 [0.34, 8.40]

e 1.89 1023 [4.55 1024, 3.40 1023]

m{
1 9.34 [9.10, 9.58]

s{
1 35.79 [26.60, 47.05]

mz
1

13.79 [11.31, 14.94]

sz
1

5.59 [4.70, 11.12]

m0 115.20 [113.94, 116.45]

s0 140.39 [116.80, 166.97]

k 2.15 1023 [1.65 1023, 2.71 1023]

Parameters with superscripts 2 and + relate to Wolb2 and Wolb+ groups,
respectively.
doi:10.1371/journal.pcbi.1003773.t004

Unveiling Time in Dose-Response Models
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formulation of measures that can be transported between

laboratory and natural conditions [29,30].

We address this problem with an experimental design and

inference framework that enables the estimation of distributions of

host susceptibility to infection by analyzing simultaneously a

collection of survival curves, each representing a different

challenge dose (Figure 3). The procedure is illustrated on a

specifically collected dataset where two distinct groups of hosts (D.
melanogaster) were experimentally challenged by viruses (DCV):

one group consists of isogenic flies where no significant variability

in susceptibility to infection is found; and another with the same

genetic background but now carrying the symbiont bacterium

Wolbachia known to reduce susceptibility to DCV [21,22].

Our inferences indicate that Wolbachia confers on average 85%

DCV protection to D. melanogaster under the specified laboratory

conditions, and suggest significant variability in this effect. This

variance in susceptibility is induced by the symbiont, since model

selection criteria did not support heterogeneity in the susceptibility

of flies not carrying Wolbachia. Since the Drosophila and

Wolbachia populations used in this study are isogenic, the

heterogeneity in susceptibility of Wolbachia-carrying flies uncov-

ered here indicates variation in the host-microorganism interac-

tion that lacks a genetic basis. A simple hypothesis is that variance

in Wolbachia levels at the individual host level leads to variance in

resistance to viruses. Although several lines of evidence support

this hypothesis [31–34], further experiments are required to

discriminate whether heterogeneity in resistance is directly linked

to variance in Wolbachia levels or, alternatively, a result of another

environmental/physiological variance that is only expressed in the

presence of Wolbachia.

Previous estimates of protection were based on survival analysis

or viral titres in a dose-specific manner [21,22,24]. To our

Figure 4. Fit of time-dependent dose-response model to survival curves. Black and blue dots are the observed proportions surviving over
time for Wolb2 and Wolb+ groups, respectively. The curve is the fitted mean posterior survival over time and the shaded area is the 95% CI. Fifty flies
per group were pricked with: A, buffer solution (shown for comparison but not used on this analysis); and B, 104 ; C, 105 ; D, 106 ; E, 107 ; F, 108; G, 109 ;
H, 1010 TCID50 DCV.
doi:10.1371/journal.pcbi.1003773.g004

Figure 5. Dose-response curves and susceptibility distributions inferred from survival curves. A, Curves represent the estimated dose-
response relationships from fitting the model described in Methods to survival over time, for Wolb2 (black) and Wolb+ (blue). Shaded areas represent
the 95% CI. B, Distribution of susceptibility to infection in Wolb+. The posterior median distribution is the curve and the shaded area is the 95% CI. C,
Posterior samples of the Beta-distribution shape parameters describing Wolb+ susceptibility in blue. Red dot marks the median of distribution.
doi:10.1371/journal.pcbi.1003773.g005

Unveiling Time in Dose-Response Models
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knowledge, the experimental design and analysis presented here

provides the first estimation of protection in way that is detached

from challenge dose. Future developments might consider:

estimation of alternative distributions to compare with the shapes

suggested by the Beta family; extension of the adopted experi-

mental design to measure responses other that mortality; and

move towards host populations and environmental conditions that

are closer to natural systems.

The parameters estimated here should not be seen as isolated

from the relevant ecological context. On the contrary, they are

intended as a first step to inform the construction of ecological and

epidemiological models where Wolbachia, other symbionts, or

interventions that modify host susceptibility to infection, are

introduced to induce desired transitions in populations. The

introduction of Wolbachia into Aedes aegypti and other arthropod

vectors is being considered as a promising strategy to control

dengue and other infectious diseases of humans (see [35] and

references therein). The inference frameworks presented can be

readily adapted to provide accurate quantification of Wolbachia-

induced protection and integrated in population models of public

health importance.

The challenge of considering the time dependence of processes

leading to observable ecotoxicity responses has also been

addressed in toxicology where the so-called General Unified

Model of Survival (GUTS) has been proposed [18]. These models

simulate the time-course of external and internal processes leading

to toxic effects on organisms to generate an output that can be

fitted to mortality over time. While those studies tend prioritize the

mechanistic descriptions of the toxicokinetic and toxicodynamic

processes that damage the organisms, we have chosen to adopt a

phenomenological approach and focus on the inference and

interpretation of how susceptibility to infection is distributed in a

population.

In epidemiological systems, the baseline transmission intensity is

often not directly measurable but indirectly inferred in a model-

based manner. Dose-response models, on the other hand, can

account for experimentally controlled patterns of exposure

[36,37]. Variation in host susceptibility to pathogens is one

component of both classes of systems that mostly influences

estimates of intervention impacts [29]. Therefore, building on the

methods developed here furthers our potential to accurately

evaluate the burden of infectious diseases and design effective

interventions.
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