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Abstract

Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our
group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins
in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we
advance the computational models to address previous limitations, and directly test model predictions against in vitro
fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model
fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant
amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different
mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be
either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and
replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding
mutants for the original Ising model (r = 20.74, p = 3.661026) are strongly correlated, and this was further strengthened in
the regularized Ising model (r = 20.83, p = 3.7610212). Performance of the Potts model (r = 20.73, p = 9.761029) was similar
to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common
mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive
power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict
the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune
evasion, and harnessing this knowledge for immunogen design.
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Introduction

The ideal way to combat the spread of HIV-1 is with an

effective prophylactic or therapeutic vaccine [1,2]. One of the

greatest challenges hindering the achievement of this goal is the

incredible sequence diversity and mutability of HIV-1 [3], which

can limit the effectiveness of the immune response [2,4].

CD8+ T cells are instrumental in reducing viral load in HIV-1

acute infection [5] and in maintaining the viral set point during

chronic HIV/SIV infection [6,7]. However, HIV-1 is able to

escape the CD8+ T cell response through mutations in or adjacent

to HIV-1 epitopes that are presented by HLA class I molecules on

the surface of the infected cells [7]. One proposed strategy for

realizing a potent prophylactic or therapeutic vaccine is to target

CD8+ T cell responses to conserved regions of HIV-1, aiming to

reduce incidences of immune escape or, if escape occurs, to reduce

viral fitness and lower the viral set point, thereby slowing disease

course and reducing transmission at the population level [8,9].

While escape mutations at highly conserved sites often damage the

viability of virus [10], this approach is confounded by the

development of compensatory mutations which restore or partially

restore viral fitness [9]. Thus, to maximize the effectiveness of a

vaccine-induced immune response one must look beyond conser-

vation of single residues to identify regions where mutations are
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not only highly deleterious, but where further mutations elsewhere

in the proteome are unlikely to restore lost fitness, but rather, lead

to additional fitness costs due to deleterious synergistic effects.

Our group has developed computational models to identify such

vulnerable regions of the HIV-1 proteome and to predict the

fitness landscape of HIV-1 proteins, providing tools for designing

vaccine immunogens that may limit both HIV-1 evasion of CD8+
T cell responses and the development of compensatory mutations

[11,12]. In an early qualitative study we identified groups of amino

acids in HIV-1 Gag coupled by structural and functional

constraints that cause these residues to co-evolve with each other,

but evolve nearly independently of the other residues in the

protein [12]. In analogy with past studies on the economic markets

and enzymes [13–15], we termed these groups of residues

‘‘sectors’’. This analysis and human clinical data revealed one

sector in Gag, which we termed sector 3, where multiple mutations

were more likely to be deleterious. This group of residues is

naturally targeted more by elite controllers [12]. It is expected to

be particularly vulnerable to CD8+ T cell responses that target

multiple residues in it since multiple mutations within this sector

are likely to significantly diminish viral fitness, thereby restricting

available escape and compensatory paths [12].

This approach, however, does not allow us to determine

precisely which residues should be targeted, as it does not quantify

the relative replicative viability of viral strains bearing specific

mutations. Nor does it identify viable escape routes that remain

upon targeting residues in the vulnerable regions, or inform how

best to block them. To begin to address these issues, we developed

a computational model, rooted in statistical physics, which aims to

predict the viral fitness landscape (viral fitness as a function of

amino acid sequence) from sequence data alone and applied it to

HIV-1 Gag [11]. Similar methods have previously been employed

to study other complex biological systems, from describing the

activity patterns of neuronal networks [16–19] to the prediction of

contact residues in protein families [17,20,21].

The idea underlying our approach is to first characterize the

distribution of sequences in the population, which we expect to be

correlated with fitness (see below). Due to the small number of

available sequences compared to the size of the sequence space,

direct estimation of the probability distribution characterizing the

available sequences is precluded. Thus, we instead aim to infer the

least biased probability distribution of sequences that fits the

observed frequency of mutations at each site, and all correlations

between pairs of mutations (the one- and two-point mutational

probabilities). Mathematically, ‘‘least biased’’ implies the distribu-

tion that has maximum entropy in the information-theoretic sense

[22]. The maximum entropy distribution that fits the one- and

two-point mutational probabilities has a form reminiscent of that

describing equilibrium configurations of an Ising model in

statistical mechanics. We generated such models using multiple

sequence alignments (MSA) for the four subunit proteins of Gag in

HIV-1 clade B [11] (described in Supporting Information Text S1,

Section 1). This model assigns to each viral strain an ‘‘energy’’ (E),

which is inversely related to the probability of observing this

sequence.

We expect more prevalent sequences to be more fit, consistent

with expectations from simple models of evolution [23] though the

precise correspondence between fitness and prevalence may have

a more complicated dependence on factors such as the shape of

the fitness landscape, as predicted by quasispecies theory [24].

Furthermore, this expectation could be confounded by immune

responses in the patients from whom the virus samples were

collected, and phylogeny. Recent analyses suggest (described more

fully in the discussion) that in spite of these effects, at least for Gag

proteins, the rank order of prevalence and in vitro replicative

fitness should be similar [25]. Strains with high E values are

predicted to be less fit than strains with low E values. Predictions of

the model seemed to be in good agreement with experimental data

on in vitro replicative fitness, as well as clinical observations on the

frequency and impact of viral escape mutations [11].

Our aim in the current work is twofold. First, we present new

advances in the inference and modeling of viral fitness landscapes

that address previous theoretical and computational limitations.

Second, we describe new in vitro fitness measurements for viruses

containing multiple Gag mutations, performed to further test

fitness predictions using the improved computational methods. To

give a broad test of the predictive power of the fitness models, we

have performed comparisons for HIV-1 strains containing

multiple mutations predicted to harm HIV-1 viability as well as

combinations predicted to be relatively fitness neutral. We find

that fitness measurements of these mutant strains are in good

agreement with model predictions.

Methods

Computational models to translate sequence data to
viral fitness landscapes

Our key hypothesis in formulating models of HIV fitness is that

the prevalence of viruses with a given sequence, that is, how often

the sequence is observed, is related to its fitness. Simply, fitter

viruses should be more frequent in the population than those that

are unfit. This hypothesis can be proven for some idealized

evolutionary models [23], but cannot be made exact for the

complicated nonequilibrium host-pathogen riposte between hu-

mans and HIV. However, our theoretical work, backed by

extensive computational studies, suggests that the rank order of

fitness and prevalence of strains should be strongly monotonically

correlated, provided we compare sequences that are phylogenet-

ically close [25]. Thus, if we construct a model to predict the

likelihood of observing different viral strains with given sequences,

it can predict the relative fitness of the strains. We achieved this

goal by constructing a maximum entropy model for the

Author Summary

At least 70 million people have been infected with HIV
since the beginning of the epidemic and an effective
vaccine remains elusive. The high mutation rate and
diversity of HIV strains enables the virus to effectively
evade host immune responses, presenting a significant
challenge for HIV vaccine design. We have developed an
approach to translate clinical databases of HIV sequences
into mathematical models quantifying the capacity of the
virus to replicate as a function of mutations within its
genome. We have previously shown how such ‘‘fitness
landscapes’’ can be used to guide the design of vaccines to
attack vulnerable regions from which it is difficult for the
virus to escape by mutation. Here, using new modeling
approaches, we have improved on our previous models of
HIV fitness landscape by accounting for undersampling of
HIV sequences and the specific identity of mutant amino
acids. We experimentally tested the accuracy of the
improved models to predict the fitness of HIV with
multiple mutations in the Gag protein. The experimental
data are in strong agreement with model predictions,
supporting the value of these models as a novel approach
for determining mutational vulnerabilities of HIV-1, which,
in turn, can inform vaccine design.

The Fitness Landscape of HIV-1 Gag
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probability of observing sequences in the MSA [26]. The simplest

model in this class is an Ising model, a simple model of interacting

binary variables from statistical physics which has been widely

applied to study collective behavior in complex systems. The

parameters of this Ising model are obtained by imposing the

constraint that it reproduce the pattern of correlated mutations

(relative to the consensus sequence) observed in a multiple

sequence alignment (MSA) of HIV-1 amino acid sequences

extracted from infected hosts. Specifically, the parameters were

chosen such that the frequency of mutations at each single residue

and the frequency of simultaneous mutations at each pair of

residues were the same in both the Ising model and the MSA.

Importantly, the model also reproduced higher order mutational

correlations accurately, even though these mutational frequencies

were not directly fitted [11].

As described in our previous publication [11], in the Ising model

amino acid sequences in the MSA are compressed into binary

strings by assigning a 0 to each position where the amino acid

matches the consensus sequence (‘‘wild-type’’), and a 1 to each

position with a mismatch (‘‘mutant’’). While this binary approx-

imation greatly simplified our modeling approach, the reduction in

complexity has several drawbacks. Firstly, there is a loss of residue-

specific resolution. The fitness predictions of our model are

insensitive to the precise identity of mutant amino acids, and thus

the model cannot resolve fitness differences between proteins

containing different mutant amino acid residues in a particular

position. Secondly, for relatively conserved proteins such as HIV-1

Gag, where the number of viable amino acids at each position is

rather limited, this binary simplification represents a reasonable

approximation. However, it is less justified for highly mutable

proteins where the wild-type residue in each position is not the

overwhelmingly most probable amino acid, as is the case for the

HIV-1 Env protein.

In our original approach, we fit the Ising model parameters to

precisely reproduce the observed one and two-residue mutational

correlations within the MSA. However, simultaneous mutations at

certain pairs of residues were never observed. This led to another

deficiency in our original modeling approach in that pairs of

mutations not observed in the MSA were predicted to be completely

unviable (E = ‘). While it is possible that such mutant viral strains

have exactly zero replicative fitness, it is more likely that they are

highly unfit strains (possessing non-zero replicative fitness) that

simply arise too seldom to be observed within our finite-sized MSA.

In this work, we present three significant advances of our

original model to predict viral fitness, which also the aforemen-

tioned limitations. First, we incorporate Bayesian regularization

into our fitting procedure to eliminate the prediction of zero

replicative fitnesses for mutations not present within our MSA.

Second, we implement a new algorithm for inferring an Ising

model from sequence data, which dramatically accelerates the

computation of model parameters. Third, we relax the binary

approximation to infer viral fitness landscapes that explicitly retain

the amino acid identities at each position. We achieve this by

describing the viral fitness landscape using a multistate general-

ization of the Ising model known as the Potts model, another

established and well-studied model in statistical physics [27]. We

also implement Bayesian regularization into the fitting of the Potts

model parameters.

Model 1: Regularized and computationally fast inference
of Ising models of viral fitness

Inference of the parameters of the Ising models, commonly

referred to as the inverse Ising problem, is a canonical inverse

problem lacking an analytical solution that may be tackled in

many ways [16,17,19–21,28,29]. We improve upon our previous

techniques described in [11] by incorporating regularization and

implementing new inference algorithms, which greatly decrease

the computational burden and accelerate model fitting.

To control the effects of undersampling and to improve the

predictive power of the inferred fitness models, we incorporate

Bayesian regularization into our inference algorithm [18,19,30,31]

in the form of a Gaussian prior distribution for the model

parameters describing pairwise couplings between residues (see

Text S1, Sections 1.3 and 2.5). Regularization of this form is also

known as Tikhonov regularization or ridge regression [32]. With

this addition, the probability of observing any sequence, including

those containing pairs of mutations not observed in the MSA, is

nonzero. We have also computed a correction to the energy of

each sequence to account for the possible bias that strains near

fitness peaks are more likely to be observed than would be

expected from their intrinsic fitness when sampled from a finite

distribution (see Text S1, Section 3.2).

In an algorithmic advance over our previous fitting procedure, we

fit the parameters of our regularized Ising model using the selective

cluster expansion algorithm of Cocco and Monasson [18,19] which

identifies clusters of strongly interacting sites and iteratively builds a

solution for the whole system by solving the inverse Ising problem

for each cluster. With this approach, we cut the CPU time necessary

to infer the parameters of the Ising model from roughly 12 years

[11] to 5 hours for p24, an improvement by four orders of

magnitude. Roughly, we expect algorithm run-time to scale as O(Nn
exp(n)), where N is the system size (number of amino acids) and n is

the size of a typical ‘‘neighborhood’’ of strongly interacting sites. For

a review and applications of this method see [18,30]. Complete

details of our modeling approach and numerical fitting procedures

are provided in the Text S1, Section 1.

Model 2: Regularized Potts models of viral fitness
An ideal model of viral fitness would be able to capture the full

(unknown) distribution of correlated mutations throughout the

sequence, and thus reproduce the prevalence of every viral strain.

Sequences in the MSA represent a sample of the possible strains of

the virus, providing information about the distribution of point

mutations, pairs of simultaneous mutations, triplets of simulta-

neous mutations, and all higher orders. However, since the

number of available sequences in the MSA is very small compared

to the size of the accessible sequence space, and because mutations

at most sites are rare, higher order mutations will be severely

undersampled. Thus, following our previous approach we appeal

to the maximum entropy principle to seek the simplest possible

model capable of reproducing the single site and pair amino acid

frequencies [11,22], for which the problem of undersampling is

less severe. From this analysis, the Potts model is the least

structured model capable of reproducing the one and two-position

frequencies of amino acids observed within the MSA [21].

To introduce the Potts model, we represent the sequence of a

particular m-residue protein as a vector, ~AA~fAkgm
k~1, where the

elements Ak can take on the q = 21 integer values [1, 2, …, 21]

denoting an arbitrary encoding of the 20 natural amino acids, plus

a gap [21]. In the Potts model the probability P(~AA) of observing a

particular sequence ~AA is given by

P(~AA)~
1

Z
e{E(~AA), E(~AA)~

Xm

i~1

hi(Ai)z
Xm

i~1

Xm

j~iz1

Jij(Ai,Aj): ð1Þ

The Fitness Landscape of HIV-1 Gag
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In analogy with the statistical physics literature, we refer to E as

a dimensionless ‘‘energy,’’ the function E(~AA) as the Hamiltonian,

and the normalizing factor Z as the partition function [27]. The

model is parameterized by a set of m q-dimensional vectors,

fhigm
i~1, and a set of m(m21)/2 q-by-q matrices, fJijgivj . The hi

vectors give the contribution of the identity of each amino acid in

each position to the overall sequence energy, and the Jij matrices

give the contribution to the energy of pairwise interactions

between amino acids in different positions.

To fit the Potts model, we implemented a generalization of the

semi-analytical extension of the iterative gradient descent imple-

mented by Mora and Bialek [11,17]. This approach implements a

multi-dimensional Newton search to iteratively adjust the fhi,Jijg
model parameters until the predictions of the model for the one

and two-position frequencies of amino acids reproduce those

observed within the MSA. In an advance over the original

incarnation of this algorithm, we have derived closed form

expressions for the gradients required by the Newton search,

thereby obviating the need for their numerical estimation by finite

differences (which would result in a more computationally

expensive and less numerically stable secant search procedure).

Our approach is semi-analytical in the sense that while we have

analytical expressions for the Newton search gradients, we use a

Monte Carlo procedure to numerically estimate the one and two-

position amino acid frequencies predicted by the model at each

stage of parameter refinement. We are currently developing a

Potts generalization of the cluster expansion algorithm [19] to

accelerate fitting. We incorporate Bayesian regularization into our

fitting procedure in a precisely analogous manner to that described

above for the regularized Ising model by introducing a Gaussian

prior distribution over the Jij parameters. Inference of the Potts

model parameters for p24 required approximately 1.4 years of

CPU time using a generalization of the gradient descent approach

described in Ref. [11]. Fitting the model parameters by gradient

descent is expected to scale as O((Np)2), where N is the number of

amino acids in the protein, and p is the characteristic number of

mutant residues observed at each position. Full details of the fitting

and regularization procedures are provided in Text S1, Section 2.

The code implementing the inverse Potts inference algorithm is

also provided in Supporting Information Code S1.

In vitro experiments
To test the accuracy of these models in predicting the fitness

landscape of HIV-1 Gag, we performed in vitro experiments to

measure the fitness of various Gag mutants. Previously we had

measured the in vitro replication capacities of 19 Gag p24

mutants, 16 of which contained single mutations in Gag p24, and

compared these with fitness predictions of our original Ising model

[11]. Here, we extend this work to measure the replication

capacities of HIV-1 strains containing various combinations of

mutations, predicted to be either harmful to HIV-1 viability or

fitness-neutral, in Gag p24 and p17 and we compare measure-

ments not only to the original Ising model described in Ref. [11],

but also to regularized versions of Ising and Potts models that we

have developed here. Specifically we considered 17 mutations

pairs, one triple, and 25 single mutations within these combina-

tions, as listed in Table 1. These mutations were introduced into

the widely used laboratory-adapted HIV-1 clade B reference strain

NL4-3.

The tested mutants can be divided into 4 categories, viz. (i) Gag

p24 pairs with high E values located within a group of co-evolving

amino acids termed sector 3 (cf. Ref [12]), (ii) HLA-associated Gag

p24 pairs with high E values, (iii) Gag p24 pairs/triple with low E

values, and (iv) Gag p17 pairs (Table 1). These mutation

combinations were chosen according to E values predicted by

the published Ising model [11], where E.90 or E = ‘ were

considered high E values and E,15 were considered low E values.

Note that, due to the couplings between mutations at different

sites, parameterized by the Jij in equation 1, the E values depend

not only on the specific mutations introduced but also on the

sequence background. The E values for mutations reported here

are computed with the HIV-1 NL4-3 sequence background, which

differs from the p17 and p24 MSA consensus sequences by 8

mutations (R15K, K28Q, R30K, K76R, V82I, T84V, E93D,

S125N) and 2 mutations (N252H, A340G), respectively. The p24

region of Gag was focused on since this is the most conserved

region of the protein. First, we selected six mutation pairs,

predicted to be unfavorable in combination, in sector 3 of Gag p24

since we previously found this to be an immunologically

vulnerable group of co-evolving residues in which multiple

mutations are not well-tolerated [12]. Since it is desirable to

identify low fitness/non-viable combinations of escape mutations

for vaccine immunogen design aimed at reducing viral fitness or

blocking viable escape pathways, we aimed to identify pairs of

likely escape mutations with high E values. Virus mutations that

are statistically associated with the expression of specific host HLA

class I alleles, which also restrict the same epitopes in which the

mutations are found, are likely to be CD8+ T cell-driven escape

mutations [33]. We therefore tested five high E pairs of mutations

located at HLA-associated Gag p24 codons (HLA-associated

variants defined in [34,35]) in or next to optimal CD8+ T cell

epitopes (A-list epitopes from the Los Alamos HIV sequence

database [36]) that were restricted by the same HLA. For

comparison with high E mutation pairs, mutation combinations

with low predicted E values were included in testing, comprising

known favorable compensatory pairs in Gag p24 where 219Q

compensates for the 242N escape mutant [37] and 147L

compensates for the 146P escape mutant [10], as well as one

pair in sector 3 of Gag p24 and a Gag p24 triple mutant.

Additionally, for broader testing, two mutation pairs in Gag p17

were selected. We note that the most commonly observed mutant

amino acid at each codon was tested.

We introduced these mutation combinations into the HIV-1

NL4-3 plasmid by site-directed mutagenesis and their presence was

confirmed by sequencing, as described previously [38]. Generation

of mutant viruses from mutated plasmids and the measurement of

their replication capacities were performed as previously [11,38].

Briefly, mutated plasmids were electroporated into an HIV-1-

inducible green fluorescent protein reporter T cell line, harvested at

<30% infection of cells, and the replication capacities of the

resulting mutant viruses were assayed by flow cytometry using the

same cell line. Replication capacities were calculated as the

exponential slope of increase in percentage infected cells from days

3–6 following infection at a MOI of 0.003, normalized to the growth

of wild-type NL4-3 (RC = 1). Three independent measurements

were taken and averaged. Mutant viruses were re-sequenced to

confirm the presence of introduced mutations.

Results

Comparison of predictions from different models
The values of E predicted by our original and new modeling

approaches for the 43 HIV-1 NL4-3 Gag mutants tested here are

shown in Table 2. Absolute comparison of the E values between

the models are not meaningful, but the relative E values of mutants

are generally in excellent concordance between models (Pearson’s

correlation, r$0.85 and p#5.3610211, two-tailed test).

The Fitness Landscape of HIV-1 Gag
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Table 1. HIV-1 NL4-3 Gag mutants selected for testing of predicted energy costs (E) by an in vitro HIV-1 replication capacity assay.

Mutant Gag subunit Category of pairs/triple Ea

186I p24 78.74

269E p24 43.43

186I269E p24 Sector 3b, high Ec Infinity

295E p24 22.81

186I295E p24 Sector 3, high E Infinity

181R p24 44.62

310T p24 6.26

181R310T p24 Sector 3, high E Infinity

182S p24 25.13

198V p24 Infinity

182S198V p24 Sector 3, high E Infinity

179G p24 56.09

229K p24 44.63

179G229K p24 Sector 3, high E 97.01

174G p24 Infinity

243P p24 66.65

174G243P p24 Sector 3, high E Infinity

168I p24 38.58

315G p24 19.11

168I315G p24 HLA-associated, high E Infinity

331R p24 11.77

186I331R p24 HLA-associated, high E Infinity

302R p24 11.10

302R315G p24 HLA-associated, high E Infinity

315G331R p24 HLA-associated, high E Infinity

190I p24 41.52

190I302R p24 HLA-associated, high E Infinity

219Q p24 6.73

242N p24 8.68

219Q242N p24 p24, low E, compensatory 10.80

146P p24 7.22

147L p24 3.42

146P147L p24 p24, low E, compensatory 6.58

326S p24 4.59

310T326S p24 p24, low E, sector 3 10.53

173T p24 5.92

173T286K p24 4.89

173T286K147L p24 p24, low E, triple 4.12

12K p17 3.74

12K54A p17 p17, low E 4.84

86F p17 8.00

92M p17 8.74

86F92M p17 p17, high E Infinity

aEnergy cost predicted by original Ising model [11] taking into account differences in NL4-3 and the multiple sequence alignment used in model generation. E is 2.98 for
wild-type NL4-3 p24 and 3.43 for wild-type NL4-3 p17.
bMutation pairs within an immunologically vulnerable group of co-evolving residues, termed sector 3, that we previously identified qualitatively [12].
cE.90 or E = ‘ were considered high E values and E,15 were considered low E values.
doi:10.1371/journal.pcbi.1003776.t001

The Fitness Landscape of HIV-1 Gag
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Table 2. Energy costs (E) of HIV-1 NL4-3 Gag mutants predicted by computational models.

Mutant Gag subunit Ising Ea Regularized Ising Eb Regularized Potts Ec

186I p24 78.74 9.98 11.24

269E p24 43.43 11.46 12.18

186I269E p24 Infinity 17.77 18.97

295E p24 22.81 9.05 11.03

186I295E p24 Infinity 15.36 17.79

181R p24 44.62 13.55 12.12

310T p24 6.26 5.87 7.20

181R310T p24 Infinity 15.74 14.87

182S p24 25.13 7.11 9.68

198V p24 Infinity 12.32 -d

182S198V p24 Infinity 15.77 -d

179G p24 56.09 11.14 11.57

229K p24 44.63 10.52 11.68

179G229K p24 97.01 17.99 18.81

174G p24 Infinity 15.47 11.71

243P p24 66.65 11.1 11.08

174G243P p24 Infinity 22.9 18.32

168I p24 38.58 9.8 10.30

315G p24 19.11 6.85 10.64

168I315G p24 Infinity 14.78 16.39

331R p24 11.77 7.37 9.17

186I331R p24 Infinity 13.68 15.85

302R p24 11.1 7.75 9.23

302R315G p24 Infinity 12.4 15.30

315G331R p24 Infinity 10.56 15.22

190I p24 41.52 8.2 11.41

190I302R p24 Infinity 12.28 16.12

219Q p24 6.73 5.65 6.90

242N p24 8.68 6.7 8.05

219Q242N p24 10.8 8.04 10.07

146P p24 7.22 5.62 6.26

147L p24 3.42 4.25 6.54

146P147L p24 6.58 5.77 4.74

326S p24 4.59 4.78 5.69

310T326S p24 10.53 7.72 8.81

173T p24 5.92 5.81 7.02

173T286K p24 4.89 6.56 7.75

173T286K147L p24 4.12 5.93 6.78

12K p17 3.74 1.91 4.38

12K54A p17 4.84 3.19 5.63

86F p17 8 4.53 6.00

92M p17 8.74 6.01 9.43

86F92M p17 Infinity 9.52 12.57

aE is 2.98 for wild-type NL4-3 p24 and 3.43 for wild-type NL4-3 p17.
bE is 3.67 for wild-type NL4-3 p24 and 1.64 for wild-type NL4-3 p17.
cE is 4.43 for wild-type NL4-3 p24 and 2.81 for wild-type NL4-3 p17.
dThe 198V mutation was not observed within the MSA used to fit the Potts model, precluding the fitted model from assigning an energy to viral strains containing this
point mutation.
doi:10.1371/journal.pcbi.1003776.t002
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Experimental findings
The in vitro fitness measurements for all mutants, grouped

according to categories, are shown in Figure 1. We initially

compared our model predictions and fitness measurements for

each category of mutant pairs to evaluate whether mutant

combinations with high and low predicted E values corresponded

to substantial fitness cost or little/no fitness cost, respectively.

Briefly, all Gag p24 sector 3 mutation pairs with high E values

were not viable in our assay system, and were assigned a

replication capacity of zero (Figure 1A). Similarly, with the

exception of 315G331R, the five high E HLA-associated mutation

pairs showed substantial reduction in replication capacity, to

between 0–56% of wild-type levels (Figure 1B). Non-viable

mutants (RC = 0) were those for which the generation of virus

stocks from plasmids encoding these mutation pairs failed, or, in

two instances – mutants 186I295E and 186I331R – were not

viable unless further mutations developed, confirming unfavor-

ability of the mutation combination. Briefly, concentrated virus

stocks for mutants 186I295E and 186I331R were harvested at .

22 days post-electroporation compared with the median harvest-

ing time of 6 days post-electroporation for all mutants (at which

time the 186I295E and 186I331R mutants had infected <1%

cells). Sequencing of these viruses revealed the presence of

additional mutations and/or reversion of introduced mutations.

For mutant 186I295E, amino acid mixtures were detected at

codons 63 (Q/R), 177 (D/E) and 186 (I/V), and for mutant

186I331R, mixtures were detected at codons 168 (I/V) and 331

(K/R), as well as reversion of 186I to 186T. On repeating virus

generation for these mutants, additional mutations similarly

developed – mixtures were observed at codons 214 (R/K) and

271 (N/S) for mutant 186I295E, and 232 (R/M) and 260 (D/E)

for mutant 186I331R. With the exception of 186I295E and

186I331R, sequencing confirmed that all mutant viruses had only

the specific mutations introduced. The spontaneous mutations

186V, 271S and 232M were not observed in the MSA and the

new mutation combinations did not have lowered E values in any

of the models, with the exception of the incomplete

186I331R260D combination (complete observed combination

186I, 331R, 232R/M, 260D/E) which displayed a slightly lower

energy than 186I331R in the regularized Ising model only (11.5

vs. 13.7) (data not shown). Nevertheless, these observations

confirm that 186I295E and 186I331R are unfit mutation

combinations requiring compensatory paths to restore viability.

Taken together, the data on high E p24 mutants confirm mutation

combinations predicted to be unfit, and also identify combinations

of HLA-associated mutations in/next to optimal CD8+ T cell

epitopes (mutations likely to result in CD8+ T cell escape [33]) that

carry substantial fitness costs.

Those p24 mutation combinations, including known compen-

satory pairs, that were predicted to have low E values displayed

replication capacities similar to that of wild-type NL4-3, indicating

that these combinations had little or no cost to HIV-1 replication

capacity in accordance with predictions (Figure 1C). Similarly, all

p17 mutants tested had replication capacities close to that of the

wild-type NL4-3 virus, consistent with the predicted E values of all

mutants except 86F92M (Figure 1D).

Overall, for only two (86F92M and 315G331R) of the 17

mutant pairs the fitness measurement did not correspond to the E

value prediction of high or low fitness cost. It should however be

noted that the disparity between E values and measured

replication capacities for these mutant pairs is somewhat mitigated

in the regularized models. The E values for the regularized Ising

model for these mutants (which were assigned an E value of

infinity by the original Ising model) are lower than those of other

mutants previously assigned infinite energies, and the same is true

for mutant 86F92M in the regularized Potts model.

Quantitative comparison between in silico predictions
and in vitro measurements

Next, we assessed the relationship between fitness measure-

ments and E values predicted by our original Ising, regularized

Ising and regularized Potts models using Pearson’s correlation

tests. There is a strong correlation between the metric of fitness

(values of E, Table 1) predicted by the original unregularized Ising

model and our experimental measurements (Pearson’s correlation,

r = 20.74 and p = 3.661026, two-tailed) (Figure 2A), however this

correlation out of necessity excludes mutants with E values equal

to infinity (n = 13). The regularized Ising model allows for

inclusion of these data points resulting in a stronger correlation

between predictions and fitness measurements (Pearson’s correla-

tion, r = 20.83 and p = 3.7610212, two-tailed) (Figure 2B), which

is slightly improved by focusing on Gag p24 mutants only

(Pearson’s correlation, r = 20.85 and p = 1.4610211, two-tailed).

There is also a strong agreement between the residue-specific Potts

model energies and replication capacity (Pearson’s correlation,

r = 20.73 and p = 9.761029, two-tailed) (Figure 2C).

In practice, one may be concerned with a more coarse-grained

measure of viral fitness: will a virus with a given sequence be able

to replicate with similar efficiency to the wild-type, or will it be

significantly impaired? To explore this point, we grouped the

experimentally tested mutants into two categories, ‘‘fit’’ (RC$0.5)

and unfit (RC,0.5), and tested the ability of the fitness landscape

models to predict which class each sequence would belong to

based on their E values. This was accomplished by fitting a linear

classifier to the data using logistic regression (Text S1, Section 3.1).

The regularized Ising model E classifier is highly accurate (91%

accuracy at optimal threshold, AUROC = 0.93) – we observed a

strong, significant difference in replication capacities between the

mutants classified as unfit and those classified as fit (Mann-

Whitney U = 32, p~4:5|10{7) (Figure 3A). Specifically, four

mutants (86F92M, 190I, 190I302R and 243P) were not classified

correctly. However, 190I302R, which was classified as unfit

(E = 8.6), exhibited a fitness close to that of the 0.5 cutoff

(RC = 0.56) and 243P, which displayed low fitness (RC = 0.36),

had a predicted E value (E = 7.4) bordering on the classifier E

value. The Potts model classifier also performs well (81% accuracy

at optimal threshold, AUROC = 0.80), but provides a slightly

weaker difference between the fit and unfit classes (Mann-Whitney

Figure 1. Replication capacities of NL4-3 viruses encoding mutations in HIV-1 Gag. Graphs show replication capacities of NL4-3 viruses
encoding (A) Gag p24 mutation pairs with high E values that were previously identified to be in vulnerable co-evolving groups [12] and single
mutations within these pairs; (B) Gag p24 HLA-associated pairs with high E values and single mutations within these pairs; (C) Gag p24 pairs/triple
with low E values as well as single mutations within these combinations; and (D) Gag p17 pairs including single mutations within the pairs. Those
mutants that (i) were not viable or (ii) were not viable unless further mutations developed (indicated with an asterisk), were assigned a replication
capacity of zero. Mutation pairs and triples are shown in grey while single mutations within these combinations are shown in black. Replication
capacities of mutant viruses are expressed relative to the replication capacity of wild-type NL4-3 virus (RC = 1). Bars represent the mean of three
independent experiments and error bars represent standard deviation from the mean.
doi:10.1371/journal.pcbi.1003776.g001
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U = 70, p~4:0|10{3) (Figure 3B). Here, seven mutants were not

classified correctly, including the same four not classified correctly

by the regularized Ising model as well as mutants 174G, 181R,

269E and 315G331R. Similar to mutant 243P, mutants 174G,

181R and 269E were unfit (RC = 0) but had a predicted E values

ranging from 7.3 to 7.7, fairly close to that of the classifier E value.

Discussion

In this study, we have substantially advanced our modeling

approaches and tested the predictive power of these models by in
vitro fitness measurements of HIV encoding various mutation

combinations in the Gag protein. The in vitro functional data are

overall in strong agreement with the viral fitness landscape models

and support the capacity of these models to robustly predict both

continuous and ‘‘coarse-grained’’ measures of HIV-1 in vitro
replicative fitness. Performance of the regularized Potts and

regularized Ising models here is similar, which is not unexpected as

Gag in general is not highly mutable and the mutants tested here

were the most common ones, making the binary approximation a

fairly good assumption. Indeed, in instances where the binary

approximation is valid, we might encounter poorer performance

from the Potts model relative to the Ising due to a diminished ratio

of samples (i.e., sequences in the MSA) to parameters (i.e., h and J
values) making robust numerical fitting of the former more

challenging than the latter. It is nevertheless encouraging that we

are capable of fitting a significantly more complicated Potts model

that retains residue-specific resolution without compromising the

fidelity of our predictions. Improved inverse Potts inference

methods which better meet these numerical challenges may also

improve performance of the Potts model with respect to the Ising

model results.

Simple theoretical analysis suggests that models which differen-

tiate between different mutant amino acids at the same site, like

the Potts model employed here, will be necessary to make fitness

predictions for highly mutable proteins such as Env and Nef, or to

predict the fitness of sequences containing sites with mutations to

less frequently observed amino acids. Using a simple toy model, we

show in Text S1, Section 3.4 that the binary approximation (Ising

model) has several potential deficiencies compared to a Potts

model. In particular, the Ising model generically overestimates the

fitness of mutant sequences, particularly for sequences containing

uncommon mutations. Also, in the Ising case the inferred

interaction between mutations at different sites is dominated by

the interaction between the most common mutants, while the Potts

model is able to accurately capture interactions between rare

mutants. Future work will involve testing Ising and Potts model

predictions for more highly variable proteins and for mutations to

uncommon amino acids.

While this study confirms the usefulness of this method for

predicting HIV-1 replicative fitness, at least for closely related

sequences, caution will be necessary in applying this method to

predict the relative fitness of multiple strains separated by a large

number of mutations. In the measure of prevalence used to infer

the Ising and Potts model fitness landscapes, factors such as

phylogeny are implicitly included. Analysis conducted in [25]

suggests that phylogenetic effects influence the value of the

inferred fields hi, and that a correction should be included for

predictions of energy or fitness. This form of a correction is

sensible, as phylogenetic effects should make mutations at

individual residues less frequent, leading to larger inferred fields.

For closely related strains such as those studied here experimen-

tally, any systematic inaccuracies in the energy due to phylogeny

should be similar in magnitude, and thus differences in energy

should predict relative replicative fitness fairly accurately. This

would not necessarily be true, however, for sequences separated by

many mutations. Further theoretical developments may be needed

to separate out the contributions of phylogeny and intrinsic fitness

Figure 2. Relationship between predicted E values and
replicative capacities of HIV-1 NL4-3 Gag mutants. Scatter plots
showing strong correlations between measured replication capacities
of mutants and E values predicted by (A) original Ising (Pearson’s
correlation, r = 20.74 and p~3:6|10{6 , two-tailed test, n = 30), (B)
regularized Ising (Pearson’s correlation, r~{0:83 and p~3:7|10{12,
two-tailed test, n = 43) and (C) regularized Potts (Pearson’s correlation,
r~{0:73 and p~9:7|10{9 , two-tailed test, n = 41) models. In the
original Ising model (panel A), mutants with E values of infinity (n = 13)
are excluded from the correlation.
doi:10.1371/journal.pcbi.1003776.g002
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from the Ising and Potts model landscapes presented here [25] to

predict the relative fitness of strains that differ by many mutations.

In addition to phylogeny, other factors such as host-pathogen

interactions and pure stochastic fluctuations affect the observed

distribution of sequences, and could complicate fitness predictions.

In another work [25] we have investigated these issues by carrying

out stochastic simulations that aim to mimic the way the samples

were collected and host-pathogen dynamics. In this paper, for the

p17 protein, we found that the fitness and prevalence were not the

same. However, the rank order of fitness and prevalence were the

same as long as the strains being compared were not very far apart

in sequence space. This is largely because of the diversity of

immune responses due to diverse HLA types in the human

population. Additionally, the number of virus particles in single

infected individuals from whom the virus sequences were extracted

is large, as is the number of patients from whom the virus samples

were taken. We find that the one and two-point mutational

probabilities in the sequence databases have converged [11]; i.e.,

these correlations do not change upon removal of some sequences,

suppressing the effects fluctuations on the inferred model.

We also note that some caution should be taken in comparing E

values for sequences belonging to different proteins. The fitness

predictions of the Ising and Potts models are unchanged by a

constant shift in energy for all sequences, thus comparisons of

absolute energy values are not physically meaningful. Differences

in energy between two sequences in the same protein, however,

can be unambiguously interpreted as the fitness ratio of those

sequences. This is the approach we have taken when examining E

values from sequences with mutations in p17 and p24 together:

rather than comparing the absolute energies, we compare the

differences in energy between the mutant and the NL4-3 reference

sequence in each protein, which reflect the fitness of the mutant

relative to the NL4-3 reference sequence. Finally, translation from

differences in energy to differences in fitness might depend on the

specific protein that is being considered. While comparisons of

energy differences and relative fitnesses of p17 and p24 mutants

performed here exhibit no obvious incongruences, further study is

needed to confirm the generality of fitness predictions across

proteins.

In the case of two mutant pairs (186I295E and 186I331R) that

were predicted by the models to have very low fitness, partial

reversions and/or additional mutations spontaneously arose in

culture that restored virus viability. However, with the exception

of one of the spontaneous mutations (260D) observed in

combination with 186I331R that modestly decreased the predict-

ed energy (increased fitness) in the regularized Ising model but not

the Potts or original Ising models, the models do not predict lower

energies (increased fitness) for these mutant pairs in combination

with the additional mutations arising in vitro. Further, three of the

spontaneous mutations – 186V, 271S and 232M – were not

observed in the MSA and therefore could not be assessed by the

Potts model. As a possible interpretation of these findings, we

suggest that it may be the case that these mutation patterns

observed in vitro are not typically observed in vivo, perhaps since

these are infrequently explored mutational routes. As a corollary,

this could indicate an inherent limitation of computational models

derived from clinical sequence data to identify all possible escape-

compensatory pathways, and the importance of in vitro and in
vivo experiments to validate and complement model predictions.

A mitigating factor, of course, is that mutational pathways

observed in vitro but not in vivo may be of less direct clinical

relevance.

In future work, the model predictions will be further validated in

animal models by testing the viable escape pathways predicted to

emerge following immunization with immunogens containing

vulnerable HIV-1 regions only. The validated fitness landscape

could then be used to design vaccine immunogens containing

epitopes from the vulnerable regions that could be presented by

Figure 3. Classification of HIV-1 NL4-3 Gag mutants as unfit/fit using predicted E values. Graphs show the ability of E classifiers, predicted
by regularized Ising (panel A) and Potts (panel B) models, to correctly classify HIV-1 NL4-3 Gag mutants into unfit (RC,0.5) and fit (RC.0.5) categories.
The measured replication capacities of mutants classified as fit or unfit according to their predicted E values were compared with the Mann-Whitney
test and p values are shown.
doi:10.1371/journal.pcbi.1003776.g003
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people with diverse HLAs and that target residues particularly

harmful to HIV-1 when mutated simultaneously, thereby

substantially diminishing viral fitness and/or blocking viable

mutational escape [11,12]. Such immunogens potentially repre-

sent good therapeutic vaccine candidates to overcome the

challenge of HIV-1 evasion of CD8+ T cell responses. However,

further work will also be required to optimize design of such

immunogens to ensure that epitopes included are processed

effectively and that they are sufficiently immunogenic, as well as to

test their immunogenicity, optimal delivery methods and protec-

tion efficacy in animal models. Furthermore, fitness landscapes of

HIV-1 proteins may also be more widely applied to identify

effective antibody targets, and help design potent combinations of

neutralizing antibodies for passive immunization as well as small

molecule inhibitors for therapy.

Supporting Information

Code S1 Source code for the inverse Potts algorithm. A

compressed file containing source code and instructions for its

installation and use, along with a set of test data for verifying

proper functioning of the code and auxiliary Matlab scripts for

computing correlations from a multiple sequence alignment.

(ZIP)

Text S1 Supplementary methods and figures. Details for

sequence data processing and inference of the Ising (Section 1) and

Potts models (Section 2) are given. Details on comparison with

experimental results and comparison between Ising and Potts

models are given in Section 3. A brief summary of statistical tests is

presented in Section 4.
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