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Abstract

The inositol trisphosphate receptor (IP3R) is one of the most important cellular components responsible for oscillations in
the cytoplasmic calcium concentration. Over the past decade, two major questions about the IP3R have arisen. Firstly, how
best should the IP3R be modeled? In other words, what fundamental properties of the IP3R allow it to perform its function,
and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening
and closing of small numbers of IP3R, is it possible for a deterministic model to be a reliable predictor of calcium behavior?
Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that
periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively
reproduced by a two-state model of the IP3R, and thus the behavior of the IP3R is essentially determined by its modal
structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in
ASMC are generated by a stochastic mechanism, IP3R stochasticity is not essential for a qualitative prediction of how
oscillation frequency depends on model parameters, and thus deterministic IP3R models demonstrate the same level of
predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using
simplified IP3R models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on
parameters it is sufficient to use a deterministic model.
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Introduction

Oscillations in cytoplasmic calcium concentration (½Ca2z�i),
mediated by inositol trisphosphate receptors (IP3R; a calcium

channel that releases calcium ions (Ca2z) from the endoplasmic or

sarcoplasmic reticulum (ER or SR) in the presence of inositol

trisphosphate (IP3)) play an important role in cellular function in

many cell types. Hence, a thorough knowledge of the behavior of

the IP3R is a necessary prerequisite for an understanding of

intracellular Ca2z oscillations and waves. Mathematical and

computational models of the IP3R play a vital role in studies of

Ca2z dynamics. However, over the past decade, two major

questions about IP3R models have arisen.

Firstly, how best should the IP3R be modeled? Models of the

IP3R have a long history, beginning with the heuristic models of [1–

3]. With the recent appearance of single-channel data from IP3R in
vivo [4,5], a new generation of Markov IP3R models has recently

appeared [6,7]. These models show that IP3R exist in different

modes with different open probabilities. Within each mode there

are multiple states, some open, some closed. Importantly, it was

found [8] that time-dependent transitions between different modes

are crucial for reproducing Ca2z puff data from [9]. However, it is

not yet clear whether transitions between states within each mode

are important, or whether all the important behaviors are captured

simply by inter-mode transitions.

Secondly, why do deterministic models of the IP3R perform so

well as predictive models? Deterministic models of the IP3R have

proven to be useful predictive models in a range of cell types. For

example, IP3R-based models have been developed to study Ca2z

oscillations in airway smooth muscle cells (ASMC) [10–13], and

these models have made predictions which have been confirmed

experimentally. This shows the usefulness of such models in

advancing our understanding of how intracellular Ca2z oscilla-

tions and waves are initiated and controlled in ASMC. However,

these models are deterministic models which assume infinitely

many IP3R per unit cell volume, an assumption that contradicts

experimental findings in many cell types showing that Ca2z puffs

and spikes occur stochastically, and that intracellular Ca2z waves

and oscillations arise as an emergent property of fundamental

stochastic events [9,14,15].

Here, we answer these two fundamental modeling questions

using data and models from ASMC. Firstly, we show that a simple
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model of the IP3R, involving only two states with time-dependent

transitions, suffices to generate correct dynamics of Ca2z puffs

and oscillations. Secondly, we show that, although Ca2z

oscillations in ASMC are generated by a stochastic mechanism,

a deterministic model can make the same qualitative predictions as

the analogous stochastic model, indicating that deterministic

models, that require much less computational time and complex-

ity, can be used to make reliable predictions. Although we work in

the specific context of ASMC, our results are applicable to other

cell types that exhibit similar Ca2z oscillations and waves.

Results

A two-state model of the IP3R is sufficient to reproduce
function

We have previously shown [8] that the statistics of Ca2z puffs in

SH-SY5Y cells can be reproduced by a Markov model of the IP3R
based on the steady-state data of [5] and the time-dependent data

of [4]. In this model the IP3R can exist in 6 different states,

grouped into two modes, which we call Drive and Park (see

Fig. 1). The Drive mode (which contains 4 states; 1 open and 3

closed) has an average open probability of around 0.7, while the

Park mode (which contains the remaining two states; 1 open and 1

closed) has an open probability close to zero. Transitions between

states within each mode are independent of Ca2z and IP3; only

the transitions between modes are ligand-dependent.

In our previous study on calcium puffs [8], we showed that, to

reproduce the experimentally observed non-exponential interspike

interval (ISI) distribution and coefficient of variation (CV) of ISI

smaller than 1, the time-dependent intermodal transitions are

crucial. Lack of time dependencies in the Siekmann model leads to

exponential ISI distributions and CV = 1, which is not the case for

calcium spikes in ASMC. Fig. 2A shows an example of Ca2z

oscillations generated by 50 nM methacholine (MCh, an agonist

that can induce the production of IP3 by binding to a G protein-

coupled receptor in the cell membrane) in ASMC. By gathering

data from 14 cells in 5 mouse lung slices, we found that the

standard deviation of the interspike interval (ISI) is approximately

a linear function of the ISI mean, with a slope clearly between 0

and 1 (i.e. CVv1), indicating that the spikes are generated by an

inhomogeneous Poisson process (a slope of 1 would denote a pure

Poisson process) (see Fig. 2B). This shows the necessity of inclusion

of time-dependent transitions for mode-switching.

Using a quasi-steady-state approximation, and ignoring states

with very low dwell times, it is possible to construct a simplified

two-state version of the full six-state model (see Materials and

Methods). In the simplified model the intramodal structure is

ignored, and only the intermodal transitions have an effect on

IP3R behavior. In Fig. 3 we compared the simplified IP3R model

to the full six-state model. Both models have the same distribution

of interspike interval, spike amplitude and spike duration.

Moreover, by looking at a more detailed comparison between

the two model results (Figs. 4A, C and E) and experimental data

(Figs. 4B, D and F), we found the 2-state model not only can

reproduce the behaviour of the 6-state model, but can also

qualitatively reproduce experimental data. The average experi-

mental ISI shows a clear decreasing trend as MCh concentration

increases (although a saturation occurs in the data for high MCh),

a trend that is mirrored by the model results as the IP3

concentration increases. Unfortunately, since the exact relation-

ship between MCh concentration and IP3 concentration is

uncertain, a quantitative comparison is not possible. In both

model and experimental results, the average peak and duration of

the oscillations are nearly independent of agonist concentration.

The quantitative difference in spike duration between the model

results and the data in Figs. 4E and F are most likely due to choice

of calcium buffering parameters. For example, adding 3 or 5 mM

fast Ca2z buffer (see Materials and Methods) increases the average

spike duration to 0.54 s or 0.7 s respectively, which are close to the

levels shown in the data.

Thus, the intramodal structure of the six-state model is

essentially unimportant, as the model behavior (in terms of the

Figure 1. The structure of the Siekmann IP3R model. The IP3R
model is comprised of two modes. One is the drive mode containing
three closed states C1 , C2 , C3 and one open state O6 . The other is the
park mode which includes one closed state C4 and one open state O5 .
qs are rates of state-transitions between two adjacent states and q42

and q24 are transitions between the two modes [7].
doi:10.1371/journal.pcbi.1003783.g001

Author Summary

The inositol trisphosphate receptor (IP3R) is one of the
most important cellular components responsible for
calcium oscillations. Over the past decade, two major
questions about the IP3R have arisen. Firstly, what
fundamental properties of the IP3R allow it to perform
its function? Secondly, although calcium oscillations are
caused by the stochastic properties of small numbers of
IP3R is it possible for a deterministic model to be a reliable
predictor of calcium dynamics? Using airway smooth
muscle cells as an example, we show that calcium
dynamics can be accurately modeled using simplified
IP3R models, and, secondly, that deterministic models are
qualitatively accurate predictors of calcium dynamics.
These results are important for the study of calcium
dynamics in many cell types.

Modeling Calcium Oscillations in Airway Smooth Muscle
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statistics of puffs and oscillations) is governed almost entirely by the

time dependence of the intermode transitions, particularly the time

dependence of the rapid inhibition of the IP3R by high ½Ca2z�i,
and the slow recovery from inhibition by Ca2z. The multiple

states within each mode are necessary to obtain an acceptable

quantitative fit to single-channel data, but are nevertheless of

limited importance for function. Hence, even when simulating

microscopic events such as Ca2z puffs it is sufficient to use a

simpler, faster, two-state model, rather than a more complex six-

state model. In the following, we will use the 2-state IP3R model to

generate all the simulation results.

Prediction of stochastic Ca2z behavior by a deterministic
model

Although the data (Fig. 2) show that Ca2z oscillations in ASMC

are generated by a stochastic process, not a deterministic one, we

wish to know to what extent a deterministic model can be used to

make qualitative (and experimentally testable) predictions. Our

Figure 2. Ca2z oscillations in ASMC in lung slices are generated by a stochastic mechanism. A: experimental Ca2z spiking in ASMC in
lung slices, stimulated with 50 nM MCh. In the upper panel we filter out baseline noise by using a low threshold of 1.42 (relative fluorescence
intensity) and then choose samples with amplitude larger than 1.75. The ISI calculated from the upper panel is shown in the lower panel. B:
relationship between the standard deviation and the mean of experimental ISIs. Data obtained from 14 ASMC in 5 mouse lung slices. The relationship
is approximately linear with a slope of 0.66, which implies that an inhomogeneous Poisson process governs the generation of oscillations. The dashed
line indicates where the coefficient of variation (CV) is 1 (as it is for a pure Poisson process). Variation in ISI is mainly caused by both use of different
doses of MCh and different sensitivities of different cells to MCh. Error bars indicate the standard errors of the means (SEM).
doi:10.1371/journal.pcbi.1003783.g002

Figure 3. A 2-state open/closed model quantitatively reproduces the 6-state IP3R model. A: histograms of interspike interval (ISI)
distribution for both the 6-state and the simplified models. The ISI is defined to be the waiting time between successive spikes. Each histogram
contain an equal number of samples (180). B: comparison of average ISI, average peak value of ½Ca2z�i (c in the model) and average spike duration.
All distributions were computed at a constant ½IP3�~ 0:15 mM.
doi:10.1371/journal.pcbi.1003783.g003
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Figure 4. More detailed comparisons between the 2-state and the 6-state IP3R models, and a comparison to experimental data. As a
function of IP3 concentration (p), the two models give the same ISI (A), peak ½Ca2z�i (C) and spike duration (E). These results agree qualitatively with
experimental data, as shown in panels B, D and F respectively. Quantitative comparisons are generally not possible as the relationship between IP3

concentration and agonist concentration is not known. Error bars represent mean + SEM. Data for each MCh concentration are obtained from at
least three different cells from at least two different lung slices.
doi:10.1371/journal.pcbi.1003783.g004
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simplified 2-state Markov model of the IP3R can be converted to a

deterministic model (see Materials and Methods). The result is a

system of ordinary differential equations (ODEs) with four

variables, which takes into account the increased ½Ca2z�i at an

open IP3R pore, as well as the increased ½Ca2z�i within a cluster

of IP3R; the four variables are the ½Ca2z�i outside the IP3R

cluster (c), the ½Ca2z�i within the IP3R cluster (cb), the total

intracellular Ca2z concentration (ct) and an IP3R gating variable

(h42). We refer to the reduced 4D model as the deterministic model

for all the results and analyses.

Note that there is no physical or geometric constraint enforcing

a high local ½Ca2z�i; in this case the spatial heterogeneity arises

solely from the low diffusion coefficient of Ca2z. Our use of cb is

merely a highly simplified way of introducing spatial heterogeneity

of the Ca2z concentration. Since the IP3R can only ‘‘see’’ cb (as

well as the Ca2z concentration right at the mouth of an open

channel, which we denote by cp), but cannot be influenced directly

by c (the experimentally observed Ca2z signal), our approach

allows for the functional differentiation of the rapid local

oscillatory Ca2z in the cluster, from the slower Ca2z signal in

the cytoplasm, without the need for computationally intensive

simulations of a partial differential equation model. Quantitative

accuracy is thus sacrificed for computational convenience.

Calcium oscillations in the stochastic and deterministic models

are shown in Fig. 5A. According to our previous results [8], the

average value of h42 over the cluster of IP3R primarily regulates

the termination and regeneration of individual spikes. This can be

seen in the stochastic model by projecting the solution on the

cb, h42 phase plane (Fig. 5B). Upon an initial Ca2z release from

one or more IP3R, a large spike is generated by Ca2+-induced

Ca2z release (via the IP3R) during which time a decreasing h42

gradually decreases the average open probability of the clustered

IP3R. The spike is terminated when h42 is too small to allow

further Ca2z release. This phenomenon is qualitatively repro-

duced by the deterministic model (Fig. 5D). In both the stochastic

and deterministic models the decrease in average IP3R open

probability of a cluster of IP3R caused by Ca2z inhibition is the

main reason for the termination of each spike.

According to Figs. 5B and D, regeneration of each spike

requires a return of h42 back to a relatively high value (i.e.,

recovery of the IP3R from inhibition by Ca2z). The deterministic

model sets a clear threshold for the regeneration, as can be seen in

Fig. 5C, where an upstroke in cb occurs when the trajectory creeps

beyond the sharp ‘‘knee’’ of the white curve. When the trajectory

reaches the knees of the white curve it is forced to jump across to

the other stable branch of the critical manifold, resulting in a fast

increase in cb followed by a relatively fast increase in c (seen by

combining Figs. 5C and D).

In contrast, the stochastic model enlarges the contributions of

individual IP3R so that the generation of each spike is also

effectively driven by random Ca2z release through the IP3R,

which can be seen in the inset of Fig. 5B where the site of spike

initiation (blue bar) exhibits significantly greater variation than

that of spike termination (green bar). In spite of this, the essential

similarities in phase plane behavior result in both deterministic

and stochastic models making the same qualitative predictions in

response to perturbations, such as changes in IP3 concentration

(½IP3�), Ca2z influx or efflux. In the following, we illustrate this by

investigating a number of experimentally testable predictions. Due

to the extensive importance of frequency encoding in many Ca2z-

dependent processes, we focus particularly on the change of

oscillation frequency in response to parameter perturbations. As a

side issue we also investigate how the oscillation baseline depends

on physiologically important parameters.

Dependence of oscillation frequency on IP3 concentration
In many cell types a moderate increase in ½IP3� increases the

Ca2z oscillation frequency (see Fig. 2A in [11], Fig. 4E in [16]

and Fig. 6B in [17]), a result that is reproduced by both model

types (Fig. 6A). As ½IP3� increases, the stochastic model increases

the probability of the initial Ca2z release through the first open

IP3R and of the following Ca2z release, thus shortening the

average ISI. Although the oscillatory region of the deterministic

model is strictly confined by bifurcations which do not apply to the

stochastic model, the deterministic model can successfully replicate

an increasing frequency by lowering the ‘‘knee’’ of the red curve in

Fig. 5D and shortening the time spent from the termination point

c to the initiation point a (thus shortening the ISI). Hence,

although the deterministic model cannot be used to predict the

exact values of ½IP3� at which the oscillations begin and end, as

stochastic effects predominate in these regions, it can be used to

predict the correct qualitative trend in oscillation frequency.

Dependence of oscillation frequency on Ca2z influx and
efflux

In many cell types, including ASMC, transmembrane fluxes

modulate the total intracellular Ca2z load (ct) on a slow time scale

[16,18], and thereby modulate the oscillation frequency [19].

Experimental data can be seen in Fig. 8 in [16] and Fig. 2 in [18].

Figs. 6B and C show that both stochastic and deterministic models

predict the same qualitative changes in oscillation frequency in

response to changes in membrane fluxes (through membrane

ATPase pumps and/or Ca2z influx channels such as receptor-

operated channels or store-operated channels).

Dependence of oscillation frequency on SERCA
expression

The level of sarco/endoplasmic reticulum calcium ATPase

(SERCA) expression (or capacity) is important for airway

remodeling in asthma [20] and ASMC Ca2z oscillations [21].

We thus investigated the predictions of the two models in response

to changes in SERCA expression (Vs). As Vs decreases, the

deterministic model exhibits a decreasing frequency, in agreement

with experimental data (see Figs. 3 and 4 in [21]). The same trend

is seen in the stochastic model with only 20 IP3R (see Fig. 6D).

Dependence of oscillation frequency on Ca2z buffer
concentration

Calcium buffers have been shown to be able to change the ISI

and spike duration, which in turn change the oscillation frequency

[15,22]. We compared the effects on the two models of varying

total buffer concentration (Bt) by adding one buffer with relatively

fast kinetics to the models (see Materials and Methods for details).

In both models the frequency decreases as Bt increases (see

Fig. 6E), which is consistent with experimental data (Fig. 2B in

[18]). This is not surprising, because increasing Bt can decrease

the effective rates of SR Ca2z release and reuptake.

Dependence of oscillation baseline on Ca2z influx and
SERCA expression

Sustained elevations of baseline during agonist-induced Ca2z

oscillations or transients have been observed experimentally, and

are believed to be a result of an increase in Ca2z influx caused by

opening of membrane Ca2z channels [13,16]. Furthermore, there

Modeling Calcium Oscillations in Airway Smooth Muscle
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is evidence showing that decreased SERCA expression could also

increase the baseline (Fig. 4 in [21]). Those phenomena are

successfully reproduced by both models (see Fig. 7).

Discussion

In this paper we address two current major questions in the field

of Ca2z modeling. Firstly, we show that Ca2z puffs and stochastic

oscillations can be reproduced quantitatively by an extremely

simple model, consisting only of two states (one open, one closed),

with time-dependent transitions between them. This model is

obtained by removing the intramodal structure of a more complex

model that was determined by fitting a Markov model to single-

channel data [7]. We thus show that the internal structure of each

mode is irrelevant for function and mode switching is the key

mechanism for the control of calcium release. The necessity for

time-dependent mode switching is shown not only by the dynamic

single-channel data of [4]), but also by the puff data of [9] and our

ASMC data.

Secondly, we investigate the role of stochasticity of IP3R in

modeling Ca2z oscillations in ASMC by comparing a stochastic

IP3R-based Ca2z model and its associated deterministic version,

for parameters such that both of the models exhibit Ca2z spikes

but the stochastic model cannot necessarily be replaced by a

mean-field model. We find that a four-variable deterministic

model has the same predictive power as the stochastic model, in

Figure 5. Stochastic and deterministic simulations exhibit similar dynamic properties. A: simulated stochastic (upper panel) or
deterministic (lower panel) Ca2z oscillations at 0:1 mM IP3 . B: a typical stochastic solution projected on the cb{h42 plane. The average h42

represents the average value of h42 over the 20 IP3R. Statistics (mean + SD) of the initiation point (blue square), the peak (red square) and
termination point (green square) are shown in the inset. 116 samples are obtained by applying a low threshold of 0:15 mM and a high threshold of
0:8 mM to cb . C: a typical periodic solution of the deterministic model (black curve), plotted in the c, cb, h42 phase space. The arrow indicates the
direction of movement. ct is the slowest variable so that its variation during an oscillation is very small. This allows to treat ct as a constant
(ct~53:12 mM in this case) and study the dynamics of the model in the c, cb, h42 phase space. The color surface is the surface where dcb=dt~0 (called
the critical manifold). The white N-shaped curve is the intersection of the critical manifold and the surface dc=dt~0. D: projection of the periodic
solution to the cb, h42 plane. The red N-shaped curve is the projection to the cb, h42 plane of the white curve shown in C. The evolution of the
deterministic solution exhibits three different time scales separated by green circles (labelled by a, b and c) and indicated by arrows (triple arrow:
fastest; double arrow: intermediate; single arrow: slowest).
doi:10.1371/journal.pcbi.1003783.g005
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Figure 6. Comparison of parameter-dependent frequency changes in the stochastic and deterministic models. All curves are
computed at 0:12 mM IP3 except in panel A, which uses a variety of ½IP3�. Other parameters are set at their default values given in Table 1. A: as ½IP3�
increases, Ca2z oscillations in both models increase in frequency. B: as Ca2z influx increases (modeled by an increase in receptor-operated calcium
channel flux coefficient Vrocc), so does the oscillation frequency in both models. C: as Ca2z efflux increases (modeled by an increase in plasma pump
expression Vp), oscillation frequency decreases. D: as SERCA pump expression, Vs, increases, so does oscillation frequency. E: as total buffer
concentration, Bt , increases, oscillation frequency decreases.
doi:10.1371/journal.pcbi.1003783.g006
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that it correctly reproduces the process of spike termination and

predicts the same qualitative changes in oscillation frequency and

baseline in response to a variety of perturbations that are

commonly used experimentally. The mechanism for termination

of individual spikes is fundamentally a deterministic process

controlled by a rapid inhibition induced by the high local ½Ca2z�i
in the IP3R cluster, whereas spike initiation is significantly affected

by stochastic opening of IP3R. Hence, repetitive Ca2z cycling is

primarily induced by the time-dependent gating variables govern-

ing transitions of the IP3R from one mode to another.

Our simplified two-state model of the IP3R is identical in structure

(although not in parameter values) to the well-known model of [23]. It

is somewhat ironic that after 20 years of detailed studies of the IP3R
and the construction of a plethora of models of varying complexity,

the single-channel data have led us around full circle, back to these

original formulations. Excitability is arising via a fast activation

followed by a slower inactivation, a combination often seen in

physiological processes [24]. Encoding of this fundamental combi-

nation results directly from the two-mode structure of the IP3R.

Although similar single-channel data have been used to construct

three-mode models [6,25], neither of these models has yet been used

in detailed studies of Ca2z puffs and waves, and it remains unclear

whether or not they have a similar underlying structure.

In contrast to previous deterministic ODE models, our four-

variable Ca2z model includes a more accurate IP3R model, as

well as local control of clustered IP3R by two distinct Ca2z

microdomains; one at the mouth of an open IP3R, the other inside

a cluster of IP3R. Neglect of either of these microdomains leads to

models that either exhibit unphysiological cytoplasmic Ca2z

concentrations or fail to reproduce reasonable oscillations. This

underlines the importance of taking Ca2z microdomains into

consideration when constructing any model. Our microdomain

model is highly simplified, with the microdomain being treated

simply as a well-mixed compartment. More detailed modeling of

spatially-dependent microdomains is possible, and not difficult in

principle, but requires far greater computational resources. It is

undeniable that a more detailed model, incorporating the full

spatial complexity – and possibly stochastic aspects as well – would

make, overall, a better predictive tool. However, our goal is to find

the simplest models that can be used as predictive tools.

An important similar study is that of Shuai and Jung [26]. They

compared the use of Markov and Langevin approaches to the

computation of puff amplitude distributions, compared their results

with the deterministic limit, and showed that IP3R stochasticity does

not qualitatively change the type of puff amplitude distribution except

for when there are fewer than 10 IP3R. Here, we significantly extend

the scope of their study by exploring the effects of IP3R stochasticity on

the dynamics of Ca2z spikes, and we do this in the context of an IP3R
model that has been fitted to single-channel data. Although this is true

in a general sense for the Li-Rinzel model, which is based on the

DeYoung-Keizer model, which did take into account the opening time

distributions of IP3R in lipid bilayers, neither model can reproduce the

more recent data obtained from on-nuclei patch clamping. When these

recent data are taken into account one obtains a model with the same

structure, but quite different parameters and behavior.

Figure 7. Dependence of calcium oscillation baseline on calcium influx and SERCA expression. A: increasing influx (described by Vrocc)
increases the average trough of Ca2z oscillations. B: decreasing SERCA expression (described by Vs) increases the average trough of Ca2z

oscillations. All curves are computed at 0:12 mM IP3 .
doi:10.1371/journal.pcbi.1003783.g007

Figure 8. Schematic diagram of the Ca2z model. c represents
cytoplasmic Ca2z concentration, excluding a small local Ca2z (whose
concentration is denoted by cb) close to the Ca2z release site (i.e., an
IP3R cluster). Upon coordinated openings of the IP3R, SR Ca2z (cs) is
first released into the local domain (JIPR) to cause a rapid increase in cb .
High local Ca2z then diffuses to the rest of the cytoplasm (Jdiff ), and is
eventually pumped back to the SR (Jserca).
doi:10.1371/journal.pcbi.1003783.g008
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We find that, in spite of a relatively large variation in spike

amplitude which is partially caused by a large variation in ISI

(Fig. 5B), the mechanism governing individual spike terminations

is the same for both a few or infinitely many IP3R, which explains

why the one-peak type of amplitude distribution is independent of

the choice of IP3R number (see Fig. 6A in [26]).

Another important relevant study was done by Dupont et al. [27],

who compared the regularity of stochastic oscillations in hepatocytes

for different numbers of IP3R clusters. They found that the impact

of IP3R stochasticity on global Ca2z oscillations (in terms of CV)

increases as the total cluster number decreases. Our study here

extends these results, and demonstrates how well stochastic

oscillations can be qualitatively described by a deterministic system,

even when there is only a small number of IP3R (which appears to

be the case for ASMC, in which the wave initiation site is only

2*4 mm in diameter). Indeed, as we have shown, for the purposes

of predictive modeling a simple deterministic model does as well as

more complex stochastic simulations.

Ryanodine receptors (RyR) are another important component

modulating ASMC Ca2z oscillations [16,28,29] but are not

included in our model. This is because the role of RyR is not fully

understood and may be species-dependent; for example, in mouse

or human ASMC, RyR play very little role in IP3-induced

continuing Ca2z oscillations [17,30], but this appears not to be

true for pigs [28]. Our study focuses on the calcium oscillations in

mouse and human (as we did in our experiments) where inclusion

of a deterministic model of RyR should have little effect. An

understanding of the role of RyR stochasticity and how the IP3R
and the RyR interact needs a reliable RyR Markov model,

exclusive to ASMC, which is not currently available. Multiple

Markov models of the RyR have been developed for use in cardiac

cells [31], but these are based on single-channel data from lipid

bilayers, and are adapted for the specific context of cardiac cells.

Their applicability to ASMC remains unclear.

Although we have not shown that the deterministic model

for ASMC has the same predictive power as the stochastic

model in all possible cases (which would hardly be possible in

the absence of an analytical proof) the underlying similarity in

phase plane structure indicates that such similarity is plausible at

least. Certainly, we have not found any counterexample to this

claim. However, whether or not this claim is true for all cell

types is unclear. Some cell types exhibit both local Ca2z puffs

and global Ca2z spikes (usually propagating throughout the

cells in the form of traveling waves), showing that initiation of

such Ca2z spikes requires a synchronization of Ca2z release

from more than one cluster of IP3R [14]. This type of spiking

relies on the hierarchical organization of Ca2z signal pathways,

in particular the stochastic recruitment of both individual IP3R
and puffs at different levels [32], and therefore cannot be simply

reproduced by deterministic models containing only a few

ODEs. However, Ca2z oscillations in ASMC, as observed in

lung slices, may not be of this type, as IP3R-dependent puffs

have not been seen in these ASMC. It thus appears that, in

ASMC in lung slices, every Ca2z ‘‘puff’’ initiates a wave,

resulting in periodic waves with ISI that are governed by the

dynamics of individual puffs.

Materials and Methods

Ethics Statement
Animal experimentations carried out were approved by the

Animal Care and Use Committee of the University of Massachu-

setts Medical School under approval number A-836-12.

Lung slice preparation
BALB/c mice (7–10 weeks old, Charles River Breeding Labs,

Needham, MA) were euthanized via intraperitoneal injection of

0.3 ml sodium pentabarbitone (Oak Pharmaceuticals, Lake Forest,

Table 1. Parameter values of the stochastic calcium model.

Parameter Description Value/Units

kIPR IP3R flux coefficient 0:05 s{1

kdiff Ca2z diffusional flux coefficient 10 s{1

kleak SR leak flux coefficient 0:0032 s{1

Vs maximum capacity of SERCA 10 mM:s{1

Ks SERCA half-maximal activating ½Ca2z�i 0:26 mM

ns Hill coefficient for SERCA 1.75

Jleakin plasma membrane leak influx 0:03115 mM:s{1

Vrocc ROCC flux coefficient 0:2 s{1

Vsocc maximum capacity of SOCC 1:6 mM:s{1

Ksocc SOCC dissociation constant 100 mM

Vp maximum capacity of plasma pump 0:8 mM:s{1

Kp half-maximal activating ½Ca2z�i of plasma pump 0:5 mM

np Hill coefficient for plasma pump 2

c1 the cytoplasmic-to-microdomain volume ratio 100

c2 the cytoplasmic-to-SR volume ratio 10

cp0 an instantaneous high ½Ca2z�i at open channel

pore when cs~100 mM

120 mM

Nt total number of IP3R channels 20

doi:10.1371/journal.pcbi.1003783.t001
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IL). After removal of the chest wall, lungs were inflated with

*1:1 ml of 1.8% warm agarose in sHBSS via an intratracheal

catheter. Subsequently, air (*0:3 ml) was injected to push the

agarose within the airways into the alveoli. The agarose was

polymerized by cooling to 40C. A vibratome (VF-300, Precisionary

Instruments, San Jose, CA) was used to make 180 mm thick slices

which were maintained in Dulbecco’s Modified Eagle’s Media

(DMEM, Invitrogen, Carlsbad, CA) at 370C in 10% CO2/air. All

experiments were conducted at 370C in a custom-made temper-

ature-controlled Plexiglas chamber as described in [17].

Measurement of Ca2z oscillations
Lung slices were incubated in sHBSS containing 20 mM

Oregon Green 488 BAPTA-1-AM (Invitrogen), a Ca2+-indicator

dye, 0.1% Pluronic F-127 (Invitrogen) and 200 mM sulfobromo-

phthalein (Sigma Aldrich, St Louis, MO) in the dark at 300C for

1 hour. Subsequently, the slices were incubated in 200 mM
sulfobromophthalein for 30 minutes. Slices were mounted on a

cover-glass and held down with 200 mm mesh. A smaller cover-

glass was placed on top of the mesh and sealed at the sides with

silicone grease to facilitate solution exchange. Slices were

examined with a custom-built 2-photon scanning laser microscope

with a | 40 oil immersion objective lens and images recorded at

30 images per second using Videosavant 4.0 software (IO

Industries, Montreal, Canada). Changes in fluorescence intensity

(which represent changes in ½Ca2z�i) were analyzed in an ASMC

of interest by averaging the grey value of a 10 | 10 pixel region

using custom written software. Relative fluorescence intensity

(F=F0) was expressed as a ratio of the fluorescence intensity at a

particular time (F) normalized to the initial fluorescence intensity

(F0).

The calcium model
Inhomogeneity of cytoplasmic Ca2z concentration not only

exists around individual channel pores of the IP3R, where a nearly

instantaneous high Ca2z concentration at the pore (denoted by cp)

leads to a very sharp concentration profile, but is also seen inside

an IP3R cluster where the average cluster Ca2z concentration (cb)

is apparently higher than that of the surrounding cytoplasm (c)

[33]. This indicates that during Ca2z oscillations each IP3R is

controlled by either the pore Ca2z concentration (when it is open)

or the cluster Ca2z concentration (when it is closed). Neither of

these local concentrations influence cell membrane fluxes or the

majority of SERCAs, which we assume to be distributed outside

the cluster.

The scale separation between the pore Ca2z concentration and

the cluster Ca2z concentration allows to treat cp as a parameter,

providing a simpler way of modeling local Ca2z events (like Ca2z

puffs) that has been used in several previous studies [8,34,35].

However, evolution of the cluster concentration and wide-field

cytoplasm Ca2z concentration are not always separable, so an

additional differential equation for the cluster Ca2z is necessary.

A schematic diagram of the model is shown in Fig. 8. The

corresponding ODEs are

dc

dt
~JdiffzJleak{JsercazJin{Jpm, ð1Þ

dcb

dt
~c1(JIPR{Jdiff ), ð2Þ

dct

dt
~Jin{Jpm, ð3Þ

where ct~czcb=c1zcs=c2 representing total intracellular Ca2z

concentration, and thus SR Ca2z concentration, cs is given by

cs~c2(ct{c{cb=c1). c1 and c2 are the volume ratios given in

Table 1. JIPR is the flux through the IP3R, Jleak is a background

Ca2z leak out of the SR, and Jserca is the uptake of Ca2z into the

SR by SERCA pumps. Jpm is the flux through plasma pump, and

Jin represents a sum of main Ca2z influxes including Jrocc

(receptor-operated Ca2z channel), Jsocc (store-operated Ca2z

channel) and Jleakin (Ca2z leak into the cell). Jdiff coarsely models

the diffusion flux from cluster microdomain to the cytoplasm.

Details of the fluxes are

N Different formulations of JIPR give different types of models:

a) For the stochastic model, JIPR~(kIPR=Nt)No(cs{c) where

kIPR is the maximum conductance of a cluster of Nt IP3R
(here Nt~20). No is the number of open IP3R determined by

the states of IP3R.

b) For the deterministic model we set JIPR~kIPRPo(cs{c)
where Po is the IP3R open probability, a continuous

analogue of No=Nt.

N To calculate No and Po, we use the IP3R model of [7,8], with

minor modifications described later.

Jdiff~kdiff (cb{c):

N Jserca~Vsc
ns=(Kns

s zcns ) where Ks and ns are obtained from

[36].

N

Jleak~kleak(cs{c):

N Jin includes a basal leak (Jleakin), receptor-operated calcium

channel (ROCC, Jrocc), store-operated calcium channel

(SOCC, Jsocc). By using the IP3 concentration (p) as a

surrogate indicator of MCh concentration, we assume that

Jrocc~Vroccp. S O C C i s m o d e l e d b y

Jsocc~VsoccK4
socc=(K4

socczc4
s ) [13].

N

Jpm~Vpcnp=(K
np
p zcnp ):

Calcium concentration at open channel pore (cp) does not

explicitly appear in the equations but is used in the IP3R model

introduced later. cp is assumed to be proportional to SR Ca2z

concentration (cs) and is therefore simply modeled by
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cp~cp0(cs=100) where cp0 is the value corresponding to

cs~100 mM. Alternatively, cp can also be assumed to be a large

constant (say greater than 100 mM) without fundamentally altering

the model dynamics. The choice of cp0 is not critical as long as it is

sufficiently large to play a role in inactivating the open channels.

All the parameter values are given in Table 1.

The data-driven IP3R model
The IP3R model used in our ASMC calcium model is an

improved version of the Siekmann IP3R model which is a 6-state

Markov model derived by fitting to the stationary single channel

data using Markov chain Monte Carlo (MCMC) [5,7,8]. Fig. 1 has

shown the structure of the IP3R model which is comprised of two

modes; the drive mode, containing three closed states C1, C2, C3

and one open state O6, and the park mode, containing one closed

state C4 and one open state O5. The transition rates in each mode

are constants (shown in Table 2), but q42 and q24 which connect the

two modes are Ca2z-/IP3-dependent and are formulated as

q24~a24zV24(1{m24h24), ð4Þ

q42~a42zV42m42h42, ð5Þ

where m24, h24, m42 and h42 are Ca2z-/IP3-modulated gating

variables. a24, a42, V24 and V42 are either functions of p or constants

and are given later. We assume the gating variables obey the

following differential equation,

dG

dt
~lG(G?{G), (G~m24, h24, m42, h42), ð6Þ

where G? is the equilibrium and lG is the rate at which the

equilibrium is approached. Those equilibria are functions of Ca2z

concentration at the cytoplasmic side of the IP3R, denoted by ĉc in

the equations, equal to either cp or cb depending on the state of the

channel). They are assumed to be

m24?~
ĉc3

ĉc3zk3
24

, ð7Þ

Table 2. Parameter values of the IP3R model.

Parameter Value/Units Parameter Value/Units

q12 1240 s{1 q21 88 s{1

q23 3 s{1 q32 69 s{1

q26 10500 s{1 q62 4010 s{1

q45 11 s{1 q54 3330 s{1

H 20 s{1 L 0:5 s{1

lm24 100 s{1 lm42 100 s{1

lh24 40 s{1

doi:10.1371/journal.pcbi.1003783.t002

Figure 9. Stationary data and fits of q24 and q42. Stationary transition rates of q24 and q42, q24? and q42?, as functions of Ca2z concentration
were estimated and fitted for two ½IP3�, 1 mM (A) and 10 mM (B). Circles and squares represent the means of q24 and q42 distributions computed by
MCMC simulation [7]. Note that MCMC failed to determine the values of q24 and q42 at ĉc~1, 10 mM for 10 mM IP3 , as the IP3R was almost in the
drive mode for these cases. The corresponding fitting curves (solid for q42; dashed for q24 ) are produced using Eqs. 7–12.
doi:10.1371/journal.pcbi.1003783.g009
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h24?~
k2

{24

ĉc2zk2
{24

, ð8Þ

m42?~
ĉc3

ĉc3zk3
42

, ð9Þ

h42?~
k3

{42

ĉc3zk3
{42

: ð10Þ

Hence, we have stationary expressions of q42 and q24,

q24?~a24zV24(1{m24?h24?), ð11Þ

q42?~a42zV42m42?h42?: ð12Þ

The expressions of as, V s, ns and ks are chosen as follows so

that Eq. 11 and Eq. 12 capture the correct trends of experimental

values of q24 and q42 (see Fig. 9) and generate relatively smooth

open probability curves (see Fig. 10),

V24~62z880=(p2z4) a24~1z5=(p2z0:25)

V42~110p2=(p2z0:01) a42~1:8p2=(p2z0:34)

k24~0:35 k42~0:49z0:543p3=(p3z64)

k{24~80 k{42~0:41z25p3=(p3z274:6)

Note that the above formulas are different from the relatively

complicated formulas used in [8]. The rates, lm24
, lh24

and lm42
, are

constants estimated by using dynamic single channel data [4] and

given in Table 2, whereas lh42
is not clearly revealed by

experimental data. However we have shown that it should be

relatively large for high ĉc but relatively small for low ĉc for

reproducing experimental puff data [8]. By introducing two Ca2z

concentrations, cb and cp, lh42
and the state of the IP3R channel

become highly correlated, so that we can assume lh42
is a relatively

large value H if the channel is open and is a relatively small value L
if the channel is closed. Hence, lh42

is modeled by the logic function

lh42
~

H, if the channel is open ;

L, if the channel is closed :

�

Values of L and H are chosen so that simulated Ca2z

oscillations in ASMC are comparable to experimental observa-

tions.

The IP3R model reduction
Here we reduce the 6-state model to a 2-state open/closed

model. The reduction takes the following steps:

N The sum of the probabilities of C1, C3 and O5 is less than 0.03

for any ĉc, so they are either rarely visited by the IP3R or have

a very short dwell time. This implies they have very little

contribution to the Ca2z dynamics. Therefore, we completely

remove the three states from the full model.

N Transition rates of q26 and q62 are about 2 orders larger than

that of q24 and q42, which allows us to omit the fast transitions

by taking a quasi-steady state approximation. This change will

affect two aspects. First, we have O6~C2q26=q62 which allows

us to combine C2 and O6 to be a new state D, which satisfies

D~O6(q62zq26)=q26. Although this means D is a partially

open state with an open probability of q26=(q62zq26), it can be

used as an fully open state in the stochastic simulations by

multiplying the maximum IP3R flux conductance kIPR by a

factor of q26=(q62zq26). Secondly, q24 needs to be rescaled by

q62=(q62zq26), i.e., the effective closing rate is q24q62=(q62z
q26).

N Due to the combination of C2 and O6, lh is accordingly

modified to

N

lh42
~

H, if the channel is in C4

L, if the channel is in D (the drive mode)

�

Hence, the reduced two-state model contains one ‘‘open’’ state

D and one closed state C4 with the opening transition rate of q42

and the closing transition rate of q24q62=(q62zq26).

Deterministic formulation of the stochastic model
Based on the stochastic calcium model and the reduced 2-state

IP3R model, we construct a deterministic model. We need to

modify three things that are used in the stochastic model but

inapplicable to fast simulations of the deterministic model. The

first is the discrete number of open channels; the second is state-

dependent use of cb and cp in calculating q42 and q24; the last is the

logic expression of lh42
. Details of the modifications are as follows,

N The fraction of open channels (No=Nt) is replaced by open

probability Po which is 70% of the probability of state D.

Figure 10. Open probability curves for various ½IP3�. Po is equal
to the sum of probabilities of the IP3R in O5 and O6 . Three
representative curves correspond to 0:1 mM, 1 mM and 10 mM ½IP3�
(from bottom to top) respectively. Data (average open probability) are
from [5].
doi:10.1371/journal.pcbi.1003783.g010
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N In the stochastic simulations, q24 which only controls the IP3R
closing is primarily governed by cp, whereas q42 which controls

IP3R opening is mainly governed by cb. Therefore, in the

deterministic model, we separate the functions of cp and cb by

assuming m24? and h24? are functions of cp only whereas

m42? and h42? are functions of cb only. That is,

m24?~m24?(cp), h24?~h24?(cp), m42?~m42?(cb) and

h42?~h42?(cb). Here cp~cp0(cs=100) as defined before.

N To describe an average rate that infinitely many receptors are

rapidly inhibited by high Ca2z concentration but slowly

restored from Ca2z-inhibition. lh42
is proposed to be

N

lh42
~(1{D)LzDH:

Based on the above changes, the full deterministic model

containing 8 ODEs is presented as follows,

dc

dt
~JdiffzJleak{JsercazJin{Jpm, ð13Þ

dcb

dt
~c1(JIPR{Jdiff ), ð14Þ

dct

dt
~Jin{Jpm, ð15Þ

dD

dt
~q42(1{D){(

q24q62

q62zq26
)D, ð16Þ

dm24

dt
~lm24

(
c3

p

c3
pzk3

24

{m24), ð17Þ

dh24

dt
~lh24

(
k2

{24

c2
pzk2

{24

{m24), ð18Þ

dm42

dt
~lm42

(
c3

b

c3
bzk3

42

{m42), ð19Þ

dh42

dt
~lh42

(
k3

{42

c3
bzk3

{42

{h42), ð20Þ

where q24 and q42 are functions of the gating variables given by

Eqs. 4 and 5. All the fluxes are the same as those of the stochastic

model except JIPR~kIPR(Dq26=(q62zq26))(cs{cb). All the

parameter values of the deterministic model are the same as those

of the stochastic model and are therefore given in Tables 1 and 2.

Reduction of the full deterministic model
The full deterministic model contains 8 variables which make

the model difficult to implement and analyze. Thus, we reduce the

full model to a minimal model that still captures the crucial

features of the full model. First of all, lm42
, lm24

and lh24
are

sufficiently large so that we can assume they instantaneously follow

their equilibrium functions. Therefore, by taking quasi-steady state

approximation to m24, h24 and m42, we remove the three time-

dependent variables from the full model.

By now, the full model has been reduced to a 5D model,

dc

dt
~JdiffzJleak{JsercazJin{Jpm, ð21Þ

dcb

dt
~c1(JIPR{Jdiff ), ð22Þ

dct

dt
~Jin{Jpm, ð23Þ

dD

dt
~q42(1{D){(

q24q62

q62zq26
)D, ð24Þ

dh42

dt
~lh42

(
k3

{42

c3
bzk3

{42

{h42): ð25Þ

Second, the rate of change of D approaching its equilibrium,

lD~(q42q62zq42q26zq24q62)=(q62zq26) (calculated from Eq. 24),

is at least one order larger than those of c, ct and h42, indicating that

taking the quasi-steady state approximation to Eq. 24 could not

significantly affect the evolutions of c, ct and h42. That is,

D~
q42(q62zq26)

q42q62zq42q26zq24q62
: ð26Þ

We emphasize here that the theory of the quasi-steady state

approximation has not yet been well established, particularly

about the rigorous conditions under which such a reduction is

valid. Thus, our criterion of judging the validity of the reduction is

checking whether the solutions of the reduced model are capable

of qualitatively reproducing that of its original model. For this

model, we find the reduction works. Hence, the full model is

eventually reduced to a 4D model summarized as follows,

dc

dt
~JdiffzJleak{JsercazJin{Jpm, ð27Þ

dcb

dt
~c1(JIPR{Jdiff ), ð28Þ

dct

dt
~Jin{Jpm, ð29Þ

dh42

dt
~lh42

(
k3

{42

c3
bzk3

{42

{h42), ð30Þ

where D is given by Eq. 26.
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Inclusion of calcium buffers
To check the effect of calcium buffers on oscillation frequency,

we introduce a stationary buffer (no buffer diffusion), as mobile

buffers are too complicated to be included in the current

deterministic model. Since we have two different cytoplasmic

Ca2z concentrations, c and cb, two pools of buffer with the same

kinetics should be considered. Hence, the inclusion of a stationary

calcium buffer is modeled by the following system,

dc

dt
~JdiffzJleak{JsercazJin{Jpm{kz(Bt{b1)czk{b1, ð31Þ

dcb

dt
~c1(JIPR{Jdiff ){kz(Bt{b2)cbzk{b2, ð32Þ

dct

dt
~Jin{Jpm, ð33Þ

db1

dt
~kz(Bt{b1)c{k{b1, ð34Þ

db2

dt
~kz(Bt{b2)cb{k{b2, ð35Þ

where b (b1 and b2) and Bt represent the concentrations of Ca2z-

bound buffer and total buffer respectively. kz and k{ are the rates

of Ca2z-binding and Ca2z-dissociation, indicating how fast the

time scale of the buffer dynamics is. Fast buffer refers to the buffer

with relatively large kz. In the simulations, we use a fast buffer

with kz~100 mM{1:s{1 and k{~100 s{1 and vary Bt to test if

the stochastic model and the deterministic model have a

qualitatively similar Bt-dependency. Results are given in Fig. 6E.

Numerical methods and tools for deterministic and
stochastic simulations

For the stochastic model, Eqs. 1–3 and ODEs of the four gating

variables in the IP3R model are solved by the fourth-order Runge-

Kutta method (RK4) and the stochastic states of IP3R determined

by the IP3R model are solved by using a hybrid Gillespie method

with adaptive timing [37]. The maximum time step size is set to be

either 10{4 s (for the 6-state IP3R model) or 10{3 s (for the

reduced 2-state IP3R model). All the computations are done with

MATLAB (The MathWorks, Natick, MA) and the codes are

provided in Supporting information (Text S1–S2). For the

deterministic model, we use ode15s, an ODE solver in MATLAB.

Accuracy is controlled by setting an absolute tolerance of 10{8

applied to all the variables.

Statistical analysis
Data analysis is performed on the Ca2z traces with relatively

stable baselines and less noise. A moving average of every 3 data

points is used to improve the data by smoothing out short-term

fluctuations (Fig. 2A is an improved result). Due to large variations

in baseline, amplitude, and level of noise in data, we used two

thresholds to get samples: a low threshold, 20% of the amplitude of

the largest spike above the baseline, to initially filter baseline noise

out; and a relatively high threshold, 50% of the amplitude of the

largest spike above the baseline, to further remove small spikes that

cannot initiate waves. For simulated stochastic traces of variable c,

we first convert it to fluorescence ratio (F=F0) by using

F=F0~c(c0zKd )=(c0czc0Kd ) where the dissociation constant

of Oregon Green Kd~0:17 mM and resting ½Ca2z�i c0~0:1 mM.

We then used the same sampling procedure mentioned above to

obtain samples. After samples are chosen, ISIs and spike durations

are calculated based on the low threshold. Simulated traces used to

calculate average frequency are about 200–400 seconds long. All

the samplings and linear least-squares fittings are implemented

using MATLAB (see Text S3–S4 for Matlab codes).

Supporting Information

Dataset S1 ASMC calcium fluorescence trace data. The

data files are in Excel format and compressed in a zip file. Each

Excel file has a name showing their information. For example,

‘‘S2_SMC6_MCh200nM’’ means data are from ASMC No. 6 in

lung slice No. 2 by using 200 nM MCh. In each file, there are four

columns which represent (from left to right) time(s), fluorescence

intensity, F=F0 and average F=F0.

(ZIP)

Text S1 Matlab code for simulation using 6 state IP3R
model.
(DOCX)

Text S2 Matlab code for simulation using 2 state IP3R
model.
(DOCX)

Text S3 Matlab code for experimental data analysis.
(DOCX)

Text S4 Matlab code for simulation analysis.
(DOCX)
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