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Abstract

Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular
functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational
modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have
not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing
modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on
experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability
memory scheme, we propose ‘‘kinetic memory’’ for epigenetic cellular memory, in which memory is stored as a slow-
relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-
term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study
several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and
find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a
catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal
fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among
modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of
protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the
history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In
particular, applications for long-term potentiation are discussed, including dynamic modifications of calcium-calmodulin
kinase II and cAMP-response element-binding protein essential for synaptic plasticity.
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Introduction

The importance of cellular memory, in which information

from experienced environmental exposures is preserved within

cellular states, has received a great deal of attention in recent

years. The capability of cells to translate environmental exposures

into cellular memory has been reported in various organisms,

ranging from bacteria to unicellular protozoa and multicellular

vertebrates [1–5]. Such examples of cellular memory are thought

to result from stored epigenetic changes that are not restricted to

histone modifications but rather include long-term modifications

(e.g., phosphorylation, methylation, and acetylation) of proteins

and DNAs that regulate gene expression and thereby affect

cellular states [6–9]. Generally, cellular epigenetic memory is

regarded to occur more slowly than elementally biochemical

reactions without affecting the genome sequence, and is

considered to be important for various cellular functions, such

as adaptation to external stimuli, cell differentiation, and synaptic

plasticity [1,4,5,9,10].

One of the most prominent examples of cellular memory is

long-term potentiation (LTP) for synaptic plasticity, which is

defined by an increase in the synaptic strength over a long time

span. Persistent phosphorylation of Ca2z/calmodulin-dependent

protein kinase II (CaMKII) is known to be particularly important

in early LTP [6,7]. CaMKII phosphorylation is elevated by

transient increases in the concentration of Ca2z and sustained

even after decreases in the concentration of Ca2z. Similarly, in

late LTP, the persistent phosphorylation of transcription factors

such as cyclic AMP-response element-binding protein (CREB) is

important [6,8]. Another important example of cellular memory is

found in the determination of cell fates. For example, when nerve

growth factor is administrated to PC12 cells, extracellular-signal-

regulated kinase (ERK) is persistently phosphorylated and

transmits information to downstream molecules, eventually

leading to cell differentiation [9].

Such cellular memory consists of three events: induction,

maintenance, and expression. Signaling input can modify the

state of the molecule in question, and the modification can be

maintained over a time span longer than the time scale of

elemental biochemical reactions (e.g., minutes to days). Such

modifications can result in changes in expression or in the

activation of other molecules. In this study, we focus on the

question of how modified states are maintained over a long

duration.
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One possible avenue for addressing this question is the use of the

attractor concept, which includes the ‘‘memories-as-attractors’’

viewpoint whereby dynamical systems governing the modification

states have multiple attractors (steady states), in each of which

memory is stored as a stable modification state of the substrates

[11–14] (see Fig. S1A). For example, models for the persistent

phosphorylation of CaMKII have been proposed in which the

phosphorylation can take on two stable states, such that hysteresis

appears against the change in Ca2z [15–17]. In an in vitro
experiment, however, CaMKII did not show bistability; it only

showed ultrasensitivity against the change in Ca2z [18]. There

have been reports that modification levels are shifted continuously

upon stimulation, rather than taking only a few discrete states [18]

(see also [19]); this continuity of modification states cannot be

explained by the multistability model. Furthermore, the relaxation

time: * 20 minutes after inhibition of CaMKII in ref [20] suggests

long-term dynamics without resorting to the bistability discussed

therein. In addition, the inclusion of positive feedback processes in

gene expression dynamics, which are necessary for the mainte-

nance of multiple states, requires energy, and as a result, memory

retention incurs housekeeping costs. In summary, the stability of

time-invariant attractors is important in some cases, but in other

cases it cannot be explained by the ‘‘memories-as-attractors’’

viewpoint.

Thus, it is important to identify other forms of memory that

allow very slow changes of cellular states following transient

stimuli. In this respect, we propose ‘‘a kinetic memory hypothesis’’

for epigenetic cellular memory. In this scheme, memory is stored

as a slow relaxation process far from an attractor, in which

slowness enables long-term maintenance of an embedded state (see

Fig. S1B). When cells are stimulated, their cellular states are

shifted continuously and are thus kept apart from attractors, and

relaxation occurs more slowly than with elemental chemical

reactions. Based on this slowness in relaxation, stimulus-induced

excited states are memorized over long time spans. This is in

strong contrast to the memory-as-attractor scheme, in which new

stable states are generated or in which different attractors are

selected to store the memory of the stimulus. In kinetic memory,

states can be changed continuously depending on the magnitude

of the stimulus, and thus epigenetic kinetic memory is more

flexible than attractor memory. However, to date, an explicit

biochemical model that realizes kinetic memory has not been

proposed. In this study, we apply the kinetic memory scheme to

model processes underlying cellular memory.

Results

Chained modification model
At first, we introduce a chained modification model showing

very slow kinetics (Fig. 1). This model consists of a substrate with

N modification sites and a catalyst, where Si and CSi denote the

substrates and a substrate-catalyst complex with i-th modified sites,

respectively, and C denotes the catalyst. The total abundance of

each is defined as conservation quantities given as ½S�total and

½C�total , respectively. The use of ‘modification’ here refers to

changes such as phosphorylation and methylation. In the first

model we study, the catalyst can only facilitate each demodifica-

tion reaction of the substrate, which is achieved by assuming that

enzymes used in modification reactions are always maintained at

sufficiently high levels so as not to be rate-limiting. Or, the first-

order kinetics of the modification reaction may be considered to be

derived from the autophosphorylation reaction (e.g., CaMKII

phosphorylation reaction). However, the same results can be

obtained, even though both the modification and demodification

are catalytic reactions as described below in the kinase-phospha-

tase model.

The whole reactions in the chained modification model are

described below.

Si

aiz1
Siz1

Figure 1. The reaction scheme of the chained modification
model. Schematic representation (A) and reaction diagram (B) of our
model. A substrate has N modification sites. Modification reactions for
the substrates progress without catalyst at rates ai and demodification
reactions are facilitated by the catalyst at rates bi .
doi:10.1371/journal.pcbi.1003784.g001

Author Summary

Cellular memory exists in a wide range of organisms from
prokaryotes to eukaryotes and can persist, in some cases,
for days at a time. Mounting evidence supports the notion
that cells indeed can retain information associated with
previous environmental exposures via posttranslational
modifications. Molecules with multiple modification sites,
such as those regulated by changes in methylation or
phosphorylation, are expected to play an important role in
this process. However, how such epigenetic cellular
memory is preserved is not yet fully understood, and
theoretical models must be developed. Here we demon-
strate that long-term maintenance of the modification
state occurs as a result of enzyme-limited competition in a
wide class of multimeric protein systems consisting of
modification reactions that share enzymes. This mainte-
nance is explained by very slow relaxation resulting from
the limited amount of enzymes available. Therefore,
memory is easily affected by continuous changes in
external stimuli. The proposed mechanism for kinetic
memory does not require any fine-tuning in system
parameters and is applied to a broad class of cellular
memory including long-term potentiation of synapses.
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where Si and CSi denote the substrates and a substrate-catalyst

complex with i{th modified sites, respectively, and C denotes the

catalyst.

Here, the formation and dissociation of substrate-catalyst

complexes occur at much faster rates than other reactions

(kz
i , k{

i &bi) and these reactions are therefore eliminated

adiabatically. (We have also confirmed the validity of the

approximation numerically.)

By denoting the concentration of free catalyst that does not form

a complex as ½C�free and the total concentration of i{th modified

substrate, i.e, summation of the concentration of free substrate and

substrate-catalyst complex, as ½Si�, the model can be described as:

½ _SS0�~{a1½S0�zb1

½C�free½S1�
K0z½C�free

½ _SSi� ~{aiz1½Si�zbiz1

½C�free½Siz1�
Kiz1z½C�free

zai½Si{1�{bi

½C�free½Si�
Kiz½C�free

½ _SSN �~aN ½SN{1�{bN

½C�free½SN �
KNz½C�free

ð1Þ

½C�total~
XN

i~0

½C�free½Si�
Kiz½C�free

z½C�free ð2Þ

where Ki(~k{
i =kz

i ) are the dissociation constants between Si

and C. For simplicity, the rate bi is chosen to be independent of i,
as bi~b~100:0.

Generally, the binding energy of complexes depends on the

modification sites. For simplicity, we assume that binding energy is

reduced linearly per single modification [21], but as long as the

binding energy distribution is not narrow (this condition is

described below), a deceleration of the relaxation is obtained.

The change in affinity is natural, as the modification generally

changes the function and shape of the protein [22]. With this

simplification, the dissociation constant between C and Si

increases exponentially as Ki~K0|ci, where K0 is k{
0 =kz

0 .

The input is given as changes in the speed of the modification

reactions, expressed as ai~a(t) for all i (see Table 1 in Text S1).

This is a simplified model for reactions with several modification

sites, as discussed in the context of, e.g., phosphorylation and

methylation of proteins, whereas several extensions will be

discussed later.

The chained modification model shows slow ‘‘glassy’’
relaxation

To analyze the relaxation process from a highly modified state

to a minimally modified state, we set the initial condition as

½SN �~½S�total and ai~0 for all i. Then, only demodification

reactions progress. Under this condition, a modification level

(~
PN

i~0

i½Si�
N½S�total

) relaxes from 1 to 0 in a single direction. When

the concentration of the catalyst is sufficiently high (i.e., in the limit

½C�total??), the behavior of this model is same as that of the first-

order reactions, such that fast exponential relaxation occurs.

At low catalyst concentrations, however, the relaxation process

is quite different. In this case, as shown in Fig. 2, the modification

level relaxes more slowly; it cannot be fitted by the exponential

form exp ({t) (see Fig. S2A) and is better fitted by the form of

{ log t in a certain range (see Fig. S2B), which is termed as the

logarithmic relaxation in time. Moreover, when the concentration

of the catalyst is within a particular range, the relaxation process

Figure 2. Slow logarithmic relaxation of the chained modification model. The initial condition is set as ½SN �~½S�total and ½Si�~0:0 for other
i, and the relaxation process of the modification level is computed without input (ai~0). The parameters are given as N~6, c~5:0, and
K0~0:1|5:0{6(~0:1|c{6). The time courses for the modification level for different values of the catalyst concentration, 0:001, 0:01, 0:02, 0:05, 0:1,
0:2, 0:5, 1:0, and 10:0, are plotted with different colors, where the concentration of S is fixed at 1:0. Although exponential relaxation is observed as in
first-order reactions (dotted line) when the concentration of the catalyst is sufficiently large, the relaxation is drastically slowed as the concentration
of the catalyst becomes lower than that of the substrate.
doi:10.1371/journal.pcbi.1003784.g002
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shows a plateau. Indeed, such logarithmic relaxation processes and

an emergence of a plateau have been shown to exist in glasses [23].

In (statistical) physics, glasses are known to exhibit a very slow

relaxation dynamics with a plateau before reaching the final

(equilibrium) state, while their long-term relaxation course is fitted

by { log t [23,24]. The origin of such slow relaxation is attributed

to kinetic constraint [24,25]. In this sense, the present relaxation is

also referred to ‘‘glassy’’ relaxation.

The chained modification model shows a transition from
slow relaxation to fast relaxation

As shown in Fig. 2, the relaxation process shows a transition

from a fast exponential relaxation phase to a slow logarithmic

relaxation phase as the catalyst concentration is decreased. To

examine this transition quantitatively, we analyzed the depen-

dence of the relaxation time t on the concentration of the catalyst.

In Fig. 3, the dependence of t upon the total concentration of

catalyst ½C�total is plotted, and a sudden increase of t with the

decrease of ½C�total below the concentration of total substrates

½S�total can be observed. Although nonlinear dependence on the

catalyst concentration is expected based on Michaelis-Menten

kinetics, this sharp increase in t near the critical point results from

limitation of the catalyst.

Here, by slightly decreasing the concentration of the catalyst

below that of the substrate or by increasing the concentration of

the substrate beyond that of the catalyst, the relaxation time

suddenly increases by several orders of magnitude. In other words,

the relaxation time becomes much longer than the elemental

chemical time scale, such that the modification state remains

almost at the original level. Hence, the modification state is

‘‘memorized’’ over a long time scale, and storing or erasing

memory is achieved by slightly changing the ratio of catalyst to

substrate below and beyond the critical value. In summary, our

model exhibits a transition from fast exponential relaxation to slow

logarithmic relaxation, thereby providing kinetic memory.

Conditions for kinetic memory
In this section, we discuss the conditions for the existence of a

sharp transition to memorized states.

(i) The binding affinity should be small – condition for

K0. First, we analyzed the dependence of t on K0 (Fig. 3A).

When K0 is small, the catalyst easily binds to substrates, whereas

when K0 is large, the catalyst tends to be free. Hence, as K0 is

increased, the threshold concentration of the catalyst at saturation

is increased, and for larger values of K0, a sharp transition of t
against the catalyst concentration disappears, as shown in Fig. 3A.

Indeed, in the case of K0~0:1 (~0:1|c0), the relaxation process

is gradually slowed by decreasing the catalyst concentration, and

there is no sharp transition.

As K0 is decreased, the transition becomes sharper (see Fig. 3A

for K0~0:1|5:0{3 (~0:1|c{3) and 0:1|5:0{6 (~0:1|c{6)).

Indeed, for 1:0|5:0{6 (Fig. 2), the transition from exponential to

logarithmic relaxation occurs with a decrease in catalyst concen-

tration below the critical concentration, ½C��total . This critical value

always remains at the total substrate concentration, as long as a

sharp transition occurs. Below the critical concentration, t is

proportional to ½C�{1
total , which is almost independent of K0.

(ii) The difference in the dissociation constants is

important for slow logarithmic relaxation – condition for

c. The relaxation behavior also crucially depends on the value of

c (Fig. 3B). For large c, t drastically changes at around the critical

concentration of the catalyst. With an increase in c, the slope of

the logarithmic relaxation becomes smaller (Fig. S4), resulting in

much slower relaxation. Above the critical concentration, t is

independent of ½C�total and below the critical concentration,

t!½C�{1
total . This transition is distinctively sharper than that of

Michaelis-Menten type dynamics and is regarded as an example of

ultrasensitivity [26].

In contrast, as c becomes smaller, the change in t is reduced,

and at c~1, the logarithmic relaxation does not appear at all (see

Fig. S2B and Fig. S4E) even at the low concentration of the

catalyst. The relaxation time gradually decreases as the catalyst

Figure 3. Change in the dependence of the catalyst on the
relaxation time t against K0, the dissociation constant (A), against
c, the heterogeneity of the dissociation constant (B), and against
N, the number of modification sites (C). t is plotted against ½C�total ; t
is defined as the time when the summation of all of D½Si�{½Si��D falls below
the threshold value(10{8) without input, starting from the initial condition
(½SN �~½S�total ). (A) K0~0:1|5:0{6,0:1|5:0{3,0:1,0:1|5:02, c~5:0,

N~6. (B) c~1:0,2:0,3:0,4:0,5:0, K0~0:1|c{6 , N~6. (C) N~2,3,4,5,6,
K0~0:1|5:0{N , c~5:0.
doi:10.1371/journal.pcbi.1003784.g003
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concentration increases and is almost constant if the catalyst

concentration is higher than the substrate concentration.

(iii) With an increase in the number of modification sites,

relaxation occurs more slowly – condition for N. When the

number of modification sites, N, was increased, the gap in the

relaxation time between the fast relaxation phase and the slow

relaxation phase also increased (Fig. 3C). Indeed, in the fast

exponential relaxation phase, the relaxation time was almost

independent of N, whereas in the slower logarithmic relaxation

phase, it increased with N. For N~2, the relaxation process

deviated from logarithmic relaxation, but occurred more slowly

than in exponential relaxation (Fig. S4G). For Nw3, relaxation

time increased exponentially with N .

The order of relaxation reverses under the logarithmic
relaxation regime

The relaxation of the modification level is accompanied by

changes in the modifications of substrate sites. Initially, ½SN � was

set larger than other values for ½Si�, and the relaxation process to

the stationary state with ½S0�~½S�total was investigated. At high

catalyst concentrations, ½Si� relaxed in descending order (Fig. 4A);

decreases in ½SN � resulted in increases of ½SN{1�, whose decrease

resulted in an increase of ½SN{2� and so forth. This ordered

relaxation agrees with that of first-order kinetics, which is expected

given that a substrate with iz1 modified sites is demodified to a

substrate with i sites.

At low catalyst concentrations, however, the relaxation process

is not ordered in such a monotonic manner. Indeed, highly

modified substrates cannot relax readily (Fig. 4B), whereas less-

modified substrates are able to take on modified states more easily.

This relaxation of reversed order results from the limitation of

catalysts and differences in catalyst/substrate affinity according to

the number of modified sites i, both of which underlie slow,

logarithmic relaxation.

The mechanism underlying logarithmic relaxation
Now we theoretically estimate the slow relaxation dynamics.

Here, the relaxation dynamics, even after elimination of the

variable ½SiC� by assuming fast equilibration of binding and

unbinding dynamics, are complicated and nonlinear to be solved

analytically.

Note that slow relaxation requires competition for a catalyst,

which is present at low abundance, and heterogeneity of affinity

between substrates and the catalyst. Because of these two

conditions, the time scales of relaxation for each modified

substrate are separated, which slows the relaxation of modifica-

tion dynamics. Here, we roughly estimate the long-term

relaxation dynamics asymptotically, by approximating it by

superposition of the eigenmode relaxation dynamics, which are

approximated by relaxation of each modification level Si. In our

case, the affinities between substrates and a catalyst are

distributed exponentially, and thus the time scales of demodifica-

tions, accordingly the eigenvalues, are also distributed exponen-

tially. As for the estimate by superposition, we follow the scheme

adopted in the theory for slow relaxation dynamics in glass (see

e.g., [25]). Then, in the limit of large N and c, with small K0, the

total relaxation dynamics, given as a summation of such

demodification dynamics of abundant substrates, are estimated

to be logarithmic.

To estimate the relaxation dynamics, we first focus on the dynamics

of substrates consisting of only a single demodification reaction, i.e.,

½ _SSi�~{b½Si�½C�free=(Kiz½C�free). When ½C�totalw½S�total and Ki is

sufficiently small, the abundance of free catalyst is larger than

Ki; therefore, the dynamics of substrate abundance are estimated

by

½ _SSi�*{b½Si�½C�free=½C�free~{b½Si� ð3Þ

Thus, the relaxation of substrates is exponential and indepen-

dent of ½C�total . In contrast, when ½C�totalv½S�total , almost all

catalysts are bound to substrates to form a complex form;

therefore, that the abundance of free catalyst molecules approach-

es zero. Hence, ½C�free is smaller than Ki. In this case, ½C�total is

estimated as ½C�total*½C�free(1zS½Si�=Ki). Here, in the large c

limit, ½Si�=Ki for i=0 is negligible; thus, ½C�total*½C�free

(1z½S0�=K0). When K0 is sufficiently small, ½S0�=K0&1; there-

fore, ½C�free is estimated by

½C�free*½C�total

K0

½S0�
ð4Þ

Thus, the dynamics of ½Si� for i=0 are given by

½ _SSi�~{b
½Si�½C�free

Ki

Figure 4. Relaxation process of each ½Si�. The time course of ½Si� for
each i is plotted by setting the initial conditions as already described.
(A) ½C�total~2:0 ½Si �’s relax in descending order, in the same manner as
in the first-order reactions. (B) ½C�total~0:1 ½Si�’s relax in ascending
order, that is, converse to the order expected from the first-order
reactions. The highly modified state relaxes only after the relaxation of
the less-modified ½Si �. The relaxation process consists of several
plateaus, which are typically observed in the relaxation process of
kinetic glass [25].
doi:10.1371/journal.pcbi.1003784.g004
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~{b
½C�total

½S0�
c{i½Si� ð5Þ

Here, the total modification level is given by M~Si½Si�.
Although the dynamics of the total modification level depend on

the initial condition and both the influx and efflux of each ½Si�, the

eigenvalue of each ½Si�’s relaxation dynamics is mainly governed

by the efflux, because a contribution to the eigenvalue of the influx

is given as {cc{(iz1) and of the efflux is given as {cc{i, where

c~b½C�total=½S0�. Hence, a contribute of the influx is negligible for

large c, thus the eigenvalue of each ½Si� dynamics is governed by

{cc{i . Then, the time evolution of the total modification level is

given by M*Sf (i) exp {cc{itð Þ, where f (i) is the fraction of

each eigenmode. Therefore, in the low catalyst concentration

regime, the relaxation time depends on the inverse of ½C�total and

is determined by ci for maximal i; therefore, when the number of

modification sites, N, increases, the relaxation time increases in

proportion to exp (N). In the large N limit, the summation of i

can be estimated by integration as M*
ÐN

0
f (i) exp {cc{itð Þdi.

When there is no singular dependence of f (i) on i (i.e., the initial

condition should not have singular dependence that is quite

exceptional as in ½Si�~½S�total for i~1 and ½Si�~0 for i=1), by

setting u~cc{it, the integral is calculated as

M*
1

ln c

ðct

cc{N t

e{u

u
du

~ N{
ln c

ln c
{

ln t

ln c

� �
exp ({cc{Nt)z

e{ct

ln c
g(t)z

c{N

ln c
h(t,N) ð6Þ

Here, the divergence of g(t) and h(t,N) as t?? and N?? is

considerably slower than the exponential. When N is sufficiently

large, c{N?0 such that

M~ N{
ln c

ln c
{

ln t

ln c

� �
exp ({cc{Nt)z

e{ct

ln c
g(t) ð7Þ

Therefore, the ln t dependence is obtained asymptotically for

large t when c{N?0. The above estimation suggests that a small

K0 is needed for switching between fast and slow relaxation, and a

large c is needed for slower relaxation that allows separation of the

time scale of each substrate, and a large N is needed for

logarithmic relaxation. Thus, when c and N are large and K0 is

small, the time evolution of protein modifications is expected to

asymptotically follow a logarithmic pattern. Our simulation results

show that the relaxation is much slower than exponential and does

not follow the logarithmic form perfectly, because c{N is small but

finite (see Fig. S2B).

The slowing of relaxation caused by competition for the catalyst

is also intuitively understood. When the i{th modified molecules

are demodified, the amount of i{1{th modified molecules will

increase. Because the i{1{th modified molecule has stronger

affinity for the catalyst than the i{th modified molecule, the

binding of the i{1{th modified molecules to the catalyst hinders

the binding of the i{th modified molecules. Thus, the

demodification process is slowed depending on the modification

level with an increase of the timescale as ci for the i-modified

substrate. Therefore, the order of relaxation becomes reversed in

the logarithmic regime (see Fig. 4B).

The above slowing mechanism resulting from the summation

of distributed exponential relaxation dynamics is studied as the

slowing of the equilibration process of glass. In particular, the

mechanism we describe here is identical to that previously

proposed for a chemical glass in catalytic networks [25], where

a negative correlation between the abundance of a substrate

and that of its catalyst suppresses the relaxation. In contrast to

the abstract catalytic network model, our study adopts a

realistic protein model with modification sites; therefore, input

signals are easily administrated, storing information, and

erasure of memory is achieved with applicability to the present

cells.

Continuous memory as dependence of the relaxation
time or modification level on the input

When kinetic memory is formed via logarithmic relaxation, the

relaxation time is not constant; rather it is instead further increased

with the magnitude and the duration of stimuli given as a(t)~a for

{tprevtv0 and a(t)~0 for 0ƒt, as shown in Fig. 5A. Moreover

the maximal modification level also depends on the magnitude

and duration of stimuli (Fig. 5B and Fig. S3). Thus, information

regarding the input stimulus (i.e., magnitude and duration) is

‘‘memorized’’ as the difference between the relaxation time and

the modification level. This continuous memory is in contrast to

the on-off type of attractor memory.

Both the relaxation time and the modification level are

candidate mediators of memory storage, as cells can access both

of these mechanisms depending on the output pathway from the

modification level. If cells use threshold dynamics as an output

pathway and if the temporal integration of such output product

contains information, then the relaxation time will be important

for cells to decide their fate. In contrast, if cells use the

modification level itself as an output pathway, the modification

level will be more important. Depending on the output pathway,

either the relaxation time or the modification level provides a

candidate mechanism for useful information to be stored.

The kinase-phosphatase model exhibits the same
features as the chained modification model

To further demonstrate the utility of kinetic memory, we also

investigated the kinase-phosphatase (K-P) model (Fig. 6A). This

model contains three components, i.e., kinase K , phosphatase P,

and substrate S, with multiple modification sites [27–29]. These

modification states are characterized by Si, which denotes the

number of phosphorylated residues i. Kinases mediate an increase

in the number of phosphorylated residues, whereas phosphatases

facilitate inverse reactions. Generally, substrate modifications lead

to changes in the affinities of substrates and catalysts. The

dissociation constant between K and Si and that between P and Si

increase exponentially as KK
i ~KK

0 |ci and KP
i ~KP

0 |ci, respec-

tively, identical to the effect observed in the chained modification

model.

We studied the relaxation process of ½Si� after the amount of the

total kinase (½K�total ) was varied, which functions as the input

stimulus. We analyzed the relaxation process following the input of

stimuli with a higher concentration of active kinases for a sufficient

length of time. Here, again, the dephosphorylation processes in the

K-P model show slow logarithmic relaxations when c is positive.

As shown in Fig. 6B, when the total amount of phosphatase is

lower than that of the substrate, the dephosphorylation process

shows very slow relaxation. The transition between fast and slow
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relaxation occurs at the point where the amount of phosphatase

and that of the substrate is balanced.

The extended Asakura-Honda model shows the same
behavior as the chained modification model

As another example, we studied an extended version of the

Asakura-Honda (A-H) model. The original A-H model was

introduced to explain processes of adaptation to changes in the

concentration of external signal molecules (attractant and repel-

lant) in chemotactic behavior [30]. This model represents a two-

state receptor with multiple modification sites. Receptors in

different states are recognized by distinct enzymes that facilitate

an increase or decrease in the number of modified sites. In the

model, the enzymes are always maintained at sufficient levels so as

to not be rate-limiting. This A-H model consists only of first-order

reactions, without Michaelis-Menten type reactions. Here, to

discuss kinetic memory, we explicitly took the dynamics of the co-

factor as a catalyst that catalyzes each modification reaction into

account (Fig. 7A).

In the present paper, we introduced three models, i.e., a chained

modification model having a single-state substrate and one

catalyst, a kinase-phosphatase model having a single-state

substrate and two catalysts, and a modified Asakura-Honda model

having a two-state substrate and one catalyst. To demonstrate that

the kinetic memory functions for all of these cases, we studied the

A-H model here.

We analyzed the adaptation process after the input stimulus was

applied to change the fraction of two states, and we found that in

the extended A-H model, slow logarithmic relaxation occurs when

the abundance of catalyst is limited, as observed in the chained

modification model (Fig. 7B). The modified state memorizes the

input amplitude and duration during the process of adaptation,

and the conditions for this kinetic memory are essentially identical

to those of the chained modification model (see Supporting

Information and Fig. S5–S7). It is noted that a slow process exists

only in the relaxation in the adaptation; the response remains fast

independently of the parameters and the abundance of catalysts.

Figure 5. Dependence of the relaxation process t on the magnitude and duration of a stimulus. (A) The relaxation time after exposure to
the stimulus with various magnitudes and durations is plotted as a color map. The initial condition is given as ½S0�~½S�total and ½Si�~0:0 for i=0, and
the input is given as a(t)~a for {tprevtv0 and a(t)~0 for 0ƒt. When the magnitude (a) and duration of the stimulus (tpre) increase, t increases
continuously over an order of magnitude. The catalyst concentration is set at 1=10 of the substrate concentration. (B) Dependence of the relaxation
process on the duration of stimulus exposure. The duration of stimulus exposure is changed while the magnitude is fixed at a~1:0. Here, the
relaxation time increases nearly exponentially with the increase in duration for the some extent small tpre . When tpre is sufficiently long, the
modification is maintained for a long time.
doi:10.1371/journal.pcbi.1003784.g005

Figure 6. Kinase-phosphatase model (A) and its relaxation time
(B). The relaxation times t of the variables Si are plotted against the
total concentration of phosphatase. t is defined as the time when the
summation of D½Si�{½Si ��D of all i falls below the threshold value, after
relaxation at a kinase-rich condition (½K�total~104). The model shows
the transition from fast exponential relaxation to slow logarithmic
relaxation at the critical point (½P�total~1:0). (When the amount of the
phosphatase is lower than that of kinase (½P�total~0:001), the relaxation
time itself is shorter, whereas the logarithmic relaxation remains. Here,
the stable fixed-point value of the concentration SN changes to a
higher value, and the relaxation time is decreased.)
doi:10.1371/journal.pcbi.1003784.g006
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The time scales for the response and relaxation are separated, and

they are independently controlled by tuning the dissociation

constants between the substrates and catalyst.

Discussion

Transition to long-term kinetic memory
In the present study, we evaluated three models, i.e., the

chained modification model, the kinase-phosphatase model and

the extended A-H model, which consist of a substrate with multi-

modification sites and a catalyst that facilitates modification of the

substrate’s sites. As shown in Fig. 3 and Fig. 6B and Fig. S6, all of

these models reveal a transition from fast exponential relaxation to

slow logarithmic relaxation at the point where the concentration of

the catalyst falls below that of the substrate.

The conditions for this transition are summarized as follows:

There must be heterogeneity in the binding affinity of the catalysts

that depends on the number of modified sites, such that the affinity

for highly modified substrates should be sufficiently small. This

leads to two requirements in our model in which the dissociation

constant is set at K0ci for the modification sites i.

(i) low K0 value: this supports a high affinity for substrates, such

that the competition for catalysts among substrates is induced. To

satisfy this requirement, Ki should be smaller than the substrate

concentration ½S� for all i; thus, the upper limit of K0 is restricted

as K0ƒc{N ½S�.
(ii) cw1: affinity depends on the number of modified sites on the

substrates. When the above conditions are not satisfied, the

relaxation time follows that of the Michaelis-Menten equation. In

contrast, when K0 is small and cw1, the relaxation changes

drastically at the point where the concentrations of the substrate

and the catalyst coincide. This change is much sharper than that

expected from the Michaelis-Menten equation and is an example

of ultrasensitivity [26].

When the concentration of the substrate (½S�) is lower than that

of the catalyst (½C�), the concentration of a catalyst-substrate

complex (½CS�) becomes approximately identical to that of the

substrate (½CS�*½S�), whereas when ½C�v½S�, ½CS� approaches

½C�. When the concentration of the catalyst decreases to levels

below that of the substrate, various modified forms of the substrate

compete for catalyst molecules. As a result, a transition to the slow

relaxation occurs, induced by this enzyme-limited competition.

Figure 7. The extended Asakura-Honda model (A) and its slow logarithmic relaxation after exposure to an environmental stimulus
(B). After the system is relaxed in the presence of the attractant as Li=L0

i ~317:23, the system transitions to a repellant condition as Li=L0
i ~0:0032,

and the relaxation process of T~S½Ti � is computed. The parameters are given as N~6, c~5:0, and K0~0:1|5:0{6~(0:1|c{6). The time courses
of T for different values of the catalyst concentration, 0:001, 0:01, 0:02, 0:05, 0:1, 0:2, 0:5, 1:0, and 10:0, are plotted with different colors, where the
concentration of P is fixed at 1:0. Although exponential relaxation is observed as in the original A-H model (dotted line), when the concentration of
the catalyst is sufficiently large, the relaxation is drastically slowed as the concentration of the catalyst becomes lower than that of the substrate.
doi:10.1371/journal.pcbi.1003784.g007
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Comparison between kinetic memory and attractor
memory

The kinetic memory described here is expected to be

advantageous over attractor memory with regards to the

housekeeping cost. To maintain attractor memory, continuous

invertible reactions are necessary, which consumes housekeeping

energy [31]. Kinetic memory mediated by protein modifications

also incurs housekeeping costs because of its irreversible modifi-

cation reactions. However, during slow relaxation in kinetic

memory, reversible association and dissociation reactions progress,

but irreversible reactions are suppressed. Hence, the housekeeping

costs in kinetic memory are expected to be lower than those for

attractor memory.

Moreover, the memory erasure mechanism is different from

that involved in multistable memory. The memory of a stable

attractor is almost always constant except for the short time span

needed for a switch to a different attractor. Erasure in kinetic

memory, in contrast, is achieved by simply increasing the

abundance of the enzyme, and thus could require a lower cost.

Attractor memory, however, may have some advantage with

regards to the stability of the memorized state against noise and

the constancy of the memorized state.

Relevance of kinetic memory to cell biology
The kinetic memory we studied here is generated by a substrate

with a few modification sites and a catalyst (enzyme) shared by

each of the different modification states, resulting in enzyme-

limited competition (ELC) [32,33]. Hence, multimeric proteins,

for example, can provide a molecular basis for kinetic memory. A

candidate for a multimeric protein bearing kinetic memory is

CaMKII, which forms a dodecameric structure with phosphory-

lation sites in each monomer [7]. It is known that phosphorylation

of sites on CaMKII plays a critical role in the maintenance of early

LTP. CaMKII is phosphorylated with increases in Ca2z

concentration and is dephosphorylated by protein phosphatase 1

(PP1). After the Ca2z concentration decreases, phosphorylation

levels remain high; therefore, CaMKII stores memory in its

phosphorylation state. Indeed, if PP1 is limited, ELC among

CaMKII molecules is expected to lead to kinetic memory,

according to our argument presented here. In fact, it has been

reported that the concentration of PP1 is lower than that of

CaMKII in the postsynaptic density, as suggested by the condition

for ELC [17]. As already described in the introduction, the

phosphorylation state of CaMKII may not have multistability

[18].

To confirm our ‘‘kinetic memory’’ hypothesis, it is important to

analyze the time evolution of dephosphorylation of CaMKII over

a long time course. If the dynamics of CaMKII dephosphorylation

are slowed and distinguishable from a simple exponential, our

hypothesis may be supported. Moreover, analysis of mutants that

mimic phosphorylated and unphosphorylated states may also be

effective. By using phosphorylated and unphosphorylated mutants,

the difference in binding energy between phosphorylated and

unphosphorylated states may be determined biochemically. Such

results are helpful to determine the actual c of CaMKII and how

the relaxation dynamics depend on c.

Another candidate for kinetic memory may be CREB in brain

synapses, which is known to mediate potentiation through altered

phosphorylation levels. In late LTP, CREB is phosphorylated by

CaM-dependent kinase and is gradually dephosphorylated by

calcineurin, whereas phosphorylation of CREB leads to activation

of gene expression [8,34]. Here, it is reported that with increased

duration of input, the relaxation time for dephosphorylation of

CREB is prolonged, which is consistent with our kinetic memory

[34].

It could also be expected that several other proteins with multi-

modification sites may provide kinetic memory in our scheme. For

example, the phosphorylation level of ERK, which has multiple

phosphorylation sites, is elevated over a long time span after a

transient increase in the level of nerve growth factor [9]. Such

long-term phosphorylation may be a result of logarithmic

relaxation in kinetic memory.

In a multistability (attractor) model, the memorized states are

discrete and few in number, as the number of attractors

typically increases only linearly with the number of modification

sites. In contrast, kinetic memory can store continuous

information regarding inputs, as we have discussed above.

Indeed, cellular memory refers to the process by which

organisms integrate information from continuous external

conditions and retain it in their cells. Unicellular protozoa

P.caudatum, when placed on a temperature gradient, accumu-

late in a region maintained at the previous cultivation

temperature; this memory of the cultivation temperature is

stored over approximately 40 min [3,35]. Similar temperature

memory in nematodes C.elegans over several hours has also

been observed and is suggested to be stored at the level of a

single thermosensory neuron [36]. It was also reported that

C.elegans can memorize the NaCl concentration at the level of

a single neuron [37,38]. The kinetic memory scheme may shed

light on such ‘‘continuous’’ cellular memory.

An important condition for kinetic memory is competition for

the catalyst. The relevance of ELC to cellular functions has

recently been discussed. For example, our previous study suggested

the importance of ELC for temperature compensation of the

period of biological clocks [32,33]. Both in that study and in the

present study, we found that distributed affinity leads to slow

dynamics, and non-linear dependence of the reaction rate on

substrate and catalyst concentrations is essential. Further applica-

tions of ELC to other cellular functions will be revealed in the near

future.

Ultimately, it will be important to experimentally verify the

kinetic memory hypothesis that we have proposed and tested

here. Steps toward this aim should include measurements of

relaxation processes for protein modifications under various

catalyst concentrations. In addition, the development and use of

mutant proteins that are able to mimic substrates with several

modification states would enable the testing of varying affinities

between modification sites. Such experiments would not only

validate our model but also facilitate future investigations seeking

to uncover mechanisms underlying primitive forms of cellular

memory.

Models

The kinase-phosphatase model
The whole reactions are described below.

KzSi

kKz
i

kK{
i

KSi

PzSi

kPz
i

kP{
i

PSi
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KSi

aiz1
KzSiz1

PSi

bi
PzSi{1

By assuming that association and dissociation reactions are

faster than the other reactions, we obtained the following

equations:

½ _SS0� ~{a1½S0�
½K �free=KK

0

1z½K �free=KK
0 z½P�free=KP

0

zb1½S1�
½K �free=KK

1

1z½K�free=KK
1 z½P�free=KP

1

½ _SSi� ~{aiz1½Si�
½K�free=KK

i

1z½K�free=KK
i z½P�free=KP

i

zbiz1½Siz1�
½K �free=KK

iz1

1z½K �free=KK
iz1z½P�free=KP

iz1

zai½Si{1�
½K �free=KK

i{1

1z½K �free=KK
i{1z½P�free=KP

i{1

{bi½Si�
½K�free=KK

i

1z½K�free=KK
i z½P�free=KP

i

½ _SSN � ~aN ½SN{1�
½K �free=KK

N{1

1z½K �free=KK
N{1z½P�free=KP

N{1

{bN ½SN �
½K �free=KK

N

1z½K �free=KK
N z½P�free=KP

N

ð8Þ

The total concentrations of the kinase and the phosphatase are

conserved quantities, and thus

½K �total~
XN

i~0

½Si�
½K �free=KK

i

1z½K �free=KK
i z½P�free=KP

i

z½K �free ð9Þ

½P�total~
XN

i~0

½Si�
½P�free=KP

i

1z½K �free=KK
i z½P�free=KP

i

z½P�free ð10Þ

For parameter values, see Table 2 in Text S1.

The extended Asakura-Honda model
The complete set of reactions in the extended Asakura-Honda

model is given as follows:

CzTi

kTz
i

kT{
i

CTi

CzSi

kSz
i

kS{
i

CSi

Ti

k
Tf
i

k
Sf
i

Si

CTi

k
Tf
i

k
Sf
i

CSi

CSi

aiz1
CzSiz1

CTi

bi
CzTi{1

Assuming that catalyst association and dissociation reactions, in

addition to flip-flop reactions between S and T, are much faster

than modification reactions, they can be eliminated adiabatically;

therefore, the model can be described as:

½ _PP0�~{
a1½C�free½S0�
½C�freezKS

0

z
b1½C�free½T1�
½C�freezKT

1

½ _PPi�~
{aiz1½C�free½Si�
½C�freezKS

i

z
biz1½C�free½Tiz1�
½C�freezKT

iz1

z

ai½C�free½Si{1�
½C�freezKS

i{1

{
bi½C�free½Ti�
½C�freezKT

i

½ _PPN �~
aN ½C�free½SN{1�
½C�freezKS

N{1

{
bN ½C�free½TN �
½C�freezKT

N

ð11Þ

Where ½Pi�~½Si�z½Ti� and ½Si�~½Pi�Li=(1zLi),½Ti�~
½Pi�=(1zLi). Here, ½C�free is the free catalyst that is not bound

to T or S, which satisfies

½C�total~
XN

i~0

(
½C�free½Si�
½C�freezKS

i

z
½C�free½Ti�
½C�freezKT

i

)z½C�free, ð12Þ
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where KS
i and KT

i are dissociation constants between C and Si or

Ti, respectively. We assumed that the affinities between the

catalyst and substrate decrease exponentially with the number of

modified sites in the substrate, that is, the dissociation constants

KS
i and KT

i increase exponentially. Exponential increases of KS
i

and KT
i are required for perfect adaptation when the amount of

the catalyst is sufficiently low (see Supporting information). In

addition, we assumed that the dissociation constants are not

different between the S form and the T form; therefore, the

dissociation constants are described as KS
i ~KT

i ~K0|ci. How-

ever, this is only for simplicity and is not essential. Stimuli are

given as changes in Li, identical to the original A-H model.

For parameter values, see Table 3 in Text S1.

Supporting Information

Figure S1 Schematic representation of the bistable
memory and kinetic memory. (A) Parameter dependence of

bistable fixed points and its representation by a potential

landscape. The bistable memory is achieved as a double-well

potential. Although the depth of each well corresponding to the

stability of the state becomes shallower against the changes in the

parameter, the modification remains at almost the same level.

However, when the parameter exceeds the bifurcation point, one

of the modification states loses stability and jumps to the other

state. Thus, the bistable memory shows hysteresis against

parameter changes. (B) Schematic representation of kinetic

memory. Kinetic memory can be achieved as a single-minimum

potential. When the catalyst concentration is low, the slope of the

potential is very weak and the modification level changes slowly to

the stable fixed point value. In contrast, when the catalyst

concentration increases, the slope of the potential becomes steep

and the modification level changes rapidly.

(EPS)

Figure S2 Time evolution of the modification level. The

initial conditions and parameters are same as in Fig. 2. (A) The

time courses of the reversed sign of the logarithmic modification

level { log M(t) are plotted by using a log-log scale for different

values of the catalyst concentration, 0.001, 0.01, 0.1, 1.0, and 10.0,

with different colors, where the concentration of S is fixed at 1.0.

The gray dotted line indicates ! exp ({t). If the modification

level follows exp ({t), the plot is linear as in the gray dotted line.

This is true when the concentration of the catalyst is higher than

that of the substrate. However, when the concentration of the

catalyst is lower than that of the substrate, the plot cannot be fitted

by the linear form and changes more slowly than the exponential

of the stretched exponential form. (B) The time courses of the

modification level are plotted for different values of c, 10.0, 5.0,

3.0, 2.0, and 1.0, with different colors, where the concentration of

C is fixed at 0.001. The abscissa denotes the time in a log-scale,

and the ordinate shows the modification level. The gray line

indicates {0:2 log tz3:5 and the gray dotted line indicates

exp ({0:1t). For c~1:0, the relaxation curve is nearly exponen-

tial. For larger c, however, the relaxation curve cannot be fitted by

exponential form (Note that in this plot by x~ log t, any

exponential form exp ({at) with any a values is obtained just

by adding a constant to x, i.e., by shifting the horizontal axis), but

approaches gradually the logarithmic form as c is increased.

(EPS)

Figure S3 Dependence of the relaxation process of the
chained modification model on the magnitude of the
stimulus. The magnitude of the stimulus is changed while the

duration is fixed as tpre~10:0. The increase in magnitude has a

weaker effect on the relaxation time than the duration. The

cofactor concentration is set at 1=10 of the substrate concentra-

tion.

(EPS)

Figure S4 The relaxation process of the chained mod-

ification model for K0~0:1|5:0{3(~0:1|c{3) (A),

0:1(~0:1|c0) (B), 0:1|5:02(~0:1|c2) (C) and c~5:0,

N~6, c~3:0 (D), c~1:0 (E) and K0~0:1|c{6, N~6,

N~4 (F), N~2 (G) and K0~0:1|5:0{N , c~5:0. The time

course of the phosphorylation level is plotted. The initial condition

is the same as in Fig. 2. Plotted for different values of ½C�total with

different colors. The transition from fast exponential to slow

logarithmic relaxation is sharp for low K0. For a low c, slow

logarithmic relaxation becomes similar to fast exponential

relaxation, and finally slow logarithmic relaxation disappears

when c~1:0. When the number of modification sites is low, the

slow logarithmic relaxation becomes unclear.

(EPS)

Figure S5 Dependence of the relaxation process of the
extended A-H model on the magnitude and duration of a
stimulus. (A) The relaxation time after exposure to stimuli with

various magnitudes and durations is plotted as a color map. The

initial condition is given as ½S0�~½S�total and ½Si�~½Ti�~0:0 for

other i. When the magnitude (Li) and duration of the stimulus

increase, the relaxation time t increases continuously over an

order of magnitude. The catalyst concentration is set at 1=10 of

the substrate concentration. (B) Dependence of the relaxation

process on the duration of stimulus exposure. The duration of

stimulus exposure is changed while the magnitude is fixed at

Li=L0
i ~11. Here, the relaxation time almost increases exponen-

tially with the increase in duration. (C) Dependence of the

relaxation process on the magnitude of the stimulus. The

magnitude of the stimulus is changed while the duration is fixed

as tpre~50:0. The increase of the magnitude has a weaker effect

on the relaxation time than the duration.

(EPS)

Figure S6 Change in the catalyst dependence of the
extended A-H model on the relaxation time t against K0,
the dissociation constant (A), against c, the heterogene-
ity of the dissociation constant (B), and against N, the
number of modification sites (C). t is plotted against CTotal ;

t is defined as the time when summation of all of D½Si�{½Si��D and

D½Ti�{½Ti��D falls below the threshold value(10{8) at the repellant

condition (Li=L0
i ~0:0032), after a relaxation at the attractant

condition (Li=L0
i ~317:23). (A) K0~0:1|5:0{6(~0:1|c{6),

0:1|5:0{3 (~0:1|c{3 ),0:1(~0:1|c0 ),0:1|5:02 (~0:1|c2 ),

c~5:0, N~6. (B) c~1:0,3:0,5:0, K0~0:1|c{6, N~6. (C)

N~2,3,4,5,6, K0~0:1|5:0{N , c~5:0.

(EPS)

Figure S7 Relaxation process for each ½Pi� of the
extended A-H model. The time course of ½Pi� for each i is

plotted by setting the initial condition as already described. (A)

½C�total~10:0 ½Pi�’s relax in descending order, in the same manner

as in the original A-H model. (B) ½C�total~0:1 ½Pi�’s relax in

ascending order, that is, converse to that observed for the original

A-H model. The highly modified state relaxes only after the

relaxation of the lower modified ½Pi�. Relaxation of the highly

modified ½Pi�’s plateau, a prominent feature of kinetic glass.

(EPS)

Text S1 Models and parameters.
(PDF)
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