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Abstract

The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain
available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial
core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated
with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed
a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances)
based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome
location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies
demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence
diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with
the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work
revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance
to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential
for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use
and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many
core genes in bacterial genomes of significant global public health importance.
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Introduction

The advent of next-generation sequencing (NGS) has

greatly increased the number of bacterial genomes se-

quenced and made available for study in public databases

such as GenBank, the Sequence Read Archive and Euro-

pean Nucleotide Archive (ENA) [1–3]. Increasing compu-

tational power allows for comparative genomics studies

involving hundreds or even thousands of sequences, but

large scale computational resources are not available to all

researchers. Developing methods for analysing large data-

sets that capitalise on the computational power of modern

desktop computers will make comparative genomics anal-

yses much more accessible to the wider research commu-

nity, allowing this vast quantity of data to be analysed more

extensively.

A bacterial species can be defined by its pan-genome, which

consists of a core genome conventionally defined as those genes

present in all isolates, and an accessory genome, which includes

the genes absent from one or more isolates or unique to a given

isolate (note that we use the term ‘‘gene’’ here to refer to a putative

protein-coding sequence) [4]. Identifying the core complement of

genes in a bacterial species is often the first step in population

genomics studies and the core genome can be defined in different

ways. The most conservative and most frequently employed

method is to only include genes present in 100% of isolates within

the study population; however, this presents problems related to

both biological sampling and the sequencing technology. Any

collection of isolates is a subset of the entire population for the

species of interest, and if the subset of isolates has limited genetic

diversity then the number of ‘‘core’’ genes shared by all isolates in

that sample will be higher than in a dataset which is genetically

more diverse. This is not necessarily a problem, unless the

intention is to extrapolate the findings to the wider bacterial

population. Another biological limitation to using a 100% cut-off
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for inclusion in the core genome is that there may be rare variant

strains which are missing genes that would otherwise be

considered core genes. These variant strains may survive long

enough to be sampled, potentially skewing the analyses. More

generally, the size of the core genome is dependent on the size of

the data set, with the core genome decreasing in size as more

genomes are added to the analysis [4].

A large proportion of the bacterial genome sequences available

at the time of writing are produced using next-generation

sequencing platforms such as Illumina or Roche 454, so that

even high-quality assemblies remain as incomplete or ‘‘draft’’

genomes. This is acceptable for most studies, but analyses of these

genomes may exclude a gene from a list of core genes simply

because it contains a sequence gap or is otherwise incomplete at

that locus in the assembly of one or a few genomes. This assumes

that the sequences being compared are all full-length: if an analysis

accepts less than full-length coding sequences then gaps may not

be an issue, but there will be other challenges with using

incomplete sequence data, e.g. calculating pairwise distance (p-

distance) measures.

If a definition of core genes as those found complete in all

isolates in the dataset is too conservative, then the problem

becomes that of determining an acceptable limit to the number of

isolates missing any particular gene. One approach is to plot a

frequency distribution that indicates how many genes are present

in all isolates, or are missing in one or more isolates within the

study population (Figure S1). For some bacterial species, there is a

reasonably clear delineation between genes present in a large

proportion of the study population versus those that are infrequent

or rare, but for other bacterial species it is not clear.

Rather than make an arbitrary decision, we developed a

statistical model for estimating the core genome that can be

applied to different bacterial species by formalising the decision in

the language of probability. The aim was to develop a Bayesian

decision model to identify the genes found in what we will call the

‘‘estimated core genome’’ and apply this decision model to several

large bacterial genome datasets. We described the nucleotide

sequence diversity for each gene in the estimated core genome and

considered how core genome sequence diversity varied across

unrelated bacterial species. Finally, we depicted the data in a way

that allowed us to explore the sequence data in greater detail and

generate testable hypotheses about the estimated core genome.

The five bacterial species chosen for inclusion in this study were

disease-causing organisms responsible for a large proportion of the

global bacterial disease burden: Streptococcus pneumoniae (respi-

ratory disease, the most important cause of infectious disease

mortality); Campylobacter jejuni (gastrointestinal disease); Neisseria
meningitidis (meningitis); Staphylococcus aureus (skin and soft

tissue infections); and Helicobacter pylori (gastrointestinal ulcers).

Results

Description of the datasets used in analyses
In total, 2096 genomes were analysed across the 5 different

bacterial species (Table 1 and Datasets S1). A phylogenetic

network for each dataset was derived using Neighbor-Net [5] as

part of the initial Genome Comparator [6] analyses (see Methods

for a description of the Genome Comparator program); these

diagrams demonstrated the overall diversity of the genomes in

each study dataset (Figure 1).

The S. pneumoniae (pneumococcal) dataset consisted of 336

genomes for isolates of 39 different serotypes collected over 90

years (1916–2008) from at least 32 countries around the world.

The isolates were recovered from individuals of a wide range of

ages, including isolates from patients with disease and isolates

recovered from healthy individuals. The multilocus sequence

typing (MLST) data revealed 163 sequence types (STs), which

could be clustered into 74 different clonal complexes (CCs)

indicative of isolates with shared ancestry (Tables 1 and S1).

The largest genome dataset analysed was that of C. jejuni
(N = 601 genomes). Isolates were recovered from human stool

samples collected from patients in Oxfordshire, United Kingdom

(UK) with gastroenteritis during 2011. 134 STs from 29 CCs were

characterised in this collection, which was representative of the

broader C. jejuni population genetic diversity [7,8].

The N. meningitidis (meningococcal) dataset was comprised of

518 genomes and these isolates were collected nearly exclusively

from patients residing in England, Wales and Northern Ireland in

the 2010/11 epidemiological year, apart from 4 historical isolates

from Norway (1976), The Gambia and UK (1983) and UK (1986).

The 2010/11 genomes are part of the Meningitis Research

Foundation Meningococcus Genome Library, which contains

genomes from all culture-confirmed cases of meningococcal

disease submitted to the Meningococcal Reference Unit in

2010/11 and 2011/12. Isolates of seven serogroups were included,

mostly serogroup B (n = 394), Y (n = 74) and W-135 (n = 27). 198

STs were represented by the isolates and the STs clustered into 24

CCs. Culture-confirmed cases of meningococcal disease are

largely representative of the England and Wales disease-causing

N. meningitidis population as described previously [9].

The S. aureus dataset was large (N = 534 genomes) but

genetically less diverse (25 STs and 11 CCs; Tables 1 and S1)

than other datasets, since the analyses were restricted to

methicillin-resistant S. aureus (MRSA) only. Most of the

publicly-available genomes that are already published are of a

limited number of CCs, predominantly the MRSA CCs that are

epidemiologically the most important. The MRSA isolates were

recovered from patients in 27 countries, although 39% of isolates

were recovered in the UK. The H. pylori dataset included 107

genomes and 82% of the collection was from the USA, Canada or

Japan. Only limited additional metadata were available for these

isolates.

Author Summary

Whole genome sequencing has revolutionised the study of
pathogenic microorganisms. It has also become so
affordable that hundreds of samples can reasonably be
sequenced in an individual project, creating a wealth of
data. Estimating the bacterial core genome – traditionally
defined as those genes present in all genomes – is an
important initial step in population genomics analyses. We
developed a simple statistical model to estimate the
number of core genes in a bacterial genome dataset,
calculated pairwise evolutionary distances (p-distances)
based on differences among nucleotide sequences, and
plotted the median p-distance for each core gene relative
to its genome location. Low p-distance values indicate
highly-conserved genes; high values suggest genes under
selection and/or undergoing recombination. The genome
diagrams depict areas of interest in genomes that can be
explored in further detail. Using our method, we analysed
five bacterial species comprising a total of 2096 genomes.
This revealed new information related to antibiotic
resistance and virulence for two bacterial species and
demonstrated that the function of many core genes in
bacteria is still unknown. Our model provides a highly-
accessible, publicly-available tool to use on the vast
quantities of genome sequence data now available.

Estimating the Bacterial Core Genome
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Estimated core genomes for each bacterial species
dataset

The size of the reference genomes used in the Genome

Comparator analyses for each dataset varied from 1.6 to 2.8 Mb,

and the total number of genes in each reference genome ranged

from 1566 to 2547 (Table 2). There were small numbers of unique

loci, i.e. genes found only in the reference genome and/or present

in only one genome: S. pneumoniae (n = 6); C. jejuni (n = 6); N.
meningitidis (n = 7); S. aureus (n = 4); and H. pylori (45).

An initial BLASTN criteria of 70% identity was chosen, which

allowed for the identification of variable sequences among

conserved gene classes [10] and avoided bias towards reference-

specific sequences, and 100% sequence alignment, which means

that coding sequences occurring at the ends of contigs or with gaps

were therefore not included. Lowering the BLASTN criteria to

70% identity and 90% alignment increases the number of genes in

the estimated core, as partial gene sequences will be detected and

included (Table S2), which may be more suitable for other user-

specific analyses but is not ideal for the calculation of p-distances to

estimate sequence diversity.

The smallest estimated core genomes were those of MRSA and

H. pylori (242 and 244 genes, respectively; Table 2) and the S.
pneumoniae, C. jejuni and N. meningitidis core genomes were

similar in size, ranging from 744 to 866 genes. The percentage of

genomes within a dataset that possessed each estimated core gene

ranged from $99.1% to $99.8%. The number of putative

paralogues identified in the initial Genome Comparator analyses

varied from 1 in C. jejuni to 40 among the S. pneumoniae
genomes, and these genes were removed from further analyses

(lists of putative paralogues for each species are provided in Table

S3). If putative paralogues had not been removed, one would have

been included in each of the estimated core genomes of S.
pneumoniae and N. meningitidis.

Calculated pairwise evolutionary distance values (p-
distances)

Within each genome dataset, median p-distance values were

calculated for each of the estimated core genes and the estimated

probability density function was plotted for each bacterial species

(Figure 2). The estimated probability density function plotted a

smoothed histogram of the median p-distances vs. the estimated

probability (relative frequency) of each p-distance value. The

shape of the graphs for S. pneumoniae and C. jejuni were similar,

showing a large peak of very small p-distance values, i.e. highly

conserved genes, but these were entirely different from the graphs

depicting the data for the other bacterial species. Each graph is an

indication of the overall sequence diversity of the set of estimated

core genes for that particular genome dataset.

The median p-distance value for each estimated core gene was

then plotted against its position in the reference genome and

illustrated as a circular bacterial chromosome (Figure 3). The

length of each line indicates the median p-distance value for that

gene. The estimated core genes were distributed around each

genome and accessory regions in the reference genomes (e.g. ICE

elements or phage genes), were observed as gaps where no core

genes clustered. Estimated core genes with p-distances above 0 but

less than the 95th percentile (blue lines) and those above the 95th

percentile (red lines) stood out in a pattern on each genome

diagram and allowed for an evaluation of specific genes and gene

clusters in the genome, as demonstrated below. Table S4 lists all

the estimated core genes and p-distances for each bacterial species.

All genes with a p-distance value greater than the 95th percentile

for each bacterial species, and the Cluster of Orthologous Groups

(COG) functional category for each of those genes, are listed in

Table S5.

Three case studies that expanded the initial analyses of
the estimated core genome

Case study 1: Investigate the core genes in C. jejuni and

N. meningitidis with p-distances above the 95th

percentile. Forty-three estimated core genes in C. jejuni were

over the 95th percentile (Figure 3-Cj). 26% (n = 11; range of

p-distances 0.026–0.118) of these genes were hypothetical proteins

or of unknown function, and 19% (n = 8) were associated with

coenzyme metabolism (Tables 3 and S5). The C. jejuni genome

diagram also clearly identified a gene in the estimated core that

had a much higher p-distance value (0.118) than the rest of the

core genome (the longest red line in Figure 3-Cj). Cj0809c was

annotated in the reference genome as a putative hydrolase. A

Pfam [11] search of the Cj0809c amino acid sequence returned a

match to the Lactamase_B superfamily and a BLAST search

against the NCBI non-redundant database found orthologues of

the gene annotated as metallo-beta-lactamase in other C. jejuni. A

BLAST search of the KEGG database [12] resulted in hits to

Table 1. Summary of study datasets.

Bacterial species Study dataset
No. of
genomes

Years of
isolation

No. of countries
represented

No. of
STsa

No. of
CCsa

S. pneumoniae Global Historical Collection 336 1916–2008 32 163 74

C. jejuni Oxfordshire Human
Surveillance 2011

601 2011 1 (UK) 134 29

N. meningitidis MRF Meningococcus
Genome Library

518 2010–2011b 3c 198 24

S. aureus rMLST BIGSdb databased 534 1955–2011 27e 25 11

H. pylori rMLST BIGSdb database 107 –f 10 –f –f

aSTs = sequence types; CCs = clonal complexes.
bFour historical isolates from 1976, 1983 (n = 2) and 1986 were also included.
cOne historical isolate was from The Gambia and another was from Norway. All other isolates were from the UK.
dhttp://pubmlst.org/rmlst/.
e39% (n = 210) of the genomes were from the UK; 18% (n = 94) genomes were from unknown locations.
fThe year of isolation for nearly all of the genomes was unknown; STs and CCs for H. pylori were not defined (see main text).
doi:10.1371/journal.pcbi.1003788.t001
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sequences annotated as beta-lactamase, metallo-beta-lactamase and

thioredoxin reductase (NADPH) genes in other C. jejuni genomes.

Beta-lactamases and metallo-beta-lactamases are enzymes that

provide resistance to a wide range of broad-spectrum beta-lactam

antibiotics. Thioredoxin reductase is part of the thiol redox system,

which reduces oxidative stress and is essential for DNA replication;

it has also recently been proposed as a possible novel antimicrobial

target site [13,14]. The high level of sequence diversity observed in

Cj0809c means that it is likely under selective pressure and/or is a

site of frequent recombination, and further investigation of the

true function of Cj0809c as well as the different sequence variants

of this particular gene is necessary.

Overall, 37 estimated core genes in N. meningitidis had median

p-distance values over the 95th percentile threshold and these were

Figure 1. Neighbor-Net phylogenetic networks for the five species included in this study. Neighbor-Net diagrams for each species as
follows: Sp) S. pneumoniae; Cj) C. jejuni; Nm) N. meningitidis; Sa) S. aureus; and Hp) H. pylori. Scale bars for each individual diagram were too small to be
visualised and thus were removed for illustrative purposes.
doi:10.1371/journal.pcbi.1003788.g001
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categorised into 12 different COG functional categories (Tables 3

and S5). Similar to the C. jejuni data, 24% (n = 9) encoded

unknown hypothetical proteins or genes with only a general

predicted function and their calculated p-distances ranged from

0.045–0.073. The two core genes with the highest p-distance

values (NMC1154 and NMC0661) also encode putative proteins

with unknown functions. NMC1154 is adjacent to ribA, which

encodes a GTP cyclohydrolase II (ribA has been proposed as a

novel antimicrobial target site [15]) and NMC0661 is a

hypothetical protein, possibly in the YicC-like family of bacterial

proteins, which are poorly characterised but may play a role in

stationary phase survival [16].

There were also several clusters of red lines in the N.
meningitidis genome, indicating regions of the genome with

higher sequence diversity among the estimated core genes

(Figure 3-Nm). One gene cluster encodes proteins in the NADH

dehydrogenase complex (p-distances for each core gene in this

region range from 0.021–0.055; Tables S4 and S5). NADH

dehydrogenase is involved in oxidative phosphorylation and has

recently been identified as a region of the N. meningitidis genome

Table 2. Summary of estimated core genome analyses.

Bacterial species Reference genome
Reference
genome size (Mb)

Reference
genes (n)

% of genomes that
possess each core gene

Estimated
core genes (n)

S. pneumoniae ATCC700669 2.22 1990 $99.7 851

C. jejuni NCTC11168 1.64 1623 $99.8 866

N. meningitidis FAM18 2.19 1917 $99.8 744

S. aureus HO5096_0412 2.83 2547 $99.8 242

H. pylori 26695 1.67 1566 $99.1 244

doi:10.1371/journal.pcbi.1003788.t002

Figure 2. Estimated probability densities of median p-distances. The estimated probability density function was plotted for each bacterial
species as follows: Sp) S. pneumoniae; Cj) C. jejuni; Nm) N. meningitidis; Sa) S. aureus; and Hp) H. pylori.
doi:10.1371/journal.pcbi.1003788.g002
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that has undergone intragenic recombination; authors have

speculated that sequence differences in this gene region may be

related to differences in fitness and possibly virulence [17,18].

We were also interested in exploring the matrix of calculated p-

distances across all nucleotide sequences for any particular core

gene, which were summarised as a median p-distance and plotted

on the genome diagram. This provided insight into the range of

calculated p-distances for a core gene and an indication of whether

there was any particular clustering of p-distances within that gene.

To investigate this, the estimated probability density graph for the

core gene with the highest median p-distance value for each of the

bacterial species was generated (Figure 4).

The graphs varied widely in shape and height, and the graphs

for Cj0809c and HP0203 suggested that there were clusters of

sequences that were likely to be biologically informative. Overall,

these graphs suggest that the median p-distance value is a suitable

summary statistic to represent the sequence diversity of a particular

core gene across all genomes analysed, and as such it provides a

useful starting point for exploring a very large set of core genes;

however, a gene-specific plot of the range of p-distances should also

be considered as it may reveal informative biological patterns in the

data. Statistical analyses of the pairwise p-distance matrix would be

required for further inference to be made.

Case study 2: A comparison of Bayesian vs. COGs

methodologies to estimate the core genome of S.

pneumoniae. We were interested in comparing our Bayesian

model to that of a recently published study that estimated the core

genome among S. pneumoniae using a COGs-based methodology

[19]. Croucher and colleagues generated whole genome sequence

data for 616 pneumococcal carriage isolates collected during three

discrete time periods between 2001–2007 from healthy children ,

5 years of age in Boston, Massachusetts. Putative protein-coding

sequences from all genome assemblies were extracted and grouped

into COGs; COGs present in 100% of genomes in a single copy

were defined as core genes. Overall, the COGs-based method

estimated the size of the core genome in the Massachusetts S.
pneumoniae dataset to include 1194 genes, whereas our Bayesian

analysis of the same dataset estimated 948 core genes. 840 genes

were common to both estimations and 108 and 354 genes were

unique to each methodology (Figure 5A; Table S6).

An explanation for the difference in core genome estimates was

that we set the Genome Comparator analysis to only consider full-

length genes (100% alignment of the putative coding sequence),

whereas partial sequences were included in the COGs-based

methodology. To test this, we reran the Genome Comparator

analysis and lowered the threshold to 90% sequence alignment (i.e.

up to 10% of the sequence could be missing and the gene would

still be included in the estimated core genome). The result was that

the sets of estimated core genes were very similar: 1206 vs. 1194

genes, of which 1027 genes were found in both lists (Figure 5B).

It is useful to note here that the output generated using our

methodology includes a list of the estimated core genes (named

Figure 3. Distribution of core genes and median pairwise distances. Median p-distance plotted against genome position, relative to the
reference genome, for Sp) S. pneumoniae (ATCC700669, 2.2 Mb); Cj) C. jejuni (NCTC11168, 1.64 Mb); Nm) N. meningitidis (FAM18, 2.19 Mb); Sa) S.
aureus (HO5096_0412, 2.83 Mb); and Hp) H. pylori (26695, 1.67 Mb). The length of each line on a genome diagram was scaled according to the
maximum p-distance value calculated for that particular bacterial species. The three outer rings mark the 99th, 95th and 50th percentiles. Median p-
distances above the 95th percentile were coloured red; median p-distances above zero but less than the 95th percentile were coloured blue. The
innermost pair of rings marks the position of genes with a median p-distance of zero.
doi:10.1371/journal.pcbi.1003788.g003

Table 3. Cluster of Orthologous Groups (COG) functional groups for the estimated core genes with p-distances greater than the
95th percentile in the C. jejuni and N. meningitidis genomes.

C. jejuni N. meningitidis

COG functional group no. % no. %

R/S hypothetical proteina 11 25.6 9 24.3

H coenzyme metabolism 8 18.6 7 18.9

J translation 1 2.3 5 13.5

M cell wall membrane envelope biogenesis 4 9.3 4 10.8

E amino acid metabolism and transport 2 4.7 4 10.8

L replication and repair 0 0.0 3 8.1

C energy production and conversion 4 9.3 2 5.4

T signal transduction 1 2.3 1 2.7

F nucleotide metabolism and transport 1 2.3 1 2.7

P inorganic ion transport and metabolism 0 0.0 1 2.7

G carbohydrate metabolism and transport 3 7.0 0 0.0

O post-translational modification, protein turnover, chaperone 3 7.0 0 0.0

I lipid metabolism 2 4.7 0 0.0

D cell cycle control and mitosis 1 2.3 0 0.0

K transcription 1 2.3 0 0.0

N cell motility 1 2.3 0 0.0

Total 43 100 37 100

aIncludes genes in COG categories R (general functional prediction only) and S (function unknown), and genes otherwise annotated as hypothetical proteins.
doi:10.1371/journal.pcbi.1003788.t003
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according to the reference genome), their predicted functions

(including hypothetical proteins) and location in the genome

(relative to the reference genome). The COGs-based analysis

outputs data for COG groups, which requires the user to

undertake additional processing steps to acquire the corresponding

list of gene names, sequences and genome position.

Case study 3: Comparison of the estimated core genome

of specific MRSA CCs and STs. The estimated core genome

for the MRSA dataset derived from the Bayesian model was much

smaller than previous estimates of the number of core genes in S.
aureus/MRSA. Prior estimates of the S. aureus core genome

varied from 1492 to 2266 genes [20–22], whilst the figure we

obtained was only 242 genes. This was due to a number of factors:

i) recently published analyses of larger MRSA genome datasets

were restricted to a single CC, in which case the set of genes in the

estimated core will be larger since the genomes share common

ancestry [20,23,24]; ii) the much larger sample size of our dataset

(534 genomes) in comparison to previous estimates using datasets

of 14–63 MRSA genomes [20–22]; and iii) the exclusion of partial

gene sequences (Table S2) which means we have a very

conservative estimate of the genes found in the MRSA core

genome. To test whether our estimate of a smaller MRSA core

genome may also be associated with major core genome

differences between unrelated CCs, we reanalysed the MRSA

genome data in Genome Comparator by running the two largest

CCs, 5 and 22, individually. The CC-specific data were then

compared with respect to the number of estimated core genes and

the COG functional groups associated with each unique set of core

genes.

CC5 and CC22 were comprised of 207 and 235 genomes,

respectively, in our MRSA dataset. 81% (167/207) of genomes in

CC5 were ST239, a widely-distributed, multidrug-resistant clone

that is among the most common MRSA lineages worldwide

[25,26]. The predominant genotype in CC22 was ST22 (186/235;

79%), also known as EMRSA-15 and responsible for 80% of

healthcare-associated MRSA infection in the UK [27].

Figure 4. Estimated probability density of p-distances for the core gene with the highest median p-distance. Probability distributions
of p-distances for the core gene with the highest median p-distance for: Sp) S. pneumoniae; Cj) C. jejuni; Nm) N. meningitidis; Sa) S. aureus; and Hp) H.
pylori. Gene names are given in the corner of each graph.
doi:10.1371/journal.pcbi.1003788.g004
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Core genomes of 692 and 1114 genes were estimated for CC5

and CC22, respectively, and 396 genes were common to both CCs

(Figure 6; Table S7). A total of 296 genes were defined as core

genes in CC5 but not in CC22: 45% of these were associated with

metabolic functions, 22% with information storage/processing,

12% with cellular processes and signalling, and 21% were poorly

categorised or with unknown function. In contrast, 718 estimated

core genes in CC22 were not part of the core genome of CC5: the

proportions of unique genes associated with metabolism or cellular

processes/signalling were similar to that of CC5, but half as many

were associated with information storage/processing and notably,

over one-third (n = 261) of unique core genes in CC22 were poorly

categorised or with unknown function. Given that CC22 is a

major healthcare-associated MRSA clone, an argument could be

made for identifying and discerning the functions of these unique

core genes.

Discussion

This study exploited the large volume of publicly-available

whole genome sequence data to outline a method for analysing

bacterial genomes in a straightforward way, using web-based tools

and computer programmes that run on modestly-powered

computers. The analyses described here do not require access to

supercomputers. The resulting data can be explored in a

biologically relevant manner and there is flexibility to change

the analysis parameters to suit different datasets and different

questions.

Figure 5. A comparison of the results of two different methodologies for estimating the core genome, using the 616 S. pneumoniae
genomes from Massachusetts [19] as the assessment dataset. Comparison of the number of core genes identified using the Bayesian method
versus the number of core genes identified using the COGs-based method. A) Results obtained using an initial BLAST cut-off of 70% identity and
100% sequence alignment for the Bayesian analysis; and B) Results obtained using an initial BLAST cut-off of 70% identity and 90% sequence
alignment for the Bayesian analysis. *Note that the total includes 10 predicted coding regions that are not in the ATCC 700669 reference genome.
doi:10.1371/journal.pcbi.1003788.g005
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As an example, we defined the core genes from among the coding

loci present at full sequence length so that complete gene sequence

information was included and p-distances could be reliably

calculated. The model is designed to allow for the inclusion of

genes present in ,100% of genomes, which adjusts for arbitrary

contig assembly issues. It is important to note that by excluding

partial genes, many of which will be incomplete due to breaks in

gene sequences based on sequencing technicalities and/or the

genome assembly, the core genome estimates generated using our

model are a conservative estimate for each bacterial species.

However, as we demonstrated, simply lowering the sequence

alignment to ,100% will increase the number of estimated core

genes, which may be appropriate for some datasets and analyses. In

other words, our unit of count was the complete gene, but if the unit

of count was nucleotides or the aim was to generate a list of full plus

incomplete estimated core genes, then including partial sequences

would be appropriate and requires the user to simply lower the

sequence identity threshold in the initial analysis.

Most importantly, the process described here is completely

transparent and the assumptions are easily understood, e.g. a list of

genes is exported that includes the locus name, putative product,

sequence length and genome position, which allows for detailed

user inspection. The initial Genome Comparator output includes

information about which genes are truncated (found at the ends of

contigs) in each query genome and the user should evaluate these

data carefully in conjunction with an assessment of the overall

quality of the genome assemblies and consider whether or not to

explore partial genes as part of a separate analysis. Furthermore, if

a user wished to analyse amino acid sequences as opposed to

nucleotide sequences, this is possible by selecting the appropriate

option at the start of the Genome Comparator analysis; however,

this will also significantly increase the run time and memory

requirements and will become an issue with large genome datasets.

A simpler option would be to convert the aligned nucleotide

sequences for genes of interest into protein sequences after the

Genome Comparator run is completed.

The estimated core genome sizes we obtained using our

Bayesian model were expected to be lower than previous

estimates, since the number of genes common to all genomes in

a dataset decreases as the number of genomes increases, and our

datasets are much larger and more diverse than the great majority

of those previously analysed (see Table S8 for a list of relevant

references). That is not a criticism of the previous studies and the

analyses of small numbers of whole genomes; it is simply an

indication of what data were available at the time each study was

undertaken and how much the genomics field has changed in a

short span of time.

We elected to demonstrate the utility of using this Bayesian

model to determine which core genes are more diverse than

others, but other investigators may wish to focus on the core genes

that are highly conserved in a particular dataset. It is important to

note that there is no one definitive ‘‘core genome’’ – the estimates

of core genes will vary from dataset to dataset and between

different methodologies.

We chose to use a Bayesian model for calculating the core

genome but a frequentist model, based on a hypothesis test, could

also have been applied. The advantage to using a Bayesian model

is that it allows us to formalise the decision rule by a particular

choice of prior. Furthermore, the Bayesian model implemented

here does not account for correlations between the genes and each

gene is considered to be statistically independent of each other;

however, many genes are known (or likely) to be linked and

operate as part of an operon or cassette. A revision of the proposed

model could assess correlations between specific genes and/or

gene regions. Such modifications would be a significant compu-

tational and statistical challenge given the large volume of genome

data one would potentially wish to analyse, but a correlation

model could provide useful biological information from the

sequence data. Moreover, we selected the median as the summary

of the distribution of gene pairwise distances since the underlying

distributions of p-distances are not Gaussian. A better represen-

tation of the underlying probability distributions could be achieved

Figure 6. Comparison of S. aureus clonal complexes CC5 and CC22. Venn diagram of the comparison between the estimated core genes for
CC5 and CC22, along with pie charts showing the COG functional categories associated with the genes that were unique to each dataset.
doi:10.1371/journal.pcbi.1003788.g006
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by considering a number of different percentiles, but for this study

we restricted our analyses to just the median.

Finally, the case studies we highlighted demonstrated how the

data outputs and initial analyses may be used to derive more

focussed analyses on specific genes or gene regions in the genome

and generate new hypotheses to test. The genome diagrams are a

useful way of depicting areas of potential interest in the genome

and the bacterial species we evaluated here presented a huge range

of possibilities for further study, from which we elected to highlight

just a few as examples.

Conclusion
The field of bacterial genomics is advancing rapidly and it is

now possible to generate enormous quantities of sequence data

(albeit currently incomplete) at a low cost; therefore, it is also

essential to find and develop suitable, widely accessible and

inexpensive methods of processing and analysing these data in

order to maximise the utility and benefits of whole genome

sequence data. This model formalises the estimation of the core

bacterial genome as a Bayesian decision problem and the resulting

outputs reveal many areas for further exploration of the bacterial

core genome.

Materials and Methods

Datasets selected for analyses
Complete lists of the bacterial genome data included in this

study, with accession numbers and available metadata (obtained

by consulting the relevant published papers or websites) are listed

in Datasets S1. Publicly-available whole genome sequence data for

H. pylori (N = 107 genomes) and S. aureus (N = 534 genomes)

were collected in two ways: 1) raw sequence trace files from the

ENA were downloaded via an in-house genome assembly pipeline,

assembled using Velvet [28] and uploaded to the rMLST BIGSdb

database [6,29]; and 2) finished reference genomes for each species

were downloaded from GenBank and uploaded to the rMLST

BIGSdb database. Only genomes that were already published in

the scientific literature were included in our analyses. By

comparison to MRSA genomes, few methicillin-susceptible S.
aureus (MSSA) genomes are currently available (27 MSSA

genomes were available at the time of our analysis, 18 of which

were ST398) and thus we restricted the analyses to MRSA

genomes only. Approximately 1000 S. aureus genomes were

publicly available and published at the time, and we aimed to

select a diverse dataset of ,600 genomes such that the final

MRSA dataset was similar in size to the C. jejuni and N.
meningitidis datasets. Many of the available S. aureus genomes

were ST239 or ST22, thus selection proceeded as follows: i) any

non-ST239/ST22 genomes were automatically included; ii)

among the 456 ST239/ST22 genomes available, 167 ST239

and 186 ST22 were selected (duplicates or re-sequenced genomes

were removed); and iii) any genomes that were MSSA or an

unknown ST (n = 54) were subsequently removed.

The Global Historical S. pneumoniae dataset (N = 336 genomes)

included 85 assembled genomes from our previously published

study [30]; sequences for 25 published genomes [31] downloaded

from the ENA and assembled using Velvet; 134 genomes

downloaded from GenBank; and 92 isolates sequenced and

assembled as described in Protocol S1. Raw sequence data for

the 616 pneumococcal genomes comprising the comparison

Massachusetts data set [19] were downloaded from the ENA,

assembled and uploaded to the rMLST BIGSdb database as

described above.

Data for N. meningitidis were collected largely as part of the

Meningitis Research Foundation Meningococcus Genome Library

database (MRF GL; N = 514 genomes) plus 4 additional historical

isolates were included [32]. The C. jejuni isolates included in this

study (N = 601 genomes), all of human origin, were collected at the

John Radcliffe Hospital in Oxford and form part of the

Oxfordshire Human Surveillance collection [7]. Sequence data

for C. jejuni and N. meningitidis can be found on the PubMLST

[33] and rMLST BIGSdb [34] databases.

Sequence types (STs) and clonal complexes (CCs)
STs were assigned to genomes either by retrieving the ST

information from previously published papers or by extracting the

sequences corresponding to the MLST loci and looking up the ST

on the MLST website (S. pneumoniae and S. aureus) [35]. STs

and CCs for N. meningitidis and C. jejuni were extracted from the

relevant BIGSdb databases. All other CCs were defined using

goeBURST [36] and the species-specific MLST databases

downloaded from the MLST website. When goeBurst could not

resolve the group founder, the group was assigned to ‘CC NoneX’

where X is the ST with the lowest numerical value in the group.

When a lack of closely-related STs meant that a CC could not be

assigned, such genomes were named ‘SingletonX’ where X

corresponds to the isolate ST. Table S1 provides a summary of

the STs and CCs included in this study for each bacterial species

apart from H. pylori. Although an MLST scheme is available for

H. pylori, the high genetic diversity of the species means that

virtually every new strain has new alleles and new STs, making the

interpretation of such data difficult and thus we have not defined

STs and CCs for H. pylori.

Genome Comparator analyses and nucleotide sequence
alignments

Genome Comparator is a component of the BIGSdb genome

analysis database and software suite [7]; BIGSdb facilitates whole

genome analysis based on the allelic variation of individual genes.

The BIGSdb Genome Comparator tool allows whole genome

sequence data for one or more genomes to be compared against an

annotated reference genome. The BLASTN parameters selected

used a cut-off of 70% identity over a 100% alignment with a word

size of 15. Potential paralogues were removed from the analyses by

identifying which of the coding loci were found in more than one

copy in any query genome and excluding these sequences from

any further analyses. For each coding locus in the reference

genome, ClustalW [37] sequence alignments were generated for

all of the query genomes containing that particular sequence.

Neighbor-Net diagrams were also created by Genome Compar-

ator as part of its standard analysis and figures were created using

SplitsTree [38].

Definition of the core genome
For each of the collections of bacterial genomes, we have chosen

a reference genome, consisting of a set of K genes g1,:::,gkf g.
Each gene is considered independently during the analysis. Let N

be the number of isolates under consideration. For each isolate,

n~1, . . . ,N, let cn
k~1 if the k-th gene is present in isolate n or

zero if it is not present. Then, for the k-th gene, ck~
P

n cn
k is the

number of times the gene is found in N isolates. We model cn
k as a

sequence of binomial random variables with the probability

parameter hk. Letting p denote a probability density, the

probability of observing the k-th gene ck times in N isolates given

the model parameter hk is:
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p ck Dhkð Þ~ N

ck

� �
h

ck
k 1{hkð ÞN{ck ð1Þ

The above equation, viewed as a function of hk, is the binomial

likelihood function. We specify, for the parameter hk, a prior

probability density p hkð Þ. Then, using Bayes’ rule, we can

compute the posterior density of h conditional on the observed

frequency:

p ck Dhkð Þ!p ckDhkð Þp hkð Þ ð2Þ

If we assume the prior density p hkð Þ to be a beta density with

parameters ak,bkð Þ then we can combine the prior with the

binomial likelihood (1) and use Bayes’ rule (2) to find that the

posterior density is also a beta distribution with parameters

a�k,b�k
� �

[39]. The parameters of the prior ak,bkð Þ are related to

the posterior parameters by a�k~akzck and b�k~bkzN{ck.

Decision rule
The posterior density p hk Dckð Þ represents our uncertainty of the

parameter hk. If the density p hkDckð Þ has a greater value near

hk~1 then we are inclined to believe that the gene is in the core

genome. In light of this observation we introduce the following

decision rule for each gene:

If p hk ckjð Þ~0 at hk~1 then the k-th gene is not in the core ð3Þ

The set of genes not rejected according to (3) can be defined as the

estimated core genome.

Choice of prior
The selection of a prior amounts to specifying our prior belief of

whether a gene is or is not in the core genome. We might also

adopt the belief that we are equally unsure of whether a gene is

present in the core or not. Priors that reflect this type of belief are

known as near ignorance priors [40]. Rather than selecting a near

ignorance prior we argue that a prior should be selected to reflect

the nature of the decision process. Prior to analysing any of the N

isolates we have no reason to believe that any of g1,:::,gKf g is or is

not in the core. As each strain is analysed we accumulate evidence

to suggest that the k-th gene is not a core gene. To reflect this

process we adopt the prior belief that every gene is a core gene and

then attempt to falsify this statement using the decision rule.

Formally, this corresponds to selecting as our prior a beta density

with parameters ak,bkð Þ~ 1,0ð Þ.

Calculating p-distance values and classification of
estimated core genes into functional groups

Custom Perl scripts were used to split the merged sequence

alignment files generated by Genome Comparator into separate

sets of nucleotide sequence alignment files by estimated core

gene, and then the nucleotide distance between each pair of

sequences for each estimated core gene was calculated. We

counted the number of sites at which the nucleotides differed

between each pair of genes. We let pk n,mð Þ be the proportion of

sites that differed between isolate n and isolate m for the k-th

gene in the estimated core. Then for each gene the matrix of

pairwise evolutionary distances Dk was calculated using the

Jukes-Cantor model [41] where the n,mð Þ entry of the matrix Dk

was given by:

Dk n,mð Þ~{
3

4
log 1{

4

3
pk n,mð Þ

� �
ð4Þ

The median p-distance value was then calculated as a summary

statistic for each estimated core gene:

dk~median Dk n,mð Þ; 1ƒn,mƒNf g ð5Þ

For each species we collected the median distances for each gene

in the estimated core. This information was plotted against the

genome position of each gene (relative to the position of that

locus in the reference genome) and depicted in a circular diagram

created using Circos [42]. In addition, the estimated probability

density function of the median pairwise evolutionary distances for

each species, or for individual genes within a species, was plotted

using ksdensity (Kernel smoothing function estimate) [43].

Finally, the COG functional groups of the genes with p-distance

values greater than the 95th percentile were determined using

eggNOG [44].

Computing requirements and open source code
The computationally intensive part of the analysis is the

Genome Comparator run (because it creates sequence

alignments for every gene), but this runs via a publicly-

available web interface on a cluster of servers hosted at the

University of Oxford. Output files are stored for one week on

the server. The Bayesian model for estimating the number of

core genes, the calculation of p-distance values for all

reference genes, creation of the genome diagrams (Figure 3)

and the generation of estimated probability graphs (Figure 4)

can be implemented using freely available scripts written in

the open source R software package [45]. Along with wrapper

scripts that prepare the Genome Comparator outputs and a

detailed manual, the relevant code is available at: https://

sourceforge.net/projects/bayesianestimatedcoregenome/. As

a frame of reference, the Genome Comparator analysis of the

largest dataset, C. jejuni (601 genomes) took 90 hours to run,

including all sequence alignments and generation of the

Neighbor-Net diagram, but the subsequent steps took

approximately 2 hours and can be run on any modestly-

powered computer.

Comparison of core genomes (S. pneumoniae and S.
aureus)

For case studies 2 and 3 the names of the core genes for each of

the datasets included in the comparisons were compared to each

other using the VLOOKUP function in Microsoft Excel, which

matches cells containing the same text (the same reference

genomes were used for each dataset so the gene names were the

same) in order to generate numbers of shared and unique genes.

Functional groups for each of the sets of unique genes were

assigned using eggNOG.
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