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Abstract

Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-
vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the
internal representations of computational models can explain the IT representation. Here we investigate a wide range of
computational model representations (37 in total), testing their categorization performance and their ability to account for
the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX,
VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional
neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the
RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of
stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater
clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT
in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated
between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the
unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-
labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain
the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize
the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully
explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through
supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT.
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Introduction

Visual object recognition is thought to rely on a high-level

representation in the inferior temporal (IT) cortex, which has been

intensively studied in humans and monkeys [1–12]. Object images

that are less distinct in the IT representation are perceived as more

similar by humans [10] and are more frequently confused by

humans [13] and monkeys [6]. IT cortex represents object images

by response patterns that cluster according to conventional

categories [6,7,9,14–16]. The strongest categorical division

appears to be that between animates and inanimates. Within the

animates, faces and bodies form separate sub-clusters [6,7,15].

Previous studies have compared the representational dissimilar-

ity matrices (RDMs) of a small number of models (mainly low-level

models) with human IT and some other brain areas [7,17–19].

One of the previously tested models was the HMAX model

[20,21], which was designed as a model of IT taking many of its

architectural parameters from the neuroscience literature. The

internal representation of one variant of the HMAX model failed

to fully explain the IT representational geometry [7]. In particular,

the HMAX model did not account for the category clustering

observed in the IT representation.

This raises the question if any existing computational vision

models, whether motivated by engineering or neuroscientific

objectives, can more fully explain the IT representation and

account for the IT category clustering. IT clearly represents visual

shape. However, the degree to which categorical divisions and

semantic dimensions are also represented is a matter of debate

[22,23]. If visual features constructed without any knowledge of

either category boundaries or semantic dimensions reproduced the

categorical clusters, then we might think of IT as a purely visual

representation. To the extent that knowledge of categorical

boundaries or semantic dimensions is required to build an IT-

like representation, IT is better conceptualized as a visuo-semantic

representation.

Here we investigate a wide range of computational models [24]

and assess their ability to account for the representational

geometry of primate IT. Our study addresses the question of
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how well computational models from computer vision and

neuroscience can explain the IT representational geometry. In

particular, we investigated whether models not specifically

optimized to distinguish categories can explain IT’s categorical

clusters and whether models trained using supervised learning with

category labels better explain the IT representational geometry.

Evaluating a computational model requires a framework for

relating brain representations and model representations. One

approach is to directly predict the brain responses to a set of

stimuli by means of the computational models. Because of its roots

in the computational neuroscience of early visual areas, this

approach is often referred to as receptive-field modeling. It has

been successfully applied to cell recording, e.g. [25], and fMRI

data, e.g. [26–28]. Here we attempt to test complex network

models whose internal representations comprise many units

(ranging from 99 to 2,904,000). The brain-activity data consist

of hundreds of measured brain responses. In this scenario, the

linear correspondency mapping between model units and brain

responses is complex (a matrix of number of model units by

number of brain responses). Estimating this linear map is

statistically costly, requiring a combination of substantial addi-

tional data (for a separate set of stimuli) and prior assumptions (for

regularizing the fit). Here we avoid these complications by testing

the models in the framework of representational similarity analysis

(RSA) [17,18,29,30], in which brain and model representations

are compared at the level of the dissimilarity structure of the

response patterns. The models, thus, predict the dissimilarities

among the stimuli in the brain representation. This approach

relies on the assumption that the measured responses preserve the

geometry of the neuronal representational space. The represen-

tational geometry would be conserved to high precision if the

measured responses sampled random dimensions of the neuronal

representational space [31,32]. The RSA framework enables us to

test any pre-trained model directly with data from a single stimulus

set.

We tested a total of 37 computational model representations.

Some of the models mimic the structure of the ventral visual

pathway (e.g. HMAX, VisNet, Stable model, SLF) [20,21,33–37];

others are more broadly biologically motivated (e.g. Biotransform,

convolutional network) [38–41]; and the others are well-known

computer-vision models (e.g. GIST, SIFT, PHOG, PHOW, self-

similarity features, geometric blur) [42–48]. Some of the models

use features constructed by engineers without training with natural

images (e.g. GIST, SIFT, PHOG). Others were trained in an

unsupervised fashion (e.g. HMAX and VisNet).

We also tested models that were supervised with category labels.

Two of the models (GMAX and supervised HMAX) [35] were

trained in a supervised fashion to distinguish animates from

inanimates, using 884 training images. In addition, we tested a

deep supervised convolutional neural network [41], trained by

supervision with over a million category-labeled images from

ImageNet [49].

We also attempted to recombine model features, so as to

construct a representation resembling IT in both its categorical

divisions and within-category representational geometry. We

linearly recombined the features in two ways: (a) by reweighting
features (thus stretching and squeezing the representational space

along its original axes) and (b) by remixing the features, creating

new features as linear combinations of the original features (thus

performing general affine transformations). All unsupervised and

supervised training and all reweighting and remixing was based on

sets of images nonoverlapping with the image set used to assess

how well models accounted for IT.

We analyzed brain responses in monkey IT (mIT; cell recording

data acquired by Kiani and colleagues [6]) and human IT (hIT;

fMRI data from [7]) for a rich set of color images of isolated

objects spanning multiple animate and inanimate categories. The

human fMRI measurements covered the entire ventral stream, so

we also tested the models on fMRI data from the foveal confluence

of early visual cortex (EVC), the lateral occipital complex (LOC),

the fusiform face area (FFA), and the parahippocampal place area

(PPA).

Internal representations of the HMAX model (the C2 stage) and

several computer-vision models performed well on EVC. Most of

the models captured some component of the representational

dissimilarity structure in IT and other visual regions. Several

models clustered the human faces, which were mostly frontal and

had a high amount of visual similarity. However, all the

unsupervised models failed to cluster human and animal faces

that were very different in visual appearance in a single face

cluster, as seen for human and monkey IT. The unsupervised

models also failed to replicate IT’s clear animate/inanimate

division. The deep supervised convolutional network better

captured the categorical divisions, but did not fully replicate the

categorical clustering observed in IT. We proceeded to remix the

features of the deep supervised model to emphasize the major

categorical divisions of IT using maximum-margin linear discrim-

inants. In order to construct a representation resembling IT, we

combined these discriminants with the different representational

stages of the deep network, weighting each discriminant and layer

of the deep network so as to best explain the IT representational

geometry. The resulting IT-geometry model, when tested with

crossvalidation to avoid overfitting to the image set, explains our

IT data. Our results suggest that intensive supervised training with

large sets of labeled images might be necessary to model the IT

representational space.

Results

The results for the 37 model representations are presented

separately for two sets of representations. The first set comprises

the not-strongly-supervised representations (Figures 1–5). The

Author Summary

Computers cannot yet recognize objects as well as
humans can. Computer vision might learn from biological
vision. However, neuroscience has yet to explain how
brains recognize objects and must draw from computer
vision for initial computational models. To make progress
with this chicken-and-egg problem, we compared 37
computational model representations to representations
in biological brains. The more similar a model represen-
tation was to the high-level visual brain representation, the
better the model performed at object categorization. Most
models did not come close to explaining the brain
representation, because they missed categorical distinc-
tions between animates and inanimates and between
faces and other objects, which are prominent in primate
brains. A deep neural network model that was trained by
supervision with over a million category-labeled images
and represents the state of the art in computer vision
came closest to explaining the brain representation. Our
brains appear to impose upon the visual input certain
categorical divisions that are important for successful
behavior. Brains might learn these divisions through
evolution and individual experience. Computer vision
similarly requires learning with many labeled images so
as to emphasize the right categorical divisions.

Deep Supervised Model Explains IT
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Figure 1. Representational dissimilarity matrices for IT and for the seven best-fitting not-strongly-supervised models. The IT RDMs
(black frames) for human (A) and monkey (B) and the seven most highly correlated model RDMs (excluding the representations in the strongly
supervised deep convolutional network). The model RDMs are ordered from left to right and top to bottom by their correlation with the respective IT
RDM. These are the seven most higly correlated RDMs among the 27 models that were not strongly supervised and their combination model
(combi27). Biologically motivated models are in black, computer-vision models are in gray. The number below each RDM is the Kendall tA correlation
coefficient between the model RDM and the respective IT RDM. All correlations are statistically significant. For statistical inference, see Figure 2. For
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second set comprises the layers of a strongly supervised deep

convolutional network and an IT-like representation constructed

by remixing and reweighting the features of the deep supervised

model (Figures 6–10). The not-strongly-supervised set (Table 1)

includes two supervised models: GMAX and Supervised HMAX

(Materials and Methods). These were supervised much more

weakly than the deep convolutional network, using merely

hundreds of images. The deep convolutional network (Table 2)

was supervised with 1.2 million category-labeled images. Note that

the first set contains many independent model representations,

whereas the second set contains the stages of a single deep strongly

supervised object-vision model.

Most models explain a small component of the IT
representational geometry

Among the not-strongly-supervised models, the seven models

with the highest RDM correlations with hIT and mIT are shown

in Figure 1 (for other brain regions, see Figure S1 and Table 1).

Visual inspection suggests that the models capture the human-face

cluster, which is also prevalent in IT. However, the models do not

appear to place human and animal faces in a single cluster. In

addition, the inanimate objects appear less clustered in the models.

All models shown in Figure 1 have small, but highly significant

(p,0.0001) RDM correlations with hIT and mIT (Figure 1A, 1B,

respectively; for RDM correlation with other brain regions see

Figure S2 for the not-strongly-supervised models, and Figure S3

for the deep supervised model representations). Most of the other

not-strongly-supervised models also have significant RDM corre-

lations (Table 1, Figure 2; inference by randomization of stimulus

labels). Although often significant, all RDM correlations between

not-strongly-supervised models and IT were small (Kendall tA,

0.17 for hIT; tA,0.26 for mIT).

Combining features from multiple models improves the
explanation of IT

Combining features from the not-strongly-supervised models

improved the RDM correlations to IT. Model features were

combined by summarizing each model representation by its first

95 principal components and then concatenating these sets of

principal components. This approach ensured that each model

contributed equally to the combination (same number of features

and same total variance contributed).

The combination of the 27 not-strongly-supervised models

(combi27) has a higher RDM correlation with both hIT and mIT

than any of the 27 contributing models. Second to the combi27

model, internal representations of the HMAX model have the

highest RDM correlation with hIT and mIT. This might reflect

the fact that the architecture and parameters of the HMAX model

closely follow the literature on the primate ventral stream.

In addition to the combi27, we also tested the combination of

untrained models, the combination of unsupervised trained

models, and the combination of weakly supervised trained models

(Figure S4). The combi27 explained IT equally well or better than

other combinations of the not-strongly-supervised models. In the

remaining analyses, we therefore omit the other combinations and

consider the combi27 along with each individual model.

Monkey IT was significantly better explained by the combi27

than by the second best among the not-strongly-supervised models

(HMAX-C2UT; p = 0.02; inference by bootstrap resampling of the

stimulus set [50], not shown). This suggests that the models are

somewhat complementary in explaining the IT features space. For

hIT, the second best model was also a version of HMAX (HMAX-

allUT), but it did not explain hIT significantly worse than combi27

(p = 0.261, not shown).

Model RDM correlations with mIT tended to be higher than

model correlations with the hIT RDM. For example, the

dissimilarity correlation of the combi27 with mIT was 0.25,

whereas for hIT it is 0.17. This difference is statistically significant

(p = 0.001), suggesting that the models were able to better explain

the mIT RDM compared to the hIT RDM. This could be caused

by a lower level of noise in the mIT RDM (estimated from cell-

recording data) than in the hIT RDM (from fMRI data).

None of the not-strongly-supervised models fully
explains the IT data

For the human data we were able to estimate a noise ceiling

[30] (Materials and Methods), indicating the RDM correlation

expected for the true model, given the noise in the data. None of

the 28 not-strongly-supervised models reached the noise ceiling

(Figure 2A). The combi27 representation came closest, but at

tA = 0.17, it was far from the lower bound of the noise ceiling

(tA = 0.26). This indicates that the fMRI data capture a

component of the hIT representation that all the not-strongly-

supervised models leave unexplained. For mIT, we could not

estimate the noise ceiling because we had data from only two

animals.

IT is more categorical than any of the not-strongly-
supervised models

The main categorical divisions observed in IT appear weak or

absent in the best fitting models (Figure 1). To measure the

strength of categorical clustering in each model and brain

representation, we fitted a linear model of category-cluster RDMs

to each model and brain RDM (Materials and Methods, Figure

S5). The fitted models (Figure 3) descriptively visualize the

categorical component of each RDM, summarizing sets of within-

and between-category dissimilarities by their averages. The fits for

several computational models show a strong human-face cluster,

and a weak animate cluster. The human-face cluster is expected

on the basis of the visual similarity of the human-face images (all

frontal aligned human faces of the same approximate size). The

animate cluster could reflect the similar colors and more rounded

shapes shared by the animate objects. However, IT in both human

and monkey exhibits additional categorical clusters that are not

easily accounted for in terms of visual similarity. First, the IT

representation has a strong face cluster that includes human and

animal faces of different species, which differ widely in shape,

color, and pose. Second, the IT representation has an inanimate

cluster, which includes a wide variety of natural and artificial

objects and scenes of totally different visual appearance. These

clusters are largely absent from the not-strongly-supervised models

(Figures 3, S6, S7, S8).

In order to statistically compare the overall strength of

categorical divisions between IT and each of the models, we

computed a categoricality index for each representation. The

categoricality index is the proportion of RDM variance explained

model abbreviations and RDM-correlation p values, see Table 1. For other brain ROIs (i.e. LOC, PPA, FFA, EVC) see Figure S1 and Table 1. The RDMs
here are 96696, including the four stimuli we did not have monkey data for. The corresponding rows and columns are shown in blue in the mIT RDM
and were ignored in the RDM comparisons.
doi:10.1371/journal.pcbi.1003915.g001
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by categorical divisions. The categoricality index is calculated as

the squared correlation between the fitted category-cluster model

(Figure S5) and the RDM it is fitted to (Figure 4). The model

RDMs are noise-less. However, the brain RDMs are affected by

noise, which lowers the categoricality index. To account for the

noise and make the categoricality indices comparable between

models and IT, we added noise matching the noise level of hIT to

the model representations (Materials and Methods). We then

compared the categoricality indices of the 28 not-strongly-

supervised models to that of hIT (Figure 4). Human IT has a

categoricality index of 0.4. All of the not-strongly supervised

models have categoricality indices below 0.16; most of them below

0.1.

Inferential comparisons show that the categoricality index is

significantly higher for hIT than for any of the models (inference

by bootstrap resampling of the image set). We also compared the

categoricality indices between models and IT without equating the

noise levels. In this analysis, the categoricality index reflects the

categoricality of the models without noise. For hIT and mIT, the

noise lowers the categoricality estimate. Nevertheless, the hIT

categoricality index remains significantly greater than that of any

of the models. For mIT, similarly, the categoricality index is

significantly greater than for all but three of the models (Figure

S9).

We also analyzed the clustering strength separately for each of

the categories (Figure S6). For animates, clustering strength was

significant for a few models (Lab joint color histogram, PHOG,

and HMAX-all). For human faces, significant clustering was

observed for several computational models (convNet, bioTrans-

form, dense SIFT, LBP, silhouette image, gist, geometric blur,

local self-similarity descriptor, global self-similarity descriptor,

stable model, HMAX-C1, and combi27). These significant

category clusters reflect the visual similarity of the members of

these categories.

Inferential comparisons of clustering strength between each of

the models and hIT (Figure S8) and mIT (Figure S8) for each of

the categories revealed that IT clusters animates, inanimates, and

faces (including human and animal faces) significantly more

strongly in both species than most of the models (blue bars in

Figures S7 and S8). There are only a few cases, in which a model

clusters one of the categories more strongly than IT.

Remixing and reweighting of the features of the not-
strongly-supervised models does not improve the
explanation of the IT data

The finding that categoricality is stronger in IT than in any of

the models raises the question of what the models are missing. One

possibility is that the models contain all essential nonlinear

features, but in proportions different from IT, thus emphasizing

the features differently in the representational geometry. In that

case reweighting of the features (i.e. stretching and squeezing the

representational space along its original axes) should help

approximate the IT representational geometry.

For example, the representation might contain a feature

perfectly discriminating animates from inanimates. This single

categorical feature would not have been reflected strongly in the

overall RDM if none of the other features emphasized this

categorical division. The influence of such a feature on the overall

representational geometry could be increased either by replicating

the feature in the representation or by amplifying the feature

values. These two alternatives are equivalent in their effects on the

RDM, so we consider only the latter.

Another possibility is that all essential nonlinearities are present,

but the features need to be linearly recombined (i.e. performing

general affine transformations) to approximate the IT represen-

tational geometry. We therefore investigated whether linear

remixing and reweighting of the features of the not-strongly-

supervised models could provide a better explanation of the IT

representational geometry.

Remixing of features. We attempted to create new features

as linear combinations of the original features. The space of all

linear recodings is difficult to search given limited data. We

therefore restricted this analysis to the combi27 features (which

represent a combination of the not-strongly-supervised models)

and attempted to find linear combinations that specifically

emphasize the missing categorical divisions. In order to find such

linear combinations, we trained three linear support vector

machine (SVM) classifiers for body/nonbody, face/non-face,

and animate/inanimate categorization. The SVMs were trained

on a set of 884 labeled images of isolated objects nonoverlapping

with the set of 96 images we had brain data for. We used the

decision-value outputs of the classifiers as new features. The

resulting single-feature RDMs (Figure 5, top; one RDM for each

SVM) are not highly categorical and have only a low correlation

(tA,0.1) with the IT RDMs for human and monkey. This is

consistent with the fact that the combi27 representation does not

perform very well on categorization tasks (Figures 11, S11).

Feature reweighting. Combining the not-strongly-super-

vised models with equal weight in the combi27 representation

improved the explanation of our IT data. We wanted to test

whether appropriate weighting of the not-strongly-supervised

models could further improve the explanation of the IT geometry.

In addition to the 27 not-strongly-supervised models, we included

the combi27 model, and the three categorical SVM discriminants

in the set of representations to be combined. We fitted one weight

for each of these representations (27+1+3 = 31 weights in total), so

as to best explain the hIT RDM (Figure 5, middle row).

Flipping the sign of a feature (weight = 21) has no effect on the

representational distances. We can, thus, consider only positive

weights, without loss of generality. We therefore used a non-

negative-least-squares fitting algorithm [51] to find the non-

negative weights for the models that minimize the sum of squared

deviations between the hIT RDM and the RDM of the weighted

combination of models. The RDM of the weighted combination of

the model features is equivalent to a weighted combination of the

RDMs of the models (Materials and Methods) when squared

Figure 2. The not-strongly-supervised models fail to fully explain the IT data. The bars show the Kendall-tA RDM correlations between the
not-strongly-supervised models and IT for human (A) and monkey (B). The error bars are standard errors of the mean estimated by bootstrap
resampling of the stimuli. Asterisks indicate significant RDM correlations (random permutation test based on 10,000 randomizations of the stimulus
labels; ns: not significant, p,0.05: *, p,0.01: **, p,0.001: ***, p,0.0001: ****). Most models explain a small, but significant portion of the variance of
the IT representational geometry. The noise ceiling (gray bar) indicates the expected correlation of the true model (given the noise in the data). The
upper and lower edges of the gray horizontal bar are upper and lower bound estimates of the maximum correlation any model can achieve given the
noise. None of the not-strongly-supervised models reaches the noise ceiling. The noise ceiling could not be estimated for mIT, because the available
data were from only two animals. Models with the subscript ‘UT’ are unsupervised trained models, models with the subscript ‘ST’ are supervised trained
models, and others without a subscript are untrained models. Note that the supervised models included here were ‘‘weakly supervised’’, i.e. with
small numbers (884) of category-labeled images. Biologically motivated models are set in black font, and computer-vision models are set in gray font.
doi:10.1371/journal.pcbi.1003915.g002
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Euclidean distance is used. We used the squared Euclidean

distance for normalized representational patterns, which is

equivalent to correlation distance, as used throughout this paper.

We therefore applied the nonnegative least-squares algorithm at

the level of the RDMs.

In order to avoid overestimation of the RDM correlation

between the fitted model and hIT due to overfitting to the image

set, we fitted the weights to random subsets of 88 of the 96 images

in a crossvalidation procedure, holding out 8 images on each fold.

We then estimated the representational dissimilarities for the

weighted-combination model for the 8 held-out images. We

repeated this procedure until the entire RDM of 96 by 96 images

was estimated (Figure 5, bottom row, center).

Feature reweighting and remixing did not reproduce the

categorical structure observed in IT (Figure 5, bottom row). In

fact the weighted-combination model did slightly worse than

combi27 at explaining hIT and mIT (tA = 0.13 for hIT, tA = 0.20

for mIT). The lower performance, despite the inclusion of

combi27 as one of the component representations, reflects the

cost of overfitting. However, since we fitted only 31 weights in the

reweighting step, that cost is small. The failure to improve the

explanation of the IT geometry through remixing and reweight-

ing, thus, suggests that the not-strongly-supervised models are

missing features important to the IT representational geometry.

Different nonlinear features and more powerful supervised

learning methods may be needed to fully capture the structure

of the IT representation. We therefore next tested a deep

supervised convolutional neural network [52].

A strongly supervised deep convolutional network better
explains the IT data

So far, we showed that none of the not-strongly-supervised

models were able to reproduce the categorical structure present in

IT. Most of these models were untrained or trained without

supervision. A few of them were weakly supervised (i.e. supervised

with merely 884 training images). Their failure at explaining our

IT data suggests that computational features trained to cluster the

categories through supervised learning with many labeled images

might be needed to explain the IT representational geometry. We

therefore tested a deep convolutional neural network trained with

Figure 3. IT-like categorical structure is not apparent in any of the not-strongly-supervised models. Brain and model RDMs are shown in
the left columns of each panel. We used a linear combination of category-cluster RDMs (Figure S5) to model the categorical structure (least-squares
fit). The categories modeled were animate, inanimate, face, human face, non-human face, body, human body, non-human body, natural inanimates,
and artificial inanimates. The fitted linear-combination of category-cluster RDMs is shown in the middle columns. This descriptive visualization shows
to what extent different categorical divisions are prominent in each RDM. The residual RDMs of the fits are shown in the right column. For statistical
inference, see Figure 4.
doi:10.1371/journal.pcbi.1003915.g003

Figure 4. The not-strongly-supervised models are less categorical than IT. Categoricality was measured using a categoricality index (vertical
axis) for each model and brain RDM. The categoricality index is defined as the proportion of RDM variance explained by the category-cluster model
(Figure S5), i.e. the squared correlation between the fitted category-cluster model and the RDM it is fitted to. Bars show the categoricality index for
each of the not-strongly-supervised models. The blue (gray) line shows the categoricality index for hIT (mIT). Error bars show 95%-confidence
intervals of the categoricality index estimates for the models. The 95%-confidence intervals for hIT and mIT are shown by the blue and gray shaded
regions, respectively. Significant categoricality indices are marked by stars underneath the bars (* p,0.05, ** p,0.01, *** p,0.001, **** p,0.0001).
Error bars are based on bootstrapping of the stimulus set, and the p-values are obtained by category label randomization test. Significant differences
between the categoricality indices of each model and hIT (inference by bootstrap resampling of the stimuli) are indicated by blue vertical arrows (p,
0.05, Bonferroni-adjusted for 28 tests). The corresponding inferential comparisons for mIT are indicated by gray vertical arrows. Categoricality is
significantly greater in hIT and mIT than in any of the 28 models. This analysis is based on equating the noise level in the models with that of hIT
(Materials and Methods). Similar results obtain for a conservative inferential analysis comparing the categoricality of the noise-less models with that
of the noisy estimates for hIT and mIT (Figure S9).
doi:10.1371/journal.pcbi.1003915.g004
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Figure 5. Remixing and reweighting features of the not-strongly supervised models does not explain IT. In order to build an IT-like
representation, we attempted to remix the features to strengthen relevant categorical divisions. We trained three linear SVM classifiers (for animate/
inanimate, face/nonface, and body/nonbody) on the combi27 features using 884 training images (separate from the set we had brain data for). RDMs

Deep Supervised Model Explains IT
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1.2 million labelled images [52], nonoverlapping with the set of 96

images used here. The model has eight layers. The RDM for each

of the layers and the RDM correlations with hIT and mIT are

shown in Figure 6. The deep supervised convolutional network

explains the IT geometry better than any of the not-strongly-

supervised models. The RDM correlation between hIT and the

deep convolutional network’s best-performing layer (layer 7) is

tA = 0.24. Layer 7 explains the hIT representation significantly

better (p,0.05; obtained by bootstrap resampling of the stimulus

set) than combi27 (tA = 0.17), the best-performing of the not-

strongly-supervised models. Monkey IT, as well, is better

explained by layer 7 (tA = 0.29) than by combi27 (tA = 0.25),

although the difference is not significant.

Layer 7 is the deep network’s highest continuous representa-

tional space, followed only by the readout layer (layer 8, also

known as the ‘‘scores’’). The readout layer is composed of 1000

features, one for each of the 1000 category labels used in training

the network. The readout layer has a lower RDM correlation with

hIT (tA = 0.13) and mIT (tA = 0.18) than layer 7.

From layer 1 to layer 7 the RDM correlation with IT rises roughly

monotonically (Figure 7, Table 2) and many of the pairwise

comparisons between RDM correlations for higher and lower layers

are significant (Figure 7, horizontal lines at the top). Nevertheless,

even the best-performing layer 7 does not reach the noise ceiling

(Figure 7). Although the deep convolutional network outperforms all

not-strongly-supervised models, it does not fully explain our IT data.

for the resulting SVM decision values for the 92 images presented to humans and monkeys are shown at the top. The Kendall-tA RDM correlations
with hIT and mIT are stated underneath the RDMs. The RDM correlations are low, but all three are statistically significant (p,0.05). We further
attempted to create an IT-like representation as a reweighted combination of the models. We fitted one weight for each of the 27 not-strongly-
supervised models, the combi27 model, and the three SVM decision values. The weights were fitted by non-negative least squares, so as to minimize
the sum of squared deviations between the RDM of the weighted combination of the features and the hIT RDM. The resulting weights are shown in
the second row. Error bars indicate 95%-confidence intervals obtained by bootstrap resampling of the stimulus set. The resulting IT-geometry-
supervised RDM is shown at the bottom (center) in juxtaposition to hIT (left) and mIT (right). Importantly, the RDM was obtained by cross-validation
to avoid overfitting to the image set (Materials and Methods). The RDMs here are 92692, excluding the four stimuli that we did not have monkey
data for.
doi:10.1371/journal.pcbi.1003915.g005

Figure 6. RDMs of all layers of the strongly supervised deep convolutional network. RDMs for all layers of the deep convolutional network
(Krizhevsky et al. 2012) ref [41] are shown for the set of the 96 images (L1: layer 1 to L7: layer 7). Kendall-tA RDM correlations of the models with hIT
and mIT are stated underneath each RDM. All correlations are statistically significant. For inferential comparisons to IT and other regions, see Figure 7
and Table 2, respectively.
doi:10.1371/journal.pcbi.1003915.g006
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Figure 7. The strongly supervised deep network, with features remixed and reweighted, fully explains the IT data. The bars show the
Kendall-tA RDM correlations between the layers of the strongly supervised deep convolutional network and human IT. The error bars are standard
errors of the mean estimated by bootstrap resampling of the stimuli. Asterisks indicate significant RDM correlations (random permutation test based
on 10,000 randomizations of the stimulus labels; p,0.05: *, p,0.01: **, p,0.001: ***, p,0.0001: ****). As we ascend the layers of the deep network,
model RDMs explain increasing proportions of the variance of the hIT RDM. The noise ceiling (gray bar) indicates the expected correlation of the true
model (given the noise in the data). The upper and lower edges of the gray horizontal bar are upper and lower bound estimates of the maximum
correlation any model can achieve given the noise. None of the layers of the deep network reaches the noise ceiling. However, the final fully
connected layers 6 and 7 come close to the ceiling. Remixing the features of layer 7 (Figure 10) using linear SVMs to strengthen the categorical
divisions, provides a representation composed of three discriminants (animate/inanimate, face/nonface, and body/nonbody) that reaches the noise
ceiling. Reweighting the model layers and the three discriminants (see Figure 10 for details) yields a representation that explains the hIT geometry
even better. A horizontal line over two bars indicates that the two models perform significantly differently (inference by bootstrap resampling of the
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As for the not-strongly-supervised models, we analyzed the

categoricality of the layers of the deep supervised model (Figures 8,

9). All layers of the deep supervised model, including layer 7 and

layer 8 (the readout layer), have significantly lower categoricality

indices than hIT and mIT (Figure 9). This might reflect the fact

that the stimulus set was equally divided into animates and

inanimates and this division, thus, strongly influences our

categoricality index. Importantly, the deep supervised network

emphasizes some categorical divisions more strongly and others

less strongly than IT (Figure 8). For example, layer 7 emphasizes

the division between human and animal faces and the division

between artificial and natural inanimate objects more strongly

than IT. However, IT emphasizes the animate/inanimate and the

face/body division more strongly than layer 7.

stimulus set). Multiple testing across the many pairwise comparisons is accounted for by controlling the expected FDR at 0.05. The pairwise statistical
comparisons show that the IT-geometry-supervised deep model explains IT significantly better than all other candidate representations.
doi:10.1371/journal.pcbi.1003915.g007

Figure 8. IT-like categorical structure emerges across the layers of the deep supervised model, culminating in the IT-geometry-
supervised layer. Descriptive category-clustering analysis as in Figure 3, but for the deep supervised network. We used a linear combination of
category-cluster RDMs (Figure S5) to model the categorical structure. The fitted linear-combination of category-cluster RDMs is shown in the middle
columns. This descriptive visualization shows to what extent different categorical divisions are prominent in each layer of the deep supervised model.
The layers show some of the categorical divisions emerging. However, remixing of the features (linear SVM readout) is required to emphasize the
categorical divisions to a degree that is similar to IT. The final IT-geometry-supervised layer (weighted combination of layers and SVM discriminants)
has a categorical structure that is very similar to IT. Overfitting to the image set was avoided by crossvalidation. For statistical inference, see Figure 9.
doi:10.1371/journal.pcbi.1003915.g008
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Remixing and reweighting of the deep supervised
features fully explains the IT data

We have seen that the deep supervised model provides better

separation of the categories than the not-strongly-supervised

models and that it also better explains IT. However, it did not

reach the noise ceiling. As for the not-strongly-supervised models,

we therefore asked whether remixing the features linearly (by

adding linear readout features emphasizing the right categorical

divisions) and reweighting of the different layers and readout

features could provide a better model of the IT representation.

The method for remixing and reweighting was exactly the same

as for the not-strongly-supervised models (Figure 5). However, the

linear SVM features were based on layer 7 (instead of combi27)

and the reweighting involved fitting one weight for each of the

layers (1–8) and one weight for each of the three linear SVM

features.

As before, the linear SVM features were trained for body/

nonbody, face/non-face, and animate/inanimate categorization

using the nonoverlapping set of 884 training images. The RDMs

for the SVM readout features show strong categorical divisions

(Figure 10, top row). This is consistent with the fact that the layer-

7 representation performs well on categorization tasks (Figures 11,

S11).

As before, we used non-negative least square fitting to find the

weighted combination of the representations that best approxi-

mates hIT. Again, we avoided overfitting to the image set by

fitting the weights to random subsets of 88 of the 96 images in a

crossvalidation procedure, holding out 8 images on each fold.

This procedure yielded a weight for each of the eight layers of the

deep network and for each of the three linear SVM readout

features (11 weights in total; Figure 10, middle row; Materials

and Methods).

We refer to this weighted combination as the IT-geometry-

supervised deep model. Inspecting the RDM reveals the similarity

of its representational geometry to hIT and mIT (Figure 10,

bottom row). The model emphasizes the major categorical

divisions similarly to IT (Figure 8, bottom right). In contrast to

all other models, this model has a categoricality index matching

mIT and not significantly different from either mIT or hIT

(Figure 9). The IT-geometry-supervised deep model explains hIT

better than any layer of the deep network (Figure 7, horizontal

lines at the top). It has the highest RDM correlation with hIT

(tA = 0.38) and mIT (tA = 0.4) among all model representations

considered in this paper. Importantly, it falls well within the upper

and lower bounds of the noise ceiling and, thus, fully explains the

non-noise component of our hIT data.

Model representations more similar to IT categorize
better

Figure 11 shows the animate/inanimate categorization accura-

cy of linear SVM classifiers taking each of the model represen-

tations as their input (for the face/body dichotomy and the

artificial/natural dichotomy among inanimates, see Figure S11).

The categorization accuracy for each model was estimated by 12-

fold crossvalidation of the 96 stimuli (Materials and Methods). The

deep convolutional network model (layer 7) has the highest

Figure 9. The layers of the deep supervised model are less categorical than IT, but remixing and reweighting achieves IT-level
categoricality. Bars show the categoricality index for each layer of the deep convolutional network and for the IT-geometry-supervised layer. For
conventions and for definition of the categoricality index, see Figure 4. Error bars and shaded regions indicate 95%-confidence intervals. Significant
Categoricality indices are indicated by stars underneath the bars (* p,0.05, ** p,0.01, *** p,0.001, **** p,0.0001). Significant differences between
the categoricality index of each model and the hIT categoricality index are indicated by blue vertical arrows (p,0.05, Bonferroni-adjusted for 9 tests).
The corresponding inferential comparisons for mIT are indicated by gray vertical arrows. Categoricality is significantly greater in hIT and mIT than in
any of the internal layers of the deep convolutional network. However, the IT-geometry-supervised layer (remixed and reweighted) achieves a
categoricality similar to (and not significantly different from) IT. This analysis is based on equating the noise level in the models with that of hIT
(Materials and Methods). Similar results obtain for a conservative inferential analysis comparing the categoricality of the noise-less models with that
of the noisy estimates for hIT and mIT (Figure S10).
doi:10.1371/journal.pcbi.1003915.g009
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Figure 10. Remixing and reweighting features of the deep supervised network achieves an IT-like representational geometry. All
analyses and conventions here are analogous to Figure 5, but applied to the strongly supervised deep convolutional network, rather than to the not-
strongly supervised models. Remixing the features of layer 7 by fitting linear SVMs (separate set of training images) for the major categorical divisions
(animate/inanimate, face/nonface, and body/nonbody) helped account for the categorical clusters in IT. The Kendall-tA RDM correlations between the
SVM decision values and IT (stated underneath the RDMs in the top row) are statistically significant (p,0.05). For the deep convolutional network
used here, feature remixing accounted for the animate/inanimate division of IT. We attempted to create an IT-like representation as a reweighted
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animate/inanimate categorization performance (96%), and the

combi27 has the second highest performance (76%).

Figure 12 shows that models whose representations were more

similar to IT tended to have a higher animate/inanimate

categorization performance. The Pearson correlation between

the IT-to-model representational similarity (tA RDM correlation)

and categorization accuracy was 0.75 for hIT and 0.68 for mIT

across the 28 not-strongly-supervised model representations and

the seven layers of the deep supervised model. This finding could

simply reflect the fact that the categories correspond to clusters in

the IT representation and any representation clustering the

categories will be well-suited for categorization. Indeed categori-

zation performance is also predicted by the RDM correlation

between a model and an animate-inanimate categorical RDM,

albeit with a lower correlation coefficient (r = 0.38, not shown).

In order to further assess whether it was only the category

clustering that predicted categorization accuracy or something

deeper about the similarity of the model representation to IT, we

considered the within-category dissimilarity correlation between

each model and IT as a predictor of categorization accuracy.

Models that were more similar to IT in terms of their within-

category representational geometry (dissimilarities among ani-

mates and dissimilarities among inanimates) also tended to have

higher categorization performance (Pearson r = 0.45 for hIT,

r = 0.67 for mIT; p,0.01, p,0.0001, respectively).

These results may add to the motivation for computer vision to

learn from biological vision. If computational feature spaces more

similar to the IT representation yield better categorization

performance within the present set of models, then it might be a

good strategy for computer vision to seek to construct features

even more similar to IT.

Several models using Gabor filters and other low-level
features explain human early visual cortex

We could not distinguish early visual areas V1, V2, and V3,

because stimuli were presented foveally in the human fMRI

experiment (2.9u visual angle in diameter, centered on fixation).

Instead we defined an ROI for early visual cortex (EVC), which

covered the foveal confluence of these retinotopic representations.

Several models using Gabor filters (SIFT, gist, PHOG, HMAX,

ConvNet) and other features (Geometric blur, local self-similarity

descriptor, global self-similarity descriptor, silhouette image)

explained the early visual RDM estimated from fMRI (Figure

S1A, S2A). These models not only explained significant dissim-

ilarity variance, but reached the noise ceiling, indicating that they

explain the EVC representation to the extent that the noise in our

data enables us to assess this. For the HMAX model (as

implemented by Serre et al. [20]), we tested several internal

representations. The HMAX-C2 layer had the highest RDM

correlation with EVC among all models. The HMAX-C2 layer

falls within the early stages (above S1, C1, and S2 layers, and

below S2b, S3, C2b, C3, and S4 layers) of the HMAX model and

its features closely parallel the initial stages of primate visual

processing. For the deep supervised model, the RDM correlations

of different layers with EVC are shown in Figure S3A. Layers 2

and 3 of the model have the highest RDM correlation with EVC

and reach the noise ceiling. However, their correlation with EVC

is lower than that of the HMAX-C2 layer.

Object-vision models and other brain regions
We also compared the model RDMs with brain areas other

than IT and EVC (i.e. FFA, LOC, and PPA). Figure S2 shows how

well each of the 28 not-strongly-supervised models explained

EVC, FFA, LOC, and PPA. The seven not-strongly-supervised

models with the highest RDM correlations to these brain regions

are shown in Figure S1. Among the not-strongly-supervised

models, the HMAX model showed the highest RDM correlation

with EVC and FFA. Specifically, the HMAX-C2 layer had the

highest RDM correlation with EVC (tA = 0.22) and HMAX-all

had the highest RDM correlation with the FFA (tA = 0.13). The

combi27 model had the highest RDM correlation with LOC and

PPA (tA = 0.14 and tA = 0.03, respectively).

For the deep supervised model, Figure S3 shows how well

different layers explain EVC, FFA, LOC, and PPA. Layers 2 and

3 reached the noise ceiling for EVC. Subsequent layers along the

deep network’s processing stream exhibited decreasing RDM

correlations with EVC and increasing RDM correlations with

LOC. Layer 7 gets closest to the LOC noise ceiling, but does not

reach it. For FFA, however, layer 6 reaches the noise ceiling.

PPA exhibited the lowest RDM correlations with the models,

including both the not-strongly-supervised and the deep supervised

representations. The only model with a significant RDM correlation

with PPA was combi27 (tA = 0.034, p,0.001; Table 1), which was

far below the noise ceiling. This somewhat puzzling result might

reflect a limitation of our stimulus set for investigating PPA. Konkle

and Oliva [53] have shown that a bilateral parahippocampal region

that overlaps with PPA responds more strongly to objects that are

big than to objects that are small in the real world. Our stimulus set

included a limited set of place and scene images and mostly objects

that are small in the real world.

Materials and Methods

Object-vision models
We used a wide range of computational models to explore many

different ways for extracting visual features. We selected some of

the well-known biologically motivated object recognition models

as well as several models and feature extractors from computer

vision. Some of the models need a training phase (these are shown

by a subscript –either ‘ST’ for supervised trained, or ‘UT’ for

unsupervised trained) and some others do not (models without any

subscript).

For the models with a training phase, we used a new set of 884

training images. Half of the images were animates and the other

half were inanimates. Then, all models were tested using the

testing stimuli (the set of 96 images). In the training set –similar to

the testing set– animate images had subcategories of human/

animal faces and human/animal bodies. Inanimate images had

subcategories of artificial and natural inanimates.

Below is a description for all models used in this study (see [24]

for a more comprehensive explanation of the models). For those

combination of the layers of the deep network and the SVM decision values. We fitted one weight for each of the layers and one weight for each of
the three decision values. The bar graph in the middle row shows the weights, with 95%-confidence intervals obtained by bootstrap resampling of
the stimulus set. As before, the weights were fitted using non-negative least squares to minimize the sum of squared deviations between the RDM of
the weighted combination and the hIT RDM. The resulting IT-geometry-supervised RDM (bottom row, center) is very similar to the RDMs of hIT (left)
and mIT (right). The tA RDM correlation between the fitted model and IT is about equal for monkey IT (0.40) and human IT (0.38). Both of these RDM
correlations are higher than the RDM correlation between hIT and mIT, reflecting the effect of noise on the empirical RDM estimates. As in Figure 5,
the fitted model RDM was obtained by cross-validation to avoid overfitting to the image set.
doi:10.1371/journal.pcbi.1003915.g010
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models that the code was freely available online, we have provided

the link.

Stimulus image (Lab). Lab color space approximates a

linear representation of human perceptual color space. Each Lab

image was obtained by transferring the color image (1756175)

from RGB color space to the Lab color space. Then, the image

was converted to a pixel vector with the length of 175617563.

Color set (Lab joint histogram). First, images (1756175)

were transferred from RGB color space to Lab color space. Then,

the three Lab dimensions were divided into 6 bins of equal width.

The joint histogram was computed by counting the number of

figure pixels falling into each of the 66666 bins. Finally, the

obtained lab joint histogram was converted to a vector with the

length of 66666.

Radon. The Radon transform of an image is a matrix, in

which each column corresponds to a set of integrals of the image

intensities along parallel lines of a given angle. The Matlab

function Radon was used to compute the Radon transform for

each luminance image.

Silhouette image. All RGB color images were converted to

binary silhouette images by setting all background pixels to 0 and

all figure pixels to 1. Each image was then converted to a vector

with the length of 1756175.

Unsupervised convolutional network. A hierarchical ar-

chitecture of two stages of feature extraction, each of which is

formed by random convolutional filters and subsampling layers

[39]. Convolutional layers scan the input image inside their

receptive field. Receptive Fields (RFs) of convolutional layers get

their input from various places on the input image, and RFs with

identical weights make a unit. The outputs of each unit make a

feature map. Convolutional layers are then followed by subsam-

pling layers that perform a local averaging and subsampling,

which make the feature maps invariant to small shifts [40]. The

convolutional network which we used had two stages of

unsupervised random filters, that is shown by RR in table 1 in

Jarret et al. (2009) [39]. The obtained result for each image was

then vectorized. The parameters were exactly the same as used in

[39] (http://koray.kavukcuoglu.org/code.html).

Deep supervised convolutional network. This is a super-

vised convolutional neural network, trained with 1.2 million

labelled images from ImageNet (1000 category labels) [52]. The

network has 8 layers: 5 convolutional layers, followed by 3 fully

connected layers. The output of the last layer is a distribution over

the 1000 class labels. This is the result of applying a 1000-way

softmax on the output of the last fully connected layer [54]

[http://caffe.berkeleyvision.org/ (Caffe: Convolutional Architec-

ture for Fast Feature Embedding)].

Biological Transform (BT). BT is a hierarchical transform

based on local spatial frequency analysis of oriented segments.

This transform has two stages, each of which has an edge detector

followed by an interval detector [38]. The edge detector consists of

a bar edge filter and a box filter. For a given interval I and angle h,

Figure 11. Animate/inanimate categorization accuracy for all models. Each dark blue bar shows the categorization accuracy of a linear SVM
applied to one of the computational model representations. Categorization accuracy for each model was estimated by 12-fold crossvalidation on the
96 stimuli. To assess whether categorization accuracy was above chance level, we performed a permutation test, in which we retrained the SVMs on
(category-orthogonalized) 10,000 random dichotomies among the stimuli. Light blue bars show the average model categorization accuracy for
random label permutations. Categorization performance was significantly greater than chance for most models (* p,0.05, ** p,0.01, *** p,0.001,
**** p,0.0001). The deep convolutional network model (final fully connected layer 7) has the highest animate/inanimate categorization performance
(96%). The combi27 has the second highest performance (76%).
doi:10.1371/journal.pcbi.1003915.g011
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the interval detector finds edges that have angle h and are

separated by an interval I. In the first stage, for any given h and I,

all pixels of the filtered image were summed and then normalized

by the squared sum of the input. They were then rectified by the

Heaviside function. The second stage was the same as the first

stage, except that in the first stage h was changing between 0–180u
and I between 100–700 pixels and the input to the first stage had

not a periodic boundary condition on the h axis (repeating the

right-hand side of the image to the left of the image and vice

versa); but in the second stage the input, which is the output of the

first stage, was given a periodic boundary condition on the h axis,

and I was changing between 15–85 pixels.

Gist. Each image was divided into 16 bins, and then oriented

Gabor filters (in 8 orientations) were applied over different scales (4

scales) in each bin. Finally, the average filter energy in each bin

was calculated [42,55]. Then each obtained image was converted

to a vector of length (86868). The code is available from here:

http://people.csail.mit.edu/torralba/code/spatialenvelope/

Geometric Blur (GB). 289 uniformly distributed points were

selected on each image, then the Geometric Blur descriptors [56–

58] were calculated by applying spatially varying blur around the

feature points. We used GB features that were part of multiple

kernels for image classification described in [59](http://www.

robots.ox.ac.uk/,vgg/software/MKL/#download). The blur

parameters were set to a= 0.5 and b= 1; the number of

descriptors was set to 300.

Dense SIFT. For each grayscale image, SIFT descriptors [60]

of 16616 pixel patches were sampled uniformly on a regular grid.

Then, all the descriptors were concatenated in a vector as the

SIFT representation of that image. We used the dense SIFT

descriptors that were used in [44] to extract PHOW features,

described below.

Pyramid Histogram of Visual Words (PHOWUT). Dense

SIFT descriptors were calculated for each image and then

quantized using k-means clustering to form a visual vocabulary.

A spatial pyramid of three levels was then created and the

Figure 12. Model representations resembling IT afford better categorization accuracy. A model’s IT-resemblance (measured by the RDM
correlation between IT and model) predicts its categorization accuracy (animate/inanimate). This holds for both human-IT resemblance (top) and
monkey-IT resemblance (bottom). The substantial positive correlation between IT-resemblance and categorization accuracy could reflect the
categorical clustering of IT (left panels). However, the within-category RDM correlation between a model and IT also predicts model categorization
accuracy (right panels). Each panel shows the least-squares fit (gray line) and the Spearman rank correlation r (* p,0.05, ** p,0.01, *** p,0.001,
**** p,0.0001). Each circle shows one of the models. Numbers indicate the model (see Table 1 for model numbering). Different layers of the deep
supervised convolutional network are indicated by colored labels ‘‘L1’’ (layer 1) to ‘‘L7’’ (layer 7). The deep model’s layers are color-coded from light
blue to light red (from lower to higher layers). Computer vision models are shown by gray circles; biologically motivated models are shown by black
circles. The transparent horizontal and vertical rectangles cover non-significant ranges along each axis.
doi:10.1371/journal.pcbi.1003915.g012
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histogram of SIFT visual words was calculated for each bin. The

concatenation of all histograms was used as the PHOW

representation of that image [44]. We used the implementation

available online(http://www.cs.unc.edu/,lazebnik/research/

spatial_pyramid_code.zip). The dictionary size was fixed to 200

and the number of spatial pyramid levels was fixed to three.

Pyramid Histogram of Gradients (PHOG). The canny

edge detector was applied on grayscale images, and then a spatial

pyramid was created with four levels [45]. The histogram of

orientation gradients was calculated for all bins in each level. All

histograms were then concatenated to create PHOG representation

of the input image. We used Matlab implementation that was freely

available online (http://www.robots.ox.ac.uk/,vgg/research/

caltech/phog.html). Number of quantization bins was set to forty,

number of pyramid levels to four and the angular range to 360u.
VisNet UT. VisNet is a hierarchical model of ventral visual

pathway for invariant object recognition that has four successive

layers of self-organizing maps. Neurons which are higher in the

hierarchy have larger receptive fields. Each layer in the model

corresponds to a specific area of the primate ventral visual

pathway in terms of the size of its receptive fields [34,61]. The

model was trained with trace learning rule [62]. The learning rate

was set to 0.1 and number of epochs in each of the four layers was

fixed to 100. Finally the representation of the last layer was

vectorized and used as VisNet features.

Local self-similarity descriptor (ssim). This is a descriptor

that is not directly based on the image appearance; instead, it is

based on the correlation surface of local self-similarities. For

computing local self-similarity features at a specific point on the

image, say p, a local internal correlation surface can be created

around p by correlating the image patch centred at p to its

immediate neighbours [46,63]. We used the code available for

ssim features that were part of multiple kernels for image

classification described in [59](http://www.robots.ox.ac.uk/

,vgg/software/SelfSimilarity/). The ssim descriptors were com-

puted uniformly at every five pixels in both X and Y directions.

Global self-similarity descriptor (gssim). This descriptor

is an extension of the local self-similarity descriptor mentioned

above. Gssim uses self-similarity globally to capture the spatial

arrangements of self-similarity and long range similarities within

the entire image [47]. We used gssim Matlab implementation

available online(http://www.vision.ee.ethz.ch/,calvin/software.

html). Number of clusters for the patch prototype codebook was

set to 400, with 20000 patches to be clustered. D1 and D2 for the

self-similarity hypercube were both set to 10.

Local Binary Patterns (LBP). Local binary patterns are

usually used in texture categorization. The underlying idea of LBP

is that a 2-dimensional surface can be described by two

complementary measures: local spatial patterns and gray scale

contrast. For a given pixel, LBP descriptor gives binary labels to

surrounding pixels by thresholding the difference between the

intensity value of the pixel in the center and the surrounding pixels

[48,64,65]. We used LBP Matlab implementation freely available

online(http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab).

Number of sampling points was fixed to eight.

V1 model. A population of simple and complex cells were

modelled and were fed by the luminance images as inputs. Gabor

filters of 4 different orientations (0u, 90u, 245u, and 45u) and 12

sizes (7–29 pixels) were used as simple cell receptive fields. Then,

the receptive field of complex cells were modelled by performing

the MAX operation on the neighboring simple cells with similar

orientations. The outputs of all simple and complex cells were

concatenated in a vector as the V1 representational pattern of

each image.

HMAXUT. The HMAX model developed by Serre et al. [20]

has a hierarchical architecture inspired by the well-known simple

to complex cells model of Huble & Wiesel [66,67]. There has been

several extensions to the HMAX model, improving its feature

selection process (e.g. [37]) or adding new processing layers to the

model [68]. The HMAX model that is used here adds three more

layers –ends at S4- on the top of the complex cell outputs of the V1

model described above. The model has alternating S and C layers.

S layers perform a Gaussian-like operation on their inputs, and C

layers perform a max-like operation, which makes the output

invariant to small shifts in scale and position. We used the freely

available version of the HMAX model (http://cbcl.mit.edu/

software-datasets/pnas07/index.html). All simple and complex

layers were included until the S4 layer.

Note: The HMAX model which has been used in [18] was a

pre-trained version of the HMAX model; however, in this study

we have trained the HMAX model using a dataset that contains

442 animate and 442 inanimate objects. So, the obtained RDMs

are different.

Sparse Localized Features (SLFUT). This is a biologically

motivated model based on the HMAX C2 features. The model

introduces sparsified and localized intermediate-level visual

features [33]. We used the Matlab code available for these feature

(http://www.mit.edu/,jmutch/fhlib/); and the default model

parameters were used.

GMAXST. This model is an extension of the HMAX model

C2 features in which authors have used feedback from the

classification layer (analogous to PFC) to extract informative visual

features. Their method uses an optimization algorithm (i.e. genetic

algorithm) to select informative patches from a large pool of

patches [35]. Using genetic algorithm a subset of patches that gives

the best categorization performance is selected. A linear SVM

classifier was used to calculate the categorization performance. In

other words, in the training phase of the model the categorization

performance is used as the fitness function for the genetic

algorithm. To run this model we used the same set of model

parameters suggested in [35]. In the process of finding optimal

patches in the optimization algorithm, we used a random subset of

884 training images described before.

Stable Model UT. This is another biologically motivated

model, which has a hierarchy of simple to complex cells. The

model uses the adaptive resonance theory (ART) mechanism [69]

for extracting informative intermediate level visual features. This

has made the model stable against forgetting previously learned

patterns [36]. Similar to HMAX model it extracts C2-like features,

except that in the training phase it only selects the highest active

C2 units as prototypes that represent the input image. This is done

using top-down connections from C2 layer to C1 layer. The

connections match the C1-like features of the input image to the

prototypes of the C2 layer. The matching degree is controlled by a

vigilance parameter that is fixed separately on a validation set. We

set the model parameters the same as was suggested by authors

except that instead of using all patch sizes, we used patches of size

12 that made the output RDM more correlated with brain RDMs.

It is also shown in [36] that patches of size 12 make the model

more stable. Furthermore when using patches of size 12, the model

performs better in the face/non-face classification task [36].

Supervised HMAXST. We used this approach to remove

non-discriminative patches of the HMAX model. After training

the HMAX model with the training images of animates and

inanimates, extracted patches were divided into two clusters using

k-means clustering. One cluster represented the patches extracted

from animate images, and the other cluster represented the

patches extracted from inanimate images. Then, in order to
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remove the non-discriminative patches (i.e. patches that do not

distinguish between animates and inanimates), those patches that

were extracted from the animate images but fell nearer to the

center of the inanimate cluster were removed. Similarly the

patches that were extracted from the inanimate images but fell

nearer to the center of the animate cluster were removed. The

remaining patches were used for the test phase.

Combination of all not-strongly-supervised models

(combi27). This is the concatenation of features extracted by

all of the above-mentioned models. Given an input stimulus,

features from all of the above-mentioned models were extracted.

Because the dimension for extracted features differs across models,

we used principle component analysis (PCA) to reduce the

dimension of all of them to a unique number. We used the first

95 PCs from each of the models and concatenated them along a

vector (95 was the largest possible number of PCs that we were

able to use, because we had 96 images; so the covariance matrix

has only 95 non-zero eigenvalues). Therefore, combi27 features for

each image is a vector of length 95627 = 2565.

For some of the above-mentioned models that had a hierarchi-

cal architecture, we made an RDM for each of the stages in the

hierarchy, as well as an RDM from the concatenation of the model

representation in all stages.

Fitting of category-cluster RDMs to model and brain
RDMs

Ten category-cluster RDMs (Figure S5) were created as

predictors for a linear model of each RDM. The category clusters

were: animate, inanimate, face, human face, non-human face,

body, human body, non-human body, natural inanimate, and

artificial inanimate. To measure the clustering strength for each of

the categories in each brain and computational-model RDM, we

fit the category-cluster RDMs to each brain and computational-

model RDM minimizing the sum of squared dissimilarity

deviations (Figure 3).

The design matrix for the least-squares fitting was created using

the ten category RDMs (each RDM was vectorized to form a

column in the design matrix) with addition of a constant vector of

1 (confound mean RDM). Then the category model RDMs were

fitted to object-vision model RDMs. Bars in Figure S6 show the

fitted coefficients (Beta values). Standard errors and p values are

based on bootstrapping of the stimulus set. For each bootstrap

sample of the stimulus set, a new instance is generated for the

reference RDM (e.g. hIT RDM) and for each of the candidate

RDMs (e.g. model RDMs). We did stratified resampling, which

means that the proportion of categories was the same across all

bootstrapped resamples. Because bootstrap resampling is resam-

pling with replacement, the same condition can appear multiple

times in a sample. This entails 0 entries (from the diagonal of the

original RDM) in off-diagonal positions of the RDM for a

bootstrap sample. These zeros are treated as missing values and

excluded from the dissimilarities, across which the RDM

correlations are computed. The number of bootstrap resamplings

used in bootstrap tests was 10,000.

Weighting model features
Remixing of features. For the not-strongly-supervised

models as well as the deep supervised model representations, we

attempted to create new features as linear combinations of the

original features that specifically emphasize the missing categorical

divisions. For the not-strongly-supervised models, we used

combi27 features to find these linear combinations. Three linear

support vector machine (SVM) classifiers for body/nonbody, face/

non-face, and animate/inanimate categorization were trained on a

set of 884 labeled images of isolated objects nonoverlapping with

the set of 96 images. We then used the decision-value outputs of

the classifiers as new features. The resulting single-feature RDMs

for the not-strongly-supervised models are shown in Figure 5, top

– one RDM for each SVM. For the deep supervised model, we

used features from layer 7 to find linear combinations that

emphasize the categorical divisions. The resulting single-feature

RDMs for the deep supervised model are shown in Figure 10, top.

Reweighting of features. We tested whether appropriate

weighting of the combination of the original model features and

the new features learned by remixing could further improve the

explanation of the IT geometry. We did the reweighting for both

not-strongly-supervised model features, and deep supervised

model features. For the not-strongly-supervised models, in

addition to the 27 not-strongly-supervised models, we included

the combi27 model and the three categorical SVM discriminants

(learned through remixing) in the set of representations to be

combined. We fitted one weight for each of these representations

(27+1+3 = 31 weights in total), so as to best explain the hIT RDM.

Figure 5, middle row, shows the weights obtained for each of the

model representations. For the deep supervised model represen-

tations, we weighted the combination of all eight layers of the deep

convolutional network and the three categorical SVM discrimi-

nants obtained by remixing the deep supervised features. Please

note that one weight is learned for each layer, and each of the

SVM discriminants (8+3 = 11 weights in total). Figure 10, middle

row, shows the weights obtained for each of the layers of the deep

convolutional network and the SVM discriminants.

We used a non-negative-least-squares fitting algorithm [51] to

find the non-negative weights for the models that minimize the

sum of squared deviations between the hIT RDM and the RDM

of the weighted combination of models.

The RDM of the weighted combination of the model features is

equivalent to a weighted combination of the RDMs of the models

when squared Euclidean distance is used. We used the squared

Euclidean distance for normalized representational patterns,

which is equivalent to correlation distance, as used throughout

this paper. We therefore applied the nonnegative least-squares

algorithm at the level of the RDMs. This procedure is further

explained in the following equations: equations (1) and (2).

Equation (1) states that the squared distance between weighted

model features, equals the weighted squared distance of the

features:

wkfk,l(i){wkfk,l(j)½ �2~ fk,l(i){fk,l(j)½ �2w2
k ð1Þ

Where wk is the weight given to model k. fk,l(i) is the lth feature

extracted by model k for stimulus i.
Equation (2) shows how each of the n model representations are

weighted by minimizing the sum of squared deviations between

the hIT RDM and the RDM of the weighted combination of

model representations.

w~arg min
w[Rzn

X
i=j

d2
i,j{

Xn

k~1

Xmk

l
fk,l(i){fk,l(j)½ �2w2

k

� �2

ð2Þ

Where di,j is the distance between stimuli i,j in the hIT RDM. w is

the weight vector that minimizes the sum of squared errors

between the pairwise dissimilarities of the stimuli in the hIT

representation and the pairwise dissimilarities of the weighted

combination of model features. k changes from 1 to n where n is

the number of model representations to be weighted. mk indicates

the number of features for model k.
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To avoid overfitting to the image set, we fitted the weights to

random subsets of 88 of the 96 images in a crossvalidation

procedure, holding out 8 images on each fold. The representa-

tional dissimilarities for the weighted-combination model was then

estimated for the 8 held-out images. This procedure was repeated

until the pairwise dissimilarities for the entire RDM of 96 by 96

images were estimated.

IT-geometry model
The IT-geometry supervised models (i.e. IT-geometry-super-

vised combi27, and IT-geometry-supervised deep convolutional

network) are made by remixing and reweighting of the model

features. For the IT-geometry-supervised combi27, only the not-

strongly-supervised models were used for remixing and reweight-

ing; and for the IT-geometry-supervised deep convolutional

network, only deep supervised model representations were used

for remixing and reweighting.

For both of them, as explained before in the context of remixing

and reweighting, we trained three SVM classifiers for animate/

inanimate, face/nonface, and body/nonbody classification using

884 training images. The SVM classifiers were then fed with the

96 stimuli and we used the SVM decision values as new features.

The non-negative least square fitting was then used for finding the

optimal weights for different model representations and the SVM

discriminant features so as to minimize the sum of squared errors

between the RDM of the weighted combination of the features

and the hIT RDM.

For making the IT-geometry supervised RDM, which is a

weighted combination of the model representations and the SVM

discriminants, we fit the non-negative weights by cross-validating

the stimulus set. Each time we randomly left out 8 stimuli (4

animates and 4 inanimates) from the set of 96, and learned the

optimal weights over the remaining stimuli (88 images) so as to

minimize the sum of squared errors between the RDM of the

weighted combination of the features and the hIT RDM. Note

that the hIT RDM and the model RDMs become 88688 (not

96696) because 8 stimuli are left out. The obtained weights were

then applied to weight the model feature for the left-out stimuli.

The result is an 868 weighted RDM that shows the pairwise

dissimilarities for the left-out stimuli. This procedure was repeated

for several times until a point that we had the cross-validated

pairwise dissimilarities for all the 96 stimuli.

Categorization performance of models
We calculated the categorization performance of the object-

vision models in the following categorization tasks: animates vs.

inanimates (Figure 11), faces vs. bodies (Figure S11B), and

artificial inanimates vs. natural inanimates (Figure S11A). For

each of the models, a SVM classifier [70] with a linear kernel

was trained using k-fold cross validation (k = 12). The 96 stimuli

were randomly partitioned into k = 12 equal size folds. Of the k
folds, a single fold was retained as the validation data for testing

the model categorization performance, and the remaining k21
folds were used as training data. The cross-validation process

was then repeated k times, with each of the k folds used exactly

once as the validation data. The k results from the folds were

then averaged.

For each of the categorization tasks the SVM was trained in the

following way:

a) For the animate vs. inanimate categorization task, we had 96

stimuli. We left out 8 stimuli (4 animates and 4 inanimates)

that were used as the validation data, and the SVM was

trained using the remaining stimuli.

b) For the face vs. body categorization task, we had 48 stimuli.

We left out 4 stimuli (2 faces and 2 bodies) that were used as

the validation data, and the SVM was trained using the

remaining stimuli.

c) For the artificial vs. natural inanimate categorization task,

again we had 48 stimuli. We left out 4 stimuli (2 artificial and

2 natural inanimates) that were used as the validation data,

and the SVM was trained using the remaining stimuli.

To see if a model categorization performance significantly

differs from chance, we did a permutation test by retraining the

models after category-orthogonalized permutation of labels.

Representational similarity analysis (RSA)
RSA enables us to relate representations obtained from different

modalities (e.g. computational models and fMRI patterns) by

comparing the dissimilarity patterns of the representations. In this

framework representational dissimilarity matrices (RDMs) are

used for making the link between different modalities. RDM is a

square symmetric matrix in which the diagonal entries reflect

comparisons between identical stimuli and are 0, by definition.

Each off-diagonal value indicates the dissimilarity between the

activity patterns associated with two different stimuli. RDM

summarizes the information carried by a given representation

from an area in the brain or a computational model.

We had 96 stimuli, of which half were animates and the other

half were inanimates. To calculate the RDM for a brain region or

a computational model, a 96696 matrix was made in which each

cell was filled with the dissimilarity value between the response

patterns elicited by two stimuli. For each pair of stimuli, the

dissimilarity measure was 1 minus the Pearson correlation between

the response patterns elicited by those stimuli in a brain region or a

computational model.

Kendall tA (tau-a) correlation and noise ceiling
To judge the ability of a model RDM in explaining a brain

RDM, we used Kendall’s rank correlation coefficient tA (which is

the proportion of pairs of values that are consistently ordered in

both variables). When comparing models that predict tied ranks

(e.g. category model RDMs) to models that make more detailed

predictions (e.g. brain RDMs, object-vision model RDMs)

Kendall’s tA correlation is recommended. In these occasions tA

correlation is more likely than the Pearson and Spearman

correlation coefficients to prefer the true model over a simplified

model that predicts tied ranks for a subset of pairs of dissimilarities.

For more information in this regard please refer to the RSA

Toolbox paper [30]. This is the first toolbox to implement RSA. It

is a modular and work-flow based toolbox that supports an

analysis approach that is simultaneously data- and hypothesis-

driven. There are a set of ‘‘Recipe’’ functions in the toolbox that

allow automatic ROI analysis as well as whole-brain searchlight

analysis. Tools for visualization and inference enable the user to

relate sets of models to sets of brain regions and to statistically test

and compare the models using nonparametric inference methods.

Figure 2 shows tA correlation of the hIT/mIT RDM with

model RDMs. To estimate significance, randomization and

bootstrap tests were used. Randomization tests permute the

stimulus labels whereas bootstrap tests bootstrap resample the

conditions set.

The noise in the brain activity data has imposed limitations on

the amount of dissimilarity variance that a model RDM can

explain. Therefore an estimation of noise-ceiling was needed to

indicate how much variance of a brain RDM –given the noise

level– was expected to be explained by an ideal model RDM (i.e. a
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model RDM that is able to perfectly capture the true dissimilarity

structure of the brain RDM).

The noise-ceiling in Figure 2A is shown by a gray horizontal

bar. The upper and lower edges of this bar correspond to upper-

and lower-bound estimates on the group-average correlation with

the RDM predicted by the unknown true model. There is a hard

upper limit to the average correlation with the single-subject

reference-RDM estimates that any RDM can achieve for a given

data set. Intuitively, the RDM maximizing the group-average

correlation lies at the center of the cloud of single-subject RDM

estimates. To find an upper bound, we averaged the rank-

transformed single-subject RDMs and used an iterative procedure

to find the RDM that has the maximum average Kendall’s tA

correlation to the single-subject RDMs. This average RDM can be

thought of as an estimate of the true model’s RDM. This estimate

is overfitted to the single-subject RDMs. Its average correlation

with the latter therefore overestimates the true model’s average

correlation, thus providing an upper bound. To estimate a lower

bound, we employed a leave-one-subject-out approach. We

computed each single-subject RDM’s correlation with the average

of the other subjects’ RDMs. This prevents overfitting and

underestimates the true model’s average correlation because the

amount of data is limited, thus providing a lower bound on the

ceiling. For more information about the noise ceiling please refer

to the toolbox paper [30]. We did not estimate a noise ceiling for

the cell recording data, because our procedure requires several

individuals to be measured and we only had data for two monkeys.

Equating the noise level in the models and the human IT
To compare the categoricality in the models with the

categoricality in human IT, we added Gaussian noise to the

models to equate the level of noise in the models with that of the

fMRI data. To this end, we averaged the pairwise correlation

between the IT RDMs of the four human subjects; let’s denote the

obtained value with ‘q’. Then to add the same amount of noise to

the models, we iteratively and increasingly added noise to the

model outputs until they reach the same level of noise as in human

IT. The procedure for each model was that, we made new

instantiations of that model by adding random Gaussian noise to

the model output. We did this four times for each model, therefore

having four noisy instantiation for each model. Then we made

four model RDMs for each of the noisy model features, and

calculated the mean of their pairwise correlation, which we denote

by ‘qm’. If the obtained mean is equal to the mean of the pairwise

correlation between the four hIT RDMs, denoted by ‘q’, (i.e.

q{qmj jv10{3) we stop the iteration, otherwise the procedure is

repeated and in each iteration the added noise to the model output

is updated. At the end, when the stopping criterion is satisfied, the

four model RDMs are averaged and used as the noise-equated

model RDM.

Stimuli and response measurements
We used the experimental stimuli from Kriegeskorte et al. [7].

The stimuli were 96 images which half were animates and the

other half were inanimates. The animate cluster consisted of faces

and bodies, and the inanimate cluster consisted of natural and

artificial inanimates.

For cell recording data, we had 92 stimuli. To make 92692

RDMs comparable with 96696 RDMs, we made a 96696 RDM

from 92692 RDM by filling the gaps with NaN.

The fMRI and cell recording data, which we used here, have

been previously described and analyzed to address different

questions. See [6,7,18] for further experimental details.

Discussion

Computer vision has made great strides in recent years. Early

attempts to achieve vision by fitting generative graphics models to

images faltered because of the exponential complexity of the

search space. However, computer vision made progress in

practical applications using hand-engineered feedforward features

in combination with machine learning classifiers. In recent years,

the advent of efficient training algorithms for deep neural networks

[40,71,72,41] has made it possible to learn from image data not

just the final classification step, but also the internal representa-

tions. This approach has yielded unprecedented object-recognition

performance, reaching levels comparable to humans on certain

tasks (e.g. [41,73]).

These new deep vision models share certain features, some of

which parallel the primate visual system. First, they are

feedforward hierarchical models: They are composed of a series

of stages of representation, where each stage is computed from

the output of the previous stage. Moderate modifications of this

scheme with bypass connections are also sometimes used. Second,

each stage is composed of features, which are linear filters of the

previous stage followed by a static nonlinearity. The nonlinearity

is key to the representational power of these networks because a

sequence of linear transforms would reduce to a single linear

transformation. Third, they are convolutional [40], computing

each linear feature of the input at all visual-field locations. This

architectural constraint reduces the effective number of param-

eters and automatically confers translation invariance. Fourth,

they compute visually local features with receptive field sizes

increasing from stage to stage, thus gradually transforming a

space-based image-like representation into space-insensitive

shape-based and semantic representation. Fifth, they are deep,

typically including four or more layers of representation. Even

shallow neural networks can approximate any nonlinear mapping

from input to output. However, deep networks can find concise

representations (requiring fewer units) of complex functions. This

is essential to make them realistic in terms of both physical

implementation and learnability [72]. Sixth, they are trained with

many category-labeled example images, typically more than a

million (e.g. [41]).

A few studies have begun to compare recognition performance

and internal representations between these models and primate

IT. These investigations have so far given largely convergent

results. First, models that perform better at object recognition tend

to have representations more similar to IT [74–76]. Second, the

new deep supervised models perform at unprecedented levels at

predicting the IT representation [75–77].

Our exploration here placed deep supervised models in the

context of a wide range of computer-vision features, revealing the

extent to which each of these computational mechanisms can

explain the IT representational geometry in human and monkey.

In addition, we analyzed the degree to which each of the models

emphasizes various categorical divisions. Our results, spanning the

gamut from unsupervised to strongly supervised models, suggest

that strong supervision with many category-labeled images is

essential for building features that explain the IT representational

geometry. The not-strongly-supervised models were significantly

less categorical than IT and this was part of the reason why they

failed to explain the IT representational geometry. In addition, IT

appears to have a particular categorical geometry. This is

consistent with the idea that IT is visuo-semantic, representing

visual features including shape, but also imposing categorical

divisions (or emphasizing semantic dimensions) that are relevant to

the organism’s survival and reproduction.

Deep Supervised Model Explains IT

PLOS Computational Biology | www.ploscompbiol.org 23 November 2014 | Volume 10 | Issue 11 | e1003915



We find strong similarities between the representational

geometries of a deep supervised model and IT (see also [76]).

This is important because it suggests that deep supervised models

capture something essential about the IT representation. Howev-

er, the fact that our IT-geometry-supervised deep representation

fully explains our IT data should not be overinterpreted.

First, these models operate in a feedforward fashion, and do not

capture the recurrent dynamics in the visual hierarchy. This

component of visual processing might be sufficient for ‘‘core object

recognition’’ [78], i.e. rapid recognition at a glance. However,

vision provides us with a much more complex appreciation of our

surroundings and supports a wide array of tasks. Biological vision

involves recurrent processing as well as active exploration of the

scene with attentional shifts and eye movements. In the present

experiments, stimuli were presented for 105 ms (monkeys) and

300 ms (humans) and eye movements and object-related atten-

tional processes were minimized by using fixation tasks. The

experiments were, thus, designed to focus on automatic, task-

independent processing. However, recurrent processing is never-

theless likely to have contributed to the emergence of the IT

representation. Indeed, recent human magnetoencephalography

studies using the same stimulus set [11,12] suggest that the major

categorical divisions take slightly longer to emerge than a purely

feedforward account would predict. This evidence is not

unequivocally localized to IT and thus should be interpreted with

caution. However, the categorical clustering achieved in a purely

feedforward fashion in the deep supervised model considered here

might be achieved with some degree of involvement of recurrent

computations in the brain.

Second, the IT-geometry-supervised model needed to be

explicitly trained to emphasize the same categorical divisions as

IT. The analysis of our human and monkey data in [77] similarly

found that a hierarchical feedforward model optimized for

invariant object recognition could account for the IT representa-

tional geometry only when linear readout features emphasizing the

appropriate categorical divisions were fitted to the data. On the

one hand, our study suggests that visual similarity (as operationa-

lized by the wide range of unsupervised visual features we

investigated) cannot explain the categorical clustering. On the

other hand, it begs the question why IT emphasizes the particular

divisions between faces and bodies and between animates and

inanimates, while deemphasizing other divisions (such as the one

between human and animal faces).

Third, our study is limited by the image set. All objects were

centered on fixation and presented in isolation on a gray

background at the same retinal size. The stimulus set, thus, was

not challenging in terms of position, size, and clutter invariance.

However, the IT representation has been shown to be less sensitive

to changes of position, size, and context than earlier stages of

processing [79]. Cadieu et al. (2014) [76] used an image set with

substantial variations of position, size, and clutter to compare the

representation in the same deep supervised model to monkey-IT

data and found the categorical clustering to be robust to these

variations. Although our image set did not vary position, size, and

clutter, note that it covered a broad range of categories and within

each category, there was substantial variation among the

exemplars in terms of both their intrinsic properties and accidental

properties of their appearance, including pose and lighting. The

wide exemplar variations within broad categories like animates

might present an even more difficult challenge than varying

position and size. The human face photos were mostly frontal and

therefore visually similar (as reflected in the clustering of human

faces in many of the unsupervised feature models). However, the

variation among the animal faces and among the exemplars within

the animate and inanimate categories was substantial. Taken

together, current evidence suggests that the categorical clustering

we observed is not an artefact of the stimulus set.

Finally, our data set was affected by noise and intersubject

variation. The human fMRI data, for which we were able to

compute the noise ceiling, was from 8 sessions (2 sessions in each of

four subjects [7]). The fact that the IT-geometry-supervised deep

model fully explained the representational geometry of IT does not

mean that its representation is identical to IT, but just that given

noise and intersubject variability it is not significantly different.

Future studies should use more comprehensive data sets to reveal

remaining representational discrepancies between IT and deep

supervised models.

What does it mean for a representation to be
‘‘categorical’’ or ‘‘semantic’’?

The IT representation has been described as categorical by

some authors [7] and as a visual shape space by others [23]. How

should a ‘‘categorical’’ representation be defined in this context?

One meaning of categoricality refers to the degree to which

categorical divisions are explicit in the representation. The images

themselves (and their retinal representations) clearly contain

category information. However, this information is not explicit.

Instead it requires a highly nonlinear readout mechanism

commonly referred to as object recognition. An explicit represen-

tation is sometimes defined [78,80] as one that enables linear

readout of the category dichotomy. Since linear readout is a trivial

one-step operation in a biological neuronal network, this definition

of ‘‘explicit’’ is arguably only slightly broader than requiring

single-cell step-like responses encoding the category dichotomy.

Linear discriminability does not require that the categories form

separate clusters in the representational space. A bimodal

distribution in representational space, with two clusters corre-

sponding to the categories and divided by a margin or region of

lower density, could be considered to be an even more explicitly

categorical representation than one that merely enabled linear

readout.

Defining categoricality as the degree to which category

information is explicit (as all the above definitions do) may be

useful in some contexts. However, it misses a crucial point.

Depending on the nature of the images and categories, ‘‘explicit’’

category representations could be observed in: (1) pixel images or

color histograms, (2) simple computational features (e.g. Gabor

filters or gist features), (3) more complex unsupervised features (e.g.

HMAX features). If the features happen to be sufficiently

correlated with a categorical division, these ‘‘visual’’ representa-

tions would be considered explicitly categorical by the above

definitions. This illustrates the difficulty of drawing a clear line

between visual and categorical (or semantic) representations.

We would rather not refer to the representation as ‘‘categorical’’

when the categories are already separated in the distribution of the

sensory input patterns. We therefore suggest a criterion distinct

from category explicitness as the defining property of a categorical

representation. A representation is ‘‘categorical’’ when it affords

better category discriminability than any feature set that can be

learned without category supervision, i.e. when it is designed to

emphasize categorical divisions. A categorical representation in

this sense can be interpreted as serving the function to emphasize

behaviorally relevant categorical divisions or semantic dimensions.

A category is a discrete semantic variable. A semantic

representation could also include continuous variables that

describe visual objects. Categorical clusters in the representational

space do not require discrete categorical variables. A sufficient

prevalence of continuous semantic variables that are correlated
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with a given categorical division could also produce categorical

clusters. Future studies should investigate in greater detail whether

the semantic component of the IT representation is better

accounted for by categorical or continuous semantic dimensions.

The IT representation appears to be both visual and
semantic

Several studies suggested that the IT representation is not purely

visual but also semantic [7,14,22,81]. Our study provides

additional support for this claim by showing that IT exhibits

significantly stronger category clustering than a wide range of

unsupervised models. It is impossible to prove that no visual

feature model built without category-label supervision can explain

the IT representation. However, our current interpretation is that

IT reflects knowledge of category boundaries or semantic

dimensions, and is thus not purely visual.

This finding may appear to contradict a previous study

suggesting that the IT representation is better accounted for by

visual shape than by semantic category [23]. Note, however, that

the representation of visual shape in IT is uncontroversial. A better

account on the basis of visual shape does not preclude an

additional semantic component. There is clearly a continuum

between visual and semantic, between the representation of the

appearance and the representation of the behavioral significance

of an object. Our working hypothesis is that the function of the

primate ventral stream is to achieve this transformation. Interme-

diate-level features detecting parts of objects (e.g. eyes, noses, ears)

might provide a stepping stone toward semantics and could lead to

clustering of faces and animates [82,83].

Recognition requires abstracting from several sources of within-

category variation among object images. One source of variation

lies in the accidental properties [84] of the appearance of the

object, such as its pose, distance, and lighting. Another source of

within-category variation are the substantial differences between

exemplars. In our study, the winning model was supervised with

category-labeled images, learning to abstract from both of these

sources of variation. It would be interesting to investigate whether

training a representation to abstract from accidental properties

only with exemplar-label supervision (where multiple images of the

same particular object have the same exemplar label) can also

produce a representation similar to IT. To our knowledge,

however, the previous studies [75,76] that investigated accidental

property variation in greater detail also required category-label

supervision to derive representational geometries resembling that

of IT.

How do biological brains acquire categorical divisions?
In this study, we were looking to discover a model of the

mechanism of biological object vision. We did not attempt to

model the developmental process that builds that mechanism.

Creating a viable model of IT appeared to require supervised

learning. How might biological development implement this

process? Biologically plausible implementations of backpropaga-

tion and related rules for supervised learning have been proposed

(e.g. [85]). However, it is unclear what supervision signal such a

process would use. What is the equivalent of the category labels in

the biological development of the IT representation? One

possibility is that the perceptual and behavioral context provides

the equivalent of the supervision signal in natural development.

For example, visual images appearing in the same temporal

context will often represent the same object in different retinal

positions, poses, distances, and sizes. It has been argued that

invariance to accidental properties can be learned from temporal

proximity in natural experience [86–88]. Different visual images in

the same temporal context will also tend to represent the same

scene. A biological learning mechanism that associates visual

inputs that tend to co-occur with similar representational patterns

would learn features that are more stable across time, abstracting

from rapidly changing aspects of visual appearance. Moreover,

objects present in a given scene might tend to be semantically

related. Such a mechanism might therefore even learn semantic

features.

Another way that context might provide a stepping stone

toward a semantic representation is through perceptual channels

beyond the current retinal image. Natural perception provides a

rich multimodal and dynamic stream of information. Distinct

visual patterns associated with similar context percepts might come

to be represented together in the representational space. For

example, visual motion is associated with animacy [89], so

dissimilar shapes associated with the same visual motion patterns

might come to be co-located in the representational space.

The argument from context can be extended to other sensory

modalities (e.g. the same sound associated with two distinct visual

stimuli), and to behavioral and social context, which might contain

signals correlated with the categories of the objects present in the

scene [90]. Visually dissimilar stimuli may be associated with the

same linguistic utterances of contemporaries, or with the same

physical actions [91] or emotional states. Finally, the cognitive

context, including conscious inferences based on our perception of

the current scene and behavioral goals, might influence the

development of the IT representation through feedback signals

from frontal regions that provide an endogenous context to natural

visual experience.

An unsupervised learning process that receives such context

signals alongside the visual input would be expected to cluster

percepts that are similar in this more complex multimodal input

space. The resulting representational clusters might then persist

when the context is removed from the input and only static visual

shapes are presented, as in our experiments. The argument from

context illustrates how the distinction between supervised and

unsupervised learning, which is clearly defined in computer

science, is blurred for biological brains. Unsupervised learning

from a richly contextualized sensory input might achieve a result

similar to that of supervised learning.

Explaining the IT representation requires considering
what it is for

The ultimate purpose of vision is not to provide a veridical

representation of our visual environment, but to support successful

behavior. An explanation of the IT representation, then, requires

consideration of behavioral affordances. It appears plausible that

any primate faced with an unknown object might want to

determine whether it is animate with high priority. Similarly, faces

are important to recognize because they confer a host of

information that renders animates somewhat more predictable.

In computational modelling, such behavioral affordances can be

brought in by optimizing the representations for particular

categorization tasks, using supervised training. Such task-specific

performance optimization appears essential to explaining IT.

Models with higher recognition accuracy better explained not only

the categorical clusters, but also the within-category representa-

tional geometries observed in IT.

Our results suggest that the IT representation is visuo-semantic.

Explaining IT requires consideration of the perceptual and

cognitive context and of behavioral affordances. Through phylo-

and ontogenesis, IT appears to have learned to emphasize certain

behaviorally important divisions that transcend visual appearance
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and relate to the meaning of objects in the context of the

organism’s survival and reproduction.

Supporting Information

Figure S1 The not-strongly-supervised models best
explaining EVC (A), FFA (B), LOC (C), and PPA (D). This

figure shows the most correlated model RDMs (from left to right

and top to bottom) with the EVC (A), FFA (B), LOC (C) and PPA

(D) RDMs. Biologically motivated models are set in black font,

and computer-vision models are set in gray font. Models with the

subscript ‘UT’ are unsupervised trained models; and others

without a subscript are untrained models. The number below

each RDM is the Kendall tA correlation coefficient between the

model RDM and the respective brain RDM. All correlations are

statistically significant, except those that are shown by ‘ns’.

Correlation p-values are reported in Table 1.

(TIF)

Figure S2 Kendall’s tA RDM correlation of the not-
strongly-supervised models with EVC (A), FFA (B), LOC
(C), and PPA (D). The bars shows the Kendall’s tA RDM

correlation between the not-strongly-supervised model RDMs and

EVC (A), FFA (B), LOC (C) and PPA (D). The error bars are

standard errors of the mean estimated by bootstrap resampling.

Asterisks across the x-axis show the p-values obtained by a random

permutation test based on 10,000 randomizations of the condition

labels (ns: not significant, p,0.05: *, p,0.01: **, p,0.001: ***,

p,0.0001: ****). These p-values assess the relatedness of different

model RDMs with a brain RDM. The grey horizontal rectangle

shows the noise ceiling.

(TIF)

Figure S3 Kendall’s tA RDM correlation of the deep
convolutional network with EVC (A), FFA (B), LOC (C),
and PPA (D). The bars show the Kendall-tA RDM correlations

between the layers of the deep supervised convolutional network

and EVC (A), FFA (B), LOC (C) and PPA (D). The error bars are

standard errors of the mean estimated by bootstrap resampling.

Asterisks across the x-axis show the p-values obtained by a random

permutation test based on 10,000 randomizations of the condition

labels (ns: not significant, p,0.05: *, p,0.01: **, p,0.001: ***,

p,0.0001: ****). The grey horizontal rectangles show the noise

ceiling in each of the brain ROIs. The upper and lower edges of

the gray horizontal bar are upper and lower bound estimates of

the maximum correlation any model can achieve given the noise.

(TIF)

Figure S4 Different combinations of the not-strongly-
supervised models. Each of the first four RDMs (A, B, C, D)

was calculated by combining internal representation of object-vision

models for all images and then measuring the pairwise dissimilarity

between the combined feature vectors. E and F are categorical

model RDMs; F shows animate-inanimate category structure, and

E comes with extra information about the within-animate category

structure (i.e. face clusters). Underneath each RDM, the Kendall-tA

correlations of that RDM with hIT and mIT RDMs are stated. The

statistical significance of correlations are shown by asterisks (p,

0.05: *, p,0.01: **, p,0.001: ***, p,0.0001: ****). To estimate

significance, randomization test was used.

(TIF)

Figure S5 Ten category RDMs used as linear predictors
in the RDM model. These ten category models and a confound

mean (all-1) RDM were linearly combined to explain each of the

brain and model RDMs (Figures 3, 4).

(TIF)

Figure S6 Clustering strength for different categories in
IT and not-strongly-supervised models. We measured the

strength of clustering for each of the categories (animate,

inanimate, face, human face, non-human face, body, human

body, non-human body, natural inanimates, and artificial

inanimates), by least-squares fitting of a set of category cluster

RDMs (shown in Figure S5) to each brain and computational-

model RDM. Bars in this figure show the fitted coefficients

(clustering strengths). The higher the bar, the more tightly

clustered are the objects in that category. Error bars show 95%

confidence interval of the coefficient estimates. Significance is

shown by red (legend) corrected for 30 * 10 multiple comparisons.

Standard errors and p values are based on bootstrapping of the

stimulus set.

(TIF)

Figure S7 Category-clustering strengths of not-strongly-
supervised models relative to hIT. For each of the categories

(animate, inanimate, face, human face, non-human face, body,

human body, non-human body, natural inanimates, and artificial

inanimates) the difference in clustering strength between the

models and hIT was measured. Bars show the difference in

clustering strength between the models and hIT. Model clustering

strengths that were significantly lower/higher than the hIT

clustering strength are shown by blue/red bars (legend). Error

bars show 95% confidence interval of the difference in clustering

strength estimates between the models and hIT. P values are based

on bootstrapping of the stimulus set.

(TIF)

Figure S8 Category-clustering strengths of not-strongly-
supervised models relative to mIT. For each of the

categories (animate, inanimate, face, human face, non-human

face, body, human body, non-human body, natural inanimates,

and artificial inanimates) the difference in clustering strength

between the models and mIT was measured. Bars show the

difference in clustering strength between the models and mIT.

Model clustering strengths that were significantly lower/higher

than the mIT clustering strength are shown by blue/red bars

(legend). Error bars show 95% confidence interval of the difference

in clustering strength estimates between the models and mIT. P

values are based on bootstrapping of the stimulus set.

(TIF)

Figure S9 Categoricality in noise-less models compared
with the categoricality in IT. Bars show categoricality

(measured by the category clustering index, CCI) for each of the

not-strongly-supervised models.The category clustering index

(CCI) for each model and brain RDM is defined as the proportion

of RDM variance explained by the category cluster model (Figure

S5), i.e. the squared correlation between the fitted category-cluster

model and the RDM it is fitted to. Error bars and shaded regions

indicate 95%-confidence intervals. Significant CCIs are indicated

by stars underneath the bars (* p,0.05, ** p,0.01, *** p,0.001,

**** p,0.0001). Significant differences between the CCI of each

model and the hIT/mIT CCI are indicated by blue/gray vertical

arrows (p,0.05, Bonferroni-adjusted for 28 tests). The corre-

sponding inferential comparisons for mIT are indicated by gray

vertical arrows. The categoricality in hIT is significantly higher

than in any of the 28 not-strongly-supervised models. This analysis

is based on the noise-less model representations.

(TIF)

Figure S10 Categoricality in the noise-less representa-
tions of the deep convolutional network compared with
hIT and mIT. Bars show categoricality (measured by the
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category clustering index, CCI) for each layer of the deep

convolutional network and for the IT-geometry-supervised layer.

For conventions and for definition of the CCI, see Figure S9. Error

bars and shaded regions indicate 95%-confidence intervals.

Significant CCIs are indicated by stars underneath the bars (*

p,0.05, ** p,0.01, *** p,0.001, **** p,0.0001). Significant

differences between the CCI of each model and the hIT/mIT CCI

are indicated by blue/gray vertical arrows (p,0.05, Bonferroni-

adjusted for 9 tests). The corresponding inferential comparisons

for mIT are indicated by gray vertical arrows. Categoricality is

significantly greater in hIT and mIT than in any of the internal

layers of the deep convolutional network. However, the IT-

geometry-supervised layer (remixed and reweighted) achieves a

categoricality similar to IT. This analysis is based on the noise-less

model representations.

(TIF)

Figure S11 Categorization accuracy of all models for
natural/artificial (A) and face/body (B). Each dark blue

bar shows the categorization accuracy of a linear SVM applied to

one of the computational model representations. Categorization

accuracy for each model was estimated by 12-fold crossvalidation

on the 96 stimuli. To assess whether categorization accuracy was

above chance level, we performed a permutation test, in which we

retrained the SVMs on (category-orthogonalized) 10,000 random

dichotomies among the stimuli. Light blue bars show the average

model categorization accuracy for random label permutations.

Categorization performance was significantly greater than chance

for most models (ns: not significant, * p,0.05, ** p,0.01, *** p,

0.001, **** p,0.0001).

(TIF)

Figure S12 Kendall’s tA RDM correlation of the not-
strongly-supervised models with the hIT animate (A)
and inanimate (B) sub-clusters. The bars show the Kendall-

tA RDM correlations of the not-strongly-supervised models with

the hIT RDM for animate images (A), and inanimate images (B).

The error bars are standard deviations of the mean estimated by

bootstrap resampling. Asterisks across the x-axis show the p-values

obtained by a random permutation test based on 10,000

randomizations of the condition labels (ns: not significant, p,

0.05: *, p,0.01: **, p,0.001: ***, p,0.0001: ****). The p-values

assess the relatedness of different model RDMs with a brain RDM.

The grey horizontal rectangles show the noise ceiling. Models with

the subscript ‘UT’ are unsupervised trained models, models with

the subscript ‘ST’ are supervised trained models, and others

without a subscript are untrained models.

(TIF)

Figure S13 Kendall’s tA RDM correlation of the not-
strongly-supervised models with the mIT animate (A)
and inanimate (B) sub-clusters. The bars show the Kendall-

tA RDM correlations of the not-strongly-supervised models with

the mIT RDM for animate images (A), and inanimate images (B).

The error bars are standard deviations of the mean estimated by

bootstrap resampling. Asterisks across the x-axis show the p-values

obtained by a random permutation test based on 10,000

randomizations of the condition labels (ns: not significant, p,

0.05: *, p,0.01: **, p,0.001: ***, p,0.0001: ****). The p-values

assess the relatedness of different model RDMs with a brain RDM.

Models with the subscript ‘UT’ are unsupervised trained models,

models with the subscript ‘ST’ are supervised trained models, and

others without a subscript are untrained models.

(TIF)

Text S1 Models better explain the representation of the
animate objects than the inanimate objects in IT.

(DOCX)
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