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Abstract
Humans frequently need to allocate resources across multiple time-steps. Economic theory

proposes that subjects do so according to a stable set of intertemporal preferences, but the

computational demands of such decisions encourage the use of formally less competent

heuristics. Few empirical studies have examined dynamic resource allocation decisions

systematically. Here we conducted an experiment involving the dynamic consumption over

approximately 15 minutes of a limited budget of relief from moderately painful stimuli. We

had previously elicited the participants’ time preferences for the same painful stimuli in one-

off choices, allowing us to assess self-consistency. Participants exhibited three characteris-

tic behaviors: saving relief until the end, spreading relief across time, and early spending, of

which the last was markedly less prominent. The likelihood that behavior was heuristic rath-

er than normative is suggested by the weak correspondence between one-off and dynamic

choices. We show that the consumption choices are consistent with a combination of simple

heuristics involving early-spending, spreading or saving of relief until the end, with subjects

predominantly exhibiting the last two.

Author Summary

People often have to trade-off their present wellbeing against their future wellbeing, for ex-
ample whether to go to an expensive restaurant today or put the money towards a future
holiday. Many studies have examined how people make such trade-offs. However, the ma-
jority have done so by analyzing choices between one-off future outcomes. By contrast,
real-world choices are often made sequentially, with today’s choices influencing the possi-
bilities available tomorrow. This generates decision problems of near limitless complexity.
To explore how people approach such decisions in a naturalistic (health-related) setting,
we describe participants’ use of a limited budget of relief from moderately painful stimuli
over a period of approximately 15 minutes. Participants showed a range of different
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behaviors, with the majority either conserving relief for the future, or preferring to spread
relief evenly over time. Notably no participant consistently consumed the maximum allow-
able relief at the outset. We show that sequential decision-making behavior cannot easily
be predicted from the results of simple one-off choices made at the beginning of the task.

Introduction
Humans are often required to allocate limited resources across time, for example having to
choose whether to go to an expensive restaurant today or put the money towards a future holi-
day. Economic theory assumes that they do so in a manner which maximizes an intertemporal
preference function. This function describes how a decision-maker values events as a function
of both their future timing and magnitude [1] and is typically partitioned into two independent
sub-functions, an instantaneous utility function, describing the effect of magnitude, and a tem-
poral discount function, describing the effect of delay, with discounted utility of multiple out-
comes being summed across time periods [1, 2].

Temporal discount functions are conventionally estimated by eliciting choices between one-
off outcomes of varying magnitude at varying delays (the instantaneous utility function is often
assumed to take some plausible prior form). It is widely observed that people prefer to receive
one-off rewards as soon as possible, consistent with the value of rewards decaying with delay,
referred to as positive temporal discounting [for reviews see 3, 4]. However under some cir-
cumstances people display an opposite tendency, namely a deferral of reward into the future.
In a well-known example, [5] participants were asked to state how much money they would be
willing to pay now to receive a kiss from a movie star at varying points in time. The maximum
willingness-to-pay occurred when the kiss was scheduled to occur three days in the future, im-
plying a growth in value with delay (over the short term in this example), which is called nega-
tive time preference or negative discounting [6, 7]. Negative time preference is also prominent
in choices between aversive outcomes, where many people prefer to receive pain (or hypotheti-
cal illness) immediately rather than after a delay [5, 8, 9]. An explanation is that the anticipa-
tion of future events in itself provides additional present-time utility, termed savoring for
positive outcomes and dread for negative ones [5, 10].

According to an assumption of additive discounted utility, an individual’s preferred alloca-
tion of rewards over several time periods ought to be predictable from their discount and utility
functions derived from choices between the same one-off rewards [2]. In reality the assumption
of additive utility is violated. For instance eating a meal reduces the utility of food for some
time afterwards. Similar violations occur prospectively too. For example although, as noted,
people overwhelmingly prefer sooner one-off rewards to delayed rewards of equivalent magni-
tude, when the same rewards are framed as sequences people tend to prefer sequences which
improve over time—behavior which cannot be reconciled with a single discount function
whilst also preserving additive utility [11–15].

The conventional economic model also assumes that humans have the necessary cognitive
capacity to optimize their discounted utility. However, when deciding how to allocate reward
over several time steps, the number of possible allocation plans grows exponentially as out-
comes further into the future are considered, generating decision-problems of considerable
complexity [16]. In response to this people apparently adopt simplifying strategies. For in-
stance, transfers into retirement savings plans cluster around the minimum and maximum al-
lowable contributions, as well as around multiples of five dollars, suggesting that investors
choose these as convenient ‘rules-of-thumb’ [17]. Such strategies are examples of ‘heuristics’,
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which are generic, though possibly only partly competent, solutions to classes of problems
[18–20]. Notably the use of heuristics can generate behavior that differs from the predictions of
conventional economic models of intertemporal choice, in particular leading to on-going
choices in a dynamic context that are not consistent with preferences that the decision-maker
might exhibit in simpler, e.g. one-shot, contexts [16, 21].

In addition the form of temporal discount function interacts with the ability to execute
one’s best-laid plans. A decision-maker with an exponential discount function (and an increas-
ing concave utility function over outcome magnitude) has time-consistent preferences—i.e.
will make the same decision between options with different temporal profiles no matter how
close or far in time these are [2]. Such a decision-maker would naturally adhere to her plans,
however frequently they were re-evaluated. By contrast if the discount function is positive but
hyperbolic, as frequently observed [22–24] and/or approximated [25–28] in humans and other
animals, then the decision-maker would be expected to exhibit dynamically inconsistent be-
havior: by seeking immediate reward, they would tend to undo previous long-sighted plans
[2, 23, 29, 30], however see [31–33] for an alternative account]. Temporally inconsistent prefer-
ences theoretically compound the complexity of planning resource allocations in real-time,
since they necessitate a dynamic model of the behavior of future selves [2, 30].

All the difficulties and violations of the conventional economic model of intertemporal
choice described above make it unlikely that individuals exhibit fully optimal intertemporal al-
locations. However very few studies have directly examined resource allocation decisions in
real-time, tested the extent to which these are consistent with discount functions derived from
one-off choices, or indeed found a parsimonious description that accounts well for actual
choices. Thus we designed a task that involved allocating a limited budget in real-time in which
we could examine the various forms of inconsistency and explore possible heuristics in a rather
open-ended manner. Specifically the task involved choosing how to consume relief from pain-
ful stimuli over an extended period of time. In a separate experiment, performed on the same
day, [fully described elsewhere [9]], participants made binary choices between different num-
bers of, and delays to, painful shock stimuli, which were identical to those used for the con-
sumption-savings experiment. We were therefore able to compare the consistency of observed
behavior in one-off and dynamic choices.

The existing binary choice study illustrated a range of intertemporal choice behavior; some
participants displayed positive discounting, others negative discounting and others discounting
very little or not at all. These three patterns would be expected to give rise in the dynamic task
to spending relief early, saving relief for the end and spreading relief evenly over time, respec-
tively (the latter assumes a concave utility function for relief). We therefore tested the prediction
that if one-off and dynamic choices are consistent, then individuals who positively discounted
one-off pains would tend to spend their relief early, those who displayed greater negative dis-
counting (dread) for one-off pains would be more likely to save their relief (to mitigate future
punishment), and those who did not discount pain at all would be more likely to spread their
relief across time. More specifically we also compared behavior with the optimal predictions of
an anticipation-discounting model fitted to the one-off choices. In the light of our findings, we
went on to explore more heuristic descriptions of the behaviour that we elicited.

The particular anticipation-discounting functions that we observed can generate non-ad-
herence to past plans of a different form to that entailed by hyperbolic discounting [see 5 and
S1 Fig.]. In our case subjects who dread one-off pains are motivated to save more in the present
than they would desire to use in the future. Since we did not elicit participants’ plans prior to
the experiment, we could not directly test for this. However, to explore the theoretical implica-
tions of the model in more detail we simulated optimal consumption choices under various pa-
rameterizations of the utility and anticipation-discounting functions, allowing for the
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possibility that subjects might have different degrees of insight into their future tendencies,
being either inaccurate (naïve) or accurate (sophisticated) [34].

We observed prominent tendencies to spread relief across time and to save relief. However
higher dread of pain in one-off choices showed no significant correlation with the latter ten-
dency. We found that while some participants displayed behavior consistent with the optimal
paths predicted from their dread-discounting functions, several participants exhibited con-
sumption profiles which were not self-consistent. Overall observed consumption behavior was
parsimoniously described by post-hocmodels which assumed that participants combine a set
of heuristics to ‘save-now-spend-later’, ‘spread-spending’, and, to a much lesser extent, ‘spend-
now-suffer-later’.

Results

Relief Consumption Task
The task required participants to perform a series of 60 trials over 14 minutes wherein they
were scheduled to receive a number of identical, moderately painful, cutaneous electric shock
stimuli on each trial. At the outset, each participant was endowed with a fixed budget of com-
puterized pain relief, an amount insufficient to relieve all shocks in the session. On each trial
they were allowed to choose how much relief they wished to use, up to a maximum allowable
“dose”. The scenario was embedded within a hypothetical health-related context, and pain re-
lief was described in units of milligrams.

Fig. 1 illustrates the experimental protocol. On each trial, subjects received a number of
shocks drawn from a Poisson distribution. Without pain relief, the mean of this distribution
was 14 shocks; for every 1mg of relief the subjects spent on a trial, the mean decreased by 0.1
shocks. Subjects were allowed to spend a maximum of 120mg of relief on a trial; this reduced

Figure 1. Trial structure of the experiment. Participants entered an experimental run of 60 trials, on which they could expect to receive mildly painful
electric shock stimuli on each trial, referred to as painful episodes. By default participants could expect to receive a five second stimulus with 14 brief shocks
on each trial, however they were provided with a budget of relief at the outset of the experiment, 2400 “milligrammes” (mg) in total. Each 10mg of relief
consumed reduced the expected number of shocks in the stimulus train by one, and was hence insufficient to relieve all the shocks in the session. At the start
of each trial a screen indicated the number of remaining trials and the remaining supply of relief. Participants then had the opportunity to indicate howmuch
relief they wished to consume on that trial, up to a maximum of 120mg. The relief was then effective on the immediately subsequent painful episode.

doi:10.1371/journal.pcbi.1004030.g001
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the mean number of shocks to 2, a level termed the ‘baseline pain’. Subjects had to spend within
a total budget of 2400mg. Before making their choice, participants were informed of the total
relief capital remaining, the number of trials remaining and the mean remaining relief per trial.

In a separate experiment, performed on the same day, [fully described elsewhere 33], partic-
ipants made binary choices between different numbers of, and delays to, painful shock stimuli
(which were identical to those used for the consumption-savings experiment). The unit of time
in both experiments was a single trial, of equivalent length in both experiments, and resulted in
delays of the order of zero to 15 minutes in both experiments

Simulating Consumption Behavior
To illustrate the effects of changes to the instantaneous utility and anticipation-discounting
functions, we used dynamic programming to simulate optimal behavior on a reduced version
of the task lasting 10 time periods (with a budget of 400mg).

Effects of the instantaneous utility function. Within the standard economic model, the in-
stantaneous utility function can affect the optimal consumption path, even for a decision-
maker who treats the same outcome as equally valuable regardless of its timing (Fig. 2).

Let the utility for consuming an amount, c, at time, t, given current capital, st be given by
U(ct, st) (The only effect of st on the instantaneous utility function is to constrain consumption
to be less than current capital, such that ct�st; as a result we abbreviate U(ct, st) to simply U(ct),
however the above constraint is still implied).

For the special case of linear utility, where U(ct) = ct, provided there is no discounting or in-
terest rate, all possible consumption paths in which total consumption corresponds to spend-
ing the entire capital are equally valued. As a result, at each time step, and each state of capital,
all possible consumption levels have equal value. The result is that consumption in the first
time period, c1 could be selected at random from a uniform distribution, in which case, the ex-
pected consumption level, c1, is close to 60 units. Single-period consumption, ct, then continues
in this manner until the capital is entirely consumed (Fig. 2, left panels).

With a concave utility function, here illustrated with UðctÞ ¼ ct
k; where 0< k< 1, low lev-

els of consumption are relatively more valuable than would be the case under a linear function.
Here, the optimal path is to spread consumption evenly across time (Fig. 2, right panels).

Anticipation-discounting functions. In the existing binary choice study, we estimated an
anticipation-discounting function, here termed Δ(d) for each participant, determining how the
value of pain depends on its delay, d. The anticipation term is computed as the forward-looking
sum of exponentially discounted value, with a per-period rate, γc (C for consumption) the con-
tribution of which is determined by the parameter α (Fig. 3):

DðdÞ ¼ gC
d þ a

Xd�1

t¼0

gC
d�tgA

t

" #

The full model, as shown here, allows for the possibility that prospective anticipation is itself
discounted by an additional factor, γA (A for consumption), representing the extent to which
future anticipation is taken into account. Fig. 3 illustrates typical forms for an anticipation-
discounting function for a positively-valenced outcome, where γA = 1Where anticipation
dominates (Fig. 3A), the overall value is an increasing function of delay; where discounting
dominates (Fig. 3B), the overall value is a decreasing function of delay.

Fig. 4 plots predicted consumption paths under four possible parameterizations of the antic-
ipation-discounting function (Fig. 4A), under both full naivety or full sophistication, for a con-
cave utility function: UðctÞ ¼ ct

0:75. Complete sophistication entails that the agent at t = 1
knows that a future decision-maker, for example at t = 11 will apply the same degree of
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discounting to periods t = 11,12,13. . . and so on as the agent currently applies to periods
t = 1,2,3. . . and so on. Naivety by contrast would entail that the agent at t = 1 assumes that the
decision-maker at t = 11 will apply the same discount factors to periods t = 11,12,13. . . and so
on as the agent currently applies to those time periods. Given dynamic inconsistency in the dis-
counting function, a naïve agent would be expected to change their plans at each time step.

It can be appreciated from Fig. 4B that, where discounting dominates (first column), opti-
mal consumption is decreasing. With no discounting (second column), optimal consumption

Figure 2. Changes in the instantaneous utility function. A Linear and concave utility functions. B Simulated optimal consumption paths with no
discounting under the two forms of utility function. In each case two sample simulated paths are displayed, to illustrate that, with linear utility there is more
than one optimal path. Left panel: under linear utility with no discounting or anticipation all paths which consume the entire budget are equally valued.
Consumption is therefore chosen at random from a uniform distribution until the budget is expended. Right panel: concave utility motivates spreading
consumption over time.

doi:10.1371/journal.pcbi.1004030.g002
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is even over time, owing to concave utility. Where anticipation dominates (third column), the
predicted consumption path is increasing. Where anticipation is itself discounted (γA < 1;
fourth column) non-monotonic consumption profiles result.

Where there is a degree of savoring (α>0), the consumption paths for naïve and sophisticat-
ed consumers diverge, albeit subtly in some cases. The underlying dynamic inconsistency is il-
lustrated in Fig. 4C, which plots consumption plans made at the first three time periods for
fully naïve agents. Rather than consumption itself, these plots depict the naive plans for future
consumption from the current time-period onwards. Where discounting dominates (left col-
umn), inconsistency similar to that implied by hyperbolic discounting results: consumption at

Figure 3. Anticipation-discounting functions. Anticipation-discounting functions are constructed from a
linear combination of the conventionally discounted value of an outcome, i.e. its instantaneous anticipation,
and the prospective sum of anticipation whilst waiting for the outcome, displayed here for an outcome with
positive utility. AWhere prospective anticipation (savoring) dominates, the overall value of the outcome
decreases as it draws nearer, due to decreasing prospective anticipation. BWhere discounting dominates,
the overall value of the outcome increases as it draws nearer due to increasing instantaneous anticipation.

doi:10.1371/journal.pcbi.1004030.g003

Dynamic Consumption of Pain Relief

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004030 March 20, 2015 7 / 32



the next period turns out to be greater than planned. Where savoring dominates (right hand
two panels), the naïve decision-maker consumes less than planned. A sophisticated agent takes
these future discrepancies into account and adjusts their plan accordingly.

To summarize, normative considerations justify at least three obvious qualitative classes of
relief spending—increasing, decreasing and flat (or spreading). They also make strong predic-
tions about the relationship between single- and multi-period decisions, and potentially the
effect of degrees of game-theoretic sophistication. Our experiment was designed to test for
these classes, but, motivated by the complexity of planning, also to provide insights into possi-
ble heuristics.

Figure 4. Anticipation-discounting and dynamic utility maximization. A Four anticipation-discounting functions. From left to right: predominant
discounting, no discounting, predominant savoring, discounted savoring. The parameters of each function are displayed on the plot.B Simulated optimal
consumption paths under the same four discount functions, with concave utility,U(c) = c0.75 Green circles represent simulated consumption paths for a fully
naïve decision-maker (See Main Text). Red circles represent consumption for a fully sophisticated decision-maker.C Plans for future consumption made in
the first three time periods for a naïve decision-maker. The red circles indicate planned consumption from the perspective of t = 1, the blue circles from the
perspective of t = 2 and the green circles from the perspective of t = 3. Where discounting dominates (left panel), the naïve decision-maker consumes more
than planned, where savoring dominates (right hand two panels), the naïve decision-maker consumes less than planned.

doi:10.1371/journal.pcbi.1004030.g004
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Observed Consumption of Relief
We tested 35 participants, of whom 5 had to be excluded from analysis (see Methods for de-
tails). The experimental data (S1 Dataset) consisted of the number of units of relief consumed
on each trial by each participant. Fig. 5A plots the median consumption of relief on each trial
at the group level (N = 30, bars indicate the interquartile ranges). Across subjects, the profile
of consumption is increasing over time, showing the tendency for relief to be saved for to-
wards the end of the experimental session. Robust linear regression on all choices made by all
subjects (N = 1980), using iteratively reweighted least squares with a bi-square weighting
function, demonstrated a significantly positive effect of time on relief consumption (β = 0.47,
p<0.001).

However, the group-level presentation of the data conceals the complexity of subject-
specific choices. To examine this we calculated the proportion of participants choosing a par-
ticular level of consumption on each trial. To reduce the computational complexity of the sub-
sequent modeling analysis (necessary when fitting more complex models using dynamic
programming), relief consumption was rounded to the nearest 10mg, creating 13 possible
spending choices on each trial (0 to 12). We refer to each rounded centigram simply as a ‘unit’
of relief. The observed distribution of rounded relief-consumption at the group level is dis-
played in Fig. 5B. Darker bars indicate a higher proportion of participants choosing a given
consumption level on each trial. There were very few choices to consume close to the maxi-
mum quota of relief early in the experimental session. Rather, higher intensities corresponding
to spending close to zero relief in the first 40 trials, and above-average consumption across the
final 20 trials, demonstrated that participants tended to conserve relief for the final portion of
the session, which would be consistent with savoring. Since there was a budget of 240 rounded
units of relief, to be allocated across 60 trials, even spreading of relief would entail spending 4
units per trial. Notably, high intensities corresponding to spending close to 4 units of relief in-
dicate that participants also demonstrated a tendency to spread relief across time, which would
be consistent with participants having concave utility for relief. There is also a weak tendency
to sample the maximum allowable quota of relief throughout the experimental run. An addi-
tional interesting feature is that participants were more likely to consume close to the mean re-
lief remaining early in the experiment, tending to switch to consuming zero relief during the
middle of the experiment.

S2A Fig. plots raw consumption choices (in mg) as a series of histograms over time, illus-
trating that multiples of 10mg are over-represented. This suggests that participants used strate-
gies to reduce the dimensionality of the task, rather than performing optimization at the native
resolution. When rounded consumption (in units) is also plotted in this manner (S2B Fig.),
choices to consume zero relief or 4 units of relief are prominent. Raw data for the 30 partici-
pants included in the analysis are displayed in S3, S4 and S5 Figs. At the individual level, partic-
ipants appeared to display one or more of the above three tendencies, though strikingly, no
participant systematically consumed close to the maximum available relief at the outset of the
experiment. To illustrate this, consumption profiles from six sample participants are displayed
in Fig. 5C, overlaid with the mean relief remaining per trial (dashed lines), termed ρt. This
quantity (displayed to participants on-screen before each choice) is given by the total remain-
ing relief on that trial, st, divided by the number of trials remaining:

rt ¼ st=½60� ðt � 1Þ� 2Þ

For any trial during the experiment, consuming exactly ρt units of relief on every remaining
trial would entail even consumption of relief over the remainder of the experiment.
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Figure 5. Observed distribution of relief consumption across time. AMedian relief consumption on each trial at the group level is indicated by the solid
black circles. Error bars indicate the upper and lower quartiles of consumption. B The distribution of group level consumption. The intensity of the grey bars
represents the proportion of the 30 participants included in the analysis choosing to consume each amount of relief on a particular trial. Relief is expressed in
units, produced by rounding the raw consumption choices to the nearest 10 units of relief. A tendency to conserve relief is evident from below-average
consumption over the first 40 trials and above-average consumption over the last 20 trials. A tendency to spread relief across time is evident from the high
proportion of choices to spend 4 units of relief, the mean rounded relief per trial over the whole experimental run. C Consumption paths from six sample
participants. Hollow circles denote the consumption choices on each trial. The bold dashed line denotes the mean relief remaining at the start of each trial.
These six participants are selected as representative of the key patterns observed. The first two participants (i and ii) on spread relief over time. The
subsequent three participants (iii-v) predominantly conserve relief, as evidenced by an increase in the mean relief remaining per trial over time. Participant vi)
consumes above the mean relief remaining towards the start of the session and subsequently adjusts consumption downward.

doi:10.1371/journal.pcbi.1004030.g005
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Predicting Consumption from One-Off Choices between Delayed Pains
Although the subjects exhibited the same qualitative patterns of behavior as expected from the
normative accounts (Fig. 4), this does not mean that each subject’s own choices were consistent
with their own one-off preferences. To compare one-off and dynamic behavior, we first derived
summary measures of behavior on both tasks. In the one-off choice task, the frequency of
choosing sooner pain indicates the extent of negative time preference, and is a correlate of
dread. As described previously, [9], one-off choices between delayed pains were elicited under
two descriptive frames, a ‘pain’ frame, in which outcomes were described as an increase in the
expected number of shocks above the baseline level of pain, and a ‘relief’ frame, in which the
same outcomes were described as a decrease in the expected number of shocks from a maxi-
mum level of pain. The latter description corresponds to that used in the relief consumption
experiment. Nevertheless we examined the relationships between dynamic relief consumption
behavior and sooner choice frequency on both frames. The signed slope of the dynamic con-
sumption path (fitted with least-squares linear regression), is a measure of the overall tendency
to conserve relief, while the absolute magnitude of the slope is a measure of the deviation, in ei-
ther direction, from even spreading of relief.

Contrary to a normative account, we observed no significant positive relationship between
the tendency to dread (on either frame) and the slope of the consumption path (Fig. 6A;
p>0.25, N = 30), although there was a trend in this direction for the relief frame choices (Pear-
son r = 0.2). Neither was there a significant relationship between dread and the tendency to
spread relief over time (Fig. 6B; p>0.25, N = 30).

For those participants for whom estimates of anticipation-discounting functions were avail-
able from one-off choices (N = 23; see Methods), we compared observed relief consumption
with the predicted consumption profiles for both naïve and fully sophisticated agents with this
anticipation-discounting function, assuming a concave instantaneous utility function for relief,
U(c) = c0.75. We considered the policy to be a softmax function of the underlying values, setting
the inverse temperature parameter to an arbitrary value for all participants (β = 10), whilst fix-
ing the anticipation-discounting parameters to those previously derived from one-off choices.
Sample results for four participants are plotted in Fig. 7. It can readily be seen that the observed
consumption profiles (blue circles) in some instances diverge markedly from the predictions
(sophisticated predictions, red circles; naïve predictions, green circles).

It is possible that variability in the utility function and softmax temperature parameters
could account for some of the observed differences between dynamic and one-off choice set-
tings, whilst preserving the basic intertemporal preferences. To explore this we implemented a
model in which the softmax inverse temperature, β, and the exponent governing the utility
function, k, were fitted freely, whilst holding the previously-derived anticipation-discounting
parameters constant. To fit the model we used constrained non-linear optimization to find
subject-specific parameters, which maximized the log-likelihood of the observed consumption
paths for each participant, given their remaining capital on each trial. The observed group level
distribution of consumption in the same 23 participants is displayed in Fig. 8A, for comparison
with the distribution predicted by the model. The latter, formed by taking the mean across the
likelihood distributions for individual participants, is shown in Fig. 8Bi (pain frame preferences)
and 8Bii (relief frame preferences). Although the optimal preferences predict saving of relief at
the group level, they underestimate the tendency to spread relief over time, even allowing for
concave utility, and the fitted policies are relatively imprecise. To estimate the proportion of
variance in the observed data accounted for by the models, we found the mean consumption
level for each participant across each 10 trials of the experiment, before calculating the same
measure by simulating 10000 consumption paths resulting from the maximum likelihood
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parameterization of the model. As shown in Figs. 8Ci (pain frame preferences) and 8Cii (relief
frame preferences), there was a significant positive relationship between predicted and observed
consumption paths (robust regression, pain frame: β1 = 0.22, p<0.001; relief frame: β1 = 0.44,
p<0.001). However least squares fits indicated that the model accounted for only a relatively
small proportion of the observed variance (pain frame R2 = 0.03, relief frame R2 = 0.07).

Modeling Relief Consumption Using Heuristics
Given that consumption behavior showed only weak correspondence with the predictions of
anticipation-discounting as derived from one-off choices, we tested alternative generative

Figure 6. Relationships between one-off (binary) and dynamic intertemporal choices. The frequency of choosing sooner pain in the binary
intertemporal choice experiment which provides a summary behavioral measure of dread, in both pain (i) and relief (ii) frames (see main text), is plotted
against:A the slope of the spending profile in the dynamic consumption task (positive slope indicates saving relief) andB the absolute slope of the spending
profile (a measure of deviation from even spreading of relief). Solid lines indicate a linear least-squares fit through the data. There are no significant
relationships between the behavioral metrics on the two tasks.

doi:10.1371/journal.pcbi.1004030.g006
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Figure 7. Optimal consumption paths predicted from anticipation-discounting functions derived from
binary choices.Naïve (green circles) and sophisticated optimal (red circles) paths, derived from binary
intertemporal choices in both pain (left column, A) and relief (right column, B) frames with softmax β = 10 and
U(c) = c0.75 are overlaid on observed consumption paths (blue circles) for 4 sample participants.

doi:10.1371/journal.pcbi.1004030.g007
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Figure 8. Fits of the anticipation-discounting model with variable utility and choice randomness. A
The observed distribution of consumption at the group level by participants for whom anticipation-discounting
functions derived one-off choice tasks were available (N = 23). Warmer colors indicate that a higher
proportion of participants chose to consume that amount of relief on a particular trial. BGroup-Level
distribution of relief consumption predicted by the optimal model and modifications to it. These plots denote
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accounts. This analysis was performed post hoc, and we focused on characterizing simple com-
putations that might feasibly have produced the observed consumption choices. To do so we
assumed that participants implemented the three main behavioral tendencies, namely spend-
ing, spreading and saving relief, as heuristics.

The first model, which we termed the Direct Action Heuristic model, proposed that partici-
pants implemented the three observed behavioral tendencies directly, with choices between
them governed by propensities. The three are termed spend-now-suffer-later (with propensity
Mspend), spread-spending (with propensityMspread), and save-now-spend-later (with propensi-
tyMsave). The extent to which observed relief consumption, ct, fell below the mean relief re-
maining on each trial, ρt, is given by:

dt ¼ rt � ct 3Þ

Positive dt entails using less than the mean relief remaining per trial, while jdtj indicates the
extent of deviation from spreading. Formally, the three heuristics were defined as (see Methods
for details):

Mspendðst; ct; tÞ ¼ ct 4Þ

Mspreadðst; ct; tÞ ¼ �jdtj 5Þ

Msaveðst; ct; tÞ ¼
dt if rt < 12

0 otherwise

(
6Þ

Mspend formalizes a spend-now-suffer-later heuristic, by assuming linear utility for relief
consumption, and thus a propensity to consume the maximum allowable relief.Mspread formal-
izes a spread-spending heuristic, by penalizing deviations from the mean relief remaining, and
so generates a propensity to spread relief over time.Msave formalizes a save-now-spend-later
heuristic, by assigning higher value to consuming less relief, provided that the mean remaining
relief per trial is less than the maximum possible consumption level.Msave therefore generates a
propensity to consume as little relief as possible until there is sufficient remaining relief to re-
duce pain to the baseline level for the remainder of the experiment, at which point the remain-
ing heuristics encourage spending this quantity.

The three action propensities were implemented as separate policies, each with a unique
softmax inverse temperature parameter; the final probability of consuming each level of relief
was assumed to arise from a weighted average across these policies with weight for a policy de-
termined by its inverse variance (see Methods). As previously, to fit the model we used con-
strained non-linear optimization to find subject-specific parameters, which maximized the
log-likelihood of the observed consumption paths for each participant (N = 30), given their re-
maining capital on each trial.

the mean probability across all participants of consuming an amount of relief, ct, on each trial, t, given a
vector of the total remaining relief for each participant on each trial, st, st+1, st+2, . . . sT, at the maximum
likelihood parameters, θ, of each model. i) Anticipation-discounting functions derived from one-off pain frame
choices, with the softmax temperature, beta, and utility parameters freely fitted. ii) Anticipation-discounting
functions derived from one-off relief frame choices, with the softmax temperature, beta, and utility parameters
freely fitted.C The proportion of variance explained by each model. Mean predicted consumption levels
simulated from the maximum likelihood parameterizations of each model over each 10 trials of the
experiment for each participant are plotted against the samemetric derived from the observed data.

doi:10.1371/journal.pcbi.1004030.g008
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The group-level distribution of observed consumption choices is reproduced in Fig. 9A, for
comparison with the model fits. The distribution predicted by the Direct Action heuristic
model is displayed in the left-hand panel of Fig. 9B. The model provided a parsimonious sum-
mary of observed consumption choices, albeit not convincingly capturing the observation that
some participants were more likely to consume close to the mean relief remaining per trial (ρt)
near the start of the experimental run, before switching to conserve relief.

The above pattern might have several different explanations. One simplification in the
model is that the explicit relative weightings of the heuristics are assumed to be constant. How-
ever, participants may have adopted the spread-spending heuristic at the outset, before learning
the extent that they were able to tolerate pain as the experiment progressed then switching to
save-now-spend-later (see S1 Text). Similarly they may have consumed the mean relief at the
outset as a default option, until they learned to trust the experimental setup. A further possibili-
ty is that participants, rather than using a save-now-spend-later heuristic directly as defined
above, may have sought to maximize the mean relief remaining per trial (ρt) over the near fu-
ture: since saving relief would have more immediate effect on ρt later in the experiment com-
pared with at the start, the propensity to save would be expected to increase as the
experiment continued.

The data do not admit a direct distinction between the above hypotheses. However in order
to illustrate one of the possibilities we fit a modified version of the above model in which the
save-now-spend-later heuristic described above is replaced with a heuristic to maximize ρt over
a limited future horizon, which we term an income maximization heuristic (and eponymous
model). ThusMsave in this model was replaced by an action-value function, which described
the value of consuming an amount, ct, at the current capital level, st, and time period, t, given
knowledge of the future policy for action, π (see Methods). In other words this model assumed
that participants were in part attempting to maximize the expected mean relief remaining per
trial, akin to maximizing their expected income. To account for limited computational re-
sources, we incorporate a probability, 1–γ, that the decision-maker terminates their search at
every level deeper into the tree (the γ parameter is mathematically equivalent to an exponential
discount rate). We fitted this part of the model using dynamic programming. The remaining
two action propensities,Mspend andMspread were implemented in the same manner as the Di-
rect Action model, and policies were combined using the same weighting method.

The distribution of consumption at the group level predicted by the Income Maximization
model is shown in the right-hand panel of Fig. 9B. It can be seen that this model accounts for
the tendency to save relief being higher during the middle part of the experiment. As expected,
the Income Maximization model produced an improvement in Bayesian Information Criterion
(BIC) [63, see Methods], of 78 at the group level over the Direct Action model. The BIC favors
models with higher likelihood estimates and penalizes increasing model complexity, where
lower values of BIC indicate a more favorable model fit. (Notably the Income Maximization
model was optimized post hoc to account for a particular feature of the observed data, and
therefore our primary goal was not to compare the two heuristic models). The maximum-like-
lihood model fits of the Income Maximization model for the six participants whose data is dis-
played in Fig. 5 are shown in S7 Fig.

The proportion of variance explained by the models at the ten-trial resolution is shown in
Fig. 9C. Least squares fits indicate R2 = 0.56 for the Direct Action heuristic model and R2 = 0.80
for the Income Maximization heuristic model.

To illustrate the contribution of each of the three heuristics, the policy weightings of the two
heuristic models are displayed in Fig. 10. The Income Maximization model results in a larger
relative weight being placed on saving during the middle half of the experiment (Fig. 10A).
Also throughout the experiment saving (save-now-spend-later and income maximization) and
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Figure 9. Heuristic model fits. A The observed distribution of consumption by all 30 participants included in
the analysis. Warmer colors indicate that a higher proportion of participants chose to consume that amount of
relief on a particular trial. Black arrows indicate spending zero relief, which becomes more prominent during
the middle of the experiment. BGroup-Level distribution of relief consumption predicted by alternative
heuristic models. These plots denote the mean probability across all participants of consuming an amount of

Dynamic Consumption of Pain Relief

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004030 March 20, 2015 17 / 32



spread-spending receive considerably higher weightings (Figs. 10A and 10B) than spend-now-
suffer-later. The maximum likelihood parameters for the Income Maximization model are
listed in S1 Table.

Finally we implemented a model in which participants could combine optimal choices ac-
cording to anticipation-discounting function with the above heuristics, attributing deviations
from optimality to the use of heuristics. Here, the heuristics can be viewed as attractions

relief, ct, on each trial, t, given a vector of the total remaining relief for each participant on each trial, trial, st,
st+1, st+2, . . . sT, at the maximum likelihood parameterization, θ, of each model. The Direct Action model
combines the three key observed behavioral tendencies as heuristics to either spend close zero relief until
the mean relief remaining reaches the maximum allowable spend (save-now-spend-later), to spending close
to the mean relief remaining per trial (spread-spending) or close to the maximum allowable relief (spend-now-
suffer-later). The IncomeMaximization model extends this model, such that the saving tendency is
implemented as the attempt to dynamically maximize the mean remaining relief per trial, over a limited future
horizon. This model captures the relatively greater tendency to save relief during the middle of the experiment
(as indicated by the black arrows).C The proportion of variance explained by each model. Mean predicted
consumption levels simulated from the maximum likelihood parameterizations of each model over each 10
trials of the experiment for each participant are plotted against the samemetric derived from the observed
data. Least squares fits indicate an R-squared value of 0.56 for the Direct Action model and 0.80 for the
IncomeMaximization model.

doi:10.1371/journal.pcbi.1004030.g009

Figure 10. Policy weightings of heuristic models. AMean weighting across subjects on each of the three policies (see Methods) on each trial under the
maximum likelihood fits of the Direct Action (left) and Income Maximization (right) models. Spend-now-suffer-later has low weighting early in the experiment.
Spread-spending has high weightings throughout. For the incomemaximization model, saving is weighted most highly in the middle part of the experiment.
B Box plot showing distribution over participants of policy weightings, averaged over all trials of the experiment. Saving and Spread-Spending
heuristics dominate.

doi:10.1371/journal.pcbi.1004030.g010
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towards spending salient quantities of relief, and/or embodying additional valuation processes
which play a role in the dynamic task over-and-above anticipatory utility, such as adaptation.
In this model participants (N = 23) were assumed to perform dynamic utility maximization, ac-
cording to their previously-derived anticipation-discounting functions, whilst also being biased
towards spending either zero, the mean remaining or the maximum relief. Biases were imple-
mented by augmenting the values of consuming these quantities (with Gaussian blur either
side, see Methods). The extent of each bias was governed by a weighting parameter, giving rise
to three parameters ωmin, ωmean and ωmax. The softmax inverse temperature, β, and the expo-
nent governing the utility function, k, were also freely fitted. We used intertemporal prefer-
ences from the relief frame here, since these showed closer correspondence with the observed
data. Our aim here was to illustrate formally that deviations from optimality can be parsimoni-
ously described by postulating the use of heuristics. The results are displayed in S7 Fig., show-
ing that the model captures a substantial proportion of the observed variance (R2 = 0.83). This
model produced an improvement in BIC of 430 over the Income Maximization heuristic
model, for the subset of 23 participants for whom anticipation-discounting functions were
available, suggesting that the addition of utility optimization improved the fit quality over heu-
ristics alone. However both the set of intertemporal preferences and the heuristics for this
model were chosen post hoc, making it potentially susceptible to over-fitting.

Discussion
Decision-makers routinely plan the allocation of limited resources over time. Economic theory
proposes that they should do so in a self-consistent manner [1]. That is, allocation choices
made sequentially ought to be predictable from choices between equivalent one-off delayed
outcomes. We tested this by observing the real-time consumption of a limited budget relief
from a series of 60 painful stimuli in the laboratory, over the course of approximately 15 min-
utes, in a group of participants whose intertemporal preferences for one-off future pains of the
same nature had been elicited previously. We also sought to provide parsimonious descriptions
of the observed behavior in this complex dynamic task.

Tendencies to consume the minimum allowable relief early on, thus saving for the end, and
to consume close to the mean remaining relief were prominent, with several participants alter-
nating between these two tendencies. Consistent with retirement-savings decisions, [17]
choices to spend multiples of 10mg of relief were over-represented in the data. No participant
systematically consumed close to the maximum available relief at the outset of the experiment,
as conventional temporal discounting would predict. Whilst two out of the thirty participants
analyzed did generate declining profiles of relief, these two participants also showed trial-to-
trial variability in consumption, suggesting that they may have chosen consumption levels
largely at random (with the decline resulting from exhausting the budget).

We observed no significant correlation between a preference for sooner pain in one-off
choices and the tendency to save relief in the dynamic task, although there was a trend towards
a positive relationship. When anticipation-discounting functions derived from one-off choices
were used to generate optimal consumption paths, whilst freely fitting the utility function and
the degree of choice randomness, there was a weak but statistically significant positive relation-
ship between the observed and predicted paths. We conceptualized deviations from optimality
in terms of heuristics, rule-of-thumb strategies designed to ease computational demands. We
generated putative heuristics post hoc, in light of the three observed behavioral tendencies, find-
ing that consumption behavior was well-described by a combination of three corresponding
simple rules, namely save-now-spend-later, spread-spending and spend-now-suffer-later, im-
plemented as direct action propensities. However this Direct Action Heuristic model failed to
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capture an interesting dynamical feature of the data, namely the tendency of several partici-
pants to commence saving relief during the middle of the experiment. A possible explanation
for this phenomenon posits that rather than directly implementing a save-now-spend-later
heuristic, participants attempted to maximize their mean remaining relief (income) over the
near future. This Income Maximization Heuristic model outperformed its Direct Action coun-
terpart and accounted for a substantial proportion of the observed variance. Finally we showed
that superimposing the heuristics on dynamic utility maximization improved model fits over
the heuristic models alone.

At an empirical level the three heuristics serve as parsimonious descriptions of the observed
behavior. At a computational level we envision the heuristics as resulting from attractions to-
wards spending salient quantities of relief, hence their usefulness as simplifying strategies, but
also as approximating, through their dynamics, more fundamental valuation processes. It is
important to note here that the three heuristics can generate behavior indistinguishable from
what is optimal under several possible utility functions. For this reason, based on the current
data we cannot draw firm conclusions regarding the fundamental valuation processes; howev-
er, we outline below a broad framework for categorizing the possible underlying psychological
phenomena in terms of relative (reference-dependent) and absolute valuation processes
(Table 1).

The psychological processes motivating the choice of heuristics might be classified as both
relative (reference-dependent) and absolute valuation mechanisms. Relative valuation mecha-
nisms include adaptation to current consumption levels, sensitization to repeated punishment
and loss aversion. Absolute valuation processes include anticipatory utility, temporal discount-
ing and risk aversion.

Relative valuation processes involve comparison of outcomes against an assumed baseline,
or reference-point [35, 36]. Relative valuation might generate a preference for improvement
over time, if consumption levels are compared with those that precede them, leading people to
choose deliberate privation in order to increase the hedonic impact of subsequent consumption
[10, 13, 37]. This would be consistent with existing findings showing that, due to psychological
adaptation to the current pain level, a moderate intensity pain can appear more severe when
following a low intensity pain than when following a high intensity pain [38]. The opposite ef-
fect may also occur, namely sensitization to repeated high level pain, leading participants to oc-
casionally consume the maximum relief as ‘respite’. A further possibility is that decreases in
consumption from one time period to the next are valued as more negative than equivalent in-
creases are valued positively, i.e. loss aversion [39–41]. Loss aversion would be expected to fur-
ther penalize deviations from either even spreading or saving, for the reason that any increases
in consumption above even spreading inevitably lead to future decreases [14]. Notably loss
aversion itself may represent the heuristic assumption that losses predict further decline, which
if unchecked carries the risk of eventual ruin.

Table 1. Putative mechanisms underlying save-now-spend-later, spend-now-suffer-later and
spread-spending heuristics.

Valuation Mechanism

Relative Absolute

Save-Now-Spend-Later Adaptation Anticipation

Risk aversion

Spend-Now-Suffer-Later Sensitization Temporal Discounting

Spread-Spending Loss aversion Risk aversion (concave utility)

doi:10.1371/journal.pcbi.1004030.t001
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Absolute valuation processes might also explain spreading and saving of relief. Firstly a pref-
erence for spreading rewards or punishments evenly could arise out of a desire to avoid being
left with little or no reward, or high levels of punishment, in some time periods. As demonstrat-
ed here through simulation, this desire can be formalized as a non-linear utility function for
both reward and punishment, i.e. decreasing marginal (concave) utility for reward and increas-
ing marginal (convex) disutility for punishment. [for a description of how a non-linear instan-
taneous utility function can affect inferred discounting see 42]. Secondly, saving behavior
might result from either anticipatory utility [5, 9, 10], or uncertainty regarding future resources
[43]. An interesting direction for future work will be to attempt to prime these mechanisms in-
dividually within a more constrained task.

The plurality of possible mechanisms contributing to dynamic behavior might in part ex-
plain the low correlation between the anticipatory utility of pain in one-off choices and the ten-
dency to save relief [13]; in particular, relative valuation processes might be expected to play a
greater role in the dynamic task, where transitions between outcomes are more salient. Nota-
bly, this kind of context-dependent engagement of valuation mechanisms lies outside the con-
ventional economic model of intertemporal preferences, in which the effect of delay is
encapsulated by a unitary discount function (if the parameters of the discount function are en-
tirely context-dependent, the model ceases to make useful predictions).

Since we developed the heuristic models after observing the data, they require independent
validation in related experimental contexts to establish their generalizability. For example, pre-
senting participants with on-screen details of mean relief remaining may have primed a
spread-spending heuristic out of a desire to conform to the demands of the experiment. Howev-
er, in support of the heuristic models proposed here, existing studies show that similar heuris-
tics appear evident in other settings. The widespread use of such strategies suggests common
underlying valuation processes. In particular, preferences for spreading rewards evenly across
time and for improvement over time are evident in choices between predetermined sequences
of outcomes, including wages [15], health [11, 12] and other desirable or undesirable events
such as dining at a favorite restaurant or scheduling a visit from a troublesome relative [14].
Loewenstein and Prelec [14] propose a model for classifying these preferences, which resembles
the Direct Action heuristic model used here, albeit not in the context of whole sequences of
choices over time, as here.

An interesting direction for future work is to determine how choices made in advance be-
tween pre-determined sequences differ from choices made sequentially. If people have time-in-
consistent preferences, choosing in advance may offer an opportunity for pre-commitment
[44–46]. For example, Read and colleagues provide evidence that sequential choice promotes
the selection of options that yield small immediate rewards (‘vices’), while choosing the se-
quence in advance encourages the selection of long-term rewarding options (‘virtues’), a pat-
tern consistent with hyperbolic discounting [47]. As demonstrated here (as well as in existing
studies), the anticipation-discounting functions described previously for one-off choices pre-
dict a novel form of inconsistent choice, distinct from that of hyperbolic discounting, which en-
tails the perpetual deferral of consumption (S1 Fig.) [5]. It is unclear whether such behavior is
manifest in real-time, or indeed influences the kind of consumption choices
demonstrated here.

Finally, an advantage of this study is its face validity as a naturalistic scenario. The promi-
nent tendencies to either save relief or to spread relief across time here may have implications
for dynamic health-related decision-making in the field. In the UK, personal budgets for
healthcare have recently been piloted, potentially giving an individual control over a compo-
nent of their health spending [48]. Our results suggest that individuals differ considerably in
their preferred budget allocations over time. From a policy perspective, such individual
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differences will be interesting to examine as more data on the use of personal health budgets
emerge [49]. Applied measures of choice over time have tended to focus exclusively on one-off
choice paradigms [50–53], and the modelling of dynamic decision-making tasks suggests a
novel and quantitatively rich behavioral predictor.

In summary we examined how people allocate resources for mitigation of punishment,
showing that behavior is not clearly consistent with conventional economic models of inter-
temporal preference, but is consistent with a simple set of heuristics that encapsulates saving in
the present to spend in the future, spreading consumption out evenly over time and (less prom-
inently) spending in the present at the expense of the future. We note that similar behavior is
seen in choices between predetermined outcome sequences.

Methods

Ethics Statement
The research received approval from the National Health Service National Research Ethics Ser-
vice, Central London Research Ethics Committee 3 (Ethics number 08/H0716/6, Amendment
AM1). All participants gave informed consent before taking part in the study.

Relief Consumption Experiment
Participants. Thirty-five participants (18 females) took part in the study, with full informed
consent. Participants were recruited via an advertisement on the website of the University Col-
lege London Psychology Subject Pool. The experiments were carried out at the Wellcome Trust
Centre for Neuroimaging, University College London. Participants were initially briefed that
they would be making choices about how to allocate relief from different numbers of moderate-
ly painful electric shocks. Throughout the experiment the participant sat in front of a computer
monitor; where trials were presented on-screen, and decisions were indicated using keys on
the keyboard.

Two participants were excluded prior to coding and analysis of data because at the end of
the experimental run they stated that they did not find the painful stimulation aversive, creat-
ing a dataset of 33 participants (S1 Dataset). Three were excluded from the analysis, since they
performed a pilot version of the task in which they did not receive on-screen information re-
garding the mean relief remaining per trial. The remaining 30 participants all also took part in
the binary intertemporal choice experiment, which they performed first, on the same day as
the relief consumption task (published previously). Anticipation-discounting parameters were
estimable in 23 participants from these thirty. The remaining 7 participants always choose
sooner pain on the binary choice experiment, precluding reliable model fitting [See 33].

Procedure and design: dynamic task. Participants made choices over an experimental ses-
sion consisting of 60 trials in which by default they were due to receive painful shocks on each
trial. Participants were briefed with on-screen instructions that embedded the task in a natural-
istic health-related scenario (see S1 Text). At the start of the session participants were endowed
with a fixed budget of computerized pain relief, described in units of milligrams, 2400mg in
total. The budget was not sufficient to relieve all the shocks in the session, and participants
were informed of this fact, and therefore the possibility that they might expend all their relief
before the end of the session. Before each trial, participants were informed of the total number
of trials remaining, the number of units of relief remaining and the calculated mean relief re-
maining per trial in mg. They were then given the opportunity to indicate how much relief they
wished to consume on that trial, by moving a pointer along a visual scale using the keyboard.
There followed a painful shock stimulus, the severity of which was determined by the amount
of relief consumed.
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The painful shocks occurred within a five second stimulus train, where the intensity of each
discrete shock, which consisted of a single 200μs square-wave pulse, did not vary. The duration
of the stimulus was fixed therefore an increasing number of shocks was equivalent to an in-
creasing shock rate. At each sampled time interval during the stimulus train the probability of
receiving a shock was sampled from a uniform distribution. By default the outcome on each
trial was a shock train with the maximum rate of 2.8 shocks/s (14 shocks within 5 seconds).
Consuming 10mg of relief reduced the expected number of shocks in the immediately follow-
ing stimulus train by one. Participants were informed that the pain relief was probabilistic, cho-
sen so as to achieve a more naturalistic context. The maximum allowable consumption of relief
on each trial was 120mg, sufficient to reduce the expected shock rate to 2 shocks/5s (0.4
shocks/s), which was referred to as the “Baseline Pain”. Prior to entering into the session, par-
ticipants were given three samples of the maximum (default) and minimum (baseline) shock
rates which they could expect to experience with using no relief or using maximum relief re-
spectively. The choice phase was limited to 6 seconds, and each trial lasted 14 seconds in total,
the experimental session therefore lasted 14 minutes.

Before the experiment, participants underwent a standardized procedure, to control for in-
dividual variability in pain perception, so that the maximum shock rate used during the experi-
ment corresponded to an approximately equivalent subjective level of pain for each
participant. We aimed to set a target current level (the stimulator then adjusted the voltage to
achieve this target current) such that participants rated the five second stimulus at the maxi-
mum shock rate (2.8 shocks/s) as moderately severe pain. To achieve this we used an expected
shock rate of 2.8 shocks/s, whilst varying the target current amplitude. Participants provided a
pain rating for each stimulus train on a continuous visual analogue scale (VAS) from 0 (not
painful) to 10 (intolerable pain). Voltage level was increased in small increments until the par-
ticipant gave the stimulus a VAS rating of 6 out of 10. The staircase procedure was then repeat-
ed, giving participants opportunity to adapt to initial anxiety about the shocks. This procedure
determined a single voltage level corresponding to moderately severe pain for each participant.
At the end of the experimental session we also verified that increasing the mean shock rate
within the range used for the experiment corresponded to monotonic increases in VAS pain
ratings, by asking participants to rate stimulus trains of constant voltage, equal to that used
during the choice phase, whilst shock rate was increased in increments of 2 shocks/5s, starting
from the baseline mean rate of 2 shocks/5s up to the maximum rate of 14 shocks/5s. This was
followed by a symmetrical decreasing staircase in which shock rate was decreased by the same
increment. 2 out of the 35 participants rated the maximum shock rate as below 4/10 (which
corresponded to “mild pain” on the visual analog rating scale) at the end of experiment, sug-
gesting that significant adaptation had occurred over the course of the experiment. These 2
participants were therefore excluded from the analysis.

Procedure and design: one-off choices. The procedure for estimating temporal value func-
tions from one-off binary intertemporal choices has been described elsewhere [9]. In brief,
the experiment proceeded according to a trial-based design in which the unit of time was a sin-
gle trial and participants’ choices determined outcomes on future trials. The painful shocks
were delivered within a five second stimulus train, identical to that used in the dynamic choice
setting. Prior to making their choices participants received samples of stimulus trains at differ-
ent shock rates, so that they were familiar with the outcomes. On each trial the default outcome
was a shock train with mean 2 shocks/5s (0.4 shocks/s), identical to the “Baseline Pain” in the
dynamic setting. Participants made two sets of 95 choices between two options for outcomes
with higher expected shock rates, up to a maximum of 14 shocks/5s (i.e. 2.8 shocks/s, identical
to the maximum rate in the dynamic context), delivered at between 4 to 51 trials in the future.
There was an equal number of choices in which the delayed outcome had a higher expected
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shock rate as choices in which the sooner outcome had a higher expected shock rate. Each trial
lasted an average of approximately 10 seconds in total, equivalent to the duration of a single
trial in the dynamic setting. All choices were genuine, with shock delivered reliably according
to subjects’ choices.

Participants were briefed with instructions that embedded the task in a health-related sce-
nario, similar to that used for the dynamic choice setting. Intertemporal choice data was col-
lected in two blocks, the order of which was counterbalanced: a block in which outcomes were
framed as an increase in shock rate, referred to as the ‘pain’ frame and an otherwise identical
experimental block in which outcomes were framed as a decrease in shock rate from the maxi-
mum rate, referred to as the ‘relief’ frame. The same participants performed these static inter-
temporal choices, prior to the dynamic choice experiment, on the same day. Responses were
analyzed by fitting a series of alternative temporal value functions to participants’ choices using
maximum-likelihood estimation. The best-fitting class of model was an exponential-sum dread
model of the form described below.

Data processing. To reduce the computational complexity of the modeling and simulation
analysis (necessary when fitting more complex models using dynamic programming), relief
consumption was rounded to the nearest 10mg, creating 13 possible spending choices on each
trial (0 to 12). This procedure produced occasional rounding errors such that the cumulative
total rounded consumption exceeded the budget constraint. These errors were corrected by dis-
allowing rounded consumption to exceed the remaining total relief, resulting in fictitious ob-
servations on the final trial for some participants. These discrepancies from the true observed
consumption profiles were small by comparison to predominant patterns of consumption.

Simulating consumption paths. To simulate consumption paths predicted by the dread-
discounting functions derived from one-off choices we implemented a dynamic program
[54–56] over all possible states of capital at each time point. A deterministic transition func-
tion, T(ct, st) described how actions in the current state mapped to subsequent states, such that:

stþ1 ¼ st � ct 7Þ

Where st, denotes capital at time t, and ct consumption at t. Borrowing is not allowed, therefore
st�0 and ct�st.

Consuming a quantity of relief, ct, was associated with utility U(ct) at the current state,
where U(ct) is the utility function for relief. Since ct �st, the function U also depends on current
capital st. The overall value of consuming relief, ct, when situated at time, t, with a state of capi-
tal, st, termed a Q-value, was then described recursively as a function of the resulting relief utili-
ty at the current state, U(ct, st), followed by the expected utility of relief at all future states, given
a future action policy, π, and a discount function, Δ(d), giving rise to:

Qpðst; ctÞ ¼ Uðct; stÞ þ E
XT�t

d�1

DðdÞ � Uðctþd; stþdÞctþd~p

" #
8Þ

The action policy, π, dictates the probability of consuming an amount of relief, ct, given that
the agent is currently situated at t and has capital, st, here represented by a softmax policy for
action selection, such that:

pðct jst; tÞ ¼ pðst; tÞ 9Þ

Where:

p : st; t !
ebQ

pðst ;ct ;tÞX
ct
e
bQpðst ;ct ;tÞ 10Þ
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Higher values of the inverse temperature parameter, β, lead to behavior becoming more deter-
ministic for choosing the option with higher utility. Δ(d) was represented by the anticipation-
discounting function derived from one-choices, which assumed the following form:

DðdÞ ¼ gC
d þ a

Xd�1

t¼0

gC
d�tgA

t

" #
11Þ

Parameters from the Exponential Dread model (γD— framing; both Pain and Relief frames
separately), namely α, γP and γD were carried forward to generate resulting optimal consump-
tion paths on the dynamic experiment. To do so, discounting of relief consumption was set to
be equivalent to discounting of pain (γC = γP) and discounting of dread was set to be equivalent
to the discounting of savoring (γA = γD). A linear utility function for pain and relief was as-
sumed. Optimal policies were implemented using a high value of the softmax inverse tempera-
ture, β = 10000.

The value function Qπ(st, ct) expresses the notion that the value of consuming an amount, c,
at the current capital level and time period depends on the immediate utility of consuming c
plus the expected value of (discounted) future consumption, given accurate knowledge of one’s
likely future policy for action. This model therefore entails complete sophistication. In other
words the model assumes for example that the agent at t = knows that a future decision-maker
at t = 11 will apply the same degree of discounting to periods t = 11,12,13. . . and so on as the
agent currently applies to periods t = 1,2,3. . . and so on. Naivety by contrast would entail for
example that the agent at t = 1 assumes that the decision-maker at t = 11 will apply the same
discount factors to periods t = 11,12,13. . . and so on as the agent currently applies to those
time periods. Given dynamic inconsistency in the discounting function, a naïve agent would be
expected to change their plans at each time step.

To explore the predicted future plans resulting from different forms of anticipation-dis-
counting and utility functions, under naivety as well as sophistication, we also simulated the be-
havior of an agent facing a discrete-time dynamic intertemporal reward allocation task lasting
10 time periods. The agent was endowed with a budget of 100 units of reward at the start of the
task, and was allowed to consume any proportion of the total remaining reward (capital) at
each time period. There was no experimenter-determined interest rate on assets not yet con-
sumed. To simulate naïve behavior, the form of the discount function was made dependent on
the absolute timing of the outcomes as well as their delay, such that the decision-maker at each
time step believed that future decision-makers would apply the same preferences as those cur-
rently held for those time-periods. To achieve this, the dynamic program was iterated once for
each trial of the simulation, with the following recursive value function:

Qp
naiveðst; ct; t; iÞ ¼ Dðt � iÞ � Uðct; stÞ þ E

XT

t¼tþ1

Dðt� iÞ � Uðctþd; stþdÞctþd~p

" #
12Þ

Where each iteration is represented by i, which ranges between 1 and T. Naive consumption
plans (as shown in Fig. 4C) at trial i were sampled from a policy based on Qp

naiveðst; ct; iÞ over
the remaining trials t = i, i+1, i+2. . . T. Naïve consumption paths themselves were simulated
by sampling from Qp

naiveðst; ct; tÞ over all trials t = 1,2,3. . . T.
Model fitting procedures. For each of the models, we assumed a standard probabilistic

model of action selection in the form of a softmax function. Model fitting followed a maximum
likelihood framework, using the softmax policy to generate the probability of observing each
possible (rounded) level of relief consumption, given a particular set of model parameters. For
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each model we sought parameters which maximized the log likelihood of (minimized the nega-
tive log likelihood) of the observed consumption choices of each participant. To do so, simplex
optimization was performed using the Matlab (Mathworks, MA, USA) fminsearch optimiza-
tion tool (Nelder-Mead search algorithm [57]) with the addition of bound constraints by trans-
formation. For each subject 10 iterations of the optimization were performed, and the
maximum likelihood estimate across all iterations was selected. On each iteration the optimizer
was called within a random multi-started overlay (RMsearch), with 100 starting points selected
from a uniform distribution between the parameter bounds, in order to reduce convergence on
local minima.

To find the best-fitting values of the softmax temperature parameter, β, and the exponent of
the utility function, k, assuming that participants behaved so as to maximize the previously-
derived anticipation-discounting functions, we implemented the value function shown in
Equation 8, assuming full sophistication, whilst optimizing over β and k.

The value function of the Direct Action heuristic model is described in the main text. The
Direct Action model had only three parameters: the inverse temperatures of each softmax func-
tion, respectively termed, βspend, βspread and βsave. The value function for the Income Maximiza-
tion model was identical to the Direct Action model, with the exception that the propensity to
spend-now-save-later,Msave, was replaced with an action-value function, the maximization of
which maximizes the mean relief remaining, ρt, over the immediate future, given knowledge of
the future policy for action, π:

Qp
r�maxðst; ct; t; gÞ ¼ rtðst; tÞ þ E

XT�t

d¼1

gdrtþdðstþd;t þ dÞctþd~p

" #
13Þ

Where:

rtðst; tÞ ¼ st=½60� ðt � 1Þ� 14Þ

The Income Maximization model thus had four parameters: βspend, βsread, βmaximize and γ,
where the latter governs the probability, 1-γ, that the decision-maker terminates their search at
every level deeper into the tree. For both heuristic models, the softmax temperature of each pol-
icy was bounded between 0 and 10. The parameter, γ, governing the search depth of the In-
come Maximization model, was bounded between 0 and 1. For these models, the resulting
three policies were combined by a weighted average, in which the weight given to each policy
was proportional to the inverse variance of the resulting distribution of consumption choices,
such that:

oi ¼
1

varðpiÞ
� �

=

X3

j¼1

1

varðpjÞ

" #
15Þ

Where ωi is the weighting on policy, πi. This procedure served as a useful heuristic for combin-
ing policy estimates.

To combine heuristics with utility maximization, we assumed that the value of consuming
each possible quantity of relief at each time point was governed by a weighted sum of the value
function in Equation 8, here termed Qp

optðst; ctÞ and a bias towards consuming either zero, the

mean remaining or the maximum relief. Each bias assumed that the propensity to spend each
possible quantity of relief was proportional to a Gaussian probability density function with a
mean centered on the quantity of interest, and standard deviation equal to two units of relief,
such that:

Dynamic Consumption of Pain Relief

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004030 March 20, 2015 26 / 32



Mmin eNð0; 2Þ 16Þ

MmeanðrtÞ eNðrt; 2Þ 17Þ

MmaxðstÞ e Nð12; 2Þif st � 12

Nðst; 2Þotherwise

(
18Þ

The final value function, Qp
opt�heurðst; ctÞ; was then a weighted sum of the optimal values and

the biases:

Qp
opt�heurðst; ctÞ ¼ Qp

optðst; ctÞ þ ominMmin þ omeanMmeanðrtÞ þ omaxMmaxðstÞ 19Þ

Fixed effects model comparison was performed at the group level by summation of log like-
lihoods across participants. Model comparison used the Bayesian Information Criterion (BIC)
[58], where

BIC ¼ �2Lþ klnðnÞ 20Þ

and L is the maximized group level log likelihood, k is the number of free parameters in the
model and n the number of independent observations. The BIC favors models with higher like-
lihood estimates and penalizes increasing model complexity. Lower values of BIC indicate a
more favorable model fit.

Supporting Information
S1 Fig. Dynamically inconsistent savoring. Anticipation-discounting functions of the form
displayed in Fig. 3.AWhere prospective savoring dominates, preference reverses towards defer-
ral of consumption. Here r1 is a larger sooner reward and r2 is a smaller later reward, where both
generate a large degree of savoring. When both rewards are distant, the larger, sooner reward is
preferred, however as the rewards approach, prospective savoring from both rewards diminishes
at an increasing rate, such that the smaller delayed reward becomes preferable. BWhere dis-
counting dominates, preference can reverse towards sooner consumption, in a similar manner to
conventional hyperbolic discounting. Here r1 is a smaller sooner reward and r2 is a larger later re-
ward, where both generate a small degree of savoring. Here, in the absence of savoring the sooner
reward, r1, would be preferred, due to exponential discounting. With savoring however, when
both rewards are distant, the larger, later reward is preferred, due to its relatively greater savoring.
Only as the sooner reward approaches in time, and its value increases due to decreased discount-
ing, does it become preferable. The parameters of the functions are displayed on each plot.
(TIF)

S2 Fig. Histograms of relief consumption over time. A Relief consumption expressed as mg.
Each plot represents the distribution of relief consumption over a period of 10 trials. It is evi-
dent that multiples of 10mg are over-represented, consistent with a round-number heuristic.
B Relief consumption rounded to the nearest 10mg, expressed as ‘units’. Each plot represents
the distribution of relief consumption over a period of 10 trials. The data suggest save-now-
spend-later and spread-spending heuristics.
(TIF)
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S3 Fig. Relief consumption across participants exhibiting “spreading” of consumption. For

these 13 participants the mean absolute deviation from even consumption, jdtj, was less than 1
unit of relief, an arbitrary threshold. Participants are arranged in ascending order of the vari-
ance of jdtj, which indicates the trial-to-trial deviation from even utility spreading. A: The first
six participants adhere relatively closely to even utility spreading on a trial-to-trial basis. The
next five participants maintain even utility spreading when averaged across trials, but show a
greater degree of variability in their choices on a trial-to-trial basis. B: The final two partici-
pants, whilst spreading consumption over time, appear to demonstrate mixed profiles of relief
consumption, including a tendency to spend close to either the maximum (12 units) or mini-
mum (0 units) allowable quota of relief.
(TIF)

S4 Fig. Relief consumption across participants exhibiting “saving”. The 15 participants for

whom dt � �1. It is evident that some participants chose nearly exclusively to conserve relief
until the mean relief remaining, ρt, reached the maximum allowable spend per trial of 12 units.
However, several participants appeared to employ mixed policies for consumption.
(TIF)

S5 Fig. Relief consumption across participants classified as exhibiting “early spending”.

The 2 participants for whom dt � þ1. Trial-to-trial consumption is highly variable, rather
than reflecting a deterministic policy to spend the maximum allowable relief, suggesting that
these participants may have chosen consumption almost randomly for the majority of the ex-
perimental run. As ρt declines, both participants make attempts to constrain their spending in
line with this decline.
(TIF)

S6 Fig. Participant-level fits of the income maximization model. AObserved rounded relief
consumption profiles (blue circles) for the six participants whose data is displayed in Fig. 5,
overlaid with consumption simulated (red circles) from the maximum likelihood parameteri-
zation, θ, of the Income Maximization model. Whilst the model fitting process takes account of
the observed state of capital on each trial, the simulated paths here are sampled anew from the
maximum likelihood parameterization without reference to the data. B Color plots indicating
probability across all participants of consuming an amount of relief, ct, on each trial, t, given a
vector of the total remaining relief for each participant on each trial, st, st+1, st+2, . . . sT, at the
maximum likelihood parameterization, θ, of each model overlaid with observed consumption
data (white circles). It is evident that the model is able to account for the main behavioral ten-
dencies, as well as their dynamics.
(TIF)

S7 Fig. Combining anticipation-discounting with heuristics. A The observed distribution of
consumption by all 30 participants included in the analysis. Warmer colors indicate that a
higher proportion of participants chose to consume that amount of relief on a particular trial.
B Group-Level distribution of relief consumption predicted by anticipation-discounting func-
tions derived from relief frame choices, with the softmax temperature, beta, and utility parame-
ters freely fitted, with a varying degree of bias towards consuming either the minimum,
maximum or mean remaining relief on each trial. The plot denotes the mean probability across
all participants of consuming an amount of relief, ct, on each trial, t, given a vector of the total
remaining relief for each participant on each trial, st, st+1, st+2, . . . sT, at the maximum likeli-
hood parameters, θ, of each model. C The proportion of variance explained by the model.
Mean predicted consumption levels simulated from the maximum likelihood
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parameterizations over each 10 trials of the experiment for each participant are plotted against
the same metric derived from the observed data.
(TIF)

S1 Text. Information given to participants. This text file details the on-screen instructions
used to brief participants in the relief scheduling experiment.
(DOCX)

S1 Table. Model parameters for the Income Maximization Heuristic Model. The maximum
likelihood parameter estimates for each participant from fits of the Income Maximization
model. Parameters βsave, βspend and βspread are the softmax inverse temperatures on the three be-
havioral tendencies, to maximize the mean relief remaining, to spend the maximum allowable
relief and to spend close to the mean relief remaining respectively. The γ parameter denotes the
probability of searching one step deeper into the decision tree at each stage whilst attempting
to maximize the mean remaining relief, akin to exponential discounting of future wealth.
(DOCX)

S1 Dataset. Relief consumption profiles. Contains the raw data for relief consumption in mil-
ligrams by each of the 33 participants who rated the shocks as aversive, on each of 60 trials.
The three subjects highlighted in gray were excluded from the analysis since they were not pro-
vided with on-screen details of the mean relief remaining per trial.
(XLSX)

S2 Dataset. Binary intertemporal choice metrics and dread-discounting parameters. Data
summarizing behavior on the previously published binary intertemporal choice task; the fre-
quency with which each participant chose the sooner of the two options for delayed painful
shocks in binary choice experiment (previously published, [33], S1 Table), and the maximum
likelihood parameter estimates resulting from fitting an exponential dread-discounting model
(previously published, [33], γP—framingmodel) to the observed choices. This file also contains

the derived metric, d used to classify behavior on the dynamic consumption experiment.
(XLSX)
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