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Abstract
Previous explanations of computations performed by recurrent networks have focused on

symmetrically connected saturating neurons and their convergence toward attractors. Here

we analyze the behavior of asymmetrical connected networks of linear threshold neurons,

whose positive response is unbounded. We show that, for a wide range of parameters, this

asymmetry brings interesting and computationally useful dynamical properties. When driv-

en by input, the network explores potential solutions through highly unstable ‘expansion’

dynamics. This expansion is steered and constrained by negative divergence of the dynam-

ics, which ensures that the dimensionality of the solution space continues to reduce until an

acceptable solution manifold is reached. Then the system contracts stably on this manifold

towards its final solution trajectory. The unstable positive feedback and cross inhibition that

underlie expansion and divergence are common motifs in molecular and neuronal net-

works. Therefore we propose that very simple organizational constraints that combine

these motifs can lead to spontaneous computation and so to the spontaneous modification

of entropy that is characteristic of living systems.

Author Summary

Biological systems are obviously able to process abstract information on the states of neu-
ronal and molecular networks. However, the concepts and principles of such biological
computation are poorly understood by comparison with technological computing. A key
concept in models of biological computation has been the attractor of dynamical systems,
and much progress has been made in describing the conditions under which attractors
exist, and their stability. Instead, we show here for a broad class of asymmetrically con-
nected networks that it is the unstable dynamics of the system that drive its computation,
and we develop new analytical tools to describe the kinds of unstable dynamics that sup-
port this computation in our model. In particular we explore the conditions under which
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networks will exhibit unstable expansion of their dynamics, and how these can be steered
and constrained so that the trajectory implements a specific computation. Importantly,
the underlying computational elements of the network are not themselves stable. Instead,
the overall boundedness of the system is provided by the asymmetrical coupling between
excitatory and inhibitory elements commonly observed in neuronal and molecular net-
works. This inherent boundedness permits the network to operate with the unstably high
gain necessary to continually switch its states as it searches for a solution. We propose that
very simple organizational constraints can lead to spontaneous computation, and thereby
to the spontaneous modification of entropy that is characteristic of living systems.

Introduction
The principles of biological computation are not well understood. Although the Turing Ma-
chine and related concepts [1–3] have provided powerful models for understanding and devel-
oping technological computing, they have provided less insight for biological computation
because they generally assume that the machines themselves, as well as their initial program
and data are granted as input. In contrast, the organization of states and transitions of the bio-
logical process arise out of phylogenetic and ontogenetic configuration processes and execute
autonomously without the intervention of an intelligent external programmer and controller
being necessary to supply already encoded organizationally relevant information. Our goal
here is to make steps towards understanding biological computation [4–6], by considering the
behavior of a simple non-linear dynamical system composed of asymmetrically inter-con-
nected linear-threshold neurons. We suppose that such computations entail a mapping from
some input towards a limited (low entropy) region of phase space, which is the solution [7].
We do not suppose that the computational goal is known—only that computation must con-
form to this basic entropy reducing process. Here we describe the organizational constraints
that make such spontaneous computation possible.

Previous authors have explained neural network computation in terms of the convergence
of special dynamical systems, and emphasized the attractors to which they converge [8–13].
For example, Hopfield [9, 10] has shown how and why the dynamics of symmetrically con-
nected neurons with saturating outputs converge to attractor states; and others have offered
similar insights for symmetrically connected linear threshold neurons [14–16]. However, inter-
actions between inhibitory and excitatory neurons are clearly asymmetric, making these studies
ill suited to study biological computation. To the extent that asymmetrical networks have been
considered at all, this has been through assumptions that reduce asymmetrical networks to ap-
proximate symmetry. By contrast, we consider here the dynamics of fully asymmetrical net-
works, and discover that asymmetry contributes strongly to computational behavior.

The scope of our work is restricted to recurrent neural networks with asymmetric coupling
that express an important and ubiquitous behavior: soft winner-take-all (sWTA) dynamics.
We present a formal account of the response of these networks to exogenous perturbations and
use a form of non-linear stability analysis (contraction analysis [17]) to characterize the itiner-
ant transients than ensue, and which have useful interpretations in terms of neuronal computa-
tion and information theory. Contraction Theory offers a more flexible framework than the
conventional Lyapunov approach to non-linear stability (See Methods for details). This is par-
ticularly the case for non-autonomous systems such as our network, in which external inputs
can vary with time.
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We explore particularly the behavior of network computation during the non-equilibrium
phase, when the network is traversing its state-space seeking for a solution. We show that the
ability of the network to explore potential solutions depends on highly unstable ’expansion’ dy-
namics driven by recurrent excitation. This expansion is steered and constrained by negative
divergence of the dynamics, which ensures that the dimensionality of the solution space con-
tinues to reduce until an acceptable solution manifold is reached. The system then ’contracts’
stably on this manifold [17] towards its final solution trajectory, which is not necessarily con-
verging to a fixed point. We argue that the simple principle of unstable expansion constrained
by negative divergence provides the central organizing drive for more general autonomous bio-
logical systems from molecular networks, through neurons, to society.

Consider a simple network of non-linear neuron-like elements whose task it is to compute
the solution to some problem. The states of the computation are encoded in the activations
(firing rates) of the neurons, and the computational transitions between these states arise out
of their synaptic interactions. The overall trajectory resulting from the successive transitions
through its state space express its computation [18–20]. In current technological systems the
hardware states of the system are encoded on binary nodes whose discrete states are imposed
by signal restoring [21] circuitry [19]. This signal restoration is achieved by extremely high
gain, so that a small input bias will drive the node into saturation at one of its two voltage lim-
its. Biology rarely commands such sharply demarcated states and transitions. Instead, molecu-
lar and electrophysiological activation functions are often approximately sigmoidal (eg Hill
functions, voltage dependent conductance, neuronal current-discharge curves, etc). However,
neuronal systems do not typically run in saturation. The typical activation of a neuron is thre-
sholded below, and above this threshold it makes use of only the lower part of its dynamic
range. It very rarely enters saturation at the upper end of its activation range. Therefore, a suit-
able model for neuronal activation is a thresholded linear one. That is, their activity is bounded
from below, but their positive activity is essentially unbounded (over any practical range of
discharge). This is a very well studied model [14–16, 22].

As in our previous work, the neuronal network model is composed of thresholded linear
neuron-like units coupled through positive (excitatory) and negative (inhibitory) connections
(see Fig. 1a). The unbounded positive range of neuron activation implies that the global stabili-
ty of networks of these neurons must arise out of their collective interactions rather than from
saturation of their individual activation functions as assumed by for example [9, 10]. The key
interaction here is the inhibitory feedback, which must at least ensure that not all neurons can
simultaneously increase their activation [16]. Previous studies of such models have focused on
the mathematically more tractable case in which the connections between neurons are

Figure 1. Circuit motifs and simple circuit composed of motifs. (A) Circuit motifs are excitatory self-recurrence (top) and shared inhibition (bottom). Ii
denotes an external input. (B) Connectivity of a simple WTA circuit, consisting of two excitatory units that compete through shared inhibition. (C) More
compact notation to denote the circuit shown in (B). Each excitatory element receives an external input.

doi:10.1371/journal.pcbi.1004039.g001
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symmetrical, and have no transmission delays. Our networks, by contrast, need not be sym-
metrical and may have transmission delays. Indeed, the asymmetry of connections will be used
to computational advantage, not offered by symmetrical networks.

Results

Network model
The network contains two fundamental circuit motifs (Fig. 1A): excitatory neurons that project
both onto themselves and others, and inhibitory neurons which receive excitatory input from
the same neurons that they inhibit. Several instances of these motifs together compose the
general recurrent circuit that we investigate. In its simplest form, this recurrent network has
the following form. There are N neurons, N-1 of which are excitatory and one (index N) is in-
hibitory (Fig. 1B,C). The excitatory neurons xi ≠ N receive an optional external input Ii, and
excitatory feedback a from themself and nearby excitatory neurons (a1 and a2, respectively).
The single inhibitory neuron xn sums the b2 weighted input from all the excitatory neurons,
and sends a common b1 inhibitory signal to each of its excitatory neurons. Each neuron has a
resistive constant leak term Gi.

The dynamics of this simple network are:

t _xi þ Gixi ¼ f ðIiðtÞ þ a1xi þ a2xi�1 þ a2xiþ1 � b1xNÞ ð1Þ

t _xN þ GixN ¼ f ðb2

XN�1

j¼1

xjÞ ð2Þ

where f(x) is a non-saturating rectification non-linearity. Here, we take f(x) =max(x, 0), mak-
ing our neurons linear threshold neurons (LTNs).

As long as the key parameters (ai, bi) satisfy rather broad constraints [23], this network be-
haves as a soft winner-take-all by allowing only a small number of active neurons to emerge,
and that solution depends on the particular input pattern I(t). After convergence to the solu-
tion, the active neurons (winners) will express an amplified version of the input I(t), that is
they remain sensitive to the input even if it changes.

After convergence to steady state in response to constant input Ii> 0, the activation of the
winner i is:

xi ¼
Ii

1� a1 þ b1b2

¼ gIi ð3Þ

where g ¼ 1
1�a1þb1b2

is the gain of the network. Importantly, this gain can be g>> 1 due to ex-

citatory recurrence, which amplifies the signal in a manner controlled by the feedback loop.
While above assumes a2 = 0, similar arguments hold without this assumption [23].

The dynamics of the non-linear system are t _x ¼ fðWxþ IðtÞÞ �Gx (where f applies the
scalar function f(x) component-wise). For example, a minimal WTA with two excitatory and
one inhibitory units, x = [x1, x2, x3] (Fig. 1B,C), the weight matrixW is

W ¼
a1 0 �b1

0 a1 �b1

b2 b2 0

2
64

3
75 ð4Þ

whereG = diag(G1, . . ., Gn) is a diagonal matrix containing the dissipative leak terms for each
unit. The time constant of the system is t

G
. Now we consider the conditions under which the non-

linear system is guaranteed to be stable but at the same time powerful, i.e. permitting high gain.
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Instability drives computation
Contraction Theory assesses the stability of non-linear systems x ̇ = f(x, t) using virtual dis-
placements of its state at any point with respect to a chosen uniformly positive definite metric
M(x, t), obtained by a transformationY(x, t) (see Methods). The key Theorem 2 of [17] asserts
that if the temporal evolution of any virtual displacement in this metric space tends to zero,
then all other displacement trajectories in this space will also contract (shrink) to the same
(common) trajectory.

For our present case, this theorem implies (see Methods) that the trajectories of a system of
neurons with Jacobian J are exponentially contracting if

YJY�1 < 0 ð5Þ

The Jacobian J has dimension N and describes the connection matrix of the network andY is a
transformation matrix that provides a suitable choice of coordinates.

For a WTA with weight matrixW, the Jacobian is

J ¼ @f

@x
¼ SW�G ð6Þ

where S = diag(s1, . . ., sn) is a switching matrix, whose diagonal elements si 2 0, 1 indicate
whether unit i is currently active or not.

Following [16] we will call the subset of N neurons that are currently above threshold the ac-
tive set. Those that are inactive cannot contribute to the dynamics of the network. Thus, we
may distinguish between the static anatomical connectivityW of the network, and the dynamic
functional connectivity that involves only the subset of currently active neurons. This active set
is described by the switch matrix S. The Jacobian expresses which units contribute to the dy-
namics at any point of time, and is thus a reflection of functional rather than anatomical con-
nectivity. Each possible effective weight matrix has a corresponding effective Jacobian. Thus,
SW − G is the effective (functional) Jacobian of the network, in which only active units have
an influence on the dynamics.

The active sets may be either stable or unstable. In previous work on the hybrid analog and
digital nature of processing by symmetric networks, Hahnloser et al. refer to such sets as active
and forbidden, respectively [16]. They further show that the eigenvectors associated with posi-
tive eigenvalues of forbidden sets are mixed. That is, the eigenvector contains at least one com-
ponent whose sign is opposite to the remainder of the components. This property ensures that
a neuron will finally fall beneath threshold, and that the composition of the active set must
change. We now generalize this concept to our asymmetrical networks, and refer to permitted
and forbidden subspaces rather than sets, to emphasize the changes in the space in which the
computational dynamics play out.

It is the instability (exponential divergence of neighboring trajectories) of the forbidden sub-
spaces rather than stability that drives the computational process. This instability can be ap-
proached also through Theorem 2 of [17], which notes that if the minimal eigenvalue of the
symmetric part of the Jacobian is strictly positive, then it follows that two neighboring trajecto-
ries will diverge exponentially. We will use ’expanding’ to refer to this unstable, exponentially
diverging behavior of a set of neurons to avoid confusion with Gaussian divergence, which we
will need to invoke in a different context, below.

Thus, we will say that the dynamics of a set of active neurons is expanding if

YVJVTY�1 > 0 ð7Þ

where V is a projection matrix which describes subspaces that are unstable. For example, for a
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circuit with two excitatory units that cannot both be simultaneously active, V is

V ¼ a 0 � b1

0 a � b1

" #
ð8Þ

andY is a metric. The constraint (7) asserts that the system escapes the unstable subspaces

where Vx is constant. This guarantees that For V as defined aboveVx ¼ ax1 � b1x3

ax2 � b1x3

" #
.

Each row represents one excitatory unit. Guaranteeing that Vx cannot remain constant for a
particular subset implements the requirement that for a subspace to be forbidden, it cannot be
a steady state because if it were Vx would remain constant after convergence.

The parameter conditions under which Eqn 7 holds, are given in detail in [24]. Importantly,
these conditions guarantee that when the dynamics of our asymmetric network occupies an
unstable subspace, all eigenvectors are mixed (see Methods for proof). Consequently, as in the
symmetric case of [16, 25], this unstable subspace will be left (it is forbidden ), because one unit
will fall beneath its threshold exponentially quickly and so become inactive.

Divergence quenches computational instability
The dynamics of our asymmetric networks can now be explained in terms of the contraction
theory framework outlined above. Consider a simple network consisting of N = 5 neurons, one
of which is inhibitory and enforces competition through shared inhibition (Fig. 2A). For suit-
able parameters that satisfy the contraction constraints (see [24]), this network will contract to-
wards a steady state for any input. The steady state will be such that the network amplifies one
of the inputs while suppressing all others (for example, Fig. 2B). During this process of output
selection and amplification, the network passes through a sequence of transformations, at each
of which a different subset of units becomes active whereas the remainder are driven beneath
threshold and so are inactive. These transformations continue while the network is in its ex-
pansion phase and cease when the network contracts. The network is in the expansion phase
while the effective Jacobian is positive definite, and contracts when the Jacobian becomes nega-
tive definite (Fig. 2C).

The computational process of selecting a solution, conditional on inputs and synaptic con-
straints, involves testing successive subspaces, expressed as changing patterns of neuronal acti-
vation (Fig. 2B). Subspaces do not offer a solution (are forbidden) if for that subspace VJVT is
positive definite. In this case its dynamics are expanding, and because all eigenvectors in this
subspace are mixed, the subspace will finally switch. Subspaces that offer solutions (are permit-
ted) will have an effective Jacobian that is negative definite in some metric (they are contract-
ing), and so the system will not leave such a subspace provided that the input remains fixed.
Note that there can be subspaces whose Jacobian is neither positive nor negative definite,
which are then neither permitted or forbidden. However, by definition, the networks we de-
scribe assure that each possible subspace is either permitted or forbidden.

Consider the case in which the computational process begins in a forbidden subspace
(Fig. 2F). The process then passes successively through several forbidden subspaces before
reaching a permitted subspace. Two properties ensure this remarkable orderly progression to-
wards a permitted subspace. Firstly, the process is driven by the instability that ensures that for-
bidden subspaces are left. However the trajectory is associated with a progressive reduction in
the maximum positive eigenvalue of the active set (Fig. 2C).

Computation in Dynamically Bounded Asymmetric Systems
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Secondly, an orderly progression through forbidden subspaces is ensured by systematic re-
duction of the state space through Gaussian divergence. Gauss’ theorem

d
dt

dV ¼ div
d
dt

dz
� �

dV ð9Þ

asserts that, in the absence of random fluctuations, any volume element dV shrinks exponen-
tially to zero for uniformly negative definite divðd

dt
dzÞ. This implies convergence to an (n−1) di-

mensional manifold rather than to a single trajectory. For our system, the Gaussian divergence
is the trace of the Jacobian J or equivalently the sum of all of its eigenvalues. Note that this is a
much weaker requirement than full contraction. In particular, we are concerned about the

Figure 2. Illustration of key concepts to describe biological computation. (A) Connectivity of the circuit used in this figure. (B–F) Simulation results, with
parameters α1 = 1.2, β1 = 3, β2 = 0.25,G5 = 1.5,G1..4 = 1.1. (B) Activity levels (top) as a function of time for the units shown in (A) and external inputs provided
(bottom). After stimulus onset at t = 2000, the network selectively amplifies the unit with the maximal input while suppressing all others. (C) Maximal and
minimal eigenvalue of the functional connectivity FS active at every point of time. At t = 5000 the system enters a permitted subspace, as indicated by the max
eigenvalue becoming negative. (D) Divergence as a function of time. The divergence decreases with every subsapce transition. (E) Illustration of all possible
subspaces (sets) of the network. Subspaces are ordered by their divergence. For these parameters, only subspaces with at most one unit above threshold
are permitted (green) whereas the others are forbidden (red). (F) Divergence as a function of subspace number (red and green circles) as well as trajectory
through set space for the simulation illustrated in (B–D). Note how the divergence decreases with each transition, except when the input changes (set 16 is
the off state).

doi:10.1371/journal.pcbi.1004039.g002
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trace of the effective Jacobian, which is the Jacobian of only the active elements, because the in-
active elements (those below threshold) do not contribute to the dynamics.

The divergence quantifies the rate at which the volume shrinks (exponential) in its n dimen-
sional manifold towards a (n−1) dimensional manifold. The system will enter the (n−1) dimen-
sional and continue its evolution in this new active subset, and so on, until the reduced
dimensional system finally enters a permitted subspace (which is contracting). Note that here
we refer to the dimensionality of the system dynamics. This dimensionality is not necessarily
equal to the number of active units (i.e. at steady state or when one of the units is constant).

Note that negative Gaussian divergence does not follow automatically from expansion. In fact
most expanding sets will not have negative Gaussian divergence, and so will not be forbidden

For example consider the linear system _x ¼ Wx withW ¼
1 0 0

0 1 0

0 0 1

2
64

3
75. This system is

expanding but it does not have negative divergence.
For orderly computation to proceed, such sets must not exist. We require that all forbidden

subspaces are expanding as defined by contraction theory as well as have negative Gaussian di-
vergence. Indeed, for our LTN networks all forbidden subspaces are guaranteed to satisfy both
these properties.

Computation is steered by the rotational dynamics induced by
asymmetric connections
Because their positive output is unbounded, linear thresholded neurons are essentially insensi-
tive to the range of their positive inputs. Networks of these neurons amplify their inputs in a
scale-free manner, according to the slope of their activation functions and the network gain in-
duced by their connections. As explained above, this high gain drives the exploration and selec-
tion dynamics of the computational process. The network harnesses its high gain to steer the
computation through its asymmetric connections. Indeed, the asymmetric nature of the con-
nectivity in our network is central to its operation, and not a minor deviation from symmetry
(approximate symmetry, [26]).

The interplay between high-gain and steering can be appreciated by considering the behav-
ior of the system within one of the subspaces of its computation.

Consider a linear system of the form _x ¼ fðx; tÞ, which can be written as _x ¼ Mx þ u

whereM is a matrix of connection weights and u a vector of constant inputs. For the example
of a WTA with 2 excitatory units and 1 inhibitory unit,

M ¼
l1a� G 0 � l1b1

0 l2a� G � l2b1

l3b2 l3b2 �G

2
64

3
75 ð10Þ

SettingM =M1+M2 and defining

M1 ¼
l1a� G 0 0

0 l2a� G 0

0 0 �G

2
64

3
75 ð11Þ
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M2 ¼
0 0 � l1b1

0 0 � l2b1

l3b2 l3b2 0

2
64

3
75 ð12Þ

provides a decomposition into a component with negative divergence and zero divergence (see
methods for an example).

Any vector field f(x) can be written as the sum of a gradient fieldrV(x) and a rotational
vector field r(x), i.e. a vector field whose divergence is zero. In analogy, f ðxÞ ¼ _x ¼
M1x þ uþM2x whererV(x) =M1x + u and r(x) =M2x.

For our networkM1 is the expansion/contraction component andM2 is the rotational com-
ponent. This is an application of the Helmholtz decomposition theorem to our network
[27, 28]. These two matrices relate to two functional components in the network architecture:
The excitatory recurrence plus input, and the inhibitory recurrence. The first component pro-
vides the negative divergence that defines the gradient of computation, while the second steers
its direction as follows.

SinceM2 has a divergence of zero, this component is rotational. If, in addition,M2 is skew-sym-

metric so that�M2 ¼ MT
2 , the system is rotating, and the eigenvalues ofM2 will be imaginary

only. In general, b2 ≠ −b1 andM2 is thus not skew-symmetric. However, note that a transform of
the formFf(x)F−1 can be found that makesM2 skew-symmetric. Because such transform does
not change the eigenvalues ofM1, it will not change its divergence either. For above example,

F ¼

1 0 0

0 1 0

0 0

ffiffiffiffiffi
b1

b2

s
2
66664

3
77775 ð13Þ

which will result in a version ofM2 that is skew-symmetric

FM2F
�1 ¼

0 0 � ffiffiffiffiffiffiffiffiffi
b1b2

p
0 0 � ffiffiffiffiffiffiffiffiffi

b1b2

p
ffiffiffiffiffiffiffiffiffi
b1b2

p ffiffiffiffiffiffiffiffiffi
b1b2

p
0

2
664

3
775 ð14Þ

The same transformation to a different metric has to be applied toM1 as well, but as both
M1 and F are diagonal this will leaveM1 unchanged,M1 = FM1F

−1.
The orderly progression through the forbidden subspaces can be understood in this frame-

work: The negative divergence provided byM1 enforces an exponential reduction of any vol-
ume of the state space while the rotational componentM2 enforces exploration of the state
space by directing (steering) the dynamics.

The stability of the permitted subspaces can also be understood in this framework. Permit-
ted subspaces are contracting, despite the strong self-recurrence of the excitatory elements that
results in positive on-diagonal elements. This high gain, which is necessary for computation, is
kept under control by a fast enough rotational componentM2 which ensures stability. This can
be seen directly by considering one of the constraints imposed by contraction analysis on valid

parameters affecting an individual neuron: keeping a < 2
ffiffiffiffiffiffiffiffiffi
b1b2

p
guarantees that the system ro-

tates sufficiently fast to remain stable.
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Note that bothM1 andM2 change dynamically as a function of the currently active sub-
space. Thus, the direction and strength of the divergence and rotation change continuously as a
function of both the currently active set as well as the input.

Changes of entropy during computation
While the network is in the expansion phase, the volume of the state space in which the dy-
namics of the network evolves is shrinking. This process depends on initial conditions and ex-
ternal inputs. Consequently, the sequence by which dimensions are removed from state space
is sensitive to initial conditions. To quantify the behavior of a network for arbitrary initial con-
ditions it is useful to compute its information entropy H(t) as a function of time (see methods).
The smaller H(t), the smaller the uncertainty about which subspace the network occupies at
time t. Once H(t) ceases to change, the network has converged. To reduce state uncertainty,
and so to reduce entropy, is fundamentally what it means to compute [7].

The entropy remains 0 immediately after the application of external inputs to the network,
because the same “all on” subspace is reached regardless of initial conditions. Thereafter the
network begins to transition through the hierarchy of forbidden subspaces (Fig. 2F). This pro-
cess initially increases the entropy as the network explores different subspaces. Eventually,
after attaining peak entropy, the network reduces entropy as it converges towards one of its few
permitted subspaces. Fig. 3 illustrates this process for the network shown in Fig. 2A.

Increasing the gain by increasing the value of the self-recurrence a increases the speed by
which entropy is changed but not its asymptotic value. This means that all permitted subspaces
are equally likely to be the solution but that solutions are found mode quickly with higher gain.
Adding additional constraints through excitatory connections makes some permitted sub-
spaces more likely to be the solution, and so the asymptotic entropy is lower (see Fig. 3B, where
a connection a2 = 0.2 from unit 1 to 2 and a3 = 0.2 from unit 4 to 2 was added).

Note how the number of constraints and the gain of the network are systematically related
to both the increasing and decreasing components ofH(t). For example, increasing the gain
leads to a more rapid increase of entropy, reaching peak earlier and decaying faster towards the
asymptotic value (Fig. 3A). Also, adding constraints results in smaller peak entropy, indicating
that the additional constraints limited the overall complexity of the computation throughout
(Fig. 3B).

The network reaches maximal entropy when there exists the largest number of forbidden
subspaces having the same divergence. This occurs always for an intermediate value of diver-
gence, because then there occurs the largest number of subspaces having an equal number of

units active and inactive. This can be seen by considering arg max
k

N

k

 !
¼ N

2
(if N is even), i.

e. the network will have maximal entropy when the number of active units is 50%. Numerically,
this can be seen by comparing the time-course of the maximal positive eigenvalue or the diver-
gence with that of the time-course of the entropy (Fig. 3C,D).

Overall,H(t) demonstrates the dynamics of the computational process, which begins in the
same state (at its extreme, all units on), and then proceeds to explore forbidden subspaces in a
systematic fashion by first expanding and than contracting towards a permitted subspace.

Structure and steering of computation
We will now use the concepts introduced in the preceding sections to explain how our circuits
compute and how this understanding can be utilized to systematically alter the computation
through external inputs and wiring changes in the network.
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Provided that the external input remains constant, the network proceeds in an orderly and
directed fashion through a sequence of forbidden subspaces. This sequence of steps is guaran-
teed to not revisit subspaces already explored, because when in a forbidden subspace S1 with di-
vergence d1, the next subspace S2 that the network enters must have more negative divergence
d2 < d1. It thus follows that when the system has left a subspace with divergence d1 that it can
never return to any subspace with divergence� d1. It also follows that the network can only
ever enter one of the many subspaces Si with equal divergence di = X (Fig. 2F shows an exam-
ple). Not all subspaces with lower di than the current subspace are reachable. This is because
once a unit has become inactive by crossing its activation threshold, it will remain inactive.
Together, this introduces a hierarchy of forbidden subspaces that the network traverses while
in the exploration phase. Fig. 4A shows the hierarchy of the sets imposed by the network used
in Fig. 2. This tree-like structure of subspaces constrains computation in such a way that at any
point of time, only a limited number of choices can be made. As a consequence, once the net-
work enters a certain forbidden subspace, a subset of other forbidden and permitted subspaces
becomes unreachable (Fig. 4B). What those choices are depends on the input whereas the tree-
like structure of the subspaces is given by the network connectivity.

Knowledge of how the network transitions through the hierarchy of forbidden subspaces
can be used to systematically introduce biases into the computational process. Such additional
steering of the computation can be achieved by adding connections in the network. Additional

Figure 3. Spontaneous increase followed by reduction of state entropy during the expansion phase.Random inputs were provided to the 5-node
network as shown in Fig. 2. Each input Ii was chosen i.i.d from a normal distribution with μ = 6 and σ = 0.25. (A) Entropy as a function of time and gain of the
network. Higher gains are associated with faster increases and reductions of entropy but converge to the same asymptotic entropy. This indicates that each
permitted subspace is reached with equal probability. (B) Adding constraints reduces the peak and asymptotic entropy. The more constraints that are added,
the larger is the reduction in entropy. (C) Comparison of time-course of average entropy and divergence (trace). (D) Comparison of time-course of average
entropy and eigenvalues (min, max). Notice how both the divergence (C) and the eigenvalues (D) reach their maximal values well before the entropy reaches
its maximum.

doi:10.1371/journal.pcbi.1004039.g003
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off-diagonal excitatory connections, for example, will make it more likely that a certain config-
uration is the eventual winner. An example of this effect is shown in Fig. 5, where adding two
additional excitatory connections results in the network being more likely to arrive in a given
permitted subspace than others. For identical inputs (compare Figs. 5B and 4B) the resulting
permitted subspace can be different through such steering.

The network remains continuously sensitive to changes in the external input. This is impor-
tant and can be used to steer the computation without changing the structure of the network.
In the absence of changes in the external input, the network is unable to make transitions other

Figure 4. Hierarchy of subspaces and steering of computation. (A) 5-node network, using notation from Fig. 2. (B) Simulation of an individual run. Top
shows the state and bottom the inputs to the network. The unit with the maximal input wins (unit 4). (C) Trajectory through state space for the simulation
shown in (B). Each subspace is numbered and plotted as a function of its divergence. Red and green dots indicate forbidden and permitted subspaces
respectively. Numbers inside the dots are the subspace (set) numbers (see Fig. 2E). (C–D) Transition probabilities for the same network, simulated with 1000
different random inputs. Connected subspaces are subsets between which the network can transition, in the direction that reduces divergence (gray lines).
The size of dots and lines indicates the likelihood that a subset will be visited or a transition executed, respectively. The subset with most negative divergence
is the zero set (all units off), which is not shown. (C) All transitions made by the network. Depending on the value of the input, the network will reach one of the
permitted subspaces. Notice the strict hierarchy: all transitions were towards subspaces with lower divergence and only a subset of all possible transitions
are possible. (D) All transitions the network made, conditional on that subspace 13 was the solution. Note that this subspace cannot be reached from some
subspaces (such as nr 7).

doi:10.1371/journal.pcbi.1004039.g004
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than those which lead to subspaces with lower divergence. When the input changes, on the
other hand, the network can make such changes. For example, if the inputs change as a conse-
quence of the network entering a certain forbidden subspace, the network can selectively avoid
making certain transitions (Fig. 6A). This will steer the computation such that some permitted
subspaces are reached with higher likelihood. Noisy inputs similarly can lead to transitions
which make divergence less negative. Neverthless, the large majority of transitions remains
negative as long as noise levels are not too large. For example, repeating the same simulation
but adding normally distributed noise with s = 1 and m = 0 resulted in 26% of transitions being
against the gradient (see Fig. 6B for an illustration).

So far, we have illustrated how negative divergence and expansion jointly drive the compu-
tational process in a simple circuit of multiple excitatory neurons that have common inhibi-
tion. While this circuit alone is already capable of performing sophisticated computation,many
computations require that several circuits interact with one another [23, 29] The concepts de-
veloped in this paper can also be applied to such compound circuits, because the circuit motifs
and parameter bounds we describe guarantee that collections of these circuits will also possess
forbidden and permitted subspaces and are thus also computing. The compound network is

Figure 5. Steering of computation. (A) The same network as shown in Fig. 4A, with two additional excitatory connections α2 = 0.2 and α3 = 0.2. (B)
Simulation of an individual run. Top shows the state and bottom the inputs to the network. Although the input is identical to Fig. 4B, the computation proceeds
differently due to presence of the additional connections. (C) Trajectory through state space for the simulation shown in (C). The state space trajectory is
initially identical to the simulation shown in (Fig. 4C), but then diverges. (D) All transitions made by the network. The transition probabilities are now biased
and non-equal. Consequently, some permitted subspaces are reached more frequently than others.

doi:10.1371/journal.pcbi.1004039.g005
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guaranteed to be dynamically bounded, which means that no neuron’s activity can escape to-
wards infinity. This property of the collective system relies on two key aspects: i) collections of
individual circuits with negative divergence also have negative divergence, and ii) collective sta-
bility [24, 30]. Together, these properties guarantee that collections of the motifs will compute
automatically.

Consider a network assembled by randomly placing instances of the two circuit motifs on a
2D plane and connecting them to each other probabilistically (Fig. 7A,B and methods). This
random configuration results in some excitatory elements sharing inhibition via only one

Figure 6. Steering of computation by external inputs. The network remains sensitive to changes in its
input throughout the computation. Transitions are bi-directional: towards more negative and positive
divergence are gray and green, respectively. (A) Example of a selective change in the input. Here, unit 4
receives additional external input only if the network enters forbidden subspace 6 (see inset). This change
forces the network to make a transition to a subspace with less negative divergence (green). As a result, the
eventual solution is more likely to be subspace 15. (B) Example of continuously changing inputs (input noise).
Notice how noise introduces additional transitions towards less negative divergence at all stages. However,
the general gradient towards more negative divergence persists: overall, 26% of transitions made the
divergence more positive.

doi:10.1371/journal.pcbi.1004039.g006
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inhibitory motif, whereas others take part in many inhibitory feedback loops (Fig. 7B). This
random circuit will compute spontaneously (Fig. 7C,D). It is not known a priori how many for-
bidden and permitted subspaces the network has, nor how many possible solutions it can
reach. Nevertheless, it is guaranteed that the network will reduce entropy and eventually reach
a permitted subspace (Fig. 7E). The more connections (constraints) that are added to the net-
work the smaller the number of permitted subspaces, and generally the harder the computation
will become. How long the computation will take to reach a permitted subspace depends on
both the network size, and the number of connections (constraints). Generally, the smaller the
number of permitted subspaces the harder the computation will be. The important point is
that random instances of such circuits will always compute, which means they will always
reach a permitted subspace (Fig. 7F).

Discussion
The contribution of this paper has been to explore the fundamental role of instability in driving
computation in networks of linear threshold units. Previous studies of computation in neural
networks have focused on networks of sigmoidal units with symmetrical connectivity. Our net-
works of asymetrically connected LTNs draw attention to important features of computation
that were not apparent in these previous models. The conditional selective behavior crucial for
computation depends on the threshold nonlinearity of the LTN. However, in order to make
use of these non-linearities the network must express substantial gain. Because the activation
of LTNs is unbounded for positive inputs, the network can in principle produce very high acti-
vations through unstably high gain. In these networks, computation is expressed as passage
through a sequence of unstable states. It is this dynamical trajectory by which the network
computes [1, 2, 31]. Despite this essential instability, the system does not escape, but remains

Figure 7. Large random networks spontaneously compute. (A) Each site in a 10×10 grid is either empty or occupied by an excitatory (green) or inhibitory
(red) neurons (probabilistically). (B) Connectivity matrix. (C) Example run. (D) Entropy and divergence as a function of time for random initial conditions.
(E) The number of different subspaces visited reduces as a function of time similarly to the entropy. (F) Time�s.d. till the network first enters a permitted
subspace as a function of network size, specified as grid with. 100 runs of randomly assembled networks were simulated for each size. The larger the network,
the longer the network spent going through the forbidden subspaces. Panels A–E show an example of grid size 10. SeeMethods for simulation details.

doi:10.1371/journal.pcbi.1004039.g007
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bounded in its behavior. In this paper we have analyzed why this is so. We find that the insta-
bilities are self limiting, and that the overall process of computation is systematically quenched
by Gaussian divergence. Contraction analysis provides explicit tools to quantify both instanta-
neous rates of exponential convergence to limiting states or trajectories, and divergence rates
from specific subspaces. Here, we use these tools to analyze the unstable phase of the dynamics.
This phase is crucial, because computation is inseparable from instability. Here we have made
steps towards characterizing and explaining these phenomena.

The type of dynamical system we consider can implement soft-WTA type behavior,
amongst others. This makes our framework applicable to the extensive body of literature on
this type of network [32–38]. While simple, the soft-WTA is a powerful computational primi-
tive that offers the same computational power than a multi-layer perceptron [32]. Key aspects
of what makes WTA-networks powerful are high network gain, which allows computations
that require sparsification, and also provides stability. While the computational power of
WTAs has long been recognized and exploited to implement simple cognitive behaviors [23,
29, 39], it has remained unclear what it means to compute in such networks. Here, we provide
such understanding in terms of a dynamical system. This system is physically realizable by real-
istic neurons and their connections. Other work in this direction has focused on abstract math-
ematic models [36, 40–43], and less on physically realizable dynamical computation. More
recently, others [44–46] have offered useful models for understanding the principles whereby
the brain may attain cognition, but these approaches do not offer methods for implementing
such algorithms as physical computation in neuronal circuits.

The advances of this paper can be seen in contrast with classical assumptions concerning
the form of activation functions, continuous sensitivity to input, and symmetry of connections.
For example, the behavior of our LTN networks can be contrasted with networks of the kind
originally proposed by Hopfield [20] that allow no self-connections (wii = 0, 8i), have symmet-
ric connectivity (wij = wji), and their activation function is bounded on both sides. This guaran-
tees bounded dynamics by construction, allowing such networks to express high gain by virtue
of a steep activation function rather than through connections of the network. However, a con-
sequence of this is that when it operates with high gain the network operates in saturation and
thus becomes insensitive to input apart from initial conditions. Such networks have neither
negative divergence nor rotational dynamics, which together with insensitivity to external
input severely restricts their computational abilities as well as systematic design.

Importantly, our networks are continuously sensitive to their inputs. These external inputs
are a combination of signal and noise and can transfer the network from one subspace to an
other at any point of time and this transfer can be against the gradient imposed by negative di-
vergence. Non-autonomous systems continuously interact with their environment, for which
continuous sensitivity to input is crucial. Systems of asymmetrically interacting linear thresh-
old units are well suited for this situation. This is because their non-saturating units make the
system adaptive to the input amplitudes and sensitivity to inputs is conditional on the current
state, i.e. only the inputs contributing to the dynamics of the currently active state influence the
dynamics.

Although there has been a considerable amount of work on symmetric networks, biological
neuronal networks are always asymmetric because of inhibitory neurons. Also, the inhibitory
inputs to an excitatory neuron can be substantially stronger than the excitatory inputs. This re-
sults in particularly strong asymmetry, a property with many implications for computation in
such networks [47]. The theoretical study of networks with defined cell types (excitatory or in-
hibitory) thus requires asymmetric connectivity. Previous studies have used infinitely fast all-
to-all inhibition to circumvent this problem, which results in symmetric connectivity but lacks
defined cell types. Such networks allow dynamically bounded activity for linear threshold units
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[16, 48]. Apart from being biologically unrealistic, such networks can only express limited gain
and are thus computationally very limited [47]. By contrast, our networks express high gain
and dynamic instabilities during the exploration phase. Their asymmetric connections provide
the rotational dynamics that keep their activity bounded despite this high gain. It is worth not-
ing that many powerful algorithms, such as e.g. the Kalman filter [49, 50] also rely on negative
feedback and strongly asymmetric connectivity.

The dynamics of the exploration phase are highly structured because the different forbidden
subspaces are systematically related to one another. Indeed, the subspaces are ordered in a hier-
archy through which the dynamics proceed. At any point in this hierarchy only a limited and
known set of subspaces can be entered next (unless the external input changes). The systematic
understanding of the unstable dynamics driving exploration can be used to steer and modify
the computational trajectory while it is in process, rather than only when a solution has been
found. The network can influence its environment continuously as a function of the forbidden
subspaces it traverses, for example by executing a specific action whenever a particular sub-
space is entered. This feature can be used to make the computations of several networks depen-
dent on each other. For example. to enforce dependencies between several ongoing
computations such as, “all solutions must be different”.

The connections of the network are the constraints imposed on the computation. The more
connections per neuron, the fewer possible solutions exist and the harder (slower) the compu-
tation is. From this point of view, the networks we describe perform constraint satisfaction,
which is a hard computational problem and which has been proposed as an abstract model of
computation [51, 52]. Connections can be inserted systematically to forward program specific
algorithms and behaviors [23, 24, 29], randomly or a combination thereof. Either way, the sys-
tem will compute [53], but in the former case will execute specific algorithms while in the later
the algorithm is unknown.

The constraints active at any point of time depend on the state of the network as expressed by
the effective connectivity of the network expressed by the switching matrix. Every time the net-
work changes state, the switching matrix changes. Dynamically, the same concept can be applied:
the effective Jacobian jointly expresses all the currently activity constraints for a given state. Only
if the possible state(s) of a network are known is it possible to determine the effective Jacobian.
An important implication is that to understand the underlying algorithm that drives the compu-
tation performed by a group of neurons knowledge of the structural connectivity is not sufficient
[54–56]. This is because connectivity alone does not determine the possible states of the network.

The circuit motifs and parameter bounds we describe guarantee that collections of these
circuits will also possess forbidden and permitted subspaces and thus are computing. By collec-
tions we mean multiple copies of the same motifs that are in addition connected to each other,
as for example in the random network discussed in the results. This is important because col-
lections of these motifs will compute automatically, a property we refer to as collective compu-
tation. This makes it practical to design large-scale computing systems without having to
perform global analysis to guarantee both the type of instability required for computation as
well as stability of the solutions.

It is important to note that one need not commit to a particular circuit motif beyond guaran-
teeing that both forbidden and permitted subspaces exist in the way we define them. While a
network composed of such motifs but otherwise connected randomly will always compute, the
individual states do not have meaning nor is the algorithm that the network computes known.
However, the states that the network proceeds through while it computes are systematically re-
lated to each other. Consequently, assigning a meaningful interpretation to a few key states will
make all states meaningful. A similar approach is used in reservoir computing, where states are
first created and only later assigned with meaning by learning mechanisms [57]. A key next
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step will be to discover how linking specific forbidden subspaces with motor actions that in
turn change the input to the system allow a computation to remain continuously sensitive to
the environment while it proceeds. An other next step is to discover how several interacting sys-
tems can bias each others computations systematically to reach a solution that is agreeable to all
while satisfying the local constraints of each computation.

The unstable positive feedback and cross inhibition that underly expansion and divergence
are common motifs found in many molecular, cellular and neuronal networks [58]. Therefore
all such systems follow the very simple organizational constraints that combine these motifs.
This will lead such circuits to compute spontaneously and thereby to reduce their state entropy
as is characteristic of living systems.

Methods

Numerical methods
All simulations were performed with Euler integration with d = 0.01, thus t is equivalent to 100
integration steps. All times in the figures and text refer to numerical integration steps. Unless
noted otherwise, the external inputs Ii(t) were set to 0 at t = 0 and then to a constant non-zero
value at t = 2000. The constant value Ii was drawn randomly and i.i.d. fromN ð6; 1sÞ. All simu-
lations were implemented in MATLAB.

In cases where noise was added, the noise was supplied as an additional external input term
N ð0; sÞ with s = 1.

t _xi þ Gixi ¼ f ðIi þN ð0; sÞ þ a1xi þ a2xi�1 þ a2xiþ1 � b1xNÞ ð15Þ

A new noise sample is drawn from the random variable every t to avoid numerical integration
problems.

Large network simulation
A 2D square of dimension 10 by 10 spots is created. Each spot is occupied by a neuron with
P = 0.4. If a spot is occupied, it is excitatory with P = 0.8 and inhibitiory otherwise. Connectivity
between units is generated with the following constraints: All excitatory units receive excitation
from themselfs with a1. Further, each excitatory unit receives inhibiton from and excites up to
8 randomly chosen inhibitory neurons with probability P = 0.4. It is very unlikly that an excit-
atory unit is not connected to any inhibitory neuron at all (P = (0.6)8).

Entropy
The information entropy H(t) is

HðtÞ ¼ �
X

i

piðtÞlog2ðpiðtÞÞ ð16Þ

The sum is over all subspaces i and pi(t) is the probability of the network being in subspace i
at time t, over random initial conditions (we used 1000 runs). By definition, we take 0log2(0) = 0.

Analytical methods
The principal analytical tool used is contraction analysis [17, 59–61]. In this section, we briefly
summarize the application of contraction analysis to analyzing asymmetric dynamically
bounded networks [24]. Essentially, a nonlinear time-varying dynamic system will be called
contracting if arbitrary initial conditions or temporary disturbances are forgotten exponentially
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fast, i.e., if trajectories of the perturbed system return to their unperturbed behavior with an
exponential convergence rate. Relatively simple algebraic conditions can be given for this
stability-like property to be verified, and this property is preserved through basic system com-
binations and aggregations.

A nonlinear contracting system has the following properties [17, 59–61]

• global exponential convergence and stability are guaranteed

• convergence rates can be explicitly computed as eigenvalues of well-defined Hermitian matrices

• combinations and aggregations of contracting systems are also contracting

• robustness to variations in dynamics can be easily quantified

Consider now a general dynamical system in R
n,

_x ¼ fðx; tÞ ð17Þ

with f a smooth non-linear function. The central result of Contraction Analysis, derived in [17]
in both real and complex forms, can be stated as:

Theorem Denote by @f
@x
the Jacobian matrix of f with respect to x. Assume that there exists a

complex square matrixY(x, t) such that the Hermitian matrixY(x, t)�T Y(x, t) is uniformly
positive definite, and the Hermitian part FH of the matrix

F ¼ _Y þY
@f
@x

� �
Y�1

is uniformly negative definite. Then, all system trajectories converge exponentially to a single tra-
jectory, with convergence rate |supx, t lmax(FH)|> 0. The system is said to be contracting, F is
called its generalized Jacobian, andY(x, t)�TY(x, t) its contractionmetric. The contraction rate is
the absolute value of the largest eigenvalue (closest to zero, although still negative) l = jlmax(FH)j.

In the linear time-invariant case, a system is globally contracting if and only if it is strictly
stable, and F can be chosen as a normal Jordan form of the system, withY a real matrix defin-
ing the coordinate transformation to that form [17]. Alternatively, if the system is diagonaliz-
able, F can be chosen as the diagonal form of the system, withY a complex matrix
diagonalizing the system. In that case, FH is a diagonal matrix composed of the real parts of the
eigenvalues of the original system matrix. Here, we chooseY =Q−1 whereQ is defined based
on the eigendecomposition J =QΛQ−1.

The methods of Contraction Analysis were crucial for our study for the following reasons: i)
Contraction and divergence rates are exponential guarantees rather than asymptotic (note that
the more familiar Lyapunov exponents can be viewed as the average over infinite time of the
instantaneous contraction rates in an identity metric). ii) No energy function is required. In-
stead, the analysis depends on a metricY that can be identified for a large class of networks
using the approach outlined. iii) The analysis is applicable to non-autonomous systems with
constantly changing inputs.

The boundary conditions for a WTA-type network to be contracting as well as to move ex-
ponentially away from non-permitted configurations were derived in detail in [24]. They are:

1 < a < 2
ffiffiffiffiffiffiffiffiffi
b1b2

p
1

4
< b1b2 < 1

ð18Þ
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Forbidden subspaces have mixed eigenvalues
When the system resides in a forbidden subspace, the maximal eigenvalue of the effective Jaco-
bian is positive and its divergence is negative. A forbidden subspace thus has a mixed eigenvec-
tor v associated with the maximal eigenvalue lmax. A mixed eigenvector is one where at least
one entry is strictly negative and at least one strictly positive.

Proof by contradiction: Assume all components vi � 0. Consider a constant external input
where the system starts along one of the eigenvectors v. In this case, the state of the network is
determined entirely by this eigenvector and would grow towards infinity without ever changing
dimensionality. However, the conditions for a forbidden subspace do not permit this because
Vx = 0 ensures that the system escapes this subspace exponentially fast (see Eqs 7–8). Thus in a
forbidden subspace, by definition, the state cannot grow towards infinity and the eigenvector v
must be mixed.

Rotation versus expansion—Example
This example illustrates the role of rotation.

1 a

�a �2

" #
¼ 1 0

0 �2

" #
þ a

0 1

�1 0

" #
ð19Þ

In the above, divergence is −1. Whether the system is linearly stable depends on the value of
a. If the determinant −2 + a2 > 0, this system is stable. Thus the system is stable if a2 > 2, i.e. if
the rotation is “fast enough”.
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