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Abstract

Bow-tie or hourglass structure is a common architectural feature found in many biological
systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much
fewer components than the input and output layers. Examples include metabolism where a
handful of building blocks mediate between multiple input nutrients and multiple output bio-
mass components, and signaling networks where information from numerous receptor
types passes through a small set of signaling pathways to regulate multiple output genes.
Little is known, however, about how bow-tie architectures evolve. Here, we address the evo-
lution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a
given input-output goal. We find that bow-ties spontaneously evolve when the information in
the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when
the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal
compression possible (the rank of the goal) determines the size of the narrowest part of the
network—that is the bow-tie. A further requirement is that a process is active to reduce the
number of links in the network, such as product-rule mutations, otherwise a non-bow-tie so-
lution is found in the evolutionary simulations. This offers a mechanism to understand a
common architectural principle of biological systems, and a way to quantitate the effective
rank of the goals under which they evolved.

Author Summary

Many biological systems show bow-tie (also called hourglass) architecture. A bow-tie
means that a large number of inputs are converted to a small number of intermediates,
which then fan out to generate a large number of outputs. For example, cells use a wide va-
riety of nutrients; process them into 12 metabolic precursors, which are then used to make
all of the cells biomass. Similar principles exist in biological signaling and in the informa-
tion processing in the visual system. Despite the ubiquity of bow-tie structures in biology,
there is no explanation of how they evolved. Here, we find that bow-ties spontaneously
evolve when the information in the evolutionary goal they evolved to satisfy can be com-
pressed. Mathematically, this means that the matrix representing the goal has deficient
rank. The maximal compression possible determines the width of the bow-tie—the nar-
rowest part in the network (equal to the rank of the goal matrix). This offers a mechanism
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to understand a common architectural principle of biological systems, and a way to quan-
titate the rank of the goals under which they evolved.

Introduction

Many natural and engineered systems show a bow-tie architecture [1,2]. A bow-tie (also
termed hourglass) architecture is a feature of multi-layered networks in which the intermediate
layer has significantly fewer components than the input and output layers. The intermediate
layer is called the “waist” [3], “knot” [1] or “core” [4] of the bow-tie and in gene-regulatory net-
works the ‘input-output’ [5] or ‘selector’ gene [6]. Bow-ties mean that the network is capable of
processing a variety of inputs, converting them into a small set of universal intermediates and
then reusing these intermediates to construct a wide range of outputs (see Fig. 1).

A bow-tie architecture is found for example in metabolic networks [1,7-9], where the large
range of nutrients consumed by the organism is decomposed into 12 universal precursors (in-
cluding pyruvate, G6P, F6P, PEP, AKG, ACCOA [1,10]) from which the organism builds again
all of its biomass including carbohydrates, nucleic acids and proteins. In mammalian signal
transduction, a set of less than 10 pathways mediates information transfer between hundreds
of possible input signals and the resulting expression changes in thousands of genes [10-13]—
the same pathways are co-opted in different cell types to connect different inputs and outputs.
The human visual system consists of multiple layers of signal processing, where hundreds of
millions of photoreceptors in the retina fan in to only about one million ganglion cells [14]
whose axons form the optic nerve. These in turn fan out to parallel processing pathways in the
visual cortex that detect pattern, color, depth and movement [15]. Many developmental gene
regulatory networks have bow-tie structures in which a single intermediate gene (‘input-
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Fig 1. Model description. (A) Bow-tie in a multi-layered network means that the network is capable of processing many different inputs, by converting them
into a small set of universal building blocks and then re-using these building blocks to construct a wide range of outputs. (B) Multi-layered networks are
represented by interaction intensities between components: Our model represents a multi-layered information transmission network, by the values of
interaction intensities between nodes in consecutive layers. In this schematic figure we illustrate networks with 3 layers of nodes, connected by L = 2 layers of
interactions. It is convenient to recapitulate these interactions by L = 2 matrices, where the A; term in the /-th matrix represents the interaction between the j-th
component in node layer / to the i-th component in node layer/ + 1. Node layer 1 is the input signal, and node layer L + 1 is the output. In general, every node
could be connected to every node in the next layer—as in the rightmost scheme. A bow-tie is a situation in which in one or more of the middle layers some
nodes are disconnected from the rest of the network. This forms a narrow layer, termed “waist’—as exemplified in the left and middle schemes. A bow-tie
architecture is captured by interaction matrices in which some rows/ columns are zero. The number of non-zero rows/ columns corresponds to the width of
the waist layer. (C) An example of bow-tie networks (simulation results): An example of simulation results with L = 4 interaction layers (5 node layers),
demonstrating a bow-tie of width 1 at the middle layer. The network structure is shown on the left (only active nodes shown) and the interaction intensities are
shown on the right using a color code (white—no interaction, black—strong interaction).

doi:10.1371/journal.pcbi.1004055.g001
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output’ or ‘selector’ gene) combines information from multiple patterning genes (the input lay-
ers) and then initiates a self-contained developmental program by regulating an array of output
genes [5,6] that can produce a large variety of morphologies [17-20]. Studies of other biological
signaling networks such as epidermal receptor signaling [21], GPCR signaling [22], signaling

in both the innate [23,24] and the adaptive immune system also documented bow-tie organiza-

tions [4,25].

Objects manufactured by humans do not evolve in the biological sense, however the ongo-
ing process of technological innovation is thought to have shared features a with biological evo-
lution [26,27]. Many non-biological networks show bow-tie architectures as well. This includes
the world wide web [28], internet protocols [3], production pipelines and some economic sys-
tems—see Table 1. Bow-ties in technology have, in a sense, evolved. For example, whereas in
the past each machine had its own energy source (river for mill, fire for stove), in today’s power
grid a universal intermediate—220V 50Hz AC electricity—connects multiple input energy
sources (coal, oil, solar etc.) to multiple output appliances [1].

Bow-ties have been suggested to have functional implications. Bow-ties allow evolvability,
because new inputs can be readily converted to new outputs, using the same well-tested inter-
mediate processes [2]. On the other hand, bow-ties are vulnerable to damage in the intermedi-
ate processes [1,25]. In developmental gene regulatory networks, modulated expression of the
‘waist’ (‘input-output’ or ‘selector’) gene can result in markedly different phenotypes. Thus it is
thought that these ‘waist’ genes are hotspots for the evolution of novel phenotypes [5,6]. Once
a bow-tie is established, it is hard to change its core components because changes to the bow-
tie affect many processes at once [2,3]. Recently, Polouliakh et al. hypothesized that the narrow
intermediate layer in signaling networks may serve to distinguish between different sets of in-

puts and assigns the correct set of outputs for each. Since this intermediate layer is narrow

Table 1. examples for networks having bow-tie (hourglass) architecture.

network Input intermediate output Refs.
Metabolic network Nutrients 12 precursor metabolites (among them Complex macromolecules [1,7]
G6P, F6P, PEP, PYR, AKG, ACCOA) (proteins, fatty acids,
carbohydrates)
Developmental gene regulatory  Patterning genes (e.g. Hox ‘input-output’ or ‘selector’ gene, e.g. Developmental program of [5]
network genes, wingless, EGF-R, shavenbaby or scute in Drosophila epidermis formation.
hedgehog, Notch)
Innate immune response >1000 microbial molecules 10 Toll-like receptors (TLRs), 4 TIR (Toll/ Genes responsive to NF-kB and  [23,24]
interleukin-1 receptor homologous region)  STAT1 (>500), secondary and
adaptors and 2 protein kinases [24] tertiary events (>1000)
MyD88 gene [23]
Immune system Environmental stimuli Immature dendritic cells, naive CD4+ T- Various cytokines and antibody [4,25]
(bacteria, viruses, toxins) cells releases (B-cells, CD8+ T-cells,
macrophages, etc.)
Signaling networks receptors cAMP, calcium Genes [21,22]
Human visual system 108 photoreceptors in the Optic nerve (axons of 10° ganglion cells) Image features: color, pattern, [14,15]
eye depth, movement, etc.
Multi-layered (deep) neural Real data is fed to upper “bottleneck” Reconstructed data which is the [75]
network used for clustering and  layers (“encoder”). product of the lower layers
dimensionality reduction (“decoder”).
Human language writing Typically 10%~10° words, 20-30 letters alphabet, 10 digits Writing system
infinitely many numbers.
Internet protocols Physical layer (coaxial Network layer (IPv4/IPv6 protocol) Application layer (Thunderbird, [3]
cable, optic fiber, CDMA, Firefox, skype)
TDMA)
doi:10.1371/journal.pcbi.1004055.t001
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compared to the number of inputs, different inputs are grouped together and share a common
output response [22].

The prevalence of bow-tie architectures in biology raises the question of how they evolved.
In particular, one may ask whether there are evolutionary mechanisms that spontaneously give
rise to bow-ties. This question is significant when considering the fact that most evolutionary
simulations of multi-layered networks do not automatically give rise to bow-ties [3,29]. Generi-
cally, in fields as diverse as artificial neural networks [30] and evolution of biological networks,
simulations result in highly connected networks with no bow-tie [31-37].

Bow-tie evolution in the context of internet protocol networks was studied by Akhshabi and
Dovrolis [3]. Their model assumed that the node connectivity monotonously decreases be-
tween layers, namely protocols at the input layer are general in terms of their function (have
many connections each), and become more and more specific towards the output layer (in
which they often have only a single connection). Bow-tie structures are then a direct outcome
of this inhomogeneity in properties between layers. Such assumptions are relevant for techno-
logical applications, but are not relevant in the biological context. We thus sought a biologically
plausible mechanism.

We were inspired by recent advances in understanding the evolution of a different feature
that is common to various biological networks—modularity. Using simulations, several studies
showed that evolution under modular goals with rules that tend to eliminate connections spon-
taneously lead to modular structure [29,31,38-40]. This led us to ask whether one can find situ-
ations in which evolution spontaneously leads to bow-tie architectures.

Here, we study the evolution of bow-tie architecture using several simple models of multi-
layered networks and biologically plausible evolutionary scenarios. We find that bow-ties
evolve when two conditions are met: (i) the evolutionary goal has deficient rank; (ii) The effects
of mutations on interaction intensities between components are described by a product rule—
namely the mutated element is multiplied by a random number. Product-rule mutations are
more biologically realistic than the commonly used sum-rule mutations which add (rather
than multiply) a random number to the mutated element [41-47]. For a detailed discussion of
product-mutations, their biological relevance and their evolutionary effect, the reader is re-
ferred to an earlier work [29]. We further show that the narrowest possible waist in the bow-tie
is equal to the rank of the goal. We demonstrate this in simulations of evolution in linear and
nonlinear model systems.

Results

Simulations of multi-layered network models evolving towards input-
output goals

We begin with a simple linear model of a multi-layered network and later extend this frame-
work to nonlinear models as well. The network in our model is a system that receives an input
vector § = U,, performs L consecutive stages of processing; each stage produces an intermedi-
ate U,, U,,. . . U, where the product of the final processing layer is the network output vector
i, ,, = V. Here, we assume each of these processing layers can be described by a linear trans-
formation A;, A,,. . Ay, such that the system outputis A, - -- A, A § = V. Each matrix con-
tains all possible interaction intensities between network nodes at two consecutive layers. For
example the matrix entry A(l),»j represents the effect of the j-th node in layer [ on the i-th node
in layer [ + 1. In this model, connections are only possible between a node and any node at the
next layer. Connections within layers or backward connections are not allowed. For illustration
see Fig. 1.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004055 March 23,2015 4/19
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As a concrete biological example, one may think of a metabolic network. The input vector is
the number of nutrient molecules of different types that are consumed by the organism. Taking
the example of carbohydrate metabolism: elements of the input vector § = 1, represent the
amounts of the various sugars consumed: s; could be number of glucose molecules consumed,
s, number of lactose, etc. Sugar metabolism applies a series of enzymatic reactions which first
break complex sugars into simpler ones (monosaccharides) and then converts them to either of
several possible output products: ATP (energy source for short term usage), glycogen (carbohy-
drate storage) or other sugars, for example 5-carbon sugars (pentose) used for the synthesis of
nucleotides, nucleic acids and aromatic amino acids. Intermediate nodes in the model repre-
sent intermediate sugar metabolism products, such as glucose 6-phosphate, fructose 6-phos-
phate, pyruvate etc. [10]. The output vector represents the numbers of molecules produced
using the consumed carbohydrates: v; could be number of ATP molecules, v, number of glyco-
gen molecules, v; number of ribose-5-phosphate, etc. This is admittedly a simplified descrip-
tion of sugar metabolism. For example, it does not take into account the hierarchical order of
different sugars uptake, or metabolic cycles. Yet, it captures the degeneracy which enables re-
placing one sugar by another and still obtaining the very same output products. Related models
have been useful for understanding multi-layered biological networks in diverse contexts, such
as metabolic, gene regulatory and signal transduction networks [33,38,46,48-57].

In the linear model, the total input-output relationship of the network is given by the prod-
uct of the matrices Aj, A,,. .. A;, which represents the overall transfer of signals from the first
(input) to the last (output) layer. Employing this formalism, we evolve these networks to match
a desired goal—given by a matrix G. The goal matrix describes the desired output for any possi-
ble vector of inputs, and thus defines the entire input-output function. The dimension of the
goal matrix G corresponds to the number of system inputs and outputs Doy ¢put X Dinpue- We
also extended this model to describe a gradually growing network for which the goal dimen-
sions also change (see S1 Text).

The fitness of a network equals the distance between the total effect of the network (the
product of the matrices) and the desired goal G, namely F= — || A A“™) .. A" — G ||. Note
that each goal can be satisfied by an infinite number of matrix combinations that are all equally
fit. For example, if G is the unit matrix G =I and L = 2, all pairs of matrices that are inverse to
each other A® = [A")] ™! satisfy the goal, because A®) x A = 1.

To evolve the networks, we use a standard evolutionary simulation framework [37,58-60].
Briefly, the simulation starts with a population of N networks, each described by a set of L ma-
trices. At each generation the networks are duplicated and mutated with some probability re-
sulting in modified interaction intensities. A mutation means a change to an element of one of
the matrices. Fitness is then evaluated for each structure in comparison to a goal. N individuals
are then selected to form the next generation of the population, such that fitter individuals are
more likely to be selected. This process is repeated, until high fitness evolves (see Methods sec-
tion for more details).

Guided by studies on the evolution of modularity, we tested evolutionary situations which
are biased to reduce or eliminate interactions. Such a mechanism is a product-rule mutation
scheme in which elements of the matrices are multiplied by a random number drawn from a
normal distribution N (1, o) (as opposed to a sum-rule mutation where a random number is
added instead of multiplied) [29]. Product-rule mutations are a more realistic description of
the way that DNA mutations affect biochemical parameters than sum-rule mutations [41-47].
Biological mutations are more likely to decrease existing interactions than to create novel ones
that did not exist before [61-63]. This property is captured by product-rule mutations (but not
by sum-rule) [29]. With this mechanism, evolution finds networks satisfying the goal which
are highly sparse—that is, networks with a small number of significant interactions [29,46]. As

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004055 March 23,2015 5/19
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controls, we also simulated evolution with sum-rule mutations (in which a random number is
added to matrix elements).

Bow-tie architectures evolve when the goal is rank deficient

In the example of carbohydrate metabolism, different input sugars (glucose, lactose etc.) can be
used to produce any of the final products (ATP, glycogen, ribose-6P). If one only examines the
output molecules, one cannot tell which original sugar was their source. This degeneracy can
be mathematically represented as a goal matrix with linearly dependent rows. To study the ef-
fect of these dependencies on the network structures that can evolve, we tested evolution to-
wards goals described by matrices with different ranks. The rank r is the number of linearly
independent rows in the matrix. The rank of the goal matrix is full, if all rows of the matrix are
independent. If some of the rows are dependent, the matrix has deficient rank—a rank smaller
than the full rank. Deficient rank means that the input-output transformation maps inputs to a
limited subspace of outputs, of dimension r. Below, we discuss the implications of this concept
also for nonlinear systems. As an example of a 3 x 3 matrix with rank r = 1 consider the follow-
ing matrix whose two last rows are given by a constant multiplying the first row:

G=|oav, ov, av,
By, Bv, P,
Rank-deficient matrices can be decomposed into a product of (generally non-square) matri-
(L) . 2 M _ ; ;
ces A Dougu Dyt X 77 X AT, XA, Dot = GDoutputX Dpuc’ whose smallest dimension

equals the rank of the goal, namely min;(D;) = r. Because the rank of the goal matrix is smaller
than its dimension r < D, this decomposition is equivalent to a narrow waist, whose width is
equal to the goal matrix rank . As a simple example consider the 3 x 3 goal above. It is decom-
posable into a product of a column vector by a row vector:

ViV Yy 1
G=|oav, av, av, | =|a | (v, v, v).
~— —
Bvi Pv, P, i
A
——
A2)

This decomposition represents a 3-layer network, whose intermediate layer has only one ac-
tive node—namely has a bow-tie structure (see left scheme in Fig. 1B). Importantly, however
rank-deficient matrices can also be decomposed into products of full matrices. For any choice
of A, one can find A® = [AV] ! G, as long as AW is invertible. In fact most random choices
of A will yield full-matrix decompositions which represent a non-bow-tie architecture (right
scheme in Fig. 1B).

More generally, let G, be a goal matrix with rank » = rank(G). Let there be a de-

output X Dinput

composition of G into a product of L matrices G = AYA%™D. . A™) This L matrix

Doutput *Pinput
decomposition is a representation of a network that has L + 1 layers of nodes, whereas each
matrix represents the interaction intensities between all nodes in two adjacent layers. If and
only if G has deficient rank, it can be decomposed into a product of matrices having dimen-
sions smaller than the goal dimensions. This means that the matrices represent a network with
intermediate layers that consist of fewer active nodes than the number of inputs and outputs to

the network. Otherwise, if the matrix has full rank, each layer must have a number of active

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004055 March 23,2015 6/19
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nodes which is at least as large as the rank, making a bow-tie impossible in a case of full rank.
This argument follows from the fact that matrix multiplication cannot increase rank, i.e. rank
(A B) < min (rank (A), rank (B)) for any two matrices A and B [64].

The narrowest layer in the network is termed the waist [3]. The waist can be narrow because
of the low rank that allows compressing the inputs down to fewer nodes, and then computing
the outputs based on those nodes. While in principle such parsimonious bow-tie decomposi-
tions exist for every rank-deficient matrix, they constitute only a small fraction of all possible
decompositions. Thus, the question remains whether evolutionary dynamics can find the solu-
tion with a bow-tie out of the infinite number of non-bow-tie solutions.

To address this question, we evolved networks towards rank-deficient goals, with and with-
out the product-rule mutation scheme described above. We studied goals of dimension
D = 6-8 consisting of L = 4-6 matrices, tested 4-8 different goals for each dimension, and
evolved networks towards each goal in 100-3000 repeated simulations, each starting from dif-
ferent random initial conditions. We found that a rank-deficient goal together with product-
rule mutations gave rise to networks that satisfy the goal and show bow-tie architectures. Full
rank goals always led to evolved networks that satisfied the goal but had no bow-tie architec-
ture at all, namely all layers had exactly the same number of nodes as the input and output lay-
ers. Rank-deficient goals with a different mutational scheme (sum rule mutations) could
sometimes lead to architectures in which intermediate layers had fewer nodes than the input
and output layers, but these were mostly not as narrow as the goal rank. When noise was intro-
duced to the simulations (see below), the sum-mutation scheme led to full (non bow-tie) struc-
tures even under low noise levels. We conclude that a bow-tie evolves when (i) the goal has
deficient rank, and (ii) mutation rule is product and not sum. Bow-tie width equals the rank of
the goal.

For example, consider a network with 5 layers of nodes (L = 4 matrices of interaction lay-
ers), each consisting of 6 nodes (Djyput = Doutput = D = 6). We simulated their evolution to-
wards goals of different ranks between 1 and full rank (r = 1-6). We repeated the simulation
700 times for each goal starting from different random matrix initial conditions. We then ana-
lyzed the number of active nodes at each layer. Since in a numerical simulation we do not ob-
tain exact zeroes, but rather very small values, we defined active nodes as nodes who, if
removed (incoming and outgoing interactions of the node set to zero) have a larger than 0.1%
relative effect on fitness (see Methods).

We find that the number of active nodes is smallest on average at the middle layer. The
number of active nodes at this waist is most often equal to the rank of the goal (Fig. 2), and
never lower than this rank. The first and last layers are constrained to have exactly D active
nodes by the definition of the problem (Fig. 3). In a minority of cases (~20%, see Table 1 in S1
Text) the waist showed more active nodes than the rank of the goal. For comparison, if the mu-
tational mechanism is not biased to decrease interactions (i.e. sum-mutations) the vast majori-
ty (94%-97%) of the runs ended with mid-layer which had more elements than the rank of the
goal (Table 1 in S1 Text). We show a representative example of a network configuration ob-
tained in simulation in Fig. 1C.

We tested the sensitivity of this mechanism for bow-tie evolution to model parameters. A
bow-tie was obtained under a wide range of values of selection intensity, mutation size, muta-
tion rate and population size that spanned 1.3 decades (mutation rate) to 2 decades (mutation
size) (Fig. 4; see S1 Text for more details). We also tested the sensitivity of the structure ob-
tained to the evolutionary goal by comparing simulation results with different goals having the
same rank. We find that the location and width of the waist are insensitive to the choice of the
goal (see Fig. 9 in S1 Text).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004055 March 23,2015 7/19
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Fig 2. Product-rule mutations and goal which is not full rank can lead to bow-tie architecture. We show
simulation results of networks with L = 4 (5 layers of nodes) and 6 nodes in each layer (D = 6). We performed
4 different sets of repeated simulations with goals of different ranks = 1,2,3 or 6. We illustrate the histograms
of layer width for each set of runs. Each column in this figure shows simulation results for a different goal, and
each row shows a different network layer. The number of active nodes in middle layers varies depending on
the goal. The minimal number of nodes in intermediate layers (“waist”) is bounded from below by the rank of
the goal. The waist width could be higher than the rank, because not all runs reach the most minimal
configuration, but it cannot be lower. For example, it can be as low as 1 if the goal rank equals 1 (left column),
but itis always 6 if the goal is full rank, demonstrating that no bow-tie can evolve with a full-rank goal.
Simulation parameters: 3000 repeats for rank 1 and 2, 1500 repeats for rank 3 and 700 repeats for rank 6.
Only runs that reached a fitness value less than 0.01 from the optimum were considered in the analysis.
Product mutations were drawn from a Gaussian distribution with & = 0.1, element-wise mutation rate

p =0.05/D?, tournament selection with s = 4.

doi:10.1371/journal.pchi.1004055.g002

We tested the location of the waist in simulations of multi-layered networks with equal
number of inputs and outputs (L =4, D = 6; L = 6, D = 8). While in principle the waist could re-
side at any layer between the input and output layers, in practice, it falls most often in the mid-
dle layer. Intuitively, this can be explained by symmetry considerations: The mutational
mechanism works uniformly on all layers to eliminate connections. While the dimensions of
the goal matrix constrain the number of active nodes at the network boundary layers (input
and output), connections near the middle layer are least “protected” and thus mostly prone to
removal, resulting in the network waist being on average in the middle layer.

Bow-tie architecture also evolves under temporal noise

Biological networks are often prone to fluctuations, for example due to temporal variations in
internal molecule numbers or environmental fluctuations. We thus tested the robustness of the
suggested evolutionary mechanism to fluctuations in either the goal or the interaction intensi-
ties. We started by testing the sensitivity of the evolutionary mechanism to rank accuracy by
perturbing the rank-deficient goal matrix, yet keeping the goal constant throughout every sim-
ulation run. This produced goal matrices that are ‘almost rank deficient’: full rank, but with
some of the eigenvalues close to zero. The noise strength is given by the difference between the
norms of the noisy and clean goals divided by the norm of the clean goal (see Methods). We
find that for noise strength up to about 1%, bow-tie architecture with middle layers whose
width equals the goal rank were reached in most simulation runs, just as in the absence of
noise. Thus, our evolutionary simulation is robust to small perturbations to exactly rank-defi-
cient goals—see Fig. 5 for illustration and compare to Fig. 2 with no noise. The median waist
size increased above the clean rank when noise intensity increased above 1% (see Figs. 14-15 in
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Fig 3. The waist is most likely to evolve in the middle layer (for equal number of inputs and outputs).
Top: Median number of nodes at each layer. Different curves represent results for goals of different ranks.
Due to symmetry considerations, the waist is most likely to evolve in the middle layer of nodes. Results refer
to the same simulations as in the previous figure. Estimation of error in median calculation by bootstrapping
resulted in negligible error. Bottom: examples of possible network structures evolved with goals having
different ranks 1,2,3 and 6, illustrating how the width of waist depends on the goal rank.

doi:10.1371/journal.pcbi.1004055.9003

S1 Text for the dependence of bow-tie on the noise level). For estimation of the noise magni-
tude in biological networks, see S1 Text.

While in the previous scenario the goal rank was noisy, but remained constant throughout
every simulation run, temporal fluctuations are also ubiquitous in biological networks. To test
the effect of temporal fluctuations, we added statistically independent noise realizations (white
noise) to all matrix entries (and also to the goal) at each generation. The fitness evaluation then
reads: F= — || (AP + £))(A“V +g,,).. . (AY + &) - (G + &) ||, where &; are independent
noise realizations. Since this noise changes at a higher frequency than the typical evolutionary
timescale (the mutation rate), we expected that the system will be able to filter it out to some
extent. Since here the noise affects all network components and not only the goal, we refer to
the induced fluctuations in fitness as a global measure of the noise intensity. We compared the
ability of evolution with either product or sum mutations to cope with this temporal noise. We
find that product-mutations filter out the noise much more efficiently than sum-mutations.
When the clean goal rank was 1, the network structure evolved by product-rule evolutionary
scheme was unaffected until the relative magnitude of induced fluctuations in fitness reached
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@‘ PLOS | soMpuTaTioNAL
2 : BIOLOGY Evolution of Bow-Tie Architectures in Biology

3 3.5
5 <
S T 3
z25 s
o 8 25
5 © )
2 T
k! T 2
S S
15 : 1.5 - -
0 5 10 0 200 400 600
selection intensity [s] population size
3.5 T .
=
© i«
= 5 3
: =
GJ L E
T 225
= 3
1S g 2
1 ; . . .
0,01 0 T 01 1
mutation size mutation rate [1/LD2]

Fig 4. bow-tie architecture is obtained under a broad range of evolutionary parameters. A We tested
the existence and width of bow-ties under a broad range of parameter values. We illustrate here the mean
and standard deviation of the bow-tie width for various values of mutation rate, mutation size, population size
and selection intensity. Bow-ties were obtained in all cases. The width of the bow-tie showed little sensitivity
to the parameter values. Each point is based on 50 independent repeats of the simulation. Parameter values
tested: population size =[50, 100, 250, 500]; mutation size =[0.01, 0.05, 0.1, 0.2, 0.5, 1]; mutation rate = [1,
0.25, 0.1, 0.05)/LD?, tournament size s = [2, 4, 6, 8].

doi:10.1371/journal.pcbi.1004055.9004

values of 0.3 (std/mean). Sum mutations, in contrast, led to bow-tie of width 3 (compared to
the minimal width in this case, 1) even in the absence of noise; bow-tie width sharply increased
to 5 when temporal noise was added. Since complete absence of noise is a non-realistic scenario
in biological systems, we conclude that sum-mutations cannot account for bow-tie evolution.
See Fig. 16 in S1 Text for illustration.

Bow-ties can evolve in nonlinear information transmission models

Finally, we asked whether the present mechanism would apply in a nonlinear network model.
While goal rank is a straightforward measure of dimensionality in linear systems, the concept
of rank is more elusive when it comes to nonlinear systems. Yet, one can intuitively think that a
similar concept could exist there too. To test this hypothesis we employed a well-studied prob-
lem of image analysis using perceptron nonlinear neural networks [65,66]. In this problem,
each node integrates over weighted inputs and produces an output which is passed through a
non-linear transfer function, u*" = f(A”u® - T**V), where A®” and T" are the weight ma-
trix and corresponding set of thresholds in the I-th layer, and u” is the set of inputs propagated
from the previous layer (see Methods).

We evolved the networks towards a goal of identifying features in a 2 x 2 retina with Bool-
ean pixel values (D, = 4 inputs) (Fig. 6). Low dimensionality was achieved by defining as a goal
four outputs that depend only on two features of the image. The four required Boolean outputs
were: (a) at least one pixel in the left retina column, (b) at least one pixel in the right column,
(c) pixels in both left and right columns, (d) pixel(s) in the left or in the right columns. These
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Fig 5. Bow-tie evolves even if the goal is only approximately of deficient rank. We show simulation
results when the goal consisted of a matrix of deficient rank (1, 2 or 3) to which some level of noise was added
(see Methods), so mathematically speaking goals had full rank, such that some of the eigenvalues were
relatively small. Remarkably, here too a bow-tie architecture evolved, however the width of the waist was not
as narrow as if the goal had exact noiseless deficient rank (compare to Fig. 2). For each goal rank we
calculated layer activity statistics based on 1500 different runs (each having a different goal, but with same
noise statistics). Noise level here was 1% (averaged over all runs analyzed) for all ranks. This result
demonstrates that the evolutionary process can expose a deficient goal rank even when noise is added, as is
expected to be the case in realistic systems. Other parameters are the same as in Fig. 2.

doi:10.1371/journal.pcbi.1004055.9005

0

four outputs can be fully represented by only two features: (a) and (b), making the 4-dimen-
sional input space redundant. Thus, the effective “rank” here is r = 2.

Simulations evolving the weights {Aij(l)} and thresholds {T, "} values using product-rule mu-
tations that led to nearly perfect solutions (fitness of less than 10 from the optimum) mostly
had a narrow waist: one of the intermediate layers had only two active nodes in 75% of the
runs (see Table 1 in S1 Text). For comparison, simulations with a mutation rule that was not
biased to eliminate interactions (sum-rule) were much less likely to lead to networks with a
narrow waist (this was observed in only 45% of runs). Detailed statistics over 500 runs of net-
work structures obtained with either mutational scheme is presented in Fig. 12 in S1 Text.

Discussion

We studied the evolution of bow-ties in layered networks. We find that bow-ties evolve sponta-
neously when two conditions are met: the goal has deficient rank and the effect of mutations
on interactions is well-approximated by a product-rule. The size of the narrowest layer—the
waist of the bow-tie—is bounded from below by the rank of the goal. We find the evolution of
narrow waists in a wide range of evolutionary parameters, in both linear and nonlinear multi-
layered network models. We find that bow-tie structures can also evolve under temporal noise,
if the mutational scheme is approximated by a product-rule. An alternative mutational scheme
—sum-rule—proved much more vulnerable to noise and did not lead to bow-tie structures.
The concept of rank is defined clearly in the case of matrix-like goals and linear transfer
functions. In more complex situations, such as the nonlinear retina problem and gene
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Fig 6. Bow-tie can evolve for a nonlinear input-output relation too, if the input can be more compactly
represented with no effect on the output. We show simulation results of a simple nonlinear problem
mimicking a 4-pixel retina. (A) Problem definition: The retina has four inputs (one for each pixel, that can be
either black or white), four outputs and two internal processing layers. The retina is evolved so that its outputs
detect whether there is (i) an object on the left side (at least one pixel in the left column is black), (i) on the
right side (at least one pixel in the right column is black), (iii) left AND right objects, (iv) left OR right objects,
correspondingly. Inset: in contrast to previous problems, here each node performs a nonlinear transformation
of the sum of weighted inputs: u®*" = f (AD u® — T where A® and T” are the weight matrix and set of
thresholds in the /-th layer. (B) Typical example of simulation results. Apparently, two bits of information
are sufficient to fully describe the four required outputs in this model. Indeed, the network evolved so that it
has only two active nodes in the second layer (red circles).

doi:10.1371/journal.pcbi.1004055.9006

regulatory networks, the rank corresponds to the minimal number of input features on which
the outputs depend. One may hypothesize that in the case of probabilistic time dependent sig-
naling in cells and nervous systems, rank may be related to the information theory measure of
information source entropy. This is the minimal number of bits which is sufficient to encode
the source [67]. A natural information source (“input”)—such as biological signals—is often
redundant. Its compression (source coding) can shorten the description length while still pre-
serving all the necessary information (“waist”). In analogy to the goal rank, the shortest possi-
ble description equals the source entropy. The present results can supply an operational
definition of the goal rank in a layered nonlinear system—the minimal evolved waist under the
present assumptions [68-74].

Here we considered the input-output relation as the sole force guiding the evolution of the
network, however there may be other constraints or processes affecting network structures. For
example, in the visual system, the fan-in of ganglion cells into the optic nerve was suggested to
be partially due to space limitation [16]. A recent study, suggested that bow-ties in develop-
mental gene regulatory network can evolve due to hierarchy in specificity [79]. Cross-talk be-
tween networks as well as addition and deletion of network nodes can also influence network
structure. A previous study [53] focused on the contribution of robustness to evolving network
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topologies. It suggested that connectivity can vary between genes in a network, such that genes
that buffer genetic variation are highly connected, although the overall network is sparse.

Bow-tie structures are also common in multi-layered artificial neural networks used for clas-
sification and dimensionality reduction problems. While there are parallels in the functional
role of bow-ties there with the biological bow-ties which are the focus of this study, these artifi-
cial neural networks are designed a priori to have this bow-tie structure. Multi-layered neural
networks often use an intermediate (hidden) layer whose number of nodes is smaller than the
number of input and output nodes [30,75]. There, the role of the hidden layer is to capture the
significant features of the inputs. The favorable usage of bow-tie structures in neural networks
suggests that often the number of important features is lower than the number of inputs [65].
The transformation between input and hidden layer was shown to map the data into a space in
which discrimination is easier [76,77].

A similar functional principle was observed in several signaling networks—where a large
number of input signals funnel through a narrow intermediate layer to produce a limited num-
ber of output programs [22,23,78]. Kitano and colleagues [22,23] highlighted the structural
similarity between these biological bow-tie networks and neural network classifiers.

Previous studies debated over the role of noise in shaping complex network architecture.
Some argue that there is a trade-off between compression and noise mitigation relying on in-
formation theory arguments [73,80]; others suggest that thermal noise can aid funneling evolu-
tionary dynamics, and avoiding local extrema when the fitness landscape is rugged [81]. The
evolutionary process in our model can filter out temporal noise to some extent and still pro-
duce bow-tie structure manifested by an intermediate layer whose number of active nodes
equals the goal rank. This results from the separation of timescales between the evolutionary
process which is driven by the mutation rate (slow) and the temporal noise (fast). The evolu-
tionary process can then average out the rapid temporal fluctuations. Evolution under prod-
uct-mutations characteristically has dynamical attractor states (such as zero rate constants,
which remain zero upon multiplication by a number), in contrast to evolution under sum-mu-
tations [29]. This dynamical stability renders the product-mutation landscape more noise-
proof than the sum-mutation one. These results call for further research to better understand
the multiple roles played by noise in the evolution of complex networks.

When a biological network expands gradually such that the goal rank remains intact, the
bow-tie is usually “ossified” (see S1 Text and Fig. 17 in S1 Text). Namely, a bow-tie node(s) es-
tablished when the network is small is very likely to remain a bow-tie rather than being re-
placed by another node. Thus bow-tie nodes end up as among the most ancient in the network.
This induces a correlation between node connectivity and its evolutionary age. It would be in-
teresting to validate this prediction by testing whether bow-tie network elements are indeed the
most ancient ones.

One may speculate whether the relation of bow-tie width to goal rank may be instructive in
fields outside of biology. As an example of compression by bow ties, consider alphabets. The
entire vocabulary of a language can be transmitted between people using a bow-tie of 20-30
characters. This is not the only possible design: syllabaries such as Japanese Kana represent syl-
lables instead of the vowels/consonants of alphabets, and logographies such as Chinese repre-
sent words. The size of the bow-tie in each case may be hypothesized to be close to the
minimum required for capturing each level: many tens of syllables, and many thousands of
words. Efficiency considerations are probably at play as a ‘selective force’: comparing number
systems such as Arabic numerals to Roman numerals shows a progression from a cumbersome
to a more efficient bow-tie description.

Taken together, our results suggest a mechanism for the evolution of bow-tie architectures
in biology and a way to quantitate the rank of the evolutionary goals under which they evolved.
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Methods
Evolutionary simulation

The evolutionary simulation was written in Matlab using standard framework [58-60]. The
source codes and analysis scripts are available as supporting materials. We initialized the popu-
lation of matrices by drawing their N - LD * terms from a uniform distribution. Population size
was set to N = 100. Each “individual” consists of a set of L matrices. In each generation the pop-
ulation was duplicated. One of the copies was kept intact, and elements of the other copy had a
probability p to be mutated—as we explain below. Fitness of each of the 2N individuals was eval-
uated by F= — || APA% =D . A" _ G ||, where || - || denotes the sum of squares of elements
[82]. The best possible fitness is zero, achieved if ADAL-D  AD-G exactly. Otherwise, fit-
ness values are negative. We constructed the goal matrices from combinations of ‘0’ and ‘10°
terms. We tested goals of different ranks and different internal structures and found no sensitivity
for goal details other than its rank (see S1 Text). N individuals are selected out of the 2N popula-
tion of original and mutated ones, based on their fitness (see below). This mutation-selection
process was repeated until the simulation stopping condition was satisfied (either a preset num-
ber of generations or when mean population fitness was within 0.01 of the optimum).

Mutation. We mutated individual elements in the matrix. We set mutation rate such that
on average 20% of the population members were mutated at each generation, so the probability
of each matrix element to be mutated was ~ -2 . This relatively low mutation rate enables ben-
eficial mutants to reproduce on average at least 5 generations before an additional mutation oc-
curs. We randomly picked the matrix elements to be mutated. Mutation values were drawn
from a Gaussian distribution (unless otherwise stated). The mutated matrix element was then
multiplied by the random number: A,»j(l) — A,»j(l) - N(1, 0). In simulations we used o in the
range 0.01-1. Maximal achievable fitness and the timescale to convergence depend on the mu-
tation frequency and size, as demonstrated in our sensitivity test (see S1 Text).

Selection methods. We used tournament selection with group size s = 4 (see [60] chap. 9).
In a previous work we tested 2 other selection methods (truncation-selection (elite) [58] and
proportionate reproduction with Boltzmann-like scaling [46,55,83]) and found that all three
methods gave qualitatively very similar results with only a difference in time scales.

Noisy goals. In order to test the effect of noisy rank we added a low amount of noise to the
goals used in the previous simulations. We used goals with ranks 1, 2 and 3 whose terms were
either 10 or 0 and then added a uniformly distributed noise in the range [0, 0.1] (o = 0.029).
We define the noise level as the absolute value of the difference between the norms of the noisy

and clean goals divided by the norm of the clean goal: | %

and G* is the noisy one. As norm we took the sum of squares of all matrix terms. At every re-
peat of the simulation we added a different noise realization with the same statistics. The noise
(and thus the evolutionary goal) was fixed throughout any given run. The noise intensity was
calculated separately for each run. The values presented are averaged over all runs considered

|, where G is the ‘clean goal’

in the analysis.

Temporal noise. To test the effect of temporal fluctuations, we added statistically indepen-
dent noise realizations (white noise) to all matrix entries (and also to the goal) at each genera-
tion. The fitness evaluation then reads: F = — || AP +e)AL " Vig )...(AY +g)-

(G + &¢) ||, where €; are independent noise realizations drawn from a Gaussian distribution
N (1, 0) with different values of ¢ varying between 0.001 to 0.2. We measured the overall effect
of temporal fluctuations at every node by calculating the standard deviation in fitness values in
the last 5000 generations of the simulation, when the run has already converged (runs were for
either 50,000 or 100,000 generations each).
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Data analysis

Repeated simulations were run using the same parameters, where at every single run the
Matlab random seed was initialized to a different value. Consequently, each run starts from dif-
ferent initial conditions and uses different mutational realizations. In the analysis, we checked
whether the runs converged. Only runs that gave results within 0.01 from the optimum were
considered in the analysis. We then analyzed in each run the number of active nodes in the
layer (see below). In the figures we show either the median number or histogram of active
nodes per layer, when applicable.

Active nodes. To calculate the number of active nodes in a layer, we eliminated each node
at a time, by equating to zero all its input and output interactions. For example to eliminate the

k-th node in layer I + 1 we set A? .. = A¢* 1.

=0, leaving all other terms intact. We then cal-
culate the fitness value of the modified network F and define the difference compared to the
original fitness value F: AF = |F — F|. We compare AF / F between all nodes located at the

same layer. A node whose relative effect on fitness is less than 0.1% is considered inactive.

Retina problem

We tested the evolution of bow-tie networks in this non-linear problem which resembles stan-
dard neural network studies [39,65,84]. We defined a problem with 4 inputs and 4 outputs and
2 internal processing layers consisting of 4 nodes each. The inputs represent a 4-pixel retina,
where each pixel could be either black or white, as described in the results section.

The evolutionary simulation followed a similar procedure to the linear problem described
above. Mutation, selection, and data analysis methods were similar to the ones used in the line-
ar problem as described above. The main difference is that the output of each layer was not a
linear function of the inputs as before, but rather a non-linear function u’ * » = f(A®” u® -
T¢* V), where A” and T? are the weights matrix and corresponding set of thresholds in the
I-th layer correspondingly, and u'” is the set of inputs propagated from the previous layer. The
non-linear transfer function f was rescaled to range between 0 and 1, f{x) = (1 + tanh(x)) / 2.
The result of this computation is fed to the next layer until the last (output) layer is reached. In
non-linear systems the evolutionary goal cannot be described by a single goal matrix as in the
linear case. Rather, it is defined by pairs of input /output relations. The evolutionary simulation
tested all possible inputs simultaneously, and evolved the network parameters to provide the
correct output in each case. The fitness was defined as the difference between the network out-
put and the desired output, in similarity to the linear model and then averaged over all possible
input/output pairs. Inputs and outputs were encoded by Boolean vectors. Internal layer calcu-
lation used continuous values, but simulations could reach very high precision (< 10 ~* from
the optimum). Simulations were run for 10* generations. Only runs that reached fitness within
107 of the optimum were considered in the analysis.

The retina simulation was written in Wolfram Mathematica. We initialized the population
of matrices and corresponding thresholds by drawing their N - LD(D + 1) terms from a uni-
form distribution in the range [-2,+2]. Population size was set as N = 100. In each generation
the population was duplicated. One of the copies was kept intact, and elements of the other
copy had a per-term probability p = 0.2 to be mutated. The mutation was implemented through
multiplying the mutated term by a random number drawn from a normal distribution with
mean 1 and std 0.5 (thus a probability of about g = 0.02 to change sign).

To determine active nodes in this case, we begin by setting each weight to zero in its turn
AP ij = 0 leaving all other terms intact. This procedure was not applied to the threshold values
T because a node may be left in the network, even if no inputs are propagated through it
from an upper layer. In these cases the role of such a node is to introduce a constant bias set by
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its threshold. We then calculate the fitness value of the modified network F and define the dif-
ference compared to the original fitness value: AF = |F — F|. We compare AF / F between all
weights located at the same layer. A network interaction whose relative effect on fitness is less
than 10~* was set to zero. A node whose entire set of outgoing weights was set to zero was
considered inactive.

Supporting Information

S1 Text. Additional figures and simulation results as follows: 1.Parameter sensitivity test,
2. The emergence of bow-tie is insensitive to the internal goal structure (as long as the rank
remains intact), 3. Sum-mutations are less likely to lead to narrow bow-tie structures com-
pared to product-mutations, 4. Fraction of runs that did not converge to a bow-tie with
narrow layer that equals the goal rank, 5. A bow-tie evolves even if the product-mutations
can change interaction sign, 6. Bow-tie dependence on noise level added to the goal, 7.
Product-mutations can filter temporal noise efficiently and lead to bow-tie; sum-mutations
cannot. 8. Estimation of noise in a biological network, 9. Change in network size—bow-tie
is typically ossified.

(DOCX)

S1 Dataset. Evolutionary simulation code.
(72)
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