@-PLOS |s3toar o

CrossMark

click for updates

ﬁ OPEN ACCESS

Citation: Rombouts JO, Bohte SM, Roelfsema PR
(2015) How Attention Can Create Synaptic Tags for
the Learning of Working Memories in Sequential
Tasks. PLoS Comput Biol 11(3): €1004060.
doi:10.1371/journal.pcbi.1004060

Editor: Boris S. Gutkin, Ecole Normale Supérieure,
College de France, CNRS, FRANCE

Received: November 15, 2013
Accepted: November 24, 2014
Published: March 5, 2015

Copyright: © 2015 Rombouts et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: The work was supported by grants of the
European Union (project 269921 “BrainScaleS’;
PITN-GA-2011-290011 “ABC"; ERC Grant
Agreement n. 339490) and a NWO grants (VICI and
Brain, Cognition grant n. 433-09-208 and EW grant n.
612.066.826). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

How Attention Can Create Synaptic Tags for
the Learning of Working Memories in
Sequential Tasks

Jaldert 0. Rombouts', Sander M. Bohte', Pieter R. Roelfsema®34+*

1 Department of Life Sciences, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands, 2
Department of Vision & Cognition, Netherlands Institute for Neurosciences, an institute of the Royal
Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands, 3 Department of
Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University,
Amsterdam, The Netherlands, 4 Psychiatry Department, Academic Medical Center, Amsterdam, The
Netherlands

* p.roelfsema@nin.knaw.nl

Abstract

Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neu-
rons in association cortex are thought to be essential for this ability. During learning these
neurons become tuned to relevant features and start to represent them with persistent activ-
ity during memory delays. This learning process is not well understood. Here we develop a
biologically plausible learning scheme that explains how trial-and-error learning induces
neuronal selectivity and working memory representations for task-relevant information. We
propose that the response selection stage sends attentional feedback signals to earlier pro-
cessing levels, forming synaptic tags at those connections responsible for the stimulus-re-
sponse mapping. Globally released neuromodulators then interact with tagged synapses to
determine their plasticity. The resulting learning rule endows neural networks with the ca-
pacity to create new working memory representations of task relevant information as persis-
tent activity. It is remarkably generic: it explains how association neurons learn to store
task-relevant information for linear as well as non-linear stimulus-response mappings, how
they become tuned to category boundaries or analog variables, depending on the task de-
mands, and how they learn to integrate probabilistic evidence for perceptual decisions.

Author Summary

Working memory is a cornerstone of intelligence. Most, if not all, tasks that one can imag-
ine require some form of working memory. The optimal solution of a working memory
task depends on information that was presented in the past, for example choosing the
right direction at an intersection based on a road-sign some hundreds of meters before. In-
terestingly, animals like monkeys readily learn difficult working memory tasks, just by re-
ceiving rewards such as fruit juice when they perform the desired behavior. Neurons in
association areas in the brain play an important role in this process; these areas integrate
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perceptual and memory information to support decision-making. Some of these associa-
tion neurons become tuned to relevant features and memorize the information that is re-
quired later as a persistent elevation of their activity. It is, however, not well understood
how these neurons acquire their task-relevant tuning. Here we formulate a simple biologi-
cally plausible learning mechanism that can explain how a network of neurons can learn a
wide variety of working memory tasks by trial-and-error learning. We also show that the
solutions learned by the model are comparable to those found in animals when they are
trained on similar tasks.

Introduction

Animals like monkeys can be trained to perform complex cognitive tasks, simply by giving re-
wards at the right times. They can learn to map sensory stimuli onto responses, to store task-
relevant information and to integrate and combine unreliable sensory evidence. Training in-
duces new stimulus and memory representations in ‘multiple-demand’ regions of the cortex
[1]. For example, if monkeys are trained to memorize the location of a visual stimulus, neurons
in lateral intra-parietal cortex (LIP) represent this location as a persistent increase of their firing
rate [2,3]. However, if the animals learn a visual categorization task, persistent activity of LIP
cells becomes tuned to the boundary between categories [4] whereas the neurons integrate
probabilistic evidence if the task is sensory decision making [5]. Similar effects of training on
persistent activity have been observed in the somatosensory system. If monkeys are trained to
compare frequencies of successive vibrotactile stimuli, working memory representations of an-
alog variables are formed in somatosensory, prefrontal and motor cortex [6].

Which learning mechanism induces appropriate working memories in these tasks? We here
outline AuGMEnT (Attention-Gated MEmory Tagging), a new reinforcement learning [7]
scheme that explains the formation of working memories during trial-and-error learning and
that is inspired by the role of attention and neuromodulatory systems in the gating of neuronal
plasticity. AuGMEnT addresses two well-known problems in learning theory: temporal and
structural credit-assignment [7,8]. The temporal credit-assignment problem arises if an agent
has to learn actions that are only rewarded after a sequence of intervening actions, so that it is
difficult to assign credit to the appropriate ones. AuGMEnT solves this problem like previous
temporal-difference reinforcement learning (RL) theories [7]. It learns action-values (known as
Q-values [7]), i.e. the amount of reward that is predicted for a particular action when executed
in a particular state of the world. If the outcome deviates from the reward-prediction, a neuro-
modulatory signal that codes the global reward-prediction error (RPE) gates synaptic plasticity
in order to change the Q-value, in accordance with experimental findings [9-12]. The key new
property of AuGMENT is that it can also learn tasks that require working memory, thus going
beyond standard RL models [7,13].

AuGMEnT also solves the structural credit-assignment problem of networks with multiple
layers. Which synapses should change to improve performance? AuGMENT solves this prob-
lem with an ‘attentional’ feedback mechanism. The output layer has feedback connections to
units at earlier levels that provide feedback to those units that were responsible for the action
that was selected [14]. We propose that this feedback signal tags [15] relevant synapses and
that the persistence of tags (known as eligibility traces [7,16]) permits learning if time passes
between the action and the RPE [see 17]. We will here demonstrate the neuroscientific plausi-
bility of AuGMENT. A preliminary and more technical version of these results has been pre-
sented at a conference [18].
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Model
Model architecture

We used AuGMENT to train networks composed of three layers of units connected by two lay-
ers of modifiable synapses (Fig. 1). Time was modeled in discrete steps.

Input layer

At the start of every time step, feedforward connections propagate information from the senso-
ry layer to the association layer through modifiable connections v;;. The sensory layer repre-
sents stimuli with instantaneous and transient units (Fig. 1). Instantaneous units represent the
current sensory stimulus x(f) and are active as long as the stimulus is present. Transient units
represent changes in the stimulus and behave like ‘on (+)’ and ‘off (-)’ cells in sensory cortices
[19]. They encode positive and negative changes in sensory inputs w.r.t. the previous time-step

t-1:
x'(t) = [x(t) = x(t = 1)}, , (1)
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Fig 1. Model Architecture. A, The model consists of a sensory input layer with units that code the input (instantaneous units) and transient units that only
respond when a stimulus appears (on-units) or if it disappears (off-units). The association layer contains regular units (circles) with activities that depend on
instantaneous input units, and integrating memory units (diamonds) that receive input from transient sensory units. The connections from the input layer to
the memory cells maintain a synaptic trace (sTrace; blue circle) if the synapse was active. Units in the third layer code the value of actions (Q-values). After
computing feed-forward activations, a Winner-Take-All competition determines the winning action (see middle panel). Action selection causes a feedback
signal to earlier levels (through feedback connections wy;, see middle panel) that lays down synaptic tags (orange pentagons) at synapses that are
responsible for the selected action. If the predicted Q-value of the next action S’ (Qs') plus the obtained reward r(t) is higher than Qs, a globally released
neuromodulator & (see eq. (17)) interacts with the tagged synapses to increase the strength of tagged synapses (green connections). If the predicted value is
lower than expected, the strength of tagged synapses is decreased. B, Schematic illustration of the tagging process for regular units. FF is a feed-forward
connection and FB is a feedback connection. The combination of feed-forward and feedback activation gives rise to a synaptic tag in step ii. Tags interact
with the globally released neuromodulator 6 to change the synaptic strength (step iv,v). C, Tagging process for memory units. Any presynaptic feed-forward
activation gives rise to a synaptic trace (step ii; sTrace—purple circle). A feedback signal from the Q-value unit selected for action creates synaptic tags on
synapses that carry a synaptic trace (step iv). The neuromodulator can interact with the tags to modify synaptic strength (v,vi).

doi:10.1371/journal.pcbi.1004060.g001
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x (1) = [x(t = 1) = x(0)], , (2)

where [-], is a threshold operation that returns 0 for all negative values, but leaves positive val-
ues unchanged. Every input is therefore represented by three sensory units. We assume that all
units have zero activity at the start of the trial (f = 0), and that t = 1 at the first time-step of

the trial.

Association layer

The second (hidden) layer of the network models the association cortex, and contains regular
units (circles in Fig. 1) and memory units (diamonds). We use the term ‘regular unit’ to reflect
the fact that these are regular sigmoidal units that do not exhibit persistent activity in the ab-
sence of input. Regular units j are fully connected to instantaneous units i in the sensory layer
by connections v;{ (the superscript R indexes synapses onto regular units, and v is a bias

weight). Their activity y/(t) is determined by:

inp(t) = 3 vix, (1), 3)

y; (£) = a(inp}(t)), (4)
here inp(t) denotes the synaptic input and o a sigmoidal activation function;
a(inpj(t)) = 1/(1 + exp(0 — inpj(t))), (5)

although our results do not depend on this particular choice of 0. The derivative of y(¢) can be

conveniently expressed as:

_ % —y (t)<1 —y].R(t)). (6)

Memory units m (diamonds in Fig. 1) are fully connected to the transient (+/-) units in the
sensory layer by connections v)! (superscript M indexes synapses onto memory units) and they
integrate their input over the duration of the trial:

inply (1) = inp)l(t — 1)+ > vinxi(1) , (7)

I (t) = a(inp, (1)) , (8)

where we use the shorthand x| that stands for both + and - cells, so Zlvﬁﬁx;( t) should be read
as Zlvfﬁ*x,*(t) + Zlvffn*xl’ (t) The selective connectivity between the transient input units

and memory cells is advantageous. We found that the learning scheme is less stable when
memory units also receive input from the instantaneous input units because in that case even
weak constant input becomes integrated across time as an activity ramp. We note, however,
that there are other neuronal mechanisms which can prevent the integration of constant in-
puts. For example, the synapses between instantaneous input units and memory units could be
rapidly adapting, so that the memory units only integrate variations in their input.

The simulated integration process causes persistent changes in the activity of memory units.
It is easy to see that the activity of a memory unit equals the activity of a hypothetical regular
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unit that would receive input from all previous time-steps of the trial at the same time. To keep
the model simple, we do not simulate the mechanisms responsible for persistent activity, which
have been addressed in previous work [20-22]. Although the perfect integration assumed in
Eqn. (7) does not exist in reality, we suggest that it is an acceptable approximation for trials
with a relatively short duration as in the tasks that will be described below. Indeed, there are re-
ports of single neuron integrators in entorhinal cortex with stable firing rates that persist for
ten minutes or more [23], which is orders of magnitude longer than the trials modeled here. In
neurophysiological studies in behaving animals, the neurons that behave like regular and mem-
ory units in e.g. LIP [2,3] and frontal cortex [24] would be classified as visual cells and memory
cells, respectively.

Q-value layer

The third layer receives input from the association layer through plastic connections wj.

(Fig. 1). Its task is to compute action-values (i.e. Q-values [7]) for every possible action. Specifi-
cally, a Q-value unit aims to represent the (discounted) expected reward for the remainder of a
trial if the network selects an action a in the current state s [7]:

Q" (s,a) = E {R,|s, = s,a, = a}, with R, = szoyerPH , (9)

where the E_{-} term is the expected discounted future reward R, given a and s, under action-
selection policy 7w and y € [0, 1] determines the discounting of future rewards r. It is informa-
tive to explicitly write out the above expectation to see that Q-values are recursively defined as:

Q(s,a) = Y PR, +7)_n(@ls)Q (s, a)], (10)

ses a €A

where P? is a transition matrix, containing the probabilities that executing action a in state s
will move the agent to state s, R? is the expected reward for this transition, and S and A are the
sets of states and actions, respectively. Note that the action selection policy 7 is assumed to be
stochastic in general. By executing the policy 7, an agent samples trajectories according to the
probability distributions 7, P{ and R{, where every observed transition can be used to update
the original prediction Q(s,, a,). Importantly, temporal difference learning schemes such as
AuGMEnT are model-free, which means that they do not need explicit access to these probabil-
ity distributions while improving their Q-values.

Q-value units k are fully connected to the association layer by connections wy; (from regular
units, with wf, as bias weight) and w, (from memory units). The action value gy(t) is estimat-
ed as:

a.(0) = Y Wi (0 + Wik | (i)

where g;(t) aims to represent the value of action k at time step ¢, i.e. if a, = k. In AuGMEnT, the
state s in Eq. (9) is represented by the vector of activations in the association layer. Association
layer units must therefore learn to represent and memorize information about the environment
to compute the value of all possible actions a. They transform a so-called partially observable
Markov decision process (POMDP) where the optimal decision depends on information pre-
sented in the past into a simpler Markov decision process (MDP) by storing relevant informa-
tion as persistent activity, making it available for the next decision.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004060 March 5, 2015 5/34



©PLOS

COMPUTATIONAL

BIOLOGY

Feedback Gates Learning of Memory Representations

Action selection

The action-selection policy 7 is implemented by a stochastic winner-takes-all (WTA) competi-
tion biased by the Q-values. The network usually chooses the action a with the highest value,
but occasionally explores other actions to improve its value estimates. We used a Max-Boltz-
mann controller [25] to implement the action selection policy 7. It selects the greedy action
(highest gx(1), ties are broken randomly) with probability 1 - €, and a random action k sampled
from the Boltzmann distribution P with small probability :

(k) = exp(q)
fnl® > exp(qy) 12

This controller ensures that the model explores all actions, but usually selects the one with
the highest expected value. We assume that the controller is implemented downstream, e.g. in
the motor cortex or basal ganglia, but do not simulate the details of action selection, which
have been addressed previously [26-30]. After selecting an action a, the activity in the third
layer becomes z;, = Jy,, where Jy,, is the Kronecker delta function (1 if k = a and 0 otherwise).
In other words, the selected action is the only one active after the selection process, and it then
provides an “attentional” feedback signal to the association cortex (orange feedback connec-
tions in Fig. 1A).

Learning

Learning in the network is controlled by two factors that gate plasticity: a global neuromodula-
tory signal (described below) and the attentional feedback signal. Once an action is selected,
the unit that codes the winning action a feeds back to earlier processing levels to create synaptic
tags [31,32], also known as eligibility traces [7,16] on the responsible synapses (orange penta-
gons in Fig. 1). Tagging of connections from the association layer to the motor layer follows a
form of Hebbian plasticity: the tag strength depends on presynaptic activity (y;) and postsynap-
tic activity after action selection (z;) and tags thus only form at synapses wj, onto the winning
(i.e. selected) motor unit a:

ATag, = —aTag, + yz, ,which is equivalent to:
ATag, = —oTag, +y, ,for the winning action a, because z, = 1 and (13)

ATag, = —oTag, ,for k # a, because z,, = 0,

where a controls the decay of tags. Here, A denotes the change in one time-step, i.e Tag(t+1) =
Tag(t)+ATag(t).

The formation of tags on the feedback connections w/, follows the same rule so that the
strength of feedforward and feedback connections becomes similar during learning, in accor-
dance with neurophysiological findings [33]. Thus, the association units that provided strong
input to the winning action a also receive strongest feedback (Fig. 1, middle panel): they will be
held responsible for the outcome of a. Importantly, the attentional feedback signal also guides
the formation of tags on connections v;; so that synapses from the input layer onto responsible
association units j (strong w/,) are most strongly tagged (Fig. 1B).

For regular units we propose:

ATag, = —aTag; + x0'(inp)w, (14)

where ¢’ is the derivative of the association unit’s activation function o (Eq. (5)), which deter-
mines the influence that a change in the input inp; has on the activity of unit j. The idea has
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been illustrated in Fig. 1B. Feedback from the winning action (lower synapse in Fig. 1B) enables
the formation of tags on the feedforward connections onto the regular unit. These tags can in-
teract with globally released neuromodulators that inform all synapses about the RPE (green
cloud ‘¢’ in Fig. 1). Note that feedback connections only influence the plasticity of representa-
tions in the association layer but do not influence activity in the present version of the model.
We will come back to this point in the discussion.

In addition to synaptic tags, AuGMENT uses synaptic traces (sTrace, blue circle in Fig. 1A,
C) for the learning of new working memories. These traces are located on the synapses from
the sensory units onto memory cells. Any pre-synaptic activity in these synapses leaves a trace
that persists for the duration of a trial. If one of the selected actions provides a feedback signal
(panel iv in Fig. 1C) to the post-synaptic memory unit, the trace gives rise to a tag making the
synapse plastic as it can now interact with globally released neuromodulators:

AsTrace; = x; , (15)

ATag; = —oTag; + sTrace;o’(inp,)w,, (16)

We assume that the time scale of trace updates is fast compared to the tag updates, so that tags
are updated with the latest traces. The traces persist for the duration of the trial, but all tags
decay exponentially (0<a<1).

After executing an action, the network may receive a reward r(t). Moreover, an action a at
time step (¢-1) may have caused a change in the sensory stimulus. For example, in most studies
of monkey vision, a visual stimulus appears if the animal directs gaze to a fixation point. In the
model, the new stimulus causes feedforward processing on the next time step ¢, which results
in another set of Q-values. To evaluate whether a was better or worse than expected, the model
compares the predicted outcome Q,(¢-1), which has to be temporarily stored in the system, to
the sum of the reward r(¢) and the discounted action-value Q,(t) of unit @’ that wins the subse-
quent stochastic WT A-competition. This temporal difference learning rule is known as SARSA
[7,34]:

o(t) =r(t) +7v4.(t) —q,(t = 1). (17)

The RPE 6(¢) is positive if the outcome of a is better than expected and negative if it is
worse. Neurons representing action values have been found in the frontal cortex, basal ganglia
and midbrain [12,35,36] and some orbitofrontal neurons specifically code the chosen value, g,
[37]. Moreover, dopamine neurons in the ventral tegmental area and substantia nigra represent
6 [9,10,38]. In the model, the release of neuromodulators makes ¢ available throughout the
brain (green cloud in Fig. 1).

Plasticity of all synapses depends on the product of § and tag strength:

Avtj = ﬁé(t) Tagij )

(18)
Awy = po(t) Tag, ,
where £ is the learning rate, and where the latter equation also holds for the feedback weights
wj;- These equations capture the key idea of AuGMENT: tagged synapses are held accountable
for the RPE and change their strength accordingly. Note that AuGMEnNT uses a four-factor
learning rule for synapses v;;. The first two factors are the pre- and postsynaptic activity that de-
termine the formation of tags (Eqns. (14)-(16)). The third factor is the “attentional” feedback
from the motor selection stage, which ensures that tags are only formed in the circuit that is
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responsible for the selected action. The fourth factor is the RPE &, which reflects whether the
outcome of an action was better or worse than expected and determines if the tagged synapses
increase or decrease in strength. The computation of the RPE demands the comparison of Q-
values in different time-steps. The RPE at time ¢ depends on the action that the network select-
ed at t-1 (see Eqn. (17) and the next section), but the activity of the units that gave rise to this
selection have typically changed at time ¢. The synaptic tags solve this problem because they la-
beled those synapses that were responsible for the selection of the previous action.

AuGMEnT is biologically plausible because the equations that govern the formation of syn-
aptic tags (Eqns. (13), (14), (16)) and traces (Eq. (15)) and the equations that govern plasticity
(Eq. (18)) rely only on information that is available locally, at the synapse. Furthermore, the hy-
pothesis that a neuromodulatory signal, like dopamine, broadcasts the RPE to all synapses in
the network is supported by neurobiological findings [9,10,38].

Results

We will now present the main theoretical result, which is that the AuGMEnT learning rules
minimize the temporal difference errors (Eqn. (17)) of the transitions that are experienced by
the network by on-line gradient descent. Although AuGMENT is not guaranteed to find opti-
mal solutions (we cannot provide a proof of convergence), we found that it reliably learns diffi-
cult non-linear working memory problems, as will be illustrated below.

AuGMENT minimizes the reward-prediction error (RPE)

The aim of AuGMEnT is to reduce the RPE (f) because low RPEs for all network states imply
reliable Q-values so that the network can choose the action that maximizes reward at every
time-step. The RPE §(¢) implies a comparison between two quantities: the predicted Q-value
before the transition, q,(¢-1), and a target Q-value r(t)+yq.(t), which consists of the actually
observed reward and the next predicted Q-value [7]. If the two terms cancel, the prediction was
correct. SARSA aims to minimize the prediction error by adjusting the network weights w to
improve the prediction g,(¢-1) to bring it closer to the observed value r(f)+yq,(t). It is conve-
nient to do this through on-line gradient descent on the squared prediction error

E(q,(t — 1)) = L([r(t) +vq,(t)] — q,(t — 1))’ with respect to the parameters w [7,34]:
e OE@E = 1) OBqe= 1) 0t~ 1) _ dg,(t 1)

= 19
ow 0q,(t—1) ow ow ’ (19)
where % is the gradient of the predicted Q-value Q,(#-1) with respect to parameters w. In
Equation (19) we have used 6(¢) = — %, which follows from the definition of E(g,(t-1)).

Note that E is defined with regard to the sampled transition only so that the definition typically
differs between successive transitions experienced by the network. For notational convenience
we will abbreviate E(q,(2-1)) to E, in the remainder of this paper.

We will refer to the negative of Equation (19) as “error gradient” in the remainder of this
paper. The RPE is high if the sum of the reward r(f) and discounted q,(¢) deviates strongly
from the prediction g,(t-1) on the previous time step. As in other SARSA methods, the updat-
ing of synaptic weights is only performed for the transitions that the network actually experi-
ences. In other words, AuGMENT is a so-called “on policy” learning method [7].

We will first establish the equivalence of on-line gradient descent defined in Equation (19)
and the AuGMENT learning rule for the synaptic weights wi (t) from the regular units onto the

Q-value units (Fig. 1). According to Equation (19), weights wj’i for the chosen action k = a on

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004060 March 5, 2015 8/34
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time step #-1 should change as:

AWt o o(r) 221 (20)

leaving the other weights k7 a unchanged.
We will now show that AuGMENT causes equivalent changes in synaptic strength. It follows

from Eq. (11) that the influence owa on q,(t-1) (ie. ;ZR [t 1] in Eq. (20)) equals yf(t — 1), the

activity of association unit j on the previous time step. Th1s result allows us to rewrite (20) as:

OE, 9q,(t = 1)

Aw o = owi(t—1) o(t) Wi (t—1)

=0yt —1). (21)

Recall from Eq. (13) that the tags on synapses onto the winning output unit a are updated
according to ATagj, = - aTagj,+y; (orange pentagons in Fig. 1). In the special case & = 1, it fol-
lows that on time step £, Tag,(t) = y;(t — 1) and that tags on synapses onto output units k#a

are 0. As a result,

Awi o< o(t)yr(t — 1) = 6(t)Tag,(t) (22)

= 6(t)Tag,(t) , (23)

for the synapses onto the selected action a, and the second, generalized, equation follows from

the fact that gqﬁ (’[ 11 = 0 for output units k#a that were not selected and therefore do not con-

tribute to the RPE. Inspection of Eqns. (18) and (23) reveals that AuGMEnT indeed takes a
step of size § in the direction opposite to the error gradient of Equation (19) (provided o = 1;
we discuss the case a1 below).

The updates for synapses between memory units m and Q-value units k are equivalent to
those between regular units and the Q-value units. Thus,

9E, _ Iq,(t—1) _
Awi\n/[k x = 8W1\nfk(t _ 1) - (t) 8Wi\n/lk(t _ 1) - 5(t)Tagmk(t)’

(24)

The plasticity of the feedback connections w', and Wi from the Q-value layer to the associ-
ation layer follows the same rule as the updates of connections wj, and w,, and the feedforward

and feedback connections between two units therefore become proportional during learning
[14].
We will now show that synapses v; between the input layer and the regular association units

(Fig. 1) also change according to the negative gradient of the error function defined above. Ap-
plying the chain rule to compute the influence of v;{ on q,(t-1) results in the following equa-

tion:

9q,(t — 1) Oyf(t—1) Oinp{(t —1)
8 WR(t — 1) QinpR(t — 1) OvR(t —1) ~ (25)
= 0(t)wy,0’ (inpj(t — 1))x,(t — 1) .

Avj o< 6(t)
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The amount of attentional feedback that was received by unit j from the selected Q-value
unit a at time ¢-1 is equal to W', because the activity of unit a equals 1 once it has been selected.
As indicated above, learning makes the strength of feedforward and feedback connections simi-
lar so that w, can be estimated as the amount of feedback w/ ; that unit j receives from the se-

lected action a,

OE
R _ 9a _ /Ry _ (t —
Av; o 781/5@ Y ot)w o (mp} (t 1))xl(t 1). (26)

Recall from Eq. (14) that the tags on synapses v} are updated according to
/(3 /R : . .
ATag, = —oTag, + x,0'(inp;)w,. Fig. 1B illustrates how feedback from action a controls the
. _ . o iR R
tag formation process. If a = 1, then on time step ¢, Tag;(t) = x,(t — 1)o’(inp;(t — 1))w; so
that Eq. (26) can be written as:
OE

R —_ 4’1(1 = .
Avj (- 1) () Tagy(t) - (27)

A comparison to Eq. (18) demonstrates that AuGMENT also takes a step of size 3 in the di-
rection opposite to the error gradient for these synapses.

The final set of synapses that needs to be considered are between the transient sensory units
and the memory units. We approximate the total input inp? (¢) of memory unit m as (see

Eq. (7)):

inp)i(t) = Z Vi (£)x,(2) + szm )x (1)

The approximation is good if synapses v, change slowly during a trial. According to Equation
(19), the update for these synapses is:

OF dq,(t — 1) By(t — 1) dinp!t(t — 1)

Mo W _
AV = o =1y~ OO G = 1) imp (= 1) Dvii (e = 1)

= 3(t)w™ o' (inp™(t — 1)) Zx,

(29)

Eq. (15) specifies that AsTracey,, = x; so that sTrace,, (t — 1) = Zi;lo x,(t"), the total pre-
synaptic activity of the input unit up to time -1 (blue circle in Fig. 1C). Thus, Eq. (29) can also
be written as:

AV oc 5(t)w™ o (inp™ (t — 1))sTrace,, (t — 1) . (30)

Eq. (16) states that ATag,, = —aTag,, + sTrace,,d' (inp*)w'™ , because the feedback from
the winning action a converts the trace into a tag (panel iv in Fig. 1C). Thus, if @ = 1 then
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Tagh(t) = w' o’ (inp(t — 1))sTrace,,(t — 1) so that:
Avit o 8(t) Tagih (t). (31)

Again, a comparison of Eqns. (31) and (18) shows that AuGMENT takes a step of size § in the
direction opposite to the error gradient, just as is the case for all other categories of synapses.
We conclude that AuGMEnT causes an on-line gradient descent on all synaptic weights to
minimize the temporal difference error if o = 1.

AuGMEnT provides a biological implementation of the well known RL method called
SARSA, although it also goes beyond traditional SARSA [7] by (i) including memory units (ii)
representing the current state of the external world as a vector of activity at the input layer (iii)
providing an association layer that aids in computing Q-values that depend non-linearly on the
input, thus providing a biologically plausible equivalent of the error-backpropagation learning
rule [8], and (iv) using synaptic tags and traces (Fig. 1B,C) so that all the information necessary
for plasticity is available locally at every synapse.

The tags and traces determine the plasticity of memory units and aid in decreasing the RPE
by improving the Q-value estimates. If a memory unit j receives input from input unit i then a
trace of this input is maintained at synapse v;; for the remainder of the trial (blue circle in
Fig. 1C). Suppose that j, in turn, is connected to action a which is selected at a later time point.
Now unit j receives feedback from a so that the trace on synapse v;; becomes a tag making it
sensitive to the globally released neuromodulator that codes the RPE & (panel iv in Fig. 1C). If
the outcome of a was better than expected (6>0) (green cloud in panel v), v;; strengthens
(thicker synapse in panel vi). When the stimulus that activated unit i reappears on a later trial,
the larger v;; increases unit j’s persistent activity which, in turn, enhances the activity of the Q-
value unit representing a, thereby decreasing the RPE.

The synaptic tags of AuGMEnNT correspond to the eligibility traces used in RL schemes. In
SARSA learning speeds up if the eligibility traces do not fully decay on every time step, but ex-
ponentially with parameter A&[0,1] [7]; the resulting rule is called SARSA()X). In AuGMEnT,
the parameter o plays an equivalent role and precise equivalence can be obtained by setting
o = 1-Ly as can be verified by making this substitution in Eqn. (13) (14) and (16) (noting that
Tag(t+1) = Tag(t)+ATag(t)). It follows that tags decay exponentially as Tag(t+1) = Ay Tag(t),
equivalent to the decay of eligibility traces in SARSA(L). These results establish the correspon-
dence between the biologically inspired AuGMEnNT learning scheme and the RL method
SARSA(L). A special condition occurs at the end of a trial. The activity of memory units, traces,
tags, and Q-values are set to zero (see [7]), after updating of the weights with a & that reflects
the transition to the terminal state.

In the remainder of the results section we will illustrate how AuGMENnT can train multi-lay-
ered networks with the form of Fig. 1 to perform a large variety of tasks that have been used to
study neuronal representations in the association cortex of monkeys.

Using AuGMENT to simulate animal learning experiments

We tested AuGMENT on four different tasks that have been used to investigate the learning of
working memory representations in monkeys. The first three tasks have been used to study the
influence of learning on neuronal activity in area LIP and the fourth task to study vibrotactile
working memory in multiple cortical regions. All tasks have a similar overall structure: the
monkey starts a trial by directing gaze to a fixation point or by touching a response key. Then
stimuli are presented to the monkey and it has to respond with the correct action after a memo-
ry delay. At the end of a trial, the model could choose between two possible actions. The full
task reward (4 1.5 units) was given if this choice was correct, while we aborted trials and gave
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Table 1. Model parameters.

Parameter Description Value
B Learning rate 0.15
A Tag/Trace decay rate 0.20
Y Discount factor 0.90
a Tag persistence 1-Ay
£ Exploration rate 0.025

doi:10.1371/journal.pcbi.1004060.t001

no reward if the model made the wrong choice or broke fixation (released the key) before a
go signal.

Researchers usually train monkeys on these tasks with a shaping strategy. The monkey starts
with simple tasks and then the complexity is gradually increased. It is also common to give
small rewards for reaching intermediate goals in the task, such as attaining fixation. We en-
couraged fixation (or touching the key in the vibrotactile task below) by giving a small shaping
reward (r;, 0.2 units) if the model directed gaze to the fixation point (touched the key). In the
next section we will demonstrate that the training of networks with AuGMEnT is facilitated by
shaping. Shaping was not necessary for learning in any of the tasks, however, but it enhanced
learning speed and increased the proportion of networks that learned the task within the
alloted number of training trials.

Across all the simulations, we used a single, fixed configuration of the association layer
(three regular units, four memory units) and Q-layer (three units) and a single set of learning
parameters (Tables 1,2). The number of input units varied across tasks as the complexity of the
sensory stimuli differed. We note, however, that the results described below would have been
identical had we simulated a fixed, large input layer with silent input units in some of the tasks,
because silent input units have no influence on activity in the rest of the network.

Saccade/antisaccade task

The first task (Fig. 2A) is a memory saccade/anti-saccade task modeled after Gottlieb and
Goldberg [3]. Every trial started with an empty screen, shown for one time step. Then a fixation
mark was shown that was either black or white, indicating that a pro- or anti-saccade would be
required. The model had to fixate within 10 time-steps, otherwise the trial was terminated
without reward. If the model fixated for two time-steps, we presented a cue on the left or the
right side of the screen for one time-step and gave the fixation reward r;. This was followed by a
memory delay of two time steps during which only the fixation point was visible. At the end of
the memory delay the fixation mark turned off. To collect the final reward r¢ in the pro-saccade
condition, the model had to make an eye-movement to the remembered location of the cue

Table 2. Network architecture parameters.

Architecture Value

Input units Task dependent
Memory units N=4

Regular units N=3

Q-value units N=3

Initial weights Uniform over [-0.25,0.25]

doi:10.1371/journal.pcbi.1004060.t002
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Fig 2. Saccade/antisaccade task. A, Structure of the task, all possible trials have been illustrated. Fixation mark color indicates whether a saccade (P) or
anti-saccade (A) is required after a memory delay. Colored arrows show the required action for the indicated trial types. L: cue left; R: cue right. B, The
sensory layer represents the visual information (fixation point, cue left/right) with sustained and transient (on/off) units. Units in the Q-value layer code three
possible eye positions: left (green), center (blue) and right (red). C, Time course of learning: 10,000 networks were trained, of which 9,945 learned the task
within 25,000 trials. Histograms show the distribution of trials when the model learned to fixate (‘fix’), maintain fixation until the ‘go’-signal (‘go’) and learned
the complete task (‘task’). D, Activity of example units in the association and Q-layer. The grey trace illustrates a regular unit and the green and orange traces
memory units. The bottom graphs show activity of the Q-value layer cells. Colored letters denote the action with highest Q-value. Like the memory cells, Q-
value units also have delay activity that is sensitive to cue location (* in the lower panel) and their activity increases after the go-signal. E, 2D-PCA projection
of sequence of association layer activations for the four different trial types for an example network. S marks the start of the trials (empty screen). Pro
saccade trials are shown with solid lines and anti-saccade trials with dashed lines. Color indicates cue location (green — left; red — right) and labels indicate
trial type (P/A = type pro/anti; L/R = cue left/right). Percentages on the axes show variance explained by the PCs. F, Mean variance explained as a function of
the number of PCs over all 100 trained networks, error bars s.d. G, Pairwise analysis of activation vectors of different unit types in the network (see main text
for explanation). MEM: memory; REG: regular. This panel is aligned with the events in panel (A). Each square within a matrix indicates the proportion of
networks where the activity vectors of different trial types were most similar. Color scale is shown below. For example, the right top square for the memory
unit matrix in the ‘go’ phase of the task indicates that around 25% of the networks had memory activation vectors that were most similar for Pro-Left and Anti-
Right trials. H, Pairwise analysis of activation-vectors for networks trained on a version of the task where only pro-saccades were required. Conventions as in
(G).

doi:10.1371/journal.pcbi.1004060.9g002
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and to the opposite location on anti-saccade trials. The trial was aborted if the model failed to
respond within eight time steps.

The input units of the model (Fig. 2B) represented the color of the fixation point and the
presence of the peripheral cues. The three Q-value units had to represent the value of directing
gaze to the centre, left and right side of the screen. This task can only be solved by storing cue
location in working memory and, in addition, requires a non-linear transformation and can
therefore not be solved by a linear mapping from the sensory units to the Q-value units. We
trained the models for maximally 25,000 trials, or until they learned the task. We kept track of
accuracy for all four trial types as the proportion correct responses in the last 50 trials. When
all accuracies reached 0.9 or higher, learning and exploration were disabled (i.e. # and £ were
set to zero) and we considered learning successful if the model performed all trial-
types accurately.

We found that learning of this task with AuGMEnT was efficient. We distinguished three
points along the task learning trajectory: learning to obtain the fixation reward (‘Fix’), learning
to fixate until fixation-mark offset (‘Go’) and finally to correctly solve the task (‘Task’). To de-
termine the ‘Fix’-learn trial, we determined the time point when the model attained fixation in
90 out of 100 consecutive trials. The model learned to fixate after 224 trials (median) (Fig. 2C).
The model learned to maintain gaze until the go signal after ~ 1,300 trials and it successfully
learned the complete task after ~ 4,100 trials. Thus, the learning process was at least an order
of magnitude faster than in monkeys that typically learn such a task after months of training
with more than 1,000 trials per day.

To investigate the effect of the shaping strategy, we also trained 10,000 networks without
the extra fixation reward (r; was zero). Networks that received fixation rewards were more like-
ly to learn than networks that did not (99.45% versus 76.41%; 27*=2,498, p< 10°). Thus, shap-
ing strategies facilitate training with AuGMEnT, similar to their beneficial effect in animal
learning [39].

The activity of a fully trained network is illustrated in Fig. 2D. One of the association units
(grey in Fig. 2D) and the Q-unit for fixating at the centre of the display (blue in Fig. 2B,D) had
strongest activity at fixation onset and throughout the fixation and memory delays. If recorded
in a macaque monkey, these neurons would be classified as fixation cells. After the go-signal
the Q-unit for the appropriate eye movement became more active. The activity of the Q-units
also depended on cue-location during the memory delay as is observed, for example, in the
frontal eye fields (* in Fig. 2D) [40]. This activity is caused by the input from memory units in
the association layer that memorized cue location as a persistent increase in their activity
(green and orange in Fig. 2D). Memory units were also tuned to the color of the fixation mark
which differentiated pro-saccade trials from anti-saccade trials, a conjoined selectivity neces-
sary to solve this non-linear task [41]. There was an interesting division of labor between regu-
lar and memory units in the association layer. Memory units learned to remember the cue
location. In contrast, regular units learned to encode the presence of task-relevant sensory in-
formation on the screen. Specifically, the fixation unit in Fig. 2D (upper row) was active as long
as the fixation point was present and switched off when it disappeared, thus cueing the model
to make an eye movement. Interestingly, these two classes of memory neurons and regular
(“light sensitive”) neurons are also found in areas of the parietal and frontal cortex of monkeys
[2,40] where they appear to have equivalent roles.

Fig. 2D provides a first, casual impression of the representations that the network learns. To
gain a deeper understanding of the representation in the association layer that supports the
non-linear mapping from the sensory units to the Q-value units, we performed a principal
component analysis (PCA) on the activations of the association units. We constructed a single
(32x7) observation matrix from the association layer activations for each time-step (there were
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seven association units and eight time-points in each of the four trial-types), with the learning
rate f and exploration rate £ of the network set to zero. Fig. 2E shows the projection of the acti-
vation vectors onto the first two principal components for an example network. It can be seen
activity in the association layer reflects the important events in the task. The color of the fixa-
tion point and the cue location provide information about the correct action and lead to a
‘split” in the 2D principal component (PC) space. In the ‘Go’ phase, there are only two possible
correct actions: ‘left’ for the Pro-Left and Anti-Right trials and ‘right’ otherwise. The 2D PC
plot shows that the network splits the space into three parts based on the optimal action: here
the ‘left’ action is clustered in the middle, and the two trial types with target action ‘right’ are
adjacent to this cluster. This pattern (or its inversion with the ‘right’ action in the middle) was
typical for the trained networks. Fig. 2F shows how the explained variance in the activity of as-
sociation units increases with the number of PCs, averaged over 100 simulated networks; most
variance was captured by the first two PCs.

To investigate the representation that formed during learning across all simulated networks,
we next evaluated the similarity of activation patterns (Euclidean distance) across the four trial
types for the regular and memory association units and also for the units in the Q-value layer
(Fig. 2G). For every network we entered a ‘1" in the matrix for trial types with the smallest dis-
tance and a ‘0’ for all other pairs of trials and then aggregated results over all networks by aver-
aging the resulting matrices. Initially the patterns of activity in the association layer are similar
for all trial types, but they diverge after the presentation of the fixation point and the cue. The
regular units convey a strong representation of the color of the fixation point (e.g. activity in
pro-saccade trials with a left cue is similar to activity in pro-saccade trials with a right cue; PL
and PR in Fig. 2G), which is visible at all times. Memory units have a clear representation of
the previous cue location during the delay (e.g. AL trials similar to PL trials and AR to PR trials
in Fig. 2G). At the go-cue their activity became similar for trials requiring the same action (e.g.
AL trials became similar to PR trials), and the same was true for the units in the Q-value layer.

In our final experiment with this task, we investigated if working memories are formed spe-
cifically for task-relevant features. We used the same stimuli, but we now only required pro-
saccades so that the color of the fixation point became irrelevant. We trained 100 networks, of
which 96 learned the task and we investigated the similarities of the activation patterns. In
these networks, the memory units became tuned to cue-location but not to color of the fixation
point (Fig. 2H; note the similar activity patterns for trials with a differently colored fixation
point, e.g. AL and PL trials). Thus, AuGMEnt specifically induces selectivity for task-relevant
features in the association layer.

Delayed match-to-category task

The selectivity of neurons in the association cortex of monkeys changes if the animals are
trained to distinguish between categories of stimuli. After training, neurons in frontal [42] and
parietal cortex [4] respond similarly to stimuli from the same category and discriminate be-
tween stimuli from different categories. In one study [4], monkeys had to group motion stimuli
in two categories in a delayed-match-to-category task (Fig. 3A). They first had to look at a fixa-
tion point, then a motion stimulus appeared and after a delay a second motion stimulus was
presented. The monkeys’ response depended on whether the two stimuli came from the same
category or from different categories. We investigated if AuGMEnT could train a network with
an identical architecture (with 3 regular and 4 memory units in the association layer) as the
network of the delayed saccade/antisaccade task to perform this categorization task. We used
an input layer with a unit for the fixation point and 20 units with circular Gaussian tuning

(x=0.)°
20?2

curves of the form r(x) = exp (— ) with preferred directions 6, evenly distributed over
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Fig 3. Match-to-category task. A, When the network directed gaze to the fixation point, we presented a
motion stimulus (cue-1), and after a delay a second motion stimulus (cue-2). The network had to make a
saccade to the left when the two stimuli belonged to the same category (match) and to the right otherwise.
There were twelve motion directions, which were divided into two categories (right). B, The sensory layer had
a unit representing the fixation point and 20 units with circular Gaussian tuning curves (s.d. 12 deg.) with
preferred directions evenly distributed over the unit circle. C, Activity of two example memory units in a
trained network evoked by the twelve cue-1 directions. Each line represents one trial, and color represents
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cue category. Responses to cues closest to the categorization boundary are drawn with a dashed line of
lighter color. F, fixation mark onset; C, cue-1 presentation. D, delay; G, cue-2 presentation (go signal); S,
saccade. D, Activity of the same two example memory units as in (C) in the ‘go’ phase of the task for all 12x12
combinations of cues. Colors of labels and axes indicate cue category. E, Left, Motion tuning of the memory
units (in C) at the end of the memory delay. Error bars show s.d. across trials and the dotted vertical line
indicates the category boundary. Right, Tuning of a typical LIP neuron (from [4]), error bars show s.e.m. F,
Left, Distribution of the direction change that evoked the largest difference in response across memory units
from 100 networks. Right, Distribution of direction changes that evoked largest response differences in LIP
neurons (from [4]).

doi:10.1371/journal.pcbi.1004060.g003

the unit circle and a standard deviation o of 12 deg (Fig. 3B). The two categories were defined
by a boundary that separated the twelve motion directions (adjacent motion directions were
separated by 30 deg.) into two sets of six directions each.

We first waited until the model directed gaze to the fixation point. Two time-steps after fixa-
tion we presented one of twelve motion-cues (cue-1) for one time step and gave the fixation re-
ward r; (Fig. 3A). We added Gaussian noise to the motion direction (s.d. 5 deg.) to simulate
noise in the sensory system. The model had to maintain fixation during the ensuing memory
delay that lasted two time steps. We then presented a second motion stimulus (cue-2) and the
model had to make an eye-movement (either left or right; the fixation mark did not turn off in
this task) that depended on the match between the categories of the cues. We required an eye
movement to the left if both stimuli belonged to the same category and to the right otherwise,
within eight time-steps after cue-2. We trained 100 models and measured accuracy for the pre-
ceding 50 trials with the same cue-1. We determined the duration of the learning phase as the
trial where accuracy had reached 80% for all cue-1 types.

In spite of their simple feedforward structure with only seven units in the association layer,
AuGMEnT trained the networks to criterion in all simulations within a median of 11,550 trials.
Fig. 3C illustrates motion tuning of two example memory neurons in a trained network. Both
units had become category selective, from cue onset onwards and throughout the delay period.
Fig. 3D shows the activity of these units at ‘Go’ time (i.e. after presentation of cue-2) for all 144
combinations of the two cues. Fig. 3E shows the tuning of the memory units during the delay
period. For every memory unit of the simulations (N = 400), we determined the direction
change eliciting the largest difference in activity (Fig. 3F) and found that the units exhibited the
largest changes in activity for differences in the motion direction that crossed a category
boundary, as do neurons in LIP [4] (Fig. 3E,F, right). Thus, AuGMEnT can train networks to
perform a delayed match-to-category task and it induces memory tuning for those feature vari-
ations that matter.

Probabilistic decision making task

We have shown that AuGMEnT can train a single network to perform a delayed saccade/anti-
saccade task or a match-to-category task and to maintain task-relevant information as persisi-
tent activity. Persistent activity in area LIP has also been related to perceptual decision making,
because LIP neurons integrate sensory information over time in decision making tasks [43].
Can AuGMENT train the very same network to integrate evidence for a perceptual decision?
We focused on a recent study [5] in which monkeys saw a red and a green saccade target
and then four symbols that were presented successively. The four symbols provided probabilis-
tic evidence about whether a red or green eye-movement target was baited with reward
(Fig. 4A). Some of the symbols provided strong evidence in favor of the red target (e.g. the tri-
angle in the inset of Fig. 4A), others strong evidence for the green target (heptagon) and other
symbols provided weaker evidence. The pattern of choices revealed that the monkeys assigned
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Fig 4. Probabilistic classification task. A, After the network attained fixation, we presented four shapes in a random order at four locations. The shapes

s1, - -,54 cued a saccade to the red or green target: their location varied randomly across trials. Reward was assigned to the red target with probability
P(R|s;,S5,55,S,) = J’TWW with W = Z; w;,, and to the green target otherwise. Inset shows weights w; associated with cues s;. B, The sensory layer had
units for the fixation point, for the colors of the targets on each side of the screen and there was a set of units for the symbols at each of the four retinotopic
locations. C, Activity of two context sensitive memory units and Q-value units (bottom) in a trial where four shield-shaped symbols were presented to a trained
network. The green target is the optimal choice. F: fixation mark onset; D: memory delay; G: fixation mark offset (‘Go’-signal).

doi:10.1371/journal.pcbi.1004060.9004

high weights to symbols carrying strong evidence and lower weights to less informative ones. A
previous model with only one layer of modifiable synapses could learn a simplified, linear ver-
sion of this task where the symbols provided direct evidence for one of two actions [44]. This
model used a pre-wired memory and it did not simulate the full task where symbols only carry
evidence about red and green choices while the position of the red and green targets varied
across trials. Here we tested if AuGMENT could train our network with three regular and four
memory units to perform the full non-linear task.

We trained the model with a shaping strategy using a sequence of tasks of increasing com-
plexity, just as in the monkey experiment [5]. We will first decribe the most complex version of
the task. In this version, the model (Fig. 4B) had to first direct gaze to the fixation point. After
fixating for two time-steps, we gave the fixation reward r; and presented the colored targets and
also one of the 10 symbols at one of four locations around the fixation mark, In the subsequent
three time-steps we presented the additional symbols. We randomized location of the red and
green targets, the position of the successively presented symbols as well as the symbol sequence
over trials. There was a memory delay of two time steps after all symbols (sy,- - -,54) had been

presented and we then removed the fixation point, as a cue to make a saccade to one of the col-

_ oW
140"

ored targets. Reward rywas assigned to the red target with probability P(R|s,, s,, s, s,)
4

with W = Zizl w, (w; is specified in Fig. 4A, inset) and to the green target otherwise. The

model’s choice was considered correct if it selected the target with highest reward probability,

or either target if reward probabilities were equal. However, rrwas only given if the model se-

lected the baited target, irrespective of whether it had the highest reward probability.
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Table 3. Probabilistic Classification convergence windows.

Task difficulty # Input Symbols Sequence Length n trials to determine success
1 2 1 1,000

2 4 1 1,500

3 6 1 2,000

4 8 1 2,500

5 10 1 3,000

6 10 2 10,000

7 10 3 10,000

8 10 4 20,000

doi:10.1371/journal.pcbi.1004060.t003

The shaping strategy used for training gradually increased the set of input symbols
(2,4, - -,10) and sequence length (1, - -,4) in eight steps (Table 3). Training started with the two
‘trump' shapes which guarantee reward for the correct decision (triangle and heptagon, see
Fig. 4A, inset). We judged that the task had been learned when the success rate in the last # tri-
als was 85%. As the number of possible input patterns grew we increased n to ensure that a sig-
nificant fraction of possible input-patterns had been presented before we determined
convergence (see Table 3). Difficulty was first increased by adding the pair of symbols with the
next smaller absolute weight, until all shapes had been introduced (level 1-5) and then by in-
creasing sequence length (level 6-8).

With this shaping strategy AuGMEnNT successfully trained 99 of 100 networks within a total
of 500,000 trials. Training of the model to criterion (85% correct in the final task) took a medi-
an total of 55,234 trials across the eight difficulty levels, which is faster than the monkeys
learned. After the training procedure, the memory units had learned to integrate information
for either the red or green choice over the symbol sequence and maintained information about
the value of this choice as persistent activity during the memory delay. Fig. 4C shows the activi-
ty of two memory units and the Q-value units of an example network during a trial where the
shield symbol was presented four times, providing strong evidence that the green target was
baited with reward. The memory units became sensitive to the context determined by the posi-
tion of the red and green saccade targets. The unit in the first row of Fig. 4C integrated evidence
for the green target if it appeared on the right side and the unit in the second row if the green
target appeared on the left. Furthermore, the activity of these memory units ramped up gradu-
ally as more evidence accumulated.

The activity of neurons in LIP was correlated to the log likelihood that the targets are baited
[5]. To investigate the influence of log likelihood on the activity of the memory units, we com-
puted log likelihood ratio (logLR) quintiles as follows. We enumerated all 10,000 length 4 sym-
bol combinations s€S and computed the probability of reward for a saccade to the red target,
P(R|S) for every combination. We next computed the conditional probabilities of reward P(R|
s)) and P(G|s;) = 1-P(R|s) for sequences s; of length I€{1,- - -4} (marginalizing over the unob-
served symbols). We then computed LogLR(s) as log,o(P(R|s;)/P(G]s;)) for each specific se-
quence of length / and divided those into quintiles.

To determine how the activity of memory units depended on the log likelihood that the tar-
gets were baited we first compared their average activity after observing a complete sequence of
the lower and upper quintile, and reordered the quintiles so they were increasing for each unit.
We then computed the average within-quintile activities over the aligned population. The
upper panel of Fig. 5A shows how the average activity of the four memory units of an example
network depended on the log likelihood that the targets were baited and the lower panel shows
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Fig 5. Tuning in the association layer in the probabilistic classification task. A, Trials were subdivided in quintiles based on the log-likelihood ratio of the
evidence favoring one target. Average activations of the four memory units of a trained model network (top; 100,000 trials) and LIP neurons (bottom, from [5])
depend on the log-likelihood ratio. B, Left, Average synaptic weights between input units representing symbols and an example memory unit are strongly
correlated (o~1, p<107) with true symbol weights. Right, Subjective weights assigned by a monkey as estimated from the performance data (from [5]). C,
Histogram of Spearman correlations between average synaptic weights for symbols and true symbol weights for 396 memory units (AuGMERNT trained 99 of
100 simulated networks to criterion). Note that there are also units with zero correlation that do not contribute to the mapping of the symbols onto Q-values.
These units were accompanied by other association units with stronger correlations.

doi:10.1371/journal.pcbi.1004060.g005

LIP data [5] for comparison. It can be seen that the memory units’ activity became correlated
to the log likelihood, just like LIP neurons. Importantly, the synaptic weights from input neu-
rons to memory cells depended on the true weights of the symbols after learning (Fig. 5B). This
correlation was also strong at the population level as can be seen in Fig. 5C which shows the
distribution of all the correlation coefficients (N = 396). Thus, plasticity of synapses onto the
memory neurons can explain how the monkeys valuate the symbols and AuGMEnT explains
how these neurons learn to integrate the most relevant information. Furthermore, our results
illustrate that AuGMEnT not only trains the association units to integrate stochastic sensory
evidence but that it also endows them with the required mixed selectivity for target color and
symbol sequence that is required to solve this non-linear task [41].

Vibrotactile discrimination task

The previous simulations addressed tasks that have been employed for the study of neurons in
area LIP of monkeys. Our last simulation investigated a task that has been used to study vibro-
tactile working memory [6,45]. In this task, the monkey touches a key with one hand and then
two vibration stimuli are applied sequentially to a fingertip of the other hand (Fig. 6A). The
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hold key; L, press left button to indicate F2 < F1; R, press right button to indicate F2 > F1. B, Network model. The units in the sensory layer are tuned for the
tactile frequency with monotonically increasing or decreasing sigmoidal tuning curves. The binary ‘S’ neuron codes for skin contact of the vibrotactile probe
and becomes active at ‘Contact’ in A. C, Average psychometric curves for 100 networks trained on the variable F1 task. Each set of data points (grouped by
color) shows responses for the F1 stimulus that is indicated with a vertical line for flanking F2 stimuli; blue: F1 = 20Hz, yellow: F1 = 30Hz and pink: F1 = 40Hz.
Y-axis shows the mean proportion of trials where networks indicated that F2 > F1 (each comparison was evaluated 100 times for every network). Error bars
show s.d. over networks. Curves are logistic fits to the model responses. D, Tuning of two example memory units to F1 frequency during the delay phase. E,
Histogram of linear correlations between F1 frequency and memory unit activations during the delay phase for 100 networks (N = 400). F, Example activity
traces for two memory units and the three Q-value units. Left panel shows the response for F1 = 20Hz and F2 = F1+5Hz (solid +5Hz, dashed -5Hz). The
response of the Q-value units is coded following the color scheme in panels A and B. Right panel shows activity of these units when F1 was 30 Hz. F2
indicates onset of second vibration stimulus. D: Memory delay phase. Note that F2 is 25Hz for the continuous lines in the left panel and also for the dashed
lines in the right panel, but that these trials require different responses (right button if F1 = 20Hz and left button if F1 = 30Hz). G, Scatter plot of linear
regression parameters of various unit types when F2 was presented (as explained in the main text). A positive A1 (A2) parameter indicates that a unit
becomes more active for higher F1 (F2). Green line shows y = x and the activity of units on this line is related to the sum of F1 and F2. The red line represents
y = -X, and the activity of units on this line represents the difference between F1 and F2. The color scheme for the Q-value units is the same as in (A) and (B).
H, Scatter plot of linear regression parameters at the time of F2 presentation for networks trained on the version of the task with fixed F1. I, Psychometric
curves for block-trained fixed F1 networks (see main text). Same conventions as for (C). Only the logistic fit (black line) for F1 = 30 Hz is drawn.

doi:10.1371/journal.pcbi.1004060.9006
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monkey has to indicate whether the frequency of the first vibration stimulus (F1) is higher or
lower than the frequency of the second one (F2). At the end of the trial the animal indicates its
choice by releasing the key and pressing one of two buttons. The overall structure of the task is
similar to that of the visual tasks described above, but the feature of interest here is that it re-
quires a comparison between two scalar values; F2 that is sensed on the finger and F1 that has
to be maintained in working memory.

Recent computational work has addressed various aspects of the vibrotactile discrimination
task. Several models addressed how neural network models can store F1 and compare it to F2
[46-48]. More recently, Barak et al. [49] investigated the dynamics of the memory states in net-
works trained with three different supervised learning methods and compared them to the neu-
ronal data. However, these previous studies did not yet address trial-and-error learning of the
vibrotactile discrimination task with a biologically plausible learning rule. We therefore investi-
gated if AuGMENT could train the same network that had been used for LIP, with three regular
units and four memory units, to solve this task.

The input layer was modeled after sensory area S2 of the monkey. Neurons in this cortical
area have broad tuning curves and either monotonically increase or decrease their firing rate as
function of the frequency of the vibrotactile stimulus [50]. The input units of the model had
sigmoidal tuning curves r(x) = 1/(1+exp(w(0.-x))), with 10 center points 8. evenly distributed
over the interval between 5.5Hz and 49.5Hz. We used a pair of units at every . with one unit
increasing its activity with stimulus frequency and the other one decreasing, so that there were
a total of 20 input units. Parameter w determines the steepness of the tuning curve and was +/-
5. We modeled sensory noise by adding independent zero mean Gaussian noise (s.d. 7.5%) to
the firing rates of the input units. We also included a binary input unit that signaled skin con-
tact with the stimulation device (unit S in Fig. 6B). The association and Q-value layers were
identical to those of the other simulations (Fig. 6B).

Our first simulation addressed a version of the task where F1 varied from trial to trial [6]. A
trial started when the input unit indicating skin contact with the vibrating probe became active
and the model had to select the hold-key within ten time-steps, or else the trial was terminated.
When the model had held the key for two time-steps, a vibration stimulus (F1, uniformly ran-
dom between 5 and 50 Hz) was presented to the network for one time-step and the small shap-
ing reward (r;) was given. This was followed by a memory delay after which we presented the
second vibration stimulus (F2), drawn from a uniform distribution between 5 and 50 Hz, but
with a minimal separation of 2 Hz from F1. If F2 was lower than F1 the model had to select the
left button (green Q-value unit in Fig. 6B)—and the right button (red) otherwise—within eight
time steps after the presentation of F2 to obtain the reward 7

To determine model performance, we divided the range of F1 stimuli into 9 bins of 5 Hz
and kept track of the running average of performance in 50 trials for each bin. When the model
reached a performance of 80% for every F1 we disabled learning and exploration (setting learn-
ing parameters f and € to zero) and checked the performance of the model for F1 stimuli of 20,
30 and 40 Hz and F2 stimuli with offsets of [-10, -8, .. ., -2,2, .. ., 8, 10] Hz, repeating each test
20 times. We considered learning to be successful if the model classified the nearest F2 frequen-
cies (2 Hz distance) with a minimal accuracy of 50% and all other F2 frequencies with an accu-
racy better than 75%, for every F1 bin.

AuGMEnT trained all 100 simulated networks to criterion within a median of 3,036 trials.
Fig. 7C illustrates the average (+s.d.) choices of these 100 trained models as a function of F2,
for three values of F1 as well as a logistic function fitted to the data [as in 6]. It can be seen that
the model correctly indicates whether F1 is higher or lower than F2 and that the criterion de-
pends on the value F1, implying that the model has learned to store this analog scalar value in
its working memory. What are the memory representations that emerged during learning?
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Fig 7. Robustness to variations in the parameters that control learning rate. The upper row shows how the proportion of networks that converged varies
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on the median trial when the learning criterion was reached; white regions reached convergence later than the yellow regions (see insets).

doi:10.1371/journal.pcbi.1004060.9007

Fig. 6D shows the F1 tuning of two memory units in an example network; typically the tunings
are broad and can be increasing or decreasing as a function of F1, similar to what was found in
experiments in the frontal cortex of monkeys [51]. Fig. 6E shows the distribution of linear cor-
relations between 400 memory units in 100 trained networks and F1 frequency; most units ex-
hibit a strong positive or negative correlation, indicating that the networks learned to code the
memory of F1 as the level of persistent firing of the memory units.

We next investigated how the model carried out the comparison process that has to take
place after the presentation of F2. This comparison process depends critically on the order of
presentation of the two stimuli, yet it involves information that comes in via the same sensory
inputs and association units [48]. We found that the memory units were indeed sensitive to
both F1 and F2 in the comparison period. Fig. 6F shows the response of two example memory
units and the three Q-value units for a trials with an F1 of 20 or 30 Hz, followed by an F2 with
a frequency that was either 5Hz higher (solid line) or lower than F1 (dashed line). The activity
of the memory units encodes F1 during the memory delay, but these units also respond to F2
so that the activity after the presentation of F2 depends on both frequencies. The lower panel il-
lustrates the activity of the Q-value units. The activity of the Hold Q-value unit (H, blue) is
highest until the presentation of F2, causing the model to hold the key until the go-signal. This
unit did not distinguish between trials that required a right or left button press. The activities
of Q-value units for the left and right button press (red and green traces) explain how the net-
work made correct decisions at the go-signal because the Q-value of the appropriate action be-
came highest (the solid lines in Fig. 6F show activity if F2>F1 and dashed lines F2<F1). It can
be seen, for example, how the response elicited in the Q-value layer by an F2 of 25Hz depended
on whether the preceding F1 was 20Hz (continuous curves in the left panel of Fig. 6F) or 30Hz
(dashed curves in the right panel).
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We next quantified how the activity of the memory, regular and Q-value units from 100 net-
works (N =400, 300 and 300 units, respectively) depended on F1 and F2 during the compari-
son phase with a regression [see 52] using all trials where the F2 stimulus was presented and
for all combinations of the two frequencies between 5 and 50 Hz (step size 1Hz),

r(F1,F2) = Fla, + F2a, + b (32)

Here a; and a, estimate the dependence of the unit’s activity on F1 and F2, respectively. The ac-
tivity of many memory units depended on F1 and also on F2 (Fig. 6G, left) and the overall neg-
ative correlation between the coefficients (r = -0.81, p<10°°) indicates that units that tended to
respond more strongly for increasing F1 tended to decrease their response for increasing F2
and vice versa, just as is observed in area S2, the prefrontal cortex and the medial premotor cor-
tex of monkeys [45,51,52]. In other words, many memory units became tuned to the difference
between F1 and F2 in the comparison phase, as is required by this task. In spite of the fact that
F1 and F2 activate memory units with the same synapses, the inverse tuning is possible because
the F1 stimulus has turned off and activated the off-cells in the sensory layer in the comparison
phase. In contrast, the F2 stimulus is still ‘on’ in this phase of the task so that the off-units cod-
ing F2 did not yet provide their input to the memory cells. As a result, the memory units’ final
activity can reflect the difference between F1 and F2, as is required by the task. Regular units
only have access to the current stimulus, and were therefore they are only tuned to F2 in the
comparison phase (Fig. 6G, middle). Q-value units reflect the outcome of the comparison pro-
cess (Fig. 6G, right): their regression coefficients with F1 and F2 fall into three clusters as pre-
dicted by the required action.

The version of the task described above demanded the comparison between two flutter fre-
quencies because F1 varied from trial to trial. Hernandez et al. [6] also studied a version of the
task where F1 was fixed for a block of trials. In this version, the monkeys based their response
on F2 only and did not memorize F1. As a result their performance deteriorated at the start of
a new block of trials with a different F1. Networks trained with AuGMENT also only memorize
task-relevant information. Do networks trained with AuGMENT also fail to memorize F1 if it
is fixed during training? To investigate this question, we trained models with a fixed F1 of 30
Hz [6] and presented F2 stimuli in the range between 5-50 Hz (2.5 Hz spacing) with a minimal
distance from F1 of 10 Hz. We estimated convergence as the trial when accuracy reached 90%
(running average of 50 trials).

AuGMEnT trained all 100 networks to criterion in this simpler task within a median of
1,390 trials. After learning the fixed F1 task, we subjected the networks to block training with
F1 stimuli of 20, 30 and 40 Hz as in [6] while we presented F2 stimuli with frequencies of
([-10,-8, .. .,-2,2,. . ., 8,10] Hz relative to F1 (10 total, each shown 150 times). These blocks of
trials had a pseudorandom ordering but we always presented a 30Hz F1 in the last block.
When we tested immediately after every block, we found that the models were well able to
adapt to a specific F1. However, the models were not able to solve the variable F1 task after this
extensive block training, even though they had significant exposure to different F1 stimuli.

Fig. 61 shows the average psychometric curves for 100 networks after the last block with F1 =
30Hz. Colors represent trials with different F1 stimuli (as in Fig. 6C). It can be seen that the
models disregarded F1 and only determined whether F2 was higher or lower than 30 Hz, just
as monkeys that are trained with a blocked procedure [6]. Thus, the model can explain why the
monkeys do not learn to compare the two stimuli if the F1 is fixed for longer blocks of trials.
The memory units and the Q-value units now had similar rather than opposite tuning for F1
and F2 (positive correlations in the left and right panel of Fig. 6H; compare to Fig. 6G), which
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indicates that blocked training causes a failure to learn to subtract the memory trace of F1 from
the representation of F2.

We conclude that AuGMENT is able to train networks on a task that requires a comparison
between two analog stimuli and where the correct decision depends on stimulus order. Memo-
ry units learn to represent the analog value that needs to be memorized as a graded level of per-
sistent activity. However, if F1 is fixed for blocks of trials, the network does not memorize F1
but learns to base its decision on F2 only, in accordance with experimental findings.

Varying the learning parameters and the size of the network

It is remarkable that AuGMENT can train the same simple network to perform a wide range of
tasks, simply by delivering rewards at the appropriate times. In the simulations described
above we fixed the number of units in the association layer and Q-value layer and used a single
set of learning parameters. To examine the stability of the learning scheme, we also evaluated
learning speed and convergence rate for various values of the learning rate f and the SARSA
learning parameter A (which determines the tag-decay parameter o because @ = 1-Ay as was ex-
plained above, y was kept at the default value). For the saccade/antisaccade, match-to-category
and vibrotactile discrimination tasks we tested $€{0.05,0.10, - -,1.0} and A€{0.0,0.1,- - -,0.9}
while the other parameters remained the same (Table 1,2) and ran 100 simulations for every
combination. Fig. 7 shows the proportion of networks that converged and the median conver-
gence trial. Training in the probabilistic classification task required a number of different train-
ing stages and a longer overall training time and we evaluated this task with a smaller set of
parameters (Fig. 7, right). There was a wide range for the learning parameters where most of
the networks converged and these ranges overlapped for the four tasks, implying that the AuG-
MEnT learning scheme is relatively robust and stable.

So far our simulations used a fixed network with only 7 units in the association layers. Can
AuGMEnT also train networks with a larger association layer? To further investigate the gener-
ality of the learning scheme, we ran a series of simulations with increasing numbers of asso-
ciation units, multiplying the number of association units in the network described above by
2,4, ...,128 and training 100 networks of each size in the saccade/antisaccade task. We first
evaluated these larger networks without changing the learning parameters and found that the
learning was largely unaffected within a limited range of network sizes, whereas performance
deteriorated for networks that were 32-128 fold larger (Fig. 8A). The decrease in performance
is likely caused by the larger number of synapses, causing larger adjustments of the Q-values
after each time step than in the smaller networks. It is possible to compensate for this effect by
choosing a smaller f (learning rate) and 1. We jointly scaled these parameters by ; , ; and { and
selected the parameter combination which resulted in the highest convergence rate and the
fastest median convergence speed for every network size (Fig. 8B). The performance of the
larger networks was at least as good as that of the network with 7 units if learning parameters
were scaled. Thus, AuGMENT can also successfully train networks with a much larger
association layer.

Discussion

AuGMEnT provides a new theoretical framework that can explain how neurons become tuned
to relevant sensory stimuli in sequential decision tasks during trial-and-error learning. The
scheme uses units inspired by transient and sustained neurons in sensory cortices [19], action-
value coding neurons in frontal cortex, basal ganglia and midbrain [12,35,36] and neurons
with mnemonic activity that integrate input in association cortex. To the best of our knowl-
edge, AuGMENT is the first biologically plausible learning scheme that implements SARSA in

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004060 March 5, 2015 25/34



@' PLOS COMPUTATIONAL
~Z BIOLOGY Feedback Gates Learning of Memory Representations

A
1 25000
© 4000
()
Q
] )
ke g
Y 9
S >
() [
[ >
o & 2000
2 v]
[e] c
] .9
e
()
=
0 0
B
1 25000
- B 5=0.15X=0.20
[] 8=0.075,A=0.10
©
g 4000 | [] B=0.0375,A=0.05
o &
& 8 I
] ()
S 2
() [
9 >
g S 2000 |-
Z (V)
o [
V] .0
©
7] -
=
0 0
12,16 48,64 192,256 34 12,16 48,64 192,256
24,32 96,128 384,512 6.8 24,32 96,128 384,512
Association Layer Association Layer
(#regular, #memory) (#regular, #memory)

Fig 8. Varying the size of the association layer. A, Scaling with unchanged learning parameters 8 and A. Left, convergence rate (proportion of 100
networks that learned the saccade/antisaccade task). Error bars denote 95% confidence intervals. Right, median convergence speed (number of trials to
criterion). B, Left, convergence rates with adjusted learning parameters. Bar shading indicates parameter setting (see legend in right panel). Right, median
convergence speed with optimized parameters.

doi:10.1371/journal.pcbi.1004060.9008

a multi-layer neural network equipped with working memory. The model is simple, yet is able
to learn a wide range of difficult tasks requiring non-linear sensory-motor transformations, de-
cision making, categorization, and working memory. AuGMENT can train the very same net-
work to perform either of these tasks by presenting the appropriate sensory inputs and reward
contingency, and the representations it learns are similar to those found in animals trained on
these tasks. AuUGMENT is a so-called on-policy method because it only relies on the Q-values
that the network experiences during learning. These on-policy methods appear to be more sta-
ble than off-policy algorithms (such as Q-learning which considers transitions not experienced
by the network), if combined with neural networks (see e.g. [53,54]).
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AuGMEnT forms memory representations for features that need to be remembered. In the
delayed saccade/anti-saccade task, training induced persistent neuronal activity tuned to the
cue location and to the color of the fixation point, but only if it was relevant. In the categoriza-
tion task, units became sensitive to category boundaries and in the decision making task, units
integrated sensory evidence with stronger weights for the more reliable inputs. These proper-
ties resemble those of neurons in LIP [2-5] and the frontal cortex [24] of monkeys. Finally, the
memory units learned to memorize and compare analog values in the vibrotactile task, just as
has been observed in the frontal cortex of monkeys [6,45].

AuGMEnT makes a number of predictions that could be tested in future neuroscientific ex-
periments. The first and foremost prediction is that feedback connections gate plasticity of the
connections by inducing synaptic tags. Specifically, the learning scheme predicts that feedback
connections are important for the induction of tags on feedforward connections from sensory
cortices to the association cortex (Fig. 1B). A second prediction is the existence of traces in syn-
apses onto neurons with persistent activity (i.e. memory units) that are transformed into tags
upon the arrival of feedback from the response selection stage, which may occur at a later point
in time. The third prediction is that these tags interact with globally released neuromodulators
(e.g. dopamine, acetylcholine or serotonin), which determine the strength and sign of the syn-
aptic changes (potentiation or depression). Neurobiological evidence for the existence of these
tags and their interaction with neuromodulatory substances will be discussed below. A final
prediction is that stationary stimuli provide transient input to neurons with persistent activity.
As a result, stimuli that are visible for a longer time do not necessarily cause a ramping of activ-
ity. In our network ramping was prevented because memory units received input from “on”
and “off” input units only. We note, however, that other mechanisms such as, for example, rap-
idly adapting synapses onto memory cells, could achieve the same effect. In contrast, neurons
in association cortex without persistent activity are predicted to receive continuous input, for
as long as a stimulus is present. These specific predictions could all be tested in future
neuroscientific work.

Role of attentional feedback and neuromodulators in learning

AuGMENT implements a four-factor learning rule. The first two factors are pre- and post-syn-
aptic activity of the units and there are two additional “gating factors” that enable synaptic plas-
ticity. The first gating factor is the feedback from units in the motor layer that code the selected
action. These units send an attentional signal back to earlier processing levels to tag synapses
responsible for selecting this action. The importance of selective attention for learning is sup-
ported by experiments in cognitive psychology. If observers select a stimulus for an action, at-
tention invariably shifts to this stimulus [55] and this selective attention signal gates perceptual
learning so that attended objects have larger impact on future behavior [56-58]. Moreover,
neurophysiological studies demonstrated that such a feedback signal exists, because neurons in
the motor cortex that code an action enhance the activity of upstream neurons providing input
for this action [59,60].

The second gating-factor that enables plasticity is a global neuromodulatory signal that
broadcasts the RPE to many brain regions and determines the sign and strength of the changes
in synapses that have been tagged. Dopamine is often implicated because it is released if reward
expectancy increases and it influences synaptic plasticity [10,38]. There is also a potential role
for acetylcholine because cholinergic cells project diffusely to cortex, respond to rewards [61-
63] and influence synaptic plasticity [61,64]. Furthermore, a recent study demonstrated that se-
rotonergic neurons also carry a reward-predicting signal and that the optogenetic activation of
serotonergic neurons acts as a positive reinforcer [65]. Guidance of synaptic plasticity by the
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combination of neuromodulatory signals and cortico-cortical feedback connections is biologi-
cally plausible because all information for the synaptic update is available at the synapse.

Synaptic tags and synaptic traces

Learning in AuGMEnT depends on synaptic tags and traces. The first step in the plasticity of a
synapse onto a memory cell is the formation of a synaptic trace that persists until the end of
the trial (Fig. 1C). The second step is the conversion of the trace into a tag, when a selected
motor unit feeds back to the memory cell. The final step is the release of the neuromodulator
that modifies tagged synapses. The learning rule for the synapses onto the regular (i.e. non-
memory) association units is similar (Fig. 1B), but tags form directly onto active synapses, skip-
ping the first step. We note, however, that the same learning rule is obtained if these synapses
also have traces that decay within one time-step. The hypothesis that synaptic plasticity re-
quires a sequence of events [66,67] is supported by the synapses’ complex biochemical machin-
ery. There is evidence for synaptic tags [15,31,32] and recent studies have started to elucidate
their identity [32]. Neuromodulatory signals influence synaptic plasticity even if released sec-
onds or minutes later than the plasticity-inducing event [15,17,32], which supports the hypoth-
esis that they interact with some form of tag.

Comparison to previous modeling approaches

There has been substantial progress in biologically inspired reinforcement learning models
with spiking neurons [68-71] and with models that approximate population activity with con-
tinuous variables [14,16,21,44,67,72-74]. Many of the models rely either on Actor-Critic learn-
ing [7] or on policy gradient learning [75]. An advantage of Actor-Critic models is that model
components relate to brain regions [16,71,73]. AuGMEnT has features in common with these
models. For example, it uses the change in Q-value to compute the RPE (Eqn. (17)). Another
widely used class of models is formed by policy gradient learning methods [68,75] where units
(or synapses [68]) act as local agents that try to increase the global reward. An advantage of
these models is that learning does not require knowledge about the influence of units on other
units in the network, but a disadvantage is that the learning process does not scale well to larger
networks where the correlation between local activity and the global reward is weak [70]. AuG-
MEnT uses ‘attentional” feedback from the selected action to improve leaning [14] and it also
generalizes to multi-layer networks. It thereby alleviates a limitation of many previous biologi-
cally plausible RL models, which can only train a single layer of modifiable synaptic weights
and solve linear tasks [16,21,44,67,70,71,73,76] and binary decisions [21,44,67,70].

Unlike these previous models, AuGMENT is a model of action-value learning (SARSA(A)
[7]). It differs from many previous models in its ability to train task-relevant working memory
representations, without pre-wiring. We modeled memory units as integrators, because neu-
rons that act as integrators and maintain their activity during memory delays have been found
in many cortical regions [2-5,23,24]. To keep the model simple, we did not specify the mecha-
nisms causing persistent activity, which could derive from intracellular processes, local circuit
reverberations or recurrent activity in larger networks spanning cortex, thalamus and basal
ganglia [20-22].

A few studies included a pre-wired working memory in RL [21,44] but there has been com-
paratively little work on biologically plausible learning of new memories. Earlier neural net-
works models used “backpropagation-through-time”, but its mechanisms are biologically
implausible [77]. The long short-term memory model (LSTM) [78] is a more recent and popu-
lar approach. Working memories in LSTM rely on the persistent activity of memory units,
which resemble the ones used by AuGMEnT. However, LSTM relies on the biologically

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004060 March 5, 2015 28/34



@‘ PLOS | soMpuTaTioNAL
2 : BIOLOGY Feedback Gates Learning of Memory Representations

implausible error-backpropagation rule. To our knowledge, only one previous model addressed
the creation of working memories with a neurobiologically inspired learning scheme, the pre-
frontal basal-ganglia working memory model (PBWM) [72], which is part of the Leabra cogni-
tive architecture [79,80]. Although a detailed comparison of AuGMEnT and Leabra is beyond
the scope of this article, it is useful to mention a few key differences. First, the complexity and
level of detail of the Leabra/PBWM framework is greater than that of AuGMEnT. The PBWM
framework uses more than ten modules, each with its own dynamics and learning rules, mak-
ing formal analysis difficult. We chose to keep the models trained with AuGMENT as simple as
possible, so that learning is easier to understand. AuGMEnT’s simplicity comes at a cost be-
cause many functions remained abstract (see next section). Second, the PBWM model uses a
teacher that informs the model about the correct decision, i.e. it uses more information than
just reward feedback. Third, PBWM is an actor-critic architecture that learns the value of
states, whereas AuGMENnT learns the value of actions. Fourth and finally, there are important
differences in the mechanisms for working memory. In PBMW, memory units are bi-stable
and the model is equipped with a system to gate information in prefrontal cortex via the basal
ganglia. In AuGMENT, memory units are directly activated by on- and off-units in the input
layer and they have continuous activity levels. The activity profile of memory units is task-de-
pendent in AuGMEnT. It can train memory units to integrate evidence for probabilistic deci-
sion making, to memorize analog values as graded levels of persistent activity but also to store
categories with almost binary responses in a delayed match-to-category task.

Biological plausibility, biological detail and future work

We suggested that AuGMENT is biologically plausible, but what do we mean with this state-
ment? Our aim was to propose a learning rule based on Hebbian plasticity that is gated by two
factors known to gate plasticity: a neuromodulatory signal that is released globally and codes
the reward-prediction error and an attentional feedback signal that highlights the part of the
network that is accountable for the outcome of an action. We showed that the combination of
these two factors, which are indeed available at the level of the individual synapses, can cause
changes in synaptic strength that follow gradient descent on the reward-prediction error for
the transitions that the network experiences. At the same time, the present model provides
only a limited degree of detail. The advantage of such a more abstract model is that it remains
mathematically tractable. The downside is that more work will be needed to map the proposed
mechanisms onto specific brain structures. We pointed out the correspondence between the
tuning that developed in the association layer and tuning in the association cortex of monkeys.
We now list a number of simplifying assumptions that we made and that will need to be allevi-
ated by future models that incorporate more biological detail.

First, we assumed that the brain can compute the SARSA temporal difference error, which
implies a comparison between the Q-value of one state-action combination to the Q-value of
the next combination. Future modeling studies could include brain structures for storing the
Q-value of the previously selected action while new action-values are computed. Although we
do not know the set of brain structures that store action values, previous studies implicated the
medial and lateral prefrontal cortex in storing the outcome that is associated with an action
[81,82]. Prefrontal neurons even update the predicted outcome as new information comes in
during the trial [83]. An alternative to storing Q-values is provided by Actor-Critic architec-
tures that assign values to the various states instead of state-action combinations. They use one
network to estimate state-values and another network to select actions [16]. Interestingly, [16]
proposed that the basal ganglia could compute temporal difference errors by comparing activi-
ty in the indirect pathway, which might store the predicted value of the previous time-step, and
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the direct pathway, which could code the predicted value of the next state. We hypothesize that
a similar circuit could be used to compute SARSA temporal difference errors. In addition, we
also did not model the action-selection process itself, which has been suggested to take place in
the basal ganglia (see [30]).

A second simplification is that we did not constrain model units to be either inhibitory or
excitatory—outgoing weights could have either sign and they could even change sign during
learning. Future studies could specify more detailed network architectures with constrained
weights ([e.g. as in 72]). Indeed, it is possible to change networks into functionally equivalent
ones with excitatory and inhibitory units that have only positive weights [84], but the necessary
generalization of AuGMEnT-like learning rules would require additional work.

The third major simplification is that feedback connections in AuGMENT influence the for-
mation of synaptic tags, but do not influence the activity of units at earlier processing levels.
Future studies could include feedback connections that also influence activity of units in the
lower layers and develop learning rules for the plasticity of activity propagating feedback con-
nections. These connections might further expand the set of tasks that neural networks can
master if trained by trial-and-error. In this context it is of interest that previous studies demon-
strated that feedforward propagation of activity to higher cortical areas mainly utilizes the
AMPA receptor, whereas feedback effects rely more on the NMDA receptor [85], which plays
an important role in synaptic plasticity. NMDA receptors also modify neuronal activity in
lower areas, and another candidate receptor that could have a specific role in the influence of
feedback connections on plasticity are metabotropic glutamate receptors, which are prominent
in feedback pathways [86,87] and known to influence synaptic plasticity [88].

A fourth simplification is that we modeled time in discrete steps and used units with scalar
activity levels and differentiable activation functions. Therefore, implementations of AuG-
MEnT using populations of spiking neurons in continuous time deserve to be studied. We
leave the integration of the necessary biological detail in AuGMEnT-like networks that would
alleviate all these simplifications for future work.

Conclusions

Here we have shown that interactions between synaptic tags and neuromodulatory signals can
explain how neurons in ‘multiple-demand’ association areas acquire mnemonic signals for ap-
parently disparate tasks that require working memory, categorization or decision making. The
finding that a single network can be trained by trial and error to perform these diverse tasks

implies that these learning problems now fit into a unified reinforcement learning framework.
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