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Abstract
Repurposing FDA-approved drugs with the aid of gene signatures of disease can acceler-

ate the development of new therapeutics. A major challenge to developing reliable drug pre-

dictions is heterogeneity. Different gene signatures of the same disease or drug treatment

often show poor overlap across studies, as a consequence of both biological and technical

variability, and this can affect the quality and reproducibility of computational drug predic-

tions. Existing algorithms for signature-based drug repurposing use only individual signa-

tures as input. But for many diseases, there are dozens of signatures in the public domain.

Methods that exploit all available transcriptional knowledge on a disease should produce

improved drug predictions. Here, we adapt an established meta-analysis framework to ad-

dress the problem of drug repurposing using an ensemble of disease signatures. Our

computational pipeline takes as input a collection of disease signatures, and outputs a list of

drugs predicted to consistently reverse pathological gene changes. We apply our method to

conduct the largest and most systematic repurposing study on lung cancer transcriptomes,

using 21 signatures. We show that scaling up transcriptional knowledge significantly in-

creases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize

drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell

lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug tar-

gets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease

context; it can be applied to improve the results of signature-based drug repurposing by

leveraging the large number of disease signatures in the public domain.

Author Summary

Computer algorithms that find new uses for known drugs can accelerate the development
of new therapies for many diseases, including cancer. One promising strategy is to identify
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drugs that, at the transcriptional level, reverse the gene expression signature of a disease. A
major difficulty with this strategy is variability: different gene expression signatures of the
same disease or drug treatment can show poor overlap across studies. Since existing algo-
rithms analyze one signature at a time, this means that the drug candidates they identify
may reverse some signatures of a disease but not others. For many diseases, dozens of sig-
natures from different labs are now available in online databases. Combining knowledge
across all signatures should lead to better drug predictions. Here, we design a meta-
analysis pipeline that takes in a large set of disease signatures and then identifies drugs that
consistently reverse deleterious gene changes. We apply our method to find new drug can-
didates for lung cancer, using 21 signatures. We show that our meta-analysis pipeline in-
creases the reproducibility of top drug hits, and then extensively characterize new lung
cancer drug candidates in silico.

Introduction
Lung cancer accounts for the largest number of cancer-related deaths, and the 5-year survival
rate (across all stages) is only 16% [1]; there is an urgent need for new therapeutics to help treat
it. Over the past two decades, the application of high-throughput technologies has led to the
rapid accumulation of comprehensive and diverse public datasets cataloguing genome-wide
molecular alterations seen with lung cancer or with drug administration. Integrative computa-
tional methods that mine these data are fast, cheap, and can complement traditional methods
of drug screening; complementary information in these distinct resources can be leveraged to
develop comprehensive in silico screens for novel cancer therapeutics [2].

One such resource, the Connectivity Map (CMap), which is the focus of our analyses, cata-
logues the transcriptional responses to drug treatment in human cell lines for over a thousand
small molecules [3]. CMap has been successfully applied to identify novel therapeutics for a di-
verse set of indications including various cancers [4,5], and most recently osteoarthritic pain
[6] and muscle atrophy [7].

CMap was applied in three earlier studies to identify novel therapeutics for lung cancer.
Wang et al. [8] combined two microarray data sets to create a single transcriptional signature
of lung adenocarcinoma and screened it against CMap. They tested one of their drug hits (17-
AAG) in vitro and found that it inhibited growth in two lung adenocarcinoma cell lines. Ebi
et al. [9] constructed a transcriptional signature of survival in patients with lung adenocarcino-
ma; CMap analysis identified several drugs that might improve outcome. The authors experi-
mentally confirmed the growth inhibitory activity of several drug hits, including rapamycin,
LY-294002, prochlorperazine, and resveratrol. Jahchan et al. [10] combined two public datasets
on small cell lung cancer into a single signature and screened it against the drug profiles in
CMap. In vitro experiments confirmed the inhibitory activity of many of their top hits, and in
vivo testing showed promising results for imipramine and promethazine.

Nearly every previous analysis using Connectivity Map data to link drugs to diseases has
done so with the CMap online tool (http://broadinstitute.org/cmap/). The CMap tool takes as
input a set of up-regulated probe sets and a set of down-regulated probe sets, and returns a list
of drugs that reverts or mimics those gene expression changes. However, for most diseases, not
one but many—often dozens—of distinct gene signatures are available. For example, the can-
cer-specific database Oncomine (version 4.4) currently stores mRNA data from 566 different
studies [11]. As the CMap tool only deals with one gene signature at a time, the question of
how best to take advantage of the information in a large collection of disease signatures
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remains an important open problem. Since different disease signatures can overlap poorly
from study to study [2], combining information across many signatures has the potential to
improve the performance of drug repurposing algorithms.

While a few studies have used multiple disease signatures in CMap analysis, e.g., [7,8]
(though with one exception [12], they used only two or three signatures), they have all relied
on essentially the same strategy of collapsing all disease signatures into a single meta-signature
(by e.g., intersecting lists of significant genes from different studies, as in [7]) and querying the
CMap data with this signature. Since each of the individual disease signatures was constructed
using dozens or even hundreds of microarrays, there is fairly strong evidence for every gene in
each signature. In contrast, the drug response data in CMap is noisy: the 1,309 drugs have each
been tested only a median of 4 times (4 treatment microarrays). This noise has consequences:
previous work has shown that even small changes in the input gene signature can lead to large
changes in the list of drugs identified as significant by CMap analysis (with the sscMap pro-
gram) [13,14].

Here we propose an alternative strategy for connecting a set of disease gene signatures to
drugs, CMapBatch. Rather than collapsing all the gene signatures in the set into a single gene
signature, we propose to screen each disease signature separately against CMap to produce a
set of ranked lists of drug candidates. Next, we apply meta-analysis to identify which drugs are
consistently ranked as the best candidates across all disease signatures. Thus, we perform the
meta-analysis at a later step: our method combines lists of drugs rather than lists of genes. We
show that this strategy returns more stable sets of top drug candidates compared to when indi-
vidual gene signatures are used.

Next, we applied CMapBatch to lung cancer. We used three steps to identify and prioritize
new lung cancer therapeutics. First, we conducted a meta-analysis using CMapBatch to identify
drugs that reverse the transcriptional changes seen with lung cancer across 21 gene signatures
(see Table 1). We identified 247 CMap drugs that consistently counter the gene changes that
occur with lung cancer. Second, we performed in silico validation of drug candidates with the
NCI-60 growth inhibition data. This validation supported our method: drug candidates identi-
fied by CMapBatch were significantly more likely to slow growth in nine lung cancer cell lines
than other CMap drugs. Third, we implemented data integration for drug prioritization. We
identified common protein targets of significant drugs, and used chemical structure similarity
and drug-target relationships to prioritize candidate therapeutics.

Results

CMapBatch meta-analysis strategy: From individual cancer gene
signatures to candidate therapeutics
Our CMapBatch meta-analysis pipeline comprises the following steps (Fig. 1): For each indi-
vidual lung cancer signature (tumour vs. normal comparison), we calculate mean connectivity
scores for 1,309 small molecules (as previously described [3]). Connectivity scores range
between -1 and 1; a large, negative mean connectivity score indicates that drug treatment re-
verses many of the gene changes seen with lung cancer. We use the mean connectivity score to
construct a ranked list of drugs for each signature. We combine the ranked lists of drugs into a
single matrix, and identify drugs that were consistently highly ranked across all signatures
using the Rank Product method [15] (see Materials and Methods).

Our analyses are based on 21 previously published gene expression signatures of lung cancer
obtained from Oncomine [11] and CDIP, the Cancer Data Integration Portal (http://ophid.
utoronto.ca/cdip/). The samples used to derive each signature have diverse histologies, and
mRNA levels were measured on various commercial platforms.
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Candidate drugs identified via CMapBatch are more conserved across
signature subsets than candidate drugs identified from single gene
signatures
Previous work has shown that CMap analysis of different gene signatures for the same disease
can return very different lists of drug candidates [14]. This is undesirable, if perhaps unsurpris-
ing as gene signatures themselves can be highly variable [2]. Consistent with previous findings,
we found that when we retrieved lists of the top 50 drugs for each of the 21 different gene signa-
tures of lung cancer (using the CMap online tool), overlap was poor. The median number of
drug candidates present in top 50 drug candidate lists from two different signatures was only
22 (Fig. 2 in blue). Repeating the same test using lung cancer signatures of the same type—10
adenocarcinoma signatures—did not lead to much improvement. For adenocarcinoma, the
median number of drugs identified by two signatures was 26 (Fig. 2 in gray), but the difference
is not statistically significant. We also tested whether the signatures were heterogeneous by
computing, for each signature, the median number of drugs shared with all other signatures.
For 19 signatures, the median number of shared drugs between any pair of them was similar,
varying from 16–29. But there were two outliers: an adenocarcinoma signature [16] that shares
zero drugs with any other signature, and a signature of carcinoid tumours [17] that shares a
median of only three drugs with other signatures. Removing these two heterogeneous signa-
tures from the signature set boosts the median number of drugs common to any pair of signa-
tures to 24, but again this difference is not statistically significant.

Next, we sought to determine whether aggregating the information from a large set of signa-
tures with CMapBatch would lead to a more stable list of top drug candidates. For this test, we
randomly assigned the 21 lung cancer gene signatures to two groups, one with 10 and the other

Table 1. Twenty-one lung cancer gene signatures (tumour vs. normal comparisons).

Histology PMID Source

Adenocarcinoma 18992152 CDIP

Adenocarcinoma 16549822 CDIP

Adenocarcinoma 18927117 CDIP

Adenocarcinoma 12118244 Oncomine

Adenocarcinoma 11707567 Oncomine

Carcinoid 11707567 Oncomine

Small Cell 11707567 Oncomine

Squamous 11707567 Oncomine

Large Cell 11707590 Oncomine

Adenocarcinoma 11707590 Oncomine

Small Cell 11707590 Oncomine

Squamous 11707590 Oncomine

Large Cell 20421987 Oncomine

Adenocarcinoma 20421987 Oncomine

Squamous 20421987 Oncomine

Adenocarcinoma 18297132 Oncomine

Adenocarcinoma 16314486 Oncomine

Adenocarcinoma 17540040 Oncomine

Squamous 15833835 Oncomine

Squamous 16188928 Oncomine

Squamous 14581339 Oncomine

doi:10.1371/journal.pcbi.1004068.t001
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with 11 signatures. We ran CMapBatch separately on the two disjoint sets of signatures, and
compared lists of the top 50 drugs identified for each set. We repeated this test 100 times. We
found that CMapBatch consistently identifies the same drugs as combatting lung cancer, even
when it is trained on completely different sets of lung cancer signatures. A median of 39 drugs
were found to be common to both the lists of top 50 drugs identified from two disjoint sets of
signatures (Fig. 2 in green), significantly more than are found with individual gene signatures
(Wilcox test P<< 0.01). This key finding is not sensitive to choice of threshold; using the top
25 or top 100 drugs as an alternative cut-off, CMapBatch again recovers a significantly higher
number of drugs (P<< 0.01; S1 Fig).

Characterizing and prioritizing candidate lung cancer therapeutics
For the remainder of this paper, we focus on characterizing and prioritizing the full set of sig-
nificant drugs identified by CMapBatch using all 21 gene signatures of lung cancer.

CMapBatch meta-analysis identified 247 candidate lung cancer therapeutics. At an
FDR cut-off of 0.01, we find that 247 drugs (out of 1,309 drugs in CMap Build 2) significantly
reverse the gene expression changes seen with lung cancer in the full set of 21 lung cancer sig-
natures (S1 Table). This is a large number of drugs, but in line with previous results obtained
using similar data; e.g., a recent paper examining disease-drug relationships using the 164

Fig 1. CMapBatch meta-analysis pipeline.Given a set of disease signatures, CMapBatch calculates mean
connectivity scores for 1,309 drugs and converts them to ranks. Next, CMapBatch applies the Rank Product
method to identify drugs that are consistently highly ranked across signatures. On a set of 21 transcriptional
signatures of lung cancer, we identified 247 drugs that significantly reverse these pathological gene
expression changes (at FDR< 1%).

doi:10.1371/journal.pcbi.1004068.g001
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drugs tested in CMap Build 1 linked 72 of them to adenocarcinoma of the lung, and 67 to squa-
mous cell carcinoma of the lung [12].

Candidate therapeutics inhibit growth in nine NSCLC cell lines
As an independent validation of our results, we used growth inhibition data from the NCI-60
collection [18] to determine whether the drug candidates we identified are better at slowing
growth in lung cancer cell lines. For all our NCI-60 analyses we used the nine lung cancer cell
lines in which over 100 Connectivity Map drugs were tested (see Methods). None of these nine
cell lines were included in the CMap dataset, so they provide an independent test of the effec-
tiveness of our predicted drugs for lung cancer.

Significant drugs are more effective at inhibiting growth than other Connectivity Map
drugs. In all nine cell lines, drugs that CMapBatch identifies as reversing the transcriptional
changes seen with lung cancer are significantly better than other CMap drugs at inhibiting
growth (Wilcox test P< 0.01; Fig. 3). For example, in NCI-H23 lung adenocarcinoma cells, the
median pGI50 for our predicted lung cancer drugs is 10–5.1 M, while for other CMap drugs it is

Fig 2. CMapBatch produces more stable lists of significant drugs than individual gene signatures.
Shown are boxplots of the number of conserved drug candidates when any two lists of top 50 drug
candidates are intersected. Green: 21 gene signatures were split into two disjoint sets of 10 and 11
signatures, CMapBatch was run on both sets, and top drugs from each set were compared; this experiment
was repeated 100 times. Blue: 21 gene signatures were used to retrieve 21 lists of drugs with the CMap
online tool; top drugs from all pairs of signatures were compared. Grey: 10 gene signatures of the same lung
cancer type (adenocarcinoma) were used to retrieve 10 lists of drugs with the CMap online tool; top drugs
from all pairs of signatures were compared. CMapBatch results showed a significantly higher median overlap
(Wilcox test P<< 0.01).

doi:10.1371/journal.pcbi.1004068.g002
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10-4.0 M (P< 10-4); values of 10-4 M are considered inactive in NCI-60. Using a stringent
threshold of 5 μM for evidence of target-mediated drug behavior, 46% of our drug candidates
show pGI50 values less than 5 μM, while only 23% of other CMap drugs achieve this, a two-
fold difference.

23 significant drugs inhibit growth in a majority of lung cancer cell lines. For each of
the nine cell lines, and using data from every drug tested on that line, we define the threshold
for sensitivity to a drug to be the top 20% of the -logGI50 values; i.e., we say that the cell line is
sensitive to those drugs with -logGI50 values in the top 20%. In practice, this corresponds to
imposing a pGI50 threshold of 5.45 μM—16.83 μM, depending on the cell line. By this defini-
tion, of all the NCI60 drugs that have been tested in five or more lung cancer cell lines, 7,794 of
44,802, or 17%, inhibit growth in 5 or more cell lines. In total, 167 CMap drugs were tested in
these NCI-60 lung cancer cell lines, including 41 drugs that we identified as significant in our
meta-analysis. Of the significant drugs tested, 23/41, or 56% inhibit growth in 5 or more lung
cancer cell lines (Fig. 4, left). Also, each of these 23 drugs shows a pGI50< 5 μM in at least one
cell line that we tested.

Among these 23 are several that are already in use to treat cancer. For example, daunorubi-
cin and the chemically related doxorubicin are topoisomerase inhibitors and commonly-used
chemotherapeutic agents; sirolimus (rapamycin) is currently in clinical trials for several can-
cers, and was recently shown to increase NSCLC tumour cell sensitivity to erlotinib [19]; vori-
nostat, a histone deacetylase inhibitor, enhanced the response to carboplatin or paclitaxel in
patients with advanced NSCLC [20]; MS-275, also a histone deacetylase inhibitor, enhanced
the response to erlotinib in an erlotinib-resistant lung adenocarcinoma cell line [21].

Others of the 23 have not yet been investigated as cancer therapeutics (i.e., there are fewer
than 20 Pubmed abstracts linking the drug to any type of cancer) and should be prioritized for
further biological validation. For example, spiperone and pimozide are antipsychotics. Recent-
ly, pimozide was shown to reduce the viability of several cancer cell lines while sparing normal
cells [22]. For all these new drugs that show in vitro anticancer activity, it will be important to
determine their toxicity to normal cells.

We call this set of 23 drugs that transcriptionally reverse lung cancer gene changes and slow
growth in lung cancer cell lines—TOP drugs (S2 Table); in subsequent sections, we prioritize

Fig 3. Drug candidates inhibit growth in lung cancer cell lines more than other Connectivity Map drugs.We tested whether the drugs that we
identified as significantly reversing the gene changes seen with lung cancer were better at inhibiting growth using NCI-60 GI50 data in 9 lung cancer cell
lines. In every cell line, significant drugs are better than other Connectivity Map drugs at inhibiting growth (Wilcox test P< 0.01). On the y axis, growth
inhibition is presented as-log10 GI50, so that e.g. a value of 6 corresponds to a pGI50 of 10-6 M.

doi:10.1371/journal.pcbi.1004068.g003
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significant drugs that have not been tested in NCI-60 by linking them to TOP drugs using a va-
riety of metrics.

Prioritizing drugs by structural similarity: Eleven significant drugs are
highly structurally similar to TOP drugs
The Tanimoto coefficient quantifies the chemical structure similarity between two molecules
[23]; here, we call two molecules structurally similar if this number exceeds 0.8. We found that
eleven drugs that reverse the transcriptional changes observed in lung cancer were structurally
similar to one or more drugs in TOP (Fig. 4, right; S3 Table). These drugs were not evaluated
as part of the NCI-60 project; furthermore, 9 of 11 appear in fewer than 20 Pubmed abstracts
concerned with cancer. These are novel candidate anticancer therapeutics identified by our
computational screen. Further cell-based screens and experimental characterization would be
required to determine whether these structurally similar drugs show true anticancer activity.

Prioritizing drugs by shared target: Twenty-eight significant drugs share
a protein target with one or more TOP drugs
We used drug-target data from DrugBank [24] and ChemBank [25] (as provided in MANTRA
[26]) to construct a drug-drug interaction network on the set of CMap drugs; two drugs are
linked by an edge if they share one or more protein targets (Fig. 5A). In total, 83 of the signifi-
cant drugs were present in this network (the protein targets of many drugs are still unknown),
including 9 TOP drugs. Thirty-eight significant drugs that were not tested in the NCI-60 collec-
tion share one or more protein targets with a TOP drug (S4 Table; Fig. 5A, purple and green
nodes), indicating they may have a similar mode of action and may inhibit growth in lung can-
cer cell lines. However, since drug target databases do not systematically evaluate a range of
drug concentrations and off-target effects, this evidence should only be considered preliminary.

Seven of these 38 drugs were also found to be structurally similar to TOP drugs (Fig. 5A,
green nodes): prochlorperazine, promazine, trifluoperazine, fluspirilene, phenindione, vidara-
bine, and chlorpromazine. As these drugs are linked to TOP drugs by two separate lines of evi-
dence, they are promising candidates for further experimental validation.

Fig 4. Prioritizing drug candidates with GI50 values and chemical structures. Twenty-three of the significant drugs inhibit growth in a majority of lung
cancer cell lines (top). A further 11 significant drugs not tested in NCI-60 are highly structurally similar (Tanimoto similarity> = 0.8) to one or more of the
sixteen (bottom).

doi:10.1371/journal.pcbi.1004068.g004
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Fig 5. Significant drugs share many protein targets. A. In the drug-target network for drug candidates, two
drugs are connected by an edge if they have the same protein target. Shown in colour are the drugs that slow
growth in 5 or more lung cancer cell lines (blue), their immediate neighbours (purple), and the drugs that are
structurally similar to them (green). Green edges indicate drug pairs that, in addition to sharing a protein target,
were also found to be highly structurally similar (see Fig. 4).B. 83 significant drugs are represented in the drug-
target network, and the largest connected component contains 72 drugs. 10,000 random draws of 83 drugs
from the drug-target network resulted in smaller connected components (median size 42 drugs; P<< 0.01).

doi:10.1371/journal.pcbi.1004068.g005
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Common protein targets of significant drugs
The largest connected component in the drug-target interaction network comprised 72 drugs,
which is significantly larger (P<< 0.01) than what would be expected by chance; random sets
of 83 drugs in the drug-drug network yield largest connected components with a median size
of only 42 drugs (Fig. 5B). This indicates that some gene targets are overrepresented among sig-
nificant drugs; these genes may be valuable drug targets for lung cancer. We applied the hyper-
geometric test to each gene target of a significant drug and identified ten over-represented
targets (P< 0.05; Table 2).

The top over-represented gene is Calmodulin 1 (CALM1), a gene involved in the cell cycle
and in signal transduction; it’s a target of 9 CMap drugs, and we found that 8 of these reverse
the transcriptional changes seen with lung cancer. Recent research suggests that CBP501, a
drug currently in Phase II clinical trials for NSCLC, may sensitize tumors to the chemothera-
peutic agents bleomycin and cisplatin by inhibiting CALM1 [27]. Thus, other significant drugs
that target CALM1 may also enhance the effect of chemotherapy. The 8 drugs we identified are
bepridil, felodipine, flunarizine, fluphenazine, loperamide, phenoxybenzamine, pimozide,
and miconazole.

The second-most overrepresented gene is PLA2G4A, whose protein product is a member of
the cytosolic phospholipase A2 family. Cytosolic phospholipase A2 (cPLA2) has been previ-
ously implicated in cancer progression and metastasis. Furthermore, in a mouse model of lung
cancer, the inhibition of cPLA2 activity led to delayed tumour growth [28]. There are 4 drugs
targeting PLA2G4A included in the CMap collection, and all 4 significantly reverse lung cancer
gene changes in our analyses: flunisolide, fluocinonide, fluorometholone, and medrysone.

Significant drugs are broad-acting: They affect more genes than other
drugs
We used the CMap gene expression profiles from before and after drug treatment to calculate
the number of genes differentially expressed in response to a drug, for each of the 1,309 drugs
in the collection (see Materials and Methods). We found that significant drugs affect a median
of 8.5 genes, while other CMap drugs affect only a median of 3 (Fig. 6; Wilcox test P<< 0.01).

Table 2. Common protein targets of candidate drugs.

Gene P value Count (significant CMap drugs) Count (all CMap drugs)

CALM1 5.42E-07 8 9

PLA2G4A 0.000288 4 4

DRD2 0.0006 12 34

HTR2A 0.000614 9 21

SERPINA6 0.001465 5 8

ABCC8 0.002252 3 3

CYP3A3 0.002252 3 3

SLC6A4 0.002321 7 16

KCNH2 0.002956 5 9

SLC6A2 0.005594 6 14

ADRA1A 0.008209 8 24

ABCB1 0.008724 5 11

doi:10.1371/journal.pcbi.1004068.t002
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Many drugs are indicated for lung cancer independently of subtype
We investigated the top drugs that revert expression changes in different lung cancer subtypes
by running CMapBatch on the two largest signature subsets in our collection, adenocarcinoma
(10 signatures) and squamous cell carcinoma (6 signatures). We found a very high concor-
dance among top drugs; 79 drugs are common to the top 100 drugs lists for adenocarcinoma
and squamous cell carcinoma (Fig. 7). Furthermore, all 79 drugs are significant in the full 21-
signature meta-analysis (FDR< 5%). This finding is consistent with previous work showing
that a common transcriptional program contributes to the molecular signature of many diverse

Fig 6. Significant drugs affect more genes than other Connectivity Map drugs.We used CMap data to
calculate the number of genes that were significantly differentially regulated (P< 0.05) for each of 1,309
drugs. Drugs that we identified as reversing the gene changes seen with lung cancer affected significantly
more genes than other drugs (median of 8.5 vs. 3 genes; Wilcox test P<< 0.01).

doi:10.1371/journal.pcbi.1004068.g006
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cancers [29], and that CMap predicts similar sets of drugs for some cancers originating from
different tissues [12]. Many of the current FDA approved drugs for lung cancer are also ap-
proved for other cancers, e.g. methotrexate, cisplatin, etoposide, etc [30].

Pimozide shows robust anticancer activity in vitro
We selected the antipsychotic drug pimozide for further in vitro validation. Pimozide is both a
member of the set of TOP drugs and an inhibitor of CALM1, the most overrepresented protein
amongst all targets of significant drugs. We conducted experiments in four lung cancer cell lines
that all overexpress CALM1, A549, H460, HCC4006, and H1437 (Cancer Cell Line Encyclope-
dia data [31]), to test the growth slowing effects of pimozide. Using the MTT assay, we found
that pimozide showed significant anticancer activity in each of the four cell lines (P� 0.05;
Fig. 8). This validates our computational prediction that pimozide may help treat lung cancer.
Since drug-target databases predict that pimozide inhibits CALM1, we assayed CALM1 expres-
sion before and after drug treatment in A549 and H460 cells to determine whether CALM1 in-
hibition might mediate the anticancer activity, but found no significant difference. We also
tested whether pimozide was synergistic with cisplatin using the Chou-Talalay method[32,33]
in all four cell lines, but our results were negative. Our experiments confirm that pimozide
shows some initial promise as a lung cancer therapeutic, but the mechanism of its anticancer ac-
tivity is unknown and appears to be CALM1-independent.

Discussion
For many diseases, including several cancers, dozens of distinct transcriptional signatures are
available. We developed CMapBatch to efficiently integrate these data with the Connectivity
Map to automate drug repurposing and identify stable lists of candidate therapeutics. We ap-
plied it to perform the largest in silico drug screen on lung cancer transcriptomes. In total, we
identified 247 candidate therapeutics, and for many of these we were able to obtain additional
compelling evidence from high-throughput NCI-60 data and databases of known drug targets.

CMapBatch provides a principled approach to combining drug results across multiple
gene signatures of disease. Several simple extensions may be appropriate in different

Fig 7. Drugs treat multiple subtypes of lung cancer.We ran CMapBatch on 10 adenocarcinoma
signatures only, and on 6 squamous cell carcinoma signatures only. 79 drugs were common to the lists of top
100 drugs for both cancer subtypes.

doi:10.1371/journal.pcbi.1004068.g007
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applications. For example, weights could be incorporated so that some studies are weighted
more highly than others. Also, instead of a meta-analysis across signatures, each of which in-
corporates multiple patient samples, CMapBatch could be extended to a meta-analysis across
all individual samples. We anticipate that CMapBatch and similar methods that can take ad-
vantage of the full set of public data on disease will help speed the discovery and development
of new medicines.

Fig 8. Pimozide reduces viability in four lung cancer cell lines. Results of the MTT assay in A549, H460, H1437, and HCC4006 cell lines. Bar height
indicates the mean and error bars the standard deviation of 3 biological replicates. Y-axis shows percent viability relative to untreated cells. In each cancer
cell line, pimozide shows a significant cytotoxic effect. Asterisk indicates P< 0.05 (t-test).

doi:10.1371/journal.pcbi.1004068.g008
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Materials and Methods

Code and software
Code for all analyses was written in R 2.14.0. We converted gene names to HG-U133A probeset
IDs for Connectivity Map analysis using the hgu133a.db (Bioconductor 2.8). The drug-target
and mode of action networks were analyzed using igraph (Bioconductor 2.8) and visualized
using NAViGaTOR 2.3.2 [34], and drug structures were visualized with PyMOL [35]. We cal-
culated Tanimoto similarity for all pairs of 1,148 CMap drugs for which PubChem IDs were
available using the PubChem Chemical Structure Clustering Tool [36].

Data sources
Transcriptional signatures of lung cancer. We downloaded 21 gene signatures of lung

cancer from CDIP version 1.0, the Cancer Data Integration Portal (http://ophid.utoronto.ca/
cdip/) and Oncomine (https://www.oncomine.org/). For CDIP, we included signatures from
all lung cancer vs. normal comparisons where 10 or more genes were found to be differentially
up- and down-regulated. For Oncomine signatures, we sorted up- and down-regulated genes
by adjusted P-value, using a threshold of FDR<= 0.05; we retained only the top 250 up-
regulated and top 250 down-regulated genes.

Drug-response data. We downloaded rankMatrix, containing the ranks of genes in re-
sponse to 6,100 drug treatments (corresponding to 1,309 unique drugs), from Connectivity
Map Build 02 at http://www.broadinstitute.org/cmap/.

Interaction networks. We downloaded the drug-target interaction network, where two
drugs share an edge if they share a physical binding partner, fromMANTRA [26]. We visual-
ized the drug target interaction network with NAViGaTOR 2.3.2 [34].

Lists of genes differentially regulated by CMap drugs. We downloaded lists of genes sig-
nificantly up- or down-regulated by CMap drugs from [37].

Connectivity map analysis of lung cancer signatures
Mapping gene names to probeset IDs. Wemapped human gene IDs to Affymetrix HG-

U133A IDs for connectivity map analysis following previously established protocols [3].
Calculating mean connectivity scores for each signature. For each lung cancer signature,

mean connectivity scores for 1,309 drugs were calculated as previously described [3] and con-
verted to ranks.

Meta-analysis of drug-response data
We have made the CMapBatch meta-analysis workflow available as an R script from http://
www.cs.utoronto.ca/~juris/data/cmapbatch.

Combining ranked lists of drugs to construct a consensus ranked list. We adapted the
Rank Product method [15] to identify drugs that consistently reverse the transcriptional
changes seen within lung cancer across a large collection of signatures. Previous authors have
converted CMap scores to drug ranks for downstream analyses (e.g., [26]), but no one has pre-
viously combined ranks across multiple signatures in a meta-analysis. For each drug, we calcu-
lated the product of its ranks in all lung cancer signatures.

Identifying drugs with significantly small rank products. We randomly permuted the
assignment of KS scores to drugs for the 6,100 instances (drug treatments), recalculated mean
scores and drug ranks for 1,309 drugs in each signature, and re-calculated randomized rank
products 10,000 times. We used this background distribution to calculate p-values and estimate
false discovery rates.
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NCI-60 analysis of significant drugs
We restricted our analyses to the NCI-60 GI50 (50% growth inhibition) data and to those lung
cancer cell lines where at least 100 Connectivity Map drugs were tested (there were nine of
these, all NSCLC: NCI-H23, NCI-H522, A549/ATCC, EKVX, NCI-H226, NCI-H322M, NCI-
H460, HOP-62, HOP-92). As different GI50 thresholds were used to denote minimal activity
in response to a drug for different concentration ranges, we filtered the data to make results
comparable across drugs. We retained only those entries with an LCONC (maximum log10
concentration) of-4 and where the drug concentration was measured in units of molarity.

Experimental validation of drug candidates
Cell lines and drug treatments. NSCLC A549, H460, HCC4006, and H1437 cell lines

were cultured in RPMI 1640 with 10% fetal bovine serum (FBS), and 1% penicillin/streptomy-
cin. Pimozide was purchased from Sigma (St. Louis, USA). Pimozide was resuspended in
DMSO.

IC50 determination and cytotoxicity assays. Cells were plated in 96 well plates at 2000–
5000 cells per well (depending on the cell line). 24 hours after seeding, cells were incubated in
the presence of different concentrations of pimozide. After 48 hours they were treated with
MTT (300 ng/ul) (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) at 37°C
for 2 h. The converted formazan crystals were solubilized with 100 ul of DMSO and the absor-
bance was read at 540 nm in a monochromator reader (Tecan, Switzerland). [38]. Assays were
performed in triplicate. The IC50 values obtained were used to treat cells for 48 hours for all
subsequent assays. P-values were calculated with the Student’s t-test.

Supporting Information
S1 Table. 247 significant drugs consistently reverse lung cancer gene changes in rank prod-
uct meta-analysis.
(XLS)

S2 Table. 23 TOP drugs are significant in meta-analysis and inhibit growth in a majority of
NCI60 lung cancer cell lines.
(XLS)

S3 Table. 11 significant drugs are structurally similar to one or more TOP drugs.
(XLS)

S4 Table. 38 significant drugs share one or more protein targets with a TOP drug.
(XLS)

S1 Fig. CMapBatch produces more stable lists of drugs than individual gene signatures,
using multiple cut-offs.
(TIF)
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