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Abstract
A tantalizing question in cellular physiology is whether the cellular state and environmental

conditions can be inferred by the expression signature of an organism. To investigate this

relationship, we created an extensive normalized gene expression compendium for the bac-

terium Escherichia coli that was further enriched with meta-information through an iterative

learning procedure. We then constructed an ensemble method to predict environmental

and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and car-

bon source presence. Results show that gene expression is an excellent predictor of envi-

ronmental structure, with multi-class ensemble models achieving balanced accuracy

between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this

performance can be significantly boosted when environmental and strain characteristics

are simultaneously considered, as a composite classifier that captures the inter-dependen-

cies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher

performance than any individual models. Contrary to expectations, only 59% of the top infor-

mative genes were also identified as differentially expressed under the respective condi-

tions. Functional analysis of the respective genetic signatures implicates a wide spectrum

of Gene Ontology terms and KEGG pathways with condition-specific information content,

including iron transport, transferases, and enterobactin synthesis. Further experimental

phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the

information content of top-ranked genes. This work demonstrates the degree at which ge-

nome-scale transcriptional information can be predictive of latent, heterogeneous and

seemingly disparate phenotypic and environmental characteristics, with far-reaching

applications.

Author Summary

The transcriptional profile of an organism contains clues about the environmental context
in which it has evolved and currently lives, its behavior and cellular state. It is yet unclear,
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however, how much information can be efficiently extracted and how it can be used to
classify new samples with respect to their environmental and genetic characteristics. Here,
we have constructed an extensive transcriptome compendium of Escherichia coli that we
have further enriched via an iterative learning approach. We then apply an ensemble of
various machine learning algorithms to infer environmental and cellular information such
as strain, growth phase, medium, oxygen level, antibiotic and carbon source. Functional
analysis of the most informative genes provides mechanistic insights and palpable hypoth-
eses regarding their role in each environmental or genetic context. Our work argues that
genome-scale gene expression can be a multi-purpose marker for identifying latent, het-
erogeneous cellular and environmental states and that optimal classification can be
achieved with a feature set of a couple hundred genes that might not necessarily have the
most pronounced differential expression in the respective conditions.

Introduction
Genome-scale transcriptional profiling has become a standard and relatively inexpensive way
to identify the overall cellular state and condition-specific cellular responses to external stimuli.
For instance, different sets of genes are known to be active in each growth phase and medium
[1], while strain polymorphisms can result in a remarkably diverse transcriptional repertoire
[2,3]. Similarly, it is known that bacterial organisms undergoing rapid adaptations to varying
environments, such as heat-shock and osmotic stress, produce differential expression profiles
that are indicative of the corresponding stress [4–9]. Genome-wide transcriptional profiling
can be thought of as a complex representation of all cellular functions and states, with a wealth
of multiplexed information that, if decoded efficiently, can provide a fast and quite accurate
all-encompassing snapshot of the cell and its environment.

Despite its obvious correlation with various physiological and cellular states, we lack a clear
understanding of the information content related to the manifold phenotypes that can be ex-
tracted from the genome-scale transcription profiles. Until now, a significant obstacle was the
absence of sufficient transcriptional data to support the training of multi-feature and multi-
label classifiers. Indeed, after aggregating all high-throughput transcriptional data that is cur-
rently available for E. coli, the most well-studied model microbe, we are still limited to a few
thousands microarray or RNA-Seq experiments that cover more than 30 strains, a dozen differ-
ent media and a multitude of other genetic (knock-out, over-expressions, re-wirings), or envi-
ronmental (carbon limitation, chemicals, abiotic factors) perturbations. Although this
collection has already increased by an order of magnitude from the roughly two hundred ge-
nome-wide transcriptional profiles that we had eight years ago, it is still an inadequate sam-
pling of the relevant experimental space. In addition, since these experiments have been
performed in different technological platforms (e.g. Affymetrix E. coli Genome 2.0, Affymetrix
E. coli Antisense) and technologies (e.g. microarrays vs. RNA-Seq), in different labs and under
different environmental conditions, appropriate normalization schemes are both of paramount
importance and with an added complexity. As such, efficient training of machine learning
methods is hindered due to data complexity, compatibility and the curse of dimensionality that
plagues datasets with thousands of features (genes) but only a few samples (conditions).

The application of high-dimensional prediction algorithms has been widespread in biology
ranging from gene function prediction [10–12], disease risk estimation from inherited variants
[13], and network inference [14–18], but the vast majority of these studies are confined to the
use of transcriptional data on pathological, pharmacological and clinical predictions [19–25].
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Interestingly, a Saccharomyces cerevisiae study that involved tens of data samples was able to
predict growth rates [26], while a multi-class stressor prediction in rice used five hundred tran-
scription profiles [27]. More recently, a probabilistic human tissue and cell type predictor was
built based solely on gene expression profiles [28].

In this work, we investigate how well we can predict cellular and environmental state from
genome-wide expression, using known gene expression profiles as our only training data. We
report the optimal number of features for each classification task, what these features are, and
all relevant pathways. To achieve this, we have extended, normalized and annotated a compen-
dium that was compiled recently [29] to incorporate all published high-quality Affymetrix mi-
croarray and RNA-Seq datasets in E. coli (2258 samples in total, Fig. 1A). This E. coli Gene
Expression Compendium (EcoGEC), consists of publicly available data that were curated from
online public databases such as GEO [30], ArrayExpress [31], SRA [32], SMD [33], M3D [34]
and PortEco [35]. To increase the compatibility among the various arrays, we adjusted batch-
effects across data from different sources and devised a statistical normalization scheme that
significantly removed biases (see Methods; Fig. 1B, Table 1). Concomitantly, we developed an
iterative learning procedure to impute unannotated or mis-labeled data and used it to increase
the quality of the resulting datasets (Fig. 2A). By applying four different machine-learning algo-
rithms on the EcoGEC compendium (Fig. 2B), we predicted six different organism and envi-
ronmental variables from gene expression profiles related to medium, growth phase, strain,
aerobic conditions, antibiotics and carbon sources present (Fig. 2C). Functional, network and

Fig 1. Compendium analysis and normalization. (A) The E. coliGene Expression Compendium (EcoGEC) is constructed from raw genome-wise
transcriptional data (B) Principal Component Analysis on the EcoGEC before (inset) and after (main) normalization through linear transformation. p1 and p2
represent first and second principal component respectively. Platform biases are corrected by performing platform-specific categorization of gene
expression values.

doi:10.1371/journal.pcbi.1004127.g001
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mechanistic analysis of the highly-informative features provide a comprehensive map of the
implicated genes and pathways.

Results

Accurate prediction of genetic and environmental parameters requires a
small, informative gene set
We first investigated how many genes are required to achieve optimal performance and the
minimum number of genes with near-optimal performance, defined as 2% reduction from the
optimal balanced accuracy. As shown in Fig. 3A, in most cases the cumulative information
content is asymptotically approaching a maximal value within a few hundred genes. The bal-
anced accuracy profile of the different predictors spans a large spectrum of behaviors, from
profiles that are optimal early on, such as in the case of themedium classifier where the 150
first genes are sufficient for accurate classification, to profiles that rise slowly, as in the case of
the composite classifier, which is defined as the model that classify classifies 3 characteristics of
medium, phase, strain altogether. In general, however, our results show that the subset of genes
that is needed to achieve high balanced classification accuracy is neither a handful of biomark-
ers, nor a large gene set, with all cases achieving near-optimal performance with 100 to 400
genes. In the most extreme case of the composite classifier, a near-optimal balanced accuracy
(70.26%) can be achieved with less than 400 genes, which is close to its maximum performance
(71.55%) that is achieved when considering all 4166 genes. To investigate the relationship of
data size with classification performance, we systematically reduced the dataset, keeping a bal-
anced class/label distribution. Our results argue that although there is an expected reduction in
classification performance, as the dataset is progressively reduced by up to 75%, the method is
quite robust with an average reduction of 6% classification performance per quartile reduction
in data size (S1 Table).

In all cases, the classification performance is significantly higher than the balanced baseline
(Mann-Whitney-Wilkoxon test, P< 2.398 × 10−3), with the balanced accuracy of all classifiers
ranging between 69.95% (±3.52%) to 98.27% (±2.32%) (Fig. 3B, S2 Table). For predicting the
growth phase, we first imputed any unannotated phase information, which accounted for 34%
of the compendium. We used a learning approach in which missing data is inferred iteratively.
This preprocessing step was found to substantially increase the classification performance
when evaluated across all classification tasks by an average of 7.3% and as much as 22% in
some cases (S1 Fig., S2A Fig., S2C Fig., S3 Table, S4 Table). Interestingly, by following this ap-
proach, we were able to infer the characteristics from 90.6% of the unannotated phase data
(S2B Fig.). The iterative learning method does not significantly decrease the MI levels that are
observed when compared to those obtained from the original dataset and the gene ranking is

Table 1. Class label distributions.

Classes

Medium Strain Phase Oxygen Nor Amp Carbon

Class Labels LB 1356 MG1655 1368 E-Exp 148 Y 2178 Y 227 Y 56 Glucose 471

M9 301 BW25113 148 ML-Exp 1368 N 64 N 2015 N 2186 Glycerol 94

MOPS 86 EMG2 132 Stat 132 Acetate 49

Others 499 Others 594 Missing 601 Others 1628

Baseline 60.4% 61% 61% 97.1% 89.8% 97.5% 72%

doi:10.1371/journal.pcbi.1004127.t001
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mostly preserved (S5 Table, Kendall tau rank correlation: τ = 0.714, P< 2.2 10−16). The simul-
taneous prediction of all seven characteristics of a sample using seven individual classifiers
yields an accuracy of 84.21% (±1.39%) (Fig. 3C). To create the necessary training set for the si-
multaneous prediction of three characteristics (medium, phase and strain), we had to reduce
the amount of classes to 13 due to insufficient data (see Methods). Interestingly, the composite
classifier that simultaneously selects one of the 13 classes, has an increased accuracy (71.55% ±
3.07%) to that of individual classifiers on the same class types (61.23% ± 2.33%) and it is signif-
icantly higher than the baseline (37% and 7.14% for balanced and imbalanced baseline accura-
cy, respectively). Altogether, the results suggest that multiple environmental and cellular
features of an organism can be precisely predicted from a set of individual classifiers, by using a
small, targeted gene set.

Table 2 and S6 Table contain the contingency tables of each classifier and Fig. 3D depicts
the corresponding ROC and PR curves [36]. The overall AUC of the ROC curves exceeds 0.82,

Fig 2. Gene expression compendium and classification workflow. The workflow is divided into three steps: (A) data preprocessing that combines RNA-
Seq and microarray datasets. EcoGEC is categorized into three differential expression bins (under-expressed, UE; wild-type, WT; over-expressed OE) and
pre-processed for batch-effect and bias correction. (B)model training, where parameters are trained based on four different machine learning methods for
each of the classification tasks, and (C)model testing where new samples are assigned to the class labels that have the majority of votes from 4 prediction
methods for each of the eight characteristic predictors.

doi:10.1371/journal.pcbi.1004127.g002
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Fig 3. Classification performance. (A) Balanced accuracy in testing set for the 8 classification tasks as a function of number of genes selected. Genes (x-
axis) are ordered by the mutual information of their expression to the predictor variable. For each classifier, the optimal number of features (derived from the
training data) and the minimum number of genes at near-optimal (within 2%) classification are shown in the legend (first and second value, respectively). (B)
Leave-one-batch-out cross-validation, with the training and testing balanced accuracy for each classifier is compared with the baseline. The baseline is
estimated by dividing the maximum accuracy (100) by the number of classes for any given characteristic. (C) Combined multi-modal predictions using a set
of individual classifiers. The parameter k represents the number of characteristics to be classified (two antibiotics, aerobic or anaerobic respiration, medium,
phase and strain), represents all possible combinations and increases from 2 to 7 (x-axis). The average accuracy for each combination of k characteristics to
be predicted is reported. (D) ROC curve (left) and PR curve (right) for predictor of each characteristic (TPR; true-positive rate, FPR; false-positive rate, E-Exp;
early exponential phase, M/L-Exp; mid/late exponential phase, Stat; stationary phase).

doi:10.1371/journal.pcbi.1004127.g003
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except in the case of stationary phase (0.71). This result is likely due to the high noise level and
low sampling size for that class, which dilutes discriminatory features between the mid/late ex-
ponential and stationary phases. In the contingency table of the composite classifier (Table 2),
the lowest classification case was observed in the case of “Others” (58/179 samples). This is ex-
pected, since that class corresponds to samples that either are missing data or represent classes
that have low sample sizes and are grouped together.

Biomarker discovery through functional and network analysis
Next, we investigated which genes have the highest information content and the respective
pathways they belong to. The decrease of mutual information in ranked genes follows an in-
verse logarithmic relationship (Fig. 4A and S5 Table). For each classifier, we selected the gene
subset that accounts for the top 10% of the mutual information content of all genes, yielding
feature sets that range from 49 to 136 genes. The overlap among classifiers is substantial: 141
out of a total 715 informative genes (19.7%) are present in two or more different classifiers
(Fig. 4B). Functional enrichment analysis of the most informative genes reveals a rich reper-
toire of biological processes where their differential enrichment is discriminative of each specif-
ic class (Fig. 5, S7 Table). Not surprisingly, in the case of the aerobic respiration classifier
enriched functional categories include cellular respiration (P< 3.1 × 10−4). Similarly, for phase
and strain classifier, organic acid biosynthesis (P< 2.7 × 10−4) and nitrogen biosynthesis
(P< 1.2 × 10−3) are up-regulated, respectively. Genes that are related to carbohydrate metabo-
lism (P< 6.1 × 10−7) are noticeably most informative to classify different carbon sources as

Table 2. Contingency table of composite classifier.

Predicted Medium/Phase/Strain

LEM LEB LEE LEO 9EM 9EB 9EO MEM MEB OEM OEE OEO O Total

Known Medium/Phase/Strain LEM 822 0 0 1 0 0 0 0 0 0 0 0 8 831

LEB 3 97 0 1 0 0 0 0 0 1 0 1 1 104

LEE 2 0 41 0 0 0 0 0 0 0 0 0 11 54

LEO 13 2 0 250 0 0 0 0 0 1 0 3 2 271

9EM 0 0 0 1 215 0 0 0 0 0 0 0 0 216

9EB 0 0 0 0 0 30 1 0 0 0 0 0 0 31

9EO 0 0 0 0 1 0 49 1 0 0 0 0 1 52

MEM 3 0 0 2 0 0 0 50 3 0 0 0 0 58

MEB 0 0 0 1 0 0 0 1 22 0 0 0 0 24

OEM 2 1 0 1 1 0 0 0 0 174 0 1 8 188

OEE 0 0 1 0 0 0 0 0 0 0 29 0 5 35

OEO 4 2 0 2 0 0 0 0 0 3 0 186 2 199

O 31 9 15 18 0 0 2 1 0 20 3 22 58 179

Total 880 111 57 277 217 30 52 53 25 199 32 213 96 2242

(1) LEM, LB medium + mid/late exponential phase + MG1655; (2) LEB, LB medium + mid/late exponential phase + BW25113; (3) LEE, LB medium + mid/

late exponential phase + EMG2; (4) LEO, LB medium + mid/late exponential phase + strains other than MG1655, BW25133 and EMG2; (5) 9EM, M9 +

mid/late exponential phase + MG1655; (6) 9EB, M9 + mid/late exponential phase + BW25113; (7) 9EO, M9 + mid/late exponential phase + strains other

than MG1655, BW25133 and EMG2; (8) MEM, MOPS + mid/late exponential phase + MG1655; (9) MEB, MOPS + mid/late exponential phase +

BW25113; (10) OEM, the other medium that is not LB, M9, or MOPS + mid/late exponential phase + MG1655; (11) OEE, the other medium that is not LB,

M9, and MOPS + mid/late exponential + EMG2; (12) OEO, the other medium that is not LB, M9, or MOPS + mid/late exponential phase + the other strain

that is not MG1655, BW25113, or EMG2; (12) O, the others that don’t belong to any of thirteen classes

doi:10.1371/journal.pcbi.1004127.t002
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well as strains. Some functional characteristics were statistically significant across multiple clas-
sifiers, including cell wall/peptidoglycan (P< 2.7 × 10−7) and ATP-binding (P< 1.5 × 10−8),
hydrolases (P< 9.1 × 10−6), membrane (P< 4.1 × 10−6), ribosome (P< 2.2 × 10−7) and trans-
port (P< 4.2 × 10−6) (Fig. 4C). The global pathway map in Fig. 5 depicts that most informative

Fig 4. Feature and functional enrichment analysis. (A)Mutual information (MI) content for each of the 8 classifiers. The 4166 genes are sorted by
decreasing order of their MI. Solid and dashed lines correspond to empirical data and inverse log-linear fitting, respectively. (B) The common set of the most
informative genes across different classifiers. For each of the 8 classifiers, genes that account for top 10% of MI of all genes are extracted (side bars depict
the size of the corresponding gene set). The top histogram depicts the size of the unique features (genes) per classifier. (C) Functional annotations of the
selected features for each classifier. The six most significantly enriched ontology terms are depicted. As some of functional terms were synonyms, we extract
the non-duplicated associated terms. Ratios represent the proportion of the specific ontology terms present in a MI gene set.

doi:10.1371/journal.pcbi.1004127.g004
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genes that were found to belong in five pathway groups: biosynthesis, signal transduction,
degradation, transporter and central metabolism. For the composite classification of medium,
strain and phase, relevant pathways are implicated with signal transduction, degradation, and
transport (Fig. 5A). Moreover, genes for phase classification are enriched in biosynthesis
(P< 4.3 × 10−7) which is in agreement with previous studies that report the prevalence of
phase-dependent transcriptional regulation in a variety of biosynthetic processes [37–39].
Fig. 5B provides a more detailed view of the regional network involved in biosynthesis and
transport, highlighting the pathways that would be most informative to classify various bacteri-
al characteristics. Highly informative genes involved in specific pathways (e.g. glutamate bio-
synthesis I, histidine, purine, and pyrimidine biosynthesis and glycerol-3-phophate/glycerol
phophodiester ABC transporter) have a crucial role from a functional network perspective, ei-
ther by being a hub or their first-order neighbors in an identical pathway group.

The analysis of the most informative genes for the media classifier reveals 14 genes encoding
for membrane transporters and 7 involved in nitrogen metabolism (Fig. 4, S7A Table, S1 Text).
From this set, five are implicated in amino acid transportation and synthesis (gltK, gltJ, gltL,
dppF, glnD). Different media contain different amounts of amino acids and nutrients required

Fig 5. Highly informative genes on a genetic interaction network. (A)Genes are grouped into five separate modules that are distinct from the core
network. Ontology of pathways and compositions of transporter complexes are based on EcoCyc for E. coli K-12 MG1655. Green edges represent genetic
interactions identified in [47]. Histograms show frequencies of MI genes for different classifiers for 5 pathway modules. (B) A higher resolution representation
for the biosynthesis and transporter complex pathways that are highly enriched in a number of classifiers. Genes shown are the top-ranked in each
classification task. The node color denote the classification task that it is highly informative of (task legend on the upper right of the figure).

doi:10.1371/journal.pcbi.1004127.g005
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for bacterial growth so the activation of their biosynthesis is expected to be an informative fea-
ture about the media where bacteria are growing. Another 3 genes are involved in the entero-
bactin synthesis (entA, entE, fepA), a siderophore that has been very recently revealed to be
related to the growth of E. coli in M9 [40].

Over the course of the growth curve, the metabolic pathways change in order to optimize
the use of the available nutrients and to ensure survival under stress conditions. The major
transcriptional regulator for the entry into stationary phase is RpoS and, as expected, it is pres-
ent in the set of genes informative for growth phase, along with several genes belonging to its
regulon like dnaK, clpx, hemL, dps, rpsK, hfq, rplA, crr, rpsE and gapA [41]. In this set of genes,
there are also genes already described to be differentially expressed in stationary phase, like hpf,
crr and sspA [42–44]. In addition, ribosomal proteins (rpsL, rpsQ, rpsE, rplA, rplT, rpmJ, rrsG)
are also implicated to be phase-dependent, which is in agreement with previous reports [45].

In the case of the strain classifier, the analysis displays a wide variety of genes involved in
different pathways and cellular processes. Different strains have evolved differentially from
their common ancestor and, hence, have developed different regulatory pathways for various
processes including carbon assimilation, degradation, and membrane formation. All informa-
tive genes for the medium classifier (S7A Table) are included at the top 10% informative genes
of the composite classifier with all remaining genes being part of metabolic processes (S7D
Table).

Environmental perturbations, such as carbon source and oxygen abundance, give rise to in-
formative genes that are specific to those cellular processes (S7F Table and S7G Table, respec-
tively). In the case of oxygen, GO analysis reveals 8 genes involved in the respiratory process, 4
in aerobic respiration (sucA, acnB, nuoJ, cyoE) and another 4 in fermentation (hycC, hycE,
hycF, fhlA). For carbon source prediction, we can find 15 proteins associated with membrane
formation, with 6 of them described transporters (atpC, kgtP, rhtB, lptG, malF, malG). In addi-
tion, 5 differentially expressed genes involved in carbohydrate metabolism also stand out
(malS, kgtP, malF, malG, pta).

Regarding antibiotics, we have tested Norfloxacin, which functions by inhibiting DNA gyr-
ase. Unexpectedly, in its informative gene list we cannot find any gene related to DNA repair
or SOS response (S7E Table), possibly because these genes are involved also in other environ-
mental conditions and are not antibiotic-specific. Most of the genes that reveal the presence of
Ampicillin are membrane proteins and cell wall proteins which is in agreement with its func-
tion as cell membrane inhibitor (S7H Table), including the membrane protein porin (ompF)
that is known to bind ampicillin [46].

Interestingly, a substantial subset of the informative genes that were selected as features
were not differentially expressed in the respective samples (S2 Table). A closer look at those
genes, which range from 70% to 18% of the corresponding feature set, reveals that they indeed
take part in processes that are characteristic of the respective environmental conditions. For in-
stance, the oxygen classifier contains as features genes that are involved in both aerobic (cyoD,
nuoK, sucD, sucC and cyoB) and anaerobic respiration (hycB, menF, nuoK, nfsA, hypA), al-
though these genes would not be selected if we ranked based on differential expression. Similar-
ly, in carbon source classification this set includes 11 genes involved in carbohydrate catabolic
processes (dkgB, araG, gatZ, fbaA, malE, murQ, ascF) and 6 in cellular polysaccharide metabol-
ic processes (kdsA, kdsD, waaC, waaP, rfaZ, rfa). The 24 transporters used for the medium
classification, the 5 genes involved in translation for phase classification and 72 membrane pro-
teins that are contained in the antibiotic feature set are indeed expected to be informative in
the respective classification task, despite not being in the top differentially expressed genes.
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Targeted experimentation of informative genes
The results obtained in this study can be used to decipher novel, condition-specific gene func-
tions. To assess whether biological function can be predicted by targeted experimentation of
classifier-specific informative features, we selected one gene with high MI for carbon source
classification (ppiD) and another gene that is highly ranked for classification between aerobic
and anaerobic respiration (ldcC). The MI of each gene is only high in the classifier of interest
and not in the rest (S8 Table). We then tested knock-out mutants [47] in their respective condi-
tions. As such, both the ppiD and ldcCmutants and the wild type strain were grown in M9 sup-
plemented with three different carbon sources: glucose, glycerol and lactate. The ldcCmutant
functions as a negative control in the case of carbon source classification since this mutation is
expected to have no effect on medium determination. Indeed, the results (S3 Fig., S12 Table)
show that ΔppiD growth is impaired in the presence of the three sugars (t – test, P< 0.03)
while growth with the ldcCmutant remains similar to the WT demonstrating the involvement
of ppiD in the use of different carbon sources (t – test, P> 0.07). ppiD has been described as a
membrane-anchored chaperone [48] but its specific function has not been discovered. Our re-
sult suggest that this protein is involved in sugar metabolism, possibly related to folding activity
of membrane sugar transporters. Growth curves for knockout replicates of the top five infor-
mative genes for different carbon sources, as well as the growth curves for the genes related to
aerobic growth genes (as negative control), are shown in S4 Fig.. As expected, growth deficits
were more pronounced in the first set in both glycerol and lactate (t – test, P< 0.006 and P<

0.008, respectively).
We performed a similar experiment where the three strains (WT, ΔppiD and ΔldcC) were

grown in M9 with glucose in aerobic and anaerobic conditions, in order to assess the influence
of the ldcCmutation in these conditions. Here, the ppiDmutant serves as the negative control
and the ldcCmutation is indeed informative of the aerobic conditions, although the difference
is not as pronounced as in the case of carbon source classification (P< 0.029 for ppiD; P>

0.080 for ldcC). A closer look at the MI values show that the informative genes for aerobic res-
piration are two orders of magnitude lower than those for medium, which suggests that infor-
mation content is dispersed among a number of genes.

Discussion
How much information regarding the life and the present environmental context can be in-
ferred from the global transcription profile of an organism? To address this question, we con-
structed an extensive, annotated gene expression compendium, where we trained Bayesian
models for seven distinct classification tasks. Our models achieved high classification perfor-
mance that was robust on the number of genes that were used as informative features. Our
work demonstrates that bacterial transcriptomes embody rich information regarding the or-
ganism and the environment that it inhabits. Recent work demonstrates the power of such
datasets to identify data-driven ontologies and rethink the definition of biological processes
within them [49]. More importantly, multiple characteristics of an organism can be accurately
predicted using a set of character-specific classifiers, suggesting practical advantages of this ap-
proach over limited datasets.

Transcriptional activity is not the sole feature type that conveys predictive information re-
garding environmental conditions and an organism’s characteristics. Like eukaryotes, epigenet-
ic signals regulate transcriptional activity in bacteria, for example, by altering DNA
methylation states to control the binding of proteins to DNA [50]. Single-molecule real-time
(SMRT) sequencing technology has been recently applied to reading of genome-scale methyla-
tion states in a pathogenic E. coli [51] and the technology would provide higher-resolution of
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molecular information of bacteria, enabling fine-scale predictive characterization based on it.
Other features related to the genome-scale metabolic state, proteomic biomarkers and cell mor-
phology can be incorporated to increase the predictive capacity of any given classifier. Similar-
ly, while the six characteristics that we evaluated here are fundamental in their role and
indicative of global processes, there are several other environmental and organismal character-
istics, such as other abiotic factors or other microbial species in the same environment, which
can be predicted from these features.

Multiple characteristics of an organism are interrelated, implying its heterologous transcrip-
tional landscapes in different combinations of phenotypic conditions. These complex depen-
dencies in phenome are not readily analyzable even in the compilation of thousands of publicly
available transcriptome profiles as the experimental conditions in published data are often dis-
proportionate, typically skewed in favorable settings (e.g. MG1655 strain over LB medium),
which produces small sample sets or even empty sets in combinatorial conditions. Indeed, the
results on composite classification argues that with the current omics dataset compilation, it is
not feasible to explore many of the strain, phase, medium combinations, as we have sufficient
data for only 13 classes, out of a total of 48 possible classes (4 for each of medium, phase,
strain). Interestingly, the performance of the composite multi-class classifier performs signifi-
cantly better for the overall classification of these characteristics, than an aggregate of individu-
al classifiers for phenotypes, demonstrating large interdependencies across different
conditions.

By looking at the top informative genes in two classifiers, we demonstrated the involvement
of the ppiD in the utilization of different carbon sources. Further analysis involves the use of
over/under-expressed copies and protein-protein assays to discover quantitative associations
and interaction partners. By analyzing the expression levels of the genes in the phase classifier
that are not predictable using RT-PCR and transcriptional fusions we can find out novel regu-
lation when growth phase changes from exponential to stationary. Another potential applica-
tion is in the case of the antibiotics Ampicillin and Norfloxacin where this analysis can be used
to identify implicated pathways in lethal and non-lethal concentrations.

In recent years, the capacity of microorganisms to sense and act upon environmental stimuli
[52] has sparked renewed interest due to its diverse applications in preventive medicine and
synthetic biology [53,54]. These studies shed light on the adaptive behavior of cells under envi-
ronmental temporal stimuli [55–57] and on the decomposition of promoter activity in complex
conditions [58]. Our work here is the first that attempts to identify and comprehensively inter-
pret the capacity of the transcriptome for characterizing a manifold of environmental condi-
tions using the consensus of multiple statistical learning algorithms. Aside from its intellectual
merit, the presented work can help building classifiers and selecting features in a number of
practical applications. Detection and characterization of microbes are of great importance in
many clinical, environmental, industrial, and agricultural application [59]. Data are increasing-
ly become available for the adoption of such classification techniques since high-throughput
methods have been recently applied at low cost. From battlefields to agricultural crop manage-
ment, inexpensive sequencing transforms the landscape of what is possible in a timely, inex-
pensive manner. Our work paves the way towards the use of high-throughput expression
datasets to a broad range of applications including detection and characterization of the envi-
ronmental conditions and bacterial population that are important for clinical, environmental,
industrial, and agricultural applications. Without loss of generality, this work can be described
as a data-driven approach to “bacterial forensics”, i.e. the extraction of environmental knowl-
edge from large-scale phenotypic bacterial data, and it can have far-reaching applications in en-
vironments that would be challenging to investigate otherwise.
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Methods

Construction of a microarray and RNA-Seq compendium (EcoGEC)
We downloaded 83 RNA-Seq E. coli transcriptional profiles from 17 different GEO entries [30]
that correspond to 8 strains, LB and MOPS media in wild-type (WT), gene knock-outs (KOs),
double KOs and environmental perturbations. When bedGraph format was used in the data,
gene expression level was measured in RPKM using the bgrQuantifier program that is part of
the RSEQ tool [60]. For other formats such as wig, we first converted them into bedGraph. We
filtered out samples where the environmental information was not known, which led to 64
samples for further analysis. Data were converted to log2 scale and performed quantile-nor-
malization using MATLAB. The resulting RNA-Seq dataset was composed of 64 samples of
4725 genes. We integrated the RNA-Seq dataset (64 samples) to the E. coliMicroarray Com-
pendium (EcoMAC) that consists of 2198 microarrays of 4189 genes for which raw files were
downloaded and normalized by RMA (robust multichip average) method [29]. The integrated
EcoGEC dataset consists of 2262 samples and 4166 genes (Fig. 1A, S13 Table, S14 Table).

Adjustment of batch-effects in the transcriptome compendium
Although integrative analysis of multiple microarray gene expression (MAGE) datasets allows
to distill the maximum relevant biological information from genomic datasets, the unwanted
variation, so-called batch-effects arising from data merged from difference sources has been a
major challenge to impede such effort [61]. To adjust the non-biological experimental variation
with the consideration of large number of datasets with a few samples, we used ComBat that is
developed under Bayesian framework and is known to be robust to outliers in small sample
sizes [62]. In the process of adjustment, we took into account experimental conditions as covar-
iates to prevent loss of biological variations.

Categorization of gene expression data
Prior to building a prediction model, we transformed the adjusted gene expression data into
categorical values (under-expressed, UE; wild-type, WT; over-expressed, OE) in order to deal
with biases arising from combining different platforms and improve the classification accuracy
[63]. We first measured the log2 Fold Change (FC) of gene expression with respect to the WT
expression for each gene. WT samples were identified from experiments that didn’t undergo
genetic and environmental perturbations from the three platforms (7 for Affymetrix E. coli An-
tisense Genome Array, 6 for Affymetrix E. coli Genome 2.0 Array, and 6 for RNA-Seq). log2
Fold Change (FC) was separately measured for each platform by comparing the mean of WT
data. Using transformed data, we estimated a normal distribution N(μ, σ2) for each gene and fi-
nally converted each log2 FC gene value into one of the 3 categorical values by measuring devia-
tion from the mean (UE when gij < μi – σi; WT when μi – σi� gij � μi + σi; OE when μi + σi <
gij; gij is the log2 FC for gene i in sample j, μi is mean of gene i and σi is standard deviation of
gene i). The platform-specific categorization of gene expression effectively removes platform
biases (Fig. 1B).

Inference of missing phase information using iterative learning
The large fraction of unannotated phase data in the compendium hinders the maximum utili-
zation of such resource. Missing phase information was imputed by iterative learning approach
in which prediction model for growth phase is trained using the annotated phase data and in-
ferred data in previous iteration until prediction of unknown data finally reaches at conver-
gence (S1 Fig.). In each iteration, the experiments that were unannotated ab initio were

Predicting Environmental Parameters from Gene Expression

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004127 March 16, 2015 13 / 21



repeatedly inferred. Inference is based on consensus-based approach of four machine learning
methods described above. Re-labeled phase information accompanying with annotated data is
used for training the consensus model in next iteration. This procedure is halted once the simi-
larity of phase labels between consecutive iterations is convergent when the similarity of phase
labels between consecutive iterations converges (change in fraction< ξ, where ξ = 0.01 here).
Although the use of inferred labels through iterative learning demonstrates an increased per-
formance, compared with the prediction using known labels only (S2 Table), we report the per-
formance for phase prediction using annotated labels only throughout the manuscript.

Validation of iterative learning
To investigate the accuracy (balanced) of inference of unannotated data, we performed the sim-
ulation study for each classifier by randomly masking 30% of total labels of each class. First, the
accuracy of inferred annotation after iterative learning is measured by comparing with real la-
bels before and after iterative learning (S2 Table). Then we further evaluate iterative learning
for by changing the percentage of unannotated labels (2%, 5%, 10%, 20%) in the total data (S2
Fig. and S4 Table).

Class labeling
A label is assigned for each of the seven classification characteristics (two for antibiotics; Ampi-
cillin and Norfloxacin). We have identified 4 classes for medium (LB, M9, MOPS, others), 3
classes for phase (early-exponential, mid/late-exponential, stationary) having both annotated
and predicted data, and 4 classes for strain (MG1655, BW25113, EMG2, others). A class of
“others” was added that corresponds to conditions that are unclear or scare in quantity. Classi-
fication of the strain, medium, and growth conditions can be integrated also as a multi-class
problem. We synthesized a new predictor variable called composite by combining values of
3 characteristics. From the 48 possible classes (combination of 4 labels for medium, 3 labels for
phase, 4 labels for strain), only 13 combinations have enough data (more than 5 samples) for
training, hence we have encompass all other labels with insufficient data under the label “oth-
ers”, resulting in a total of 13 classes (Table 2).

Consensus-based predictions
We use Naïve Bayes (NB; [64], Decision Trees (DT, [65]), K-nearest-neighbors (KNN, [66])
and Support Vector Machines (SVM, [67]) to construct a consensus classification scheme [68].
The class label assigned is the one with the highest number of votes. The predictive power is as-
sessed through Receiver-Operator Characteristic (ROC) and Precision-Recall (PR) curves [36].
For multi-class problems, such as in the case of medium, phase and strain classification, we
built ROC/PR curves in a one-versus-rest (OVR) approach.

The leave one batch out cross validation was conducted to verify model performance while
removing batch effects. For this, each batch is left out for testing and the rest of data is then
used for training. This procedure is iterated until all batches in the dataset are tested. For car-
bon source, phase, and composite classifier, the profiles having early-exponential phase or ace-
tate are studied in a single project so inevitably, we had to rely on the batch-uncontrolled
cross-validation. The classifier performances with and without batch control are compared in
S11 Table. As the high imbalance of class distribution is observable in the dataset as shown in
Table 1, creating inflated baseline, we show the classifier performance for the original dataset
as well as for the dataset with balanced class distribution.
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Feature selection by mutual information
Mutual information is a stochastic measure of dependence [69] and it has been widely applied
in feature selection in order to find an informative subset for model training [70]. In our work,
each of the eight models were trained with the top k-ranked genes based on their mutual infor-
mation (MI) to the label where MI is measured by

IðX;YÞ ¼
XX

pðx; yÞlogðpðx; yÞ=pðxÞpðyÞÞ

Where x is the gene selected and y is the predictor variable. This process is iteratively repeated
by increasing k with an interval of 10 and the exception of start (10) and end points (all genes).
Basically, the selection procedure of k features are performed in training data only and k show-
ing the highest performance is selected for testing. All the analyses in this study other than the
cross-validation of model used the features selected from the complete data.

Selection of most informative genes and functional enrichment analysis
The most informative genes are selected by measuring the mutual information (in bits) for
each of the characteristic variables and then selecting the top 10% genes based on their infor-
mation content. These top informative genes are then used for finding shared genes across dif-
ferent classifiers (Fig. 4B) and for network analysis (Fig. 5). For functional enrichment analysis,
we use all selected genes that optimize the classifier performance. Associated functional anno-
tations for the set of selected genes for each of the classifiers are found by DAVID [71]. Various
annotations including Gene Ontology terms, KEGG pathways, and InterPro protein domains
are investigated. Among them, the 6 most statistically significant terms (P< 3.7 10−4) for each
classifier are displayed in Fig. 4. Global map of genetic interactions for E. coli is reconstructed
from [72] with pathway modules that functionally cluster genes based on the Pathway Ontolo-
gy and transporter complexes curated in EcoCyc [73]. Pathway diagrams were re-plotted from
the KEGG database [74].

In addition to DAVID, we have performed a GSEA analysis [75] where each gene is ranked
by its mutual information (S9 Table). We have also compared the results to those obtained by
DAVID and provide this comparison in S10 Table. On average, 80.5% of DAVID results that
correspond to the feature set at optimal classification performance are in the GSEA
enriched terms.

Growth curves
Growth curves of the WT, ΔppiD and ΔldcC were performed in M9 complemented with 0.4%
of glucose, glycerol and sodium lactate. For growth curves, the starter cultures of all strains
were grown and therefore adapted (B7–9 generations) to M9 glucose for 12 hours at 37C. Cul-
tures were started at OD600 of 0.004. OD600 was measured every 10 minutes on a Tecan Plate
Reader. Two independent replicate growth tests were performed for each strain. For the anaer-
obic and aerobic growth curves bacteria were grown in M9 supplemented with glucose at 37C
without shaking. The anaerobic growth was made in an anaerobic chamber where media was
inserted 2 days prior to the experiment to extract all the oxygen present in the media. Samples
were taken at 2, 8 and 24 hours through a spectrophotometer (S12 Table).

Parameter settings, implementation, and availability
For consensus-based prediction using four different classifiers, we used the Statistics
Toolbox in MATLAB. For the multi-class SVM, one-versus-rest (OVR) approach was used in
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which for each class, a binary classifier is built for the class label and the rest. Each binary SVM
was built using Gaussian Radial Basis Function (RBF) kernel and the default sigma factor of 1
was used. For soft margin, C parameter showing best performance was selected in the range of
0.5 to 4 in the training phase. For KNN, K was set to one in knnsearch. For decision tree and
naïve Bayes, the default settings in ClassificationTree and NaiveBayes were used, respectively.
The code used in this study including the imputation by iterative learning and the consensus-
based prediction that allows users to reproduce the results is freely available on gitHub (https://
github.com/minseven/mForensics.git).

Supporting Information
S1 Fig. Schematic diagram of iterative learning for phase information.Missing phase infor-
mation was imputed by an iterative learning approach in which the prediction model for
growth phase is trained iteratively until convergence. In each iteration, the phase of all samples
that were originally unannotated is predicted, based on an ensample of 4 machine learning
methods (Naive Bayes, SVM, Decision Tree, KNN) that produce a consensus outcome, as de-
scribed in the Methods section of the manuscript. We used the fraction of correctly re-annotat-
ed data over all unannotated data to measure the similarity of the two vectors. If the confidence
level of the prediction does not reach a threshold of 0.75 (i.e. 3 out of the 4 methods agree in
the putative annotation), then the sample remains tagged as un-annotated. Otherwise, the im-
puted phase information is used for training the model during the next iteration. This proce-
dure repeats until the similarity of phase labels between consecutive iterations converges
(change in fraction< ξ, where ξ = 0.01 here). For our dataset, this led to annotation of more
than 90% of the un-annotated data samples.
(EPS)

S2 Fig. Validation of iterative learning and imputation of unannotated phase data. (A)
Prediction of unknown phase information by using the iterative approach is validated by using
testing data that consist of de-labeled samples constructed from each of the 3 phase types (early
exponential, mid/late exponential and stationary). Validation of iterative approach to impute
missing data is performed by comparing the actual and predicted labels produced by iterative
learning. The de-labeled, i.e. artificially un-annotated, data were 2%, 5%, 10% and 20% of the
total dataset. For each of the 3 phase classes, the predicted classes for each actual class type is
shown. (B) Unannotated portion of phase data in the EcoGEC is inferred by using iterative learn-
ing. After four iterations, the similarity of predicted labels between consecutive iterations con-
verge (691 out of the 764 samples). The 72 leftover samples are discarded as unidentified and/or
noisy data points. (C) Simulation of iterative learning for all classifiers by randomly masking 30%
of all class labels in the original dataset. We set the threshold of confidence of consensus-based
prediction to 1 for selecting data that needs to go to next iteration over the iterative learning. In
other words, the samples that reach perfect consensus in assigning labels from 4 different meth-
ods are finalized for annotation and used for training over the iterative learning. The purpose of
the more stringent threshold was to observe the benefit of iterative process in learning. The per-
centages in the legend indicate the total increase of re-labeled classes after the first iteration.
(EPS)

S3 Fig. Targeted experimentation of highly informative genes. (A) Growth curves of WT,
ΔppiD and ΔldcC for the three carbon source classes in our dataset, glucose, glycerol and
sodium lactate, (B) growth curves of WT, ΔppiD and ΔldcC in aerobic and un-anaerobic
conditions.
(TIFF)
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S4 Fig. Growth curves of the five most informative genes in the carbon source classifier
(left) and oxygen (right) in M9 salt media supplemented with three different carbon
sources. Each growth curve was made in duplicate and the average was plotted.
(TIFF)

S1 Table. Classifier performance and sample size. The relationship between performance of
classifiers and the data size is investigated. The dataset with balanced class distribution is pre-
pared from the original compendium and it is reduced by 25% until only 25% remains. Each
dataset is separately trained and tested.
(XLSX)

S2 Table. Comparison of classification performance between classifiers with the top MI
genes and DE genes. The intersection of the feature gene set when mutual information (MI)
and differential expression (DEG) are used for ranking. Differential expression ranking was de-
termined by ANOVA. In the parenthesis, we report the classification performance when the
class labels are uniformly distributed (maximum entropy). The “null” and “dataset” baselines
correspond to the base prediction accuracy in the case where the classes are uniformly distrib-
uted for each classification task, or the most representative class based on the data (highest
prior) for each classification case is selected, respectively.
(XLSX)

S3 Table. Evaluation of iterative learning on classification performance.We assessed the it-
erative learning (IL) method for each class by randomly masking 30% of the class labels (testing
dataset). Accuracy refers to the percentage of the testing dataset that was correctly re-annotated
by IL. Classification performance is measured with and without IL being applied to the final
dataset. The “null” and “dataset” baselines correspond to the base prediction accuracy in the
case where the classes are uniformly distributed for each classification task, or the most repre-
sentative class based on the data (highest prior) for each classification case is selected, respec-
tively.
(XLSX)

S4 Table. Performance of iterative learning and unannotated proportion of phase data. To
evaluate the efficacy of iterative learning to correctly annotate missing phase information, we
constructed a testing set where data for all 3 different phase categories (early-exponential, mid/
late exponential, and stationary) were de-labeled. We evaluated how many samples in this sim-
ulated, artificially un-annotated, dataset were re-labeled to their original phase labels after iter-
ative learning. The iterative learning procedure was performed with testing sets that included
2%, 5%, 10% and 20% of un-annotated samples, as a percentage of all samples available. The ta-
bles below (1A-D) show that the contingency tables of simulated inference for
different settings.
(XLSX)

S5 Table. Ranked list of all genes in the EcoGEC compendium based on their mutual infor-
mation for the phase, growth and aerobic classifier, before and after iterative learning.
(XLSX)

S6 Table. Contingency table of prediction performance for each classifier.
(XLSX)

S7 Table. List of most informative genes annotated with known functions.
(XLSX)

Predicting Environmental Parameters from Gene Expression

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004127 March 16, 2015 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004127.s011


S8 Table. Ranks and mutual information of the genes selected in each classifier of carbon
source and oxygen supply.
(XLSX)

S9 Table. GSEA enriched terms: enriched terms in red are present in DAVID analysis.
(XLSX)

S10 Table. Proportion of DAVID results in GSEA enriched terms. (GO). For DAVID, we
use all selected features for each classifier to know associated GO. For GSEA, we use MI of all
genes to know enriched GO. The resulting lists are compared and the proportion of DAVID re-
sults in GSEA enriched terms are reported.
(XLSX)

S11 Table. Classification performance with and without batch control. The prediction per-
formance with and without batch control is compared for each classifier. For carbon source,
phase, and composite classifier, the profiles having early-exponential phase or acetate are stud-
ied in a single project. For testing without batch control, typical 5-fold cross-validation was
used without considering the batch information. For batch controlled experiments, a leave-
one-batch-out cross validation was conducted to verify model performance while removing
batch effects.
(XLSX)

S12 Table. Measured growth data.
(XLSX)

S13 Table. EcoGEC v1.0 Compendium (part 1).
(XLSX)

S14 Table. EcoGEC v1.0 Compendium (part 2).
(XLSX)

S1 Text. Reference list of S7 Table. The citations on the functional studies of the ranked list of
genes in S7 Table are listed.
(DOCX)
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