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Abstract
Founder populations and large pedigrees offer many well-known advantages for genetic

mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (Pedi-

gRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation

algorithm for founder populations. PRIMAL incorporates both existing and original ideas,

such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique

graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had

genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98

whole genome sequences. Using a combination of pedigree-based and LD-based imputa-

tion, we were able to assign 87% of genotypes with>99% accuracy over the full range of al-

lele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83%

of alleles, and genotypes of deceased recent ancestors for whom no genotype information

was available. This imputed data set will enable us to better study the relative contribution

of rare and common variants on human phenotypes, as well as parental origin effect of dis-

ease risk alleles in>1,000 individuals at minimal cost.

Author Summary

The recent availability of whole genome and whole exome sequencing allows genetic studies
of human diseases and traits at an unprecedented resolution, although their cost limits the
size of the studied sample. To overcome this limitation and design cost-efficient studies, we
developed a two step method: sequencing of relatively few members of a well-characterized
founder population followed by pedigree-based whole genome imputation of many other
individuals with genome-wide genotype data. We show that by sequencing only 98 Hutter-
ites, we can impute 7 million variants in an additional 1,317 Hutterites with>99% accuracy
and an average call rate of 87%. Furthermore, parental origin was assigned to 83% of the al-
leles. Such studies in the Hutterites and other founder populations should yield new in-
sights into the genetic architecture of common diseases, gene expression traits, and
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clinically relevant biomarkers of disease, and ultimately provide outstanding opportunities
for personalized medicine in these well-characterized populations.

Introduction
Despite decreasing costs of whole exome and whole genome sequencing, the role of rare genetic
variants in common disease risk remains hard to assess due to the very large sample sizes re-
quired for such studies [1,2]. Therefore, approaches that allow accurate imputation of rare vari-
ants to large numbers of individuals based on the sequences of relatively few individuals could
address this important question at minimal cost. Founder populations are particularly suitable
to this strategy because pedigree relationships are either known or can be inferred from geno-
types, facilitating imputation approaches that incorporate identity by descent (IBD) relation-
ships between chromosomal segments and improving imputation accuracy. Moreover,
variants that occur at low frequency (<5%) or are rare (<1%) in large outbred populations,
may occur at common frequencies (>5%) in founder populations due to the bottleneck at the
time of their founding followed by random genetic drift effects in subsequent generations. Sim-
ilar to mutations for rare monogenic disorders reaching relatively common frequencies in
founder populations [3–6], subsets of the rare variants contributing to common complex dis-
eases are also expected to occur at higher frequencies in these populations. This provides a
unique opportunity to study the relative roles of rare and common variants on common disease
risk in individuals exposed to similar environments, which further minimizes the contribution
of non-genetic factors to inter-individual variation in disease risk and facilitates identification
of disease-associated alleles.

Methodological approaches to genotype imputation fall into two general categories depend-
ing on whether they are based on linkage disequilibrium (LD) or on genetic relationships (i.e.,
pedigrees) [7]. LD-based imputation methods require a reference panel of genotype training
data, usually from unrelated individuals, to infer local haplotype structure, and sharing of hap-
lotype stretches are used for filling in missing genotypes [8–11]. These approaches typically re-
sult in high call rates at the expense of lower accuracy, especially for rare alleles [12]. In
contrast, pedigree-based imputation approaches are more accurate because they rely on identi-
fying regions of IBD sharing among the study subjects [13,14]. However, call rates are typically
lower than from LD-based methods, and pedigree-based imputation can be significantly slower
to implement due to complex pedigree structures, which often pose limitations on maximum
family sizes and minimum relatedness of individuals [15].

To address the limitations of LD- and pedigree-based imputation methods, we developed
PRIMAL (PedigRee IMputation ALgorithm), a fast phasing and imputation algorithm, to as-
sign genotypes at 7 million bi-allelic variants that were discovered in the whole genome se-
quences of 98 Hutterites to an additional set of 1,317 Hutterites who had genome-wide
genotypes for ~300,000 common single nucleotide variants (SNVs). We first phased the SNV
genotypes using pedigree-based phasing algorithms [16,17] and determined IBD segments be-
tween each pair of haplotypes using a Hidden-Markov Model [18]. We then organized IBD
segments into an IBD clique dictionary, a novel data structure for efficient IBD lookup queries
that enables fast pedigree-based imputation of the variants identified in the 98 genomes. We
demonstrate that the accuracy of the algorithm is above 99% regardless of minor allele frequen-
cy, with a call rate of approximately 77%. To improve the call rate, the missing genotypes were
imputed using the LD-based IMPUTE2 program [11], with the phased haplotypes of the 98
whole genome sequenced Hutterites as the reference panel. The result is a hybrid method that
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combines the benefits of pedigree- and LD-based strategies to obtain similar accuracy (> 99%),
and higher call rates (87.3%). Moreover, using the IBD clique dictionary implemented in PRI-
MAL, we can infer the parental origin of 83% of alleles. We are also able to impute whole ge-
nome genotypes to recent ancestors with no available DNA. The PRIMAL algorithm and
software will facilitate genetic studies of rare variants and parent-of-origin effects in the Hutter-
ites and in other founder populations with similar data.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed in the Declaration of Helsinki.
All participants in the experiment provided written informed consent in approval with the
University of Chicago Institutional Review Board.

Sample Composition
The Hutterites originated in central Europe in the 1500s. After a series of migrations and popu-
lation bottlenecks, they settled in what is now South Dakota in the 1870s, and currently live on
communal farms in the northern U.S. plains states and western Canadian provinces [19]. At
present, there are over 14,000 Hutterites living in South Dakota, all of whom are descendants
of just 64 founders and related to each other with a mean kinship coefficient of 3.4% [20]. This
study includes 1,415 Hutterites who previously participated in one or more of our studies of
Mendelian and common diseases and associated phenotypes (e.g., [5,21]). These individuals
are related to each other through multiple lines of descent in a 3,671-person
minimum pedigree.

Framework Genome-Wide Genotypes
We genotyped DNA from Hutterite individuals using one of three Affymetrix arrays (500k, 5.0
and 6.0), as previously described [21,22,23]. As part of our quality control (QC) process, we re-
moved SNVs with five or more Mendelian errors, Hardy-Weinberg p-values< 0.001, or call
rates<95%, resulting in 332,242 SNVs present on all three platforms. The final sample includ-
ed 1,415 Hutterites with genotype call rate> 95%. We used the subset of 271,486 SNVs with
minor allele frequency (MAF)� 5% for phasing and imputation in this study. These SNVs are
referred to as the “framework SNVs”, and genotyped individuals for whom both parents were
not genotyped are referred to as the “quasi-founders” of this sub-pedigree.

Whole Genome Sequencing and QC
Ninety-eight Hutterites were selected from the 1,415 for whole genome sequencing (WGS) to
maximize their relatedness to the other 1,317 Hutterites (and thus leading to high pedigree-
based imputation call rates), while minimizing the pairwise relatedness among the 98 (to re-
duce the amount of redundant sequencing). To achieve this we used a greedy algorithm de-
scribed elsewhere [16] where subjects were selected sequentially to maximize the average
kinship to the non-sequenced individuals, while imposing a kinship smaller than 0.1 with the
sequenced individuals. Sequencing was performed by Complete Genomics, Inc. (Mountain
View, CA). A total of 18.2 million variants (14.0M SNVs, 2.7M insertions, 1.4M deletions;
Table 1) were discovered in the 98 WGS, including 11.6 million variants (9.2M SNVs, 1.3M in-
sertions and 1.1M deletions) for which both alleles were called as high quality by Complete Ge-
nomics. Using the 332,242 SNVs, the concordance between the genotypes from the whole
genome sequences and those determined by genotyping with the Affymetrix arrays was 99.8%.
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To investigate the quality of sequencing-based genotypes for classes of variants (for example,
all novel singletons), we developed a pedigree-based method to assess genotyping errors. The
method is an extension of the classical Mendelian error checking in families. However, in con-
trast to Mendelian checks that use parents and their offspring, our approach includes all pairs of
related individuals, regardless of the distance of the relationship, using their IBD segments.
High confidence IBD2 segments (i.e., IBD = 2, or regions where two individuals inherited the
same chromosomal segments from a common ancestor) were previously calculated between
each pair of individuals among the 98 Hutterites using the 332,242 framework SNVs [24]. Next,
for each sequenced variant, we determined the number of IBD2 segments shared between pairs
of individuals that contain the variant and counted the number of discordances (the number of
pairs of IBD2 segments in which the genotypes for the variant under investigation did not
match). We then estimated the variant calling discordant rate (the proportion of discordances)
for each class of variants as the total number of discordances divided by the total number of
pairs of IBD2 segments in that category. Discordant rates increased with decreasing call rate,
suggesting poorer quality of genotype calls for variants with more missing data. Thus, we deter-
mined call rate cut-offs for each variant class to maintain a less than 0.5% discordant rate. This
resulted in a final set of variants that included all non-singletons (i.e., variants in which the rare
allele occurred at least twice) with rs numbers (in dbSNP135) with call rates> 90% and novel
variants (no rs number in dbSNP135) with call rates> 99% (i.e., at most one missing call).
Among singletons (variants with one copy of the rare allele in the sequenced subjects), we re-
tained novel insertions with call rates> 90% and all other variant types with call rates> 99%
(Table 1, and Fig S2 in S1 Text). The allele frequency distribution and functional annotation of
the final set of 7,008,666 variants in the 98 Hutterites with WGS are shown in Fig S2 in S1 Text.

Table 1. Variant summary.

Variant Type Call Rate Cutoff Mean Error Rate Total Variants Variants Not Passing QC Variants Passing QC

Non-singletons RS SNVs 0.9 0.12% 6,879,488 1,332,939 5,546,549

Insertions 0.9 0.14% 363,973 259,472 104,501

Deletions 0.9 0.13% 352,563 222,185 130,378

Novel SNVs 0.99 0.68% 1,330,086 667,306 662,780

Insertions 0.99 0.97% 577,508 547,690 29,818

Deletions 0.99 0.42% 306,776 232,648 74,128

Singletons RS SNVs 0.99 0.42% 277,650 89,448 188,202

Insertions 0.99 1.37% 28,185 27,089 1,096

Deletions 0.99 0.50% 24,822 21,613 3,209

Novel SNVs 0.99 0.14% 5,522,109 5,302,013 220,096

Insertions 0.9 1.99% 1,756,253 1,728,591 27,662

Deletions 0.99 1.50% 756,632 736,385 20,247

Total SNVs - 0.27% 14,009,333 7,391,706 6,617,627

Insertions - 1.10% 2,725,919 2,562,842 163,077

Deletions - 0.51% 1,440,793 1,212,831 227,962

All Variants - 0.37% 18,176,045 11,167,379 7,008,666

Variants present in 98 Hutterite genome sequences, shown by singleton (one alternative allele among the 98 sequenced samples) vs. non-singletons, by

novelty (variants with and without rs numbers in dbSNP135), and by variant type (SNVs, insertions, deletions). Insertions and deletions are called relative

to the NCBI build 37 reference human genome. The mean genotyping calling error rate is estimated using IBD2 segments (see text). QC is based on a

combination of using CGI high-quality genotype calls and the shown call rate cutoffs.

doi:10.1371/journal.pcbi.1004139.t001
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The quality of imputed genotypes was assessed by comparing them to data from a different
whole-genome sequencing study in five parent-offspring trios who were among the 1,317 Hut-
terites in our study [25]. These 15 individuals were sequenced on the Illumina platform at a
10–17x coverage. High quality (as determined by Illumina) genotypes were extracted for all the
SNVs imputed using PRIMAL and that passed QC. One of the 15 subjects was sequenced on
both platforms and this allowed us to estimate the joint sequencing error rate. Discordance
rates between the Illumina sequence-based and PRIMAL-imputed genotypes were calculated
as the proportion of differences in genotypes in each of the remaining 14 individuals using
these two methods.

Software
The algorithm described in Results is implemented in software, PRIMAL v1, that is freely avail-
able for academic use from the website: https://github.com/orenlivne/ober

Results

Pedigree-based Imputation (PRIMAL)
Our imputation algorithm consists of five main stages (Fig. 1, steps 4–8). The first four require
only the framework SNVs: (i) phasing; (ii) identifying IBD segments among all haplotype
pairs; (iii) indexing IBD segments into a dictionary of IBD cliques; and (iv) assigning parental
origin to haplotypes. In the fifth step, we phase the WGS-derived genotypes, and then perform
fast pedigree-based imputation of all variants present in the WGS using the IBD
clique dictionary.

Phasing
Our phasing method is similar to the long-range phasing algorithms described by Kong et al.
[17] and Glodzik et al. [13] and to our earlier phasing algorithm for Hutterite genotype data
[16], but introduces two key improvements that boost its quality. First, we use a phased pro-
band as a template to phase siblings in nuclear families as in Coop et al. [26] (Supplementary
Materials S1 Text), and second, we employ a Hidden Markov Model (HMM) similar to the
IBDLD model [24] to identify IBD segments between a proband and his/her surrogate parents
(Fig S3 in S1 Text). The phasing workflow is outlined in Fig S3 and described in detail in
S1 Text. Using this approach, only 0.5% of the framework genotypes remained unphased,
99.2% of the genotypes were correctly phased, and the remaining 0.3% of the framework geno-
types were discordant.

IBD Segment Identification
During the phasing step, IBD segments are identified, but only between the individual being
phased and his/her surrogate parents. Therefore, we created a complete IBD dictionary by
identifying IBD segments between each pair of the 2×1,415 = 2,830 haplotypes in the sample
(S1 Text). Computational complexity prevented us from using available software to estimate
IBD segments in related individuals [27–29]. Our HMM is the haplotype analogue of the geno-
type HMM used for phasing, and is similar to the HBD-HMM developed previously [18].
However, only kinship coefficients are used instead of condensed identity coefficients. The
complexity is quadratic in the number of samples, but the hidden constant is small because
only two states (IBD or not IBD) are possible instead of the nine in the genotype HMM
(Table S1 and S1 Text).
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A total of 97,821,947 IBD segments were identified among the 1,415 Hutterites (~1.1 seg-
ment per haplotype pair on average, because there are 2830×2829/2 = 4,003,035 individual
pairs and 22 chromosomes). To verify the overall quality of the detected IBD segments, our
fraction of the genome covered by IBD segments was compared to the fraction calculated by
IBDLD [24]. The methods were concordant (correlation coefficient r = 0.96 with a slope of β =
1.01) and the length distribution followed an exponential distribution, in accordance with the-
ory [30].

Fig 1. The imputation pipeline.Given a pedigree tree of 3,671 Hutterites (1), 1,415 individuals in the three most recent generations (within the red box)
were genotyped with framework markers (2). The first part of the pipeline (steps 2–6) depends only on the framework marker data; the second part (steps
7–9) imputes the whole genome sequence variants. First, estimates of identity coefficients and the transition rate parameter λ [24] between each pair of the
1,415 individuals are calculated (3). The framework genotypes are then phased (4), IBD segments between haplotypes are identified using a HMM (5), and
indexed into an efficient data structure consisting of IBD cliques (6). Haplotypes are assigned parental origins consistent across the pedigree using the
cliques (7). Then, the whole genome sequences of 98 Hutterites (8) are cleaned using several filters, including a novel generalized Mendelian error check (9),
and imputed to the remaining 1,317 Hutterites using IBD cliques (10). Call rates are boosted by imputing as many of remaining genotypes as possible using
an LD-based imputation method, IMPUTE2 (11). To ensure that accuracy is not compromised, we calculate the concordance of the shared genotypes
between the two methods and keep only variants that are highly concordant (12).

doi:10.1371/journal.pcbi.1004139.g001
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IBD Segment Indexing into Cliques
We organize IBD segments in an IBD segment index data structure, which consists of a set of
IBD cliques at each SNV and allows a quick O(1)-time queries of whether a pair of haplotypes
is IBD at a certain SNV.

At each SNV, we build a weighted, undirected pairwise IBD graph G (Fig. 2) whose nodes
are the 2,830 haplotypes of the 1,415 Hutterites, an edge indicates the two haplotypes are IBD,
and the edge weight is the HMM posterior probability of IBD (S1 Text, Eq. (19c)). Large
weights are thus given to haplotype pairs that have a higher probability of being IBD.

Because IBD is a transitive relation, G must be a union of disjoint cliques (fully connected
sub-graphs), one for each ancestral haplotype present in the population. In practice, G is a per-
turbation of a clique union due to very low HMM certainty near segment ends and genotyping
errors, and we would like to recover a “reasonable'' set of cliques from it. Cluster editing meth-
ods (see for example [31]) find the minimum number of edges (or total edge weight) that need
to be added or removed to transform G to a clique union. This is an NP-hard problem, and
practical heuristic-based algorithms run in superlinear time in the number of edges. We chose
a different heuristic inspired by the graph algebraic multigrid literature [32–34] that resulted in
good imputation cross-validation accuracy and has linear complexity (S1 Text). First, we
calculate new edge weights called affinities that measure the connectedness or affinity between
the graph neighborhoods of the nodes (Fig. 2). A large affinity means that the nodes share
many common neighbors, i.e., they are connected via many short paths. Next, we removed
graph edges with weight< 0.85 or affinity< 0.9. These thresholds were chosen to minimize
imputation errors in a cross-validation of several framework SNVs representing the entire
MAF spectrum. Finally, each of the resulting graph’s connected components is transformed to
a clique by adding links between all nodes that are not yet connected (Fig. 2 and Fig S4 in
S1 Text). This method worked well for our data set, and these thresholds should be good de-
fault values for other data sets. However, threshold determination and a comparison with
other clique-generation methods undoubtedly need to be further investigated in a
future research.

The use of cliques significantly speeds up imputation because all haplotypes in a clique are
imputed simultaneously. In addition, cliques allow the derivation of the maximum call rate
obtainable per SNV from imputation, which is the ratio of the number of haplotypes in cliques
containing haplotypes of sequenced individuals to the total number of haplotypes. The pre-
dicted imputation rate was 85% ± 9% for the framework SNVs. Note that, using pedigree-
based imputation, the accuracy approaches 100% (because we rely on Mendelian rules).

Parental Origin (PO) Assignment
Genotyped individuals are considered “quasi-founders” if either of their parents were not geno-
typed. Haplotypes of non-quasi-founders can be automatically labeled as paternal and mater-
nal because their parents are included in our sample and haplotypes are assigned using
Mendelian rules. However, because the quasi-founders do not have genotyped parents, the pa-
rental origin of the quasi-founder haplotypes is assigned in two stages.

First, during phasing, we do not determine which haplotypes are paternal and maternal, but
we ensure that the first haplotype of every child comes from the same parent (arbitrarily de-
noted A), and the second haplotype from the other parent (arbitrarily denoted B). This is
achieved using the following steps:

a) Regions of the children’s haplotypes are assigned to four different “bins” (illustrated as
four colors in Fig S5 in S1 Text) that represent the four parental haplotypes. Regions that
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are IBD are in the same bin, under the constraint that the number of recombinations
be minimized.

b) There are three possible assignments of four parental haplotypes to parents A and B. For
each assignment, we calculate for each child C with haplotypes C1, C2 a separation mea-
sure as follows: let F1 be the fraction of C1 covered by A’s haplotypes plus the fraction of
C2 covered by B’s haplotypes, and F2 be the fraction of C1 covered by B’s haplotypes plus
the fraction of C2 covered by A’s haplotypes. The separation is the ratio max(F1,F2), which
measures how decisively C’s haplotypes can be identified as paternal or
maternal haplotypes.

c) We pick the parental assignment that maximizes the minimum child separation, and
order C1, C2 in all children so that the first always corresponds to parent A and the second
to parent B. The separation measure is defined in S1 Text.

Fig 2. Partitioning an IBD-sharing graph into cliques. (1) IBD segments are indexed into a graph at each SNV. Nodes represent haplotypes (denoted A-
H). Each pair of haplotypes that share an IBD segment at the SNV is connected with a link whose weight equals the HMM posterior probability. (2) Link
weights are replaced by affinities. Links with small original weight or affinity are removed (3); all nodes within each of the resulting connected components are
connected (4).

doi:10.1371/journal.pcbi.1004139.g002
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Next, after parental origin is assigned to haplotypes within each nuclear family (both parents
and their children), we calculate a different separation measure at each SNV for each quasi-
founder C. Let 1 and 2 denote the child’s haplotypes, C1 and C2 the corresponding IBD cliques,
and A and B representing C’s untyped parents. For each parent and each clique, we calculate the
median of the set of kinship coefficients between the parent and all quasi-founders in the clique
that are not siblings of the proband (the quasi-founder in question), resulting in a 2×2 matrix
(Fig. 3; siblings and non-quasi-founders are excluded to minimize bias). For each SNV, indexed
by s, we define a separation measure m(C, s) (precisely defined in the Supplementary S1 Text,
Eq. (4)) such that-1�m(C, s)� 1. The measure approaches-1 when the off-diagonal matrix ele-
ments are much larger than the diagonal elements, and approaches 1 when the diagonal elements
dominate. If the proband is properly phased, m(C, s) must be consistently positive or negative
across the chromosome. We consider only “informative variants” as those where |m(C, s)|>
0.25 is separated from 0. Suppose there are n+ informative variants with m(C, s)> 0 and n- with
m(C, s)< 0; the sample separation measure M(C) is defined as max(n+, n-) /(n+ + n-). That is,
the fraction of variants exhibiting the “majority sign”. We assign parental origin whenM(C)>
0.75. Using this approach we were able to assign parental origin to 76% (313 out of 411) of the
quasi-founders’ chromosomes, with 279 having M(C)> 0.99 (Fig S6 in S1 Text). Including non-
quasi-founders, we were able to assign parental origin to 93% of the sample.

Pedigree-based Imputation
Once the IBD clique dictionary is constructed, imputation is performed separately and in par-
allel for each variant present in one or more of the 98 whole genome sequences. The main idea

Fig 3. Parental origin assignment process. For a given quasi-founder, we denote his/her haplotypes by A and B, and (by convention) the first is paternal
and the second is maternal. At each SNV, we calculate a 2×2 matrix of kinships (Step 1) between each of the proband’s parents and each subject in the A
and B IBD cliques. Using these, we generate a parental haplotype separation measure m (Step 2). If m�1, A and B are already correctly ordered; if m�-1,
they should be swapped. If the majority of the SNVs agree on the same swapping (indicated by a sample separation M sufficiently close to 1 in Step 3), we
assign paternal origin and reorder A and B accordingly (Step 4).

doi:10.1371/journal.pcbi.1004139.g003
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behind the approach is that each sequencing-based allele that is phased on a particular haplo-
type can be imputed to all the haplotypes in its IBD clique. First, homozygous genotypes are
phased, and the alleles and indices of the two haplotypes are placed into a queue. We remove
the first haplotype from the queue, and impute all haplotypes in its IBD clique with the same
allele. If these include haplotypes of heterozygous genotypes in the 98 sequenced individuals,
they can now be phased. For each such individual, we add its other haplotype index and allele
to the end of the queue. The next entry in the queue is then similarly processed, except that,
when there is conflicting allele information within a clique (when a two-third majority vote
does not exist), no haplotype is imputed. We process queue entries one by one until the queue
becomes empty.

Using this approach, we imputed 7M variants (Table 2, columns 4–5) in about 75,000 CPU
on Beagle, a 150 teraflops, 18,000-core Cray XE6 supercomputer at the Computation Institute,
a joint initiative between The University of Chicago and Argonne National Laboratory [35].
Finding and indexing IBD segments into cliques takes the majority of computing time in the
PRIMAL pipeline. The dominant complexity term is O(n2s), where n = 1415 is the number of
genotyped individuals and s = 271,486 is the number of framework markers (S1 Table in
S1 Text, columns 2–3).

The overall genotype call rate was 76.2%. The mean individual call rate was 75.5%; 547 out
of 1317 individuals (41%) had call rate� 80%. Call rates were higher in regions with higher
framework SNV density, lower recombination rate and farther from the telomeres (Fig S7a in
S1 Text). Fig S8a in S1 Text shows that the MAF distributions of European ultra-rare SNVs
(MAF = 0 in the 1000 genomes CEU database) are comparable in both the 98 sequenced Hut-
terite sample set and the 98 sequenced + 1,317 imputed Hutterites (n = 1,415). Furthermore,
we compared the Alternative Allele Frequency (AAF) in the Hutterites and CEU sample set.
The Hutterite and CEU AAF were highly correlated (Fig S8b-d in S1 Text). Out of 6,715,275
variants that were not A/T or C/G SNVs, 5,299,330 had similar CEU and Hutterite AAFs (ab-
solute difference< 0.1); there were more variants with larger AAF in the Hutterites than in
CEU compared to the opposite case (880,912 vs. 534,012 variants).

Cross Validation
To check the accuracy of PRIMAL imputed genotypes, their concordance with the framework
genotypes was assessed. First, we phased the framework (Affymetrix) genotypes, identified IBD

Table 2. Imputation performance.

Metric PRIMAL, Cross-Validation PRIMAL WGS Variants PRIMAL+LD WGS Variants

# Variants imputed 53,861 7,008,666 7,008,666

# Samples 1,317 1,317 1,317

Concordance 99.8 ±. 01% - 99.3%*

Het concordance 99.8 ±. 01% - 99.3%*

Phasing rate 99.6 ±. 01% 99.4% 99.4%

Allele call rate 91.4 ± 8% 91.6% 95.1%

Genotype call rate 75.5 ± 14% 76.2% 87.3%

PO assignment rate 80.0 ± 15% 80.0% 83.0%

PRIMAL and PRIMAL combined with LD-based imputation (PRIMAL+LD) performance and calls rates for the 1,317 Hutterites whose genomes were not

sequenced. The concordance and het concordance figures marked by asterisks were based on the concordance of the PRIMAL and LD-based imputation

on the set of genotypes called by both. Cross-validation SNVs were chosen from the framework SNVs as explained in the text.

doi:10.1371/journal.pcbi.1004139.t002
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segments and indexed them into cliques. We then masked the framework genotypes of the
1,317 individuals whose genomes were not sequenced, imputed the framework genotypes, and
calculated the concordance between the imputed and true genotypes over a sample of 53,861
framework SNVs (sorted by base-pair position, every 5th framework SNV was picked instead
of using all SNVs to save computing time). The concordance was close to a 100% regardless of
MAF (Fig S7c in S1 Text). In addition, we also tested for heterozygote concordance rate within
the variants with MAF< 5% because the concordance over all genotypes would be high even if
they were randomly imputed. The heterozygous concordance also approached 100%.

Comparison with Genotypes from an Independent WGS Experiment
We also calculated concordance rates between imputed genotypes based on the 98 Hutterites
sequenced by Complete Genomics and genotype calls for 14 Hutterites who were sequenced on
the Illumina platform as part of a separate study [25]. The concordance rate for each subject
was larger than 99% (the concordance rates ranged from 99.3% to 99.8%) with an overall aver-
age of 99.7%. This overall rate is very similar to the rate of concordance obtained from the sub-
ject sequenced on both platforms.

Increasing Call Rates Using LD-based Imputation
The use of cliques significantly speeds up imputation and also allowed us to determine that the
maximum predicted imputation rate is 85% for the framework SNVs. However, while geno-
types imputed by PRIMAL had high accuracy, the call rate (77%) is lower than the maximum
predicted rate, most likely due to imperfect phasing of variants without a consensus allele. To
mitigate this problem, we filled in as many genotypes as possible for the remaining 23% of vari-
ants using LD-based imputation. We chose IMPUTE2 [11] because of its ease of use, high
speed and high imputation accuracy. Importantly, we used the high quality pedigree-based
phased haplotypes from the 98 whole genome sequenced individuals as the reference panel.
This boosted the IMPUTE2 accuracy (evidenced by the measures described below) and reflects
the accuracy of our phasing. To obtain data that are consistent in format and accuracy to those
generated by PRIMAL, IMPUTE2 genotype probabilities were converted to hard genotype
calls only if the maximum probability among the three possible genotypes was> 99%; other-
wise, they were not called. When using this criterion, the concordance rates between IMPUTE2
genotypes and those based on sequencing in the 14 individuals range between 99.5 and 99.8%
with an overall average of 99.7% (identical to PRIMAL).

As a QC check on this second round of imputation, we calculated overall as well as hetero-
zygote concordance rates between PRIMAL and IMPUTE2 imputed SNVs. All genotypes
called by both methods and called as heterozygous by at least one of them were included. IM-
PUTE2-imputed genotypes were retained only if the heterozygous concordance rate was�
99% and the MAF� 1% (heterozygous concordance rate drops significantly for variants with
MAF<1%—Fig S9 in S1 Text). Finally, the PRIMAL+IMPUTE2 combined method yielded an
overall call rate of 87.3% with> 99% estimated accuracy (Table 2).

We also used LD-based imputation to increase the parent of origin (PO) assignment for
each allele. First, we created a data set with twice the number of samples (2N). For each subject,
we created “paternal haploid” and “maternal haploid” sets. For unphased genotypes, the hap-
loid entries were set to missing. We ran IMPUTE2 on the haploid data set. We then assigned
parental origin to each genotype called by IMPUTE2 in the original data set only if both the
PO of the paternal and maternal haplotypes were imputed with maximum probability> 99%
and were compatible with the genotype. PRIMAL alone assigned PO to 80% of alleles, but with
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IMPUTE2 directly imputing from PO-assigned haplotypes, we increase the PO call rate to
83%.

Discussion
Despite trends over the past nearly 20 years toward genetic association studies in large case-
control samples [36], there have been strong arguments for, and a recent re-appreciation of the
advantages of family studies for understanding the genetic architecture of complex phenotypes
[37–39]. For example, family-based studies are particularly well suited for discovery of rare dis-
ease-associated variants and revealing parent-of-origin effects while minimizing potential con-
founding due to population substructure and genetic and environmental heterogeneity.
Moreover, the family structure itself allows more extensive quality control checks of genotype
data and ultimately more accurate genotype calls. Now, in the era of whole exome and whole
genome sequencing, studies in families and founder populations offer a new, powerful frame-
work for mapping studies because the genome or exome sequences of relatively few ‘founders’
are needed to impute highly accurate whole genome genotypes to other members of the pedi-
gree with only framework genotypes.

We describe in this paper a fast phasing and computationally efficient imputation method
(PRIMAL) that combines the advantages of pedigree-based and LD-based methods and ob-
tains accurate genotypes (>99%) and high (87%) call rates in 1,317 related Hutterites using
whole genome sequencing data on only 98 related individuals, providing unprecedented cover-
age of genetic variation in a population sample with extensive phenotyping and demographic
data. The call rates and, to a lesser degree the concordance rates, are correlated to the degree of
relatedness between the imputed individuals and the sequenced subjects. Fig S16 in S1 Text il-
lustrates these relationships, and suggest that the rates are mostly influenced by the few se-
quenced subjects who are most related to the imputed individual. Note that similar accuracy
can be achieved using IMPUTE2 (as detailed above), with a call rate of 84% when restricting to
the high quality called genotypes.

In addition, PRIMAL allows accurate parent-of-origin assignments for each allele as well as
imputed genotypes of recent ancestors (or other members of the pedigree) with no DNA or
available genotype information. This additional information is unique to this approach, and is
crucial for many analyses, such as those looking for parent-of-origin effects in associated vari-
ants, and imprinting. PRIMAL can be applied to other founder populations or to large families
to provide accurate and nearly complete genotype coverage for relatively very small cost and
minimal computation time. The quantity and quality of the genotypes generated using PRI-
MAL will depend on several factors including the family structures, the extent of IBD sharing
between the reference and target subjects, and the quality of framework genotypes that are
used for inferring the IBD cliques.

In addition to comprehensive surveys of the effects of all variants present in the Hutterite
genomes on risk for common and Mendelian diseases and on disease-associated quantitative
phenotypes, these data will facilitate association studies with the> 460,000 variants that are
rare (<1%) in European populations but have risen to common (>5%) frequencies in the Hut-
terites and investigations of the effects of maternally-inherited versus paternally-inherited al-
leles on disease risks and quantitative trait values, and will allow the incorporation of the
additional information from IBD sharing in more efficient genetic association studies. Such
studies in the Hutterites and other founder populations should yield new insights into the ge-
netic architecture of common diseases, gene expression traits, and clinically relevant biomark-
ers of disease, and ultimately provide outstanding opportunities for personalized medicine in
these well-characterized populations.
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