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Abstract
Experiencing certain events triggers the acquisition of new memories. Although necessary,

however, actual experience is not sufficient for memory formation. One-trial learning is also

gated by knowledge of appropriate background information to make sense of the experi-

enced occurrence. Strong neurobiological evidence suggests that long-term memory stor-

age involves formation of new synapses. On the short time scale, this form of structural

plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the den-

drite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO)

constitutes the neural correlate of background information-gated (BIG) learning. The hy-

pothesis is based on a fundamental neuroanatomical constraint: an axon must pass close

to the dendrites that are near other neurons it contacts. The topographic organization of the

mammalian cortex ensures that nearby neurons encode related information. Using neural

network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning.

We model knowledge as associations between terms, concepts or indivisible units of

thought via directed graphs. The simplest instantiation encodes each concept by single

neurons. Results are then generalized to cell assemblies. The proposed mechanism results

in learning real associations better than spurious co-occurrences, providing definitive

cognitive advantages.

Author Summary

We introduce and evaluate a new biologically-motivated learning rule for neural networks.
The proposed mechanism explains why it is easier to acquire knowledge when it relates to
known background information than when it is completely novel. We posit that this
“background information-gated” (BIG) learning emerges from the necessity of neuronal
axons and dendrites to be adjacent to each other in order to establish new synapses. Such
basic geometric requirement, which was explicitly recognized in Donald Hebb’s original
formulation of synaptic plasticity, is not usually accounted for in neural network learning
rules. More generally, the level of abstraction of current computational models is insuffi-
cient to capture the details of axonal and dendritic shape. Here we show that “axonal-
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dendritic overlap” (ADO) can be parsimoniously related to connectivity by assuming opti-
mal neuronal placement to minimize axonal wiring. Incorporating this new relationship
into classic connectionist learning algorithms, we show that networks trained in a given
domain more easily acquire further knowledge in the same domain than in others. Surpris-
ingly, the morphologically-motivated constraint on structural plasticity also endows neu-
ral nets with the powerful computational ability to discriminate real associations of events,
like the sight of a lightning and the sound of the thunder, from spurious co-occurrences,
such as between the thunder and the beetle that flew by during the storm. Thus, the selec-
tivity of synaptic formation implied by the ADO requirement is shown to provide a funda-
mental cognitive advantage over classic artificial neural networks.

Introduction
Reading about a newly discovered insect species, an entomologist can rapidly learn various de-
tails of their development, communication, and mating. Studying the same material, it is much
harder for someone with different expertise to learn the same facts. While it is commonsense
that new information is easier to memorize if it relates to prior knowledge, the cognitive and
neural mechanisms underlying this familiar phenomenon are not established. More specifical-
ly, one-trial learning of “neutral” events, as opposed to emotionally charged or surprising expe-
riences [1], is gated by knowledge of appropriate background information to make sense of the
experienced occurrence [2, 3]. Consider experiencing for the first time the co-occurrence of a
buzzing sound with the sight of a beetle (Fig. 1A). Learning that “beetles can buzz”may depend
on background information that renders the “buzzing beetle” association sensible. Prior knowl-
edge might include that wasps, flies, and bees also buzz. Such facts are relevant because they in-
volve related concepts: these insects share several common associations with beetles (e.g. small
size, crawling, flying, erratic trajectories). The remainder of this paper refers to this cognitive
phenomenon as “background information gating” or BIG learning.

Mounting neurobiological evidence implicates formation of new synapses in long-term
memory storage [4, 5, 6]. Building on those ideas, we propose a possible neuroanatomical cor-
relate of BIG learning. The hypothesized mechanism is initially best illustrated under the over-
simplifying assumption that associations are stored by connecting “grandmother” neurons,
each corresponding to individual concepts (Fig. 1B). The computational simulations presented
in this work, however, demonstrate that this same concept also seamlessly works with distrib-
uted neuronal representations.

In order to establish a synapse, according to Hebbian theory, the axon and dendrites of the
two co-activated neurons must be juxtaposed [7]. We henceforth refer to this “potential syn-
apse” configuration [8] as axonal-dendritic overlap or ADO. Intuitively, the reason the axon
passes near the dendrite is because it is connected to other dendrites in that vicinity. Why then
is the potential post-synaptic dendrite close to other dendrites contacted by the potential pre-
synaptic axon? Wiring cost considerations suggest that neurons should be placed nearby if
they receive synapses from the same axons [9]. If knowledge representation is stored in pair-
wise neural connections [10], this particular topology should correspond to relevant back-
ground information. Here we formulate this notion quantitatively with a new neural network
learning rule, demonstrating by construction that ADO is a suitable mechanism for
BIG learning.

In our model, neural activation reflects associations sampled from various graphs taken as a
simplified representation of everyday experience. Specifically, every instant of experience is
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Fig 1. Instantiation of background information-gated (BIG) learning by the neuroanatomical mechanism of axonal-dendrite overlap (ADO).
A. Cognitive model: Previously acquired background information, reflected in the structure of the association network, provides a gating mechanism for the
formation of novel associations. The ability to acquire the new piece of information (associating the buzz to the beetle) depends on prior knowledge of
relevant facts: in this example, that other buzzing animals (e.g. wasps) fly erratically. The green fonts a, b, c, and d refer to the proximity formula (also in
green), fully described in the Materials and Methods. B. Neural correlate: In this simplified (“grandmother” cells) model, each concept of panel A is
represented by a single neuron, with axonal and dendritic trees drawn respectively in red and blue. The axon of the “Buzzing” neuron has a synaptic contact
with the dendrite of the “Wasp” neuron. Thus, it must pass close to the dendrites of other nearby neurons. Neurons are likely to be near each other if they
receive synapses from the same axons. Here, “Beetle” is near “Wasp” as they both receive synapses from the axon of the “Erratic Flight” neuron. Thus, prior
knowledge of relevant background information, instantiated by the three existing synapses, provides proper conditions to learn the new association, i.e.
forming the “Buzzing”-“Beetle” synapse.

doi:10.1371/journal.pcbi.1004155.g001
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represented as a subset of co-occurring elementary observables, each corresponding to a node
of a “reality graph,” in which edges denote probability of co-occurrence (see S1 Text 1.1 for a
more extended description). We study networks pre-trained with an initial connectivity by
comparing their ability to learn new information that is related or unrelated to prior knowl-
edge. Such pre-existing background information may derive from repetition learning [11] or
from experience earlier in life: if the BIG ADO were enforced from the start in a fully discon-
nected network, no new synapses could ever form. The simplest instantiation encodes each
concept by single neurons; results are then shown to generalize robustly to realistic cell assem-
blies. Noticeably, the proposed mechanism results in learning real associations better than spu-
rious co-occurrences, providing definitive cognitive advantages.

Materials and Methods
The original simulation software used in this work was written in R, and the source code is
freely available at http://krasnow1.gmu.edu/cn3/BigAdoAllCode.zip. Here we explain the re-
search design pertaining to the findings reported in the main text. The detailed methodologies
are more thoroughly described in S1 Text 2.1–2.4.

Neural Network Model and the BIG ADO Learning Rule
This work assumes the classic model of neural networks as directed graphs in which nodes rep-
resent neurons and each directional edge represents a connection between the axon of the pre-
synaptic neuron and the dendrite of the post-synaptic neuron. The network only contains ex-
citatory neurons. In this model, formation of new binary connections (a form of structural plas-
ticity) underlies associative learning, and knowledge is encoded by the connectivity of the
network [10].

Activity-dependent plasticity is traditionally framed in terms of the Hebbian rule: “When
an axon of cell a is near enough to excite cell b and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes place in one or both cells such that a’s effi-
ciency, as one of the cells firing b, is increased” [7]. Many variants of Hebbian synaptic modifi-
cation exist [12], often summarized as ‘neurons that fire together wire together’. This popular
quip, however, misses the essential requirement, clearly stressed in Hebb’s original formula-
tion, that the axon of the pre-synaptic neuron must be sufficiently close to its post-synaptic tar-
get for plasticity to take place.

The learning rule introduced in this work implements a form of structural plasticity in neural
networks that incorporates the constraint of proximity between pre- and post-synaptic partners
or axonal-dendritic overlap (ADO): if two neurons a and b fire together, a connection from a to
b is only formed if the axon of a comes within a threshold distance from a dendrite of b. In
mathematical terms, this condition can be defined as a non-symmetric real-valued function be-
tween neurons corresponding to the distance from the axon of the candidate pre-synaptic neu-
ron to the dendrite of the post-synaptic neuron.

Now we introduce an approximation to express the axonal-dendritic overlap between neu-
rons in terms of the connectivity of the rest of the network on the basis of two assumptions.
The first assumption is that the axon of a passes near the dendrite of neuron b because it con-
nects to another neuron c that is near neuron b. This assumption corresponds to a principle of
parsimony in the use of axonal wiring: since the goal of axons is to carry signals to other neu-
rons, the locations of axonal branches are part of trajectories towards synaptic contacts. The
second assumption is that if neurons b and c are near each other, it is because they are both
contacted by the same set of axons, which we generically call d (Fig. 1). This assumption pre-
sumes optimal neuronal placement once again to minimize axonal wiring, consistent with the
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existence of topographic maps e.g. in the mammalian cortex [13], but also in invertebrate ner-
vous systems [14].

These two assumptions can be combined into the assertion that the tendency of the axon of
neuron a to overlap with a dendrite of neuron b increases with the number of neurons c and d
such that a is connected to c and d is connected to both b and c. This idea is quantified by the
following proximity (π) function:

pða; bÞ ¼ Sc;dðoa;c�od;c�od;bÞ;

where ωa,c equals 1 if and only if the axon of a connects to the dendrite of c, and 0 otherwise
(likewise for ωd,c and ωd,b), and the indices c and d run over all neurons in the network (see also
Fig. 1A). The above formula can be elegantly expressed as the product of three matrices:

P ¼ Ω�Ω
t�Ω;

where Ω = {ωm,n} is the (binary) network connectivity (also called adjacency matrix), with the
number of rows and columns equal to the number of neurons in the network, and each row
and column representing a neuron’s pre- and post-synaptic contacts, respectively, with all
other neurons; Ωt is the transpose matrix in which every row is substituted with the corre-
sponding column and vice versa (this operation is equivalent to switching axons and dendrites
for each neuron); andP = {π (m,n)} is the proximity matrix, which (like Ω) is square and non-
symmetric.

The results presented in the main text are obtained by choosing a value for the proximity
threshold θ in order to discriminate between proximal and distant pairs of neurons: a is deemed
proximal to b, that is there is a potential synapse between a and b, whenever π (a,b)> θ. The
proximity threshold is one of several parameters that have to be fixed when running simulations
of an actual system; robustness of the mechanism is discussed in S1 Text 3.2. As an alternative
to such a discontinuous threshold, we also implemented a probabilistic criterion for relating po-
tential connectivity to proximity. In this case, the probability of a and b being proximal was not
a binary function of proximity but it instead followed a sigmoid curve. This probabilistic variant,
while introducing an additional source of noise in the simulations, yielded results (also de-
scribed in S1 Text 3.2) that confirmed the main results of this work. However, this more general
approach also increases the complexity of the model, by requiring the specification of an addi-
tional parameter to define the slope of the sigmoid.

Note, in a similar vein, that the above proximity formula seamlessly extends to non-binary
connectivity matrices. For instance, network connectivity could be expressed as a matrix Ω re-
cording not just the existence of a connection between two neurons, but the number of their
physical contacts or other relevant measures, such as the stability of the synapses [15]. In the
simple formulation used in this work, which presumes optimal neuronal placement to mini-
mize axonal wiring, high proximity values make axonal-dendritic overlap likely, but not
absolutely warranted.

The learning rule described above relates closely to earlier works proposing similar learning
mechanisms to explain generalization and grammatical rule extraction. Most strikingly, a
learning procedure with a very similar structure was described [16] to explain a generalization
of a novel sequence (b-d) based on experienced sequences (a-c), (a-d), and (b-c). Despite this
similarity (which we discovered during peer-review), the formulation introduced in the current
work was derived independently, starting from the interpretation in terms of axonal-dendritic
overlaps and structural plasticity. More generally, circuit connectivity, synaptic plasticity, and
neuronal placement are interrelated in a broad class of other common neural network ap-
proaches, including Kohonen-type self-organizing maps [17]. In our model, the ADO
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constraint on structural plasticity is reduced to simple topological proximity rather than physi-
cal distance between neurons. Moreover, the application to background information-gated
learning, the neural network implementation, and the analyses presented here are all novel.

To explain why axonal-dendritic overlap (and the approximation captured by the above
proximity formula) constitutes the neural correlate of background information gating (BIG),
we revert to the (admittedly simplistic) “grandmother cell” interpretation in which each indi-
vidual neuron represents a corresponding observable (Fig. 1B). With such a one-to-one map-
ping in place, existing synapses reflect learned associations between previously co-occurred
observables (solid arrows in Fig. 1A), altogether constituting already acquired knowledge.
When witnessing a new co-occurrence between the two observables a and b, the association of
their internal representations will only be allowed if consistent with prior relevant knowledge,
ultimately corresponding to background information.

Pre-Training and Testing Design
This work investigates the computational characteristics of the BIG ADO learning rule starting
from well-defined reality-generating graphs (described in the next sub-section of these Materi-
als andMethods). In the general simulation design, the network of the agent’s internal represen-
tation is created by copying the set of nodes from the reality-generating graph, but connecting
them by sampling only a subset of edges. This process produces a network effectively encoding
a certain amount of knowledge of reality consistent with prior experience. The same result
would be obtained by “pre-training” a(n initially) fully disconnected network with the common
“firing together, wiring together” rule (without BIG ADO filter) and sequentially activating
pairs of neurons corresponding to the sampled subset of the reality-generating graph.

This design models the agent’s representation of background information related to previ-
ously experienced aspects of reality. Such a set-up allows investigation of the effect of the BIG
ADO filter on subsequent learning. In the testing phase, further experience is sampled from
not-yet learned edges of the reality-generating graph. These can be chosen so as to represent
co-occurrences of observables more or less closely related to the pre-trained knowledge (mim-
icking expert or novice agents, respectively). Specifically, when initially connecting the neural
network, we select the pre-training subset of edges non-uniformly from the reality-generating
graph, such that distinct groups of nodes are differentially represented. For example, if the neu-
ral network is pre-trained with 50% of the edges from the reality-generating graph, three quar-
ters of these edges can be sampled from half of the nodes, and one quarter of the edges from
the other half. The resulting neural network is an “expert” on half of the reality-generating
graph (because it knows a majority of the corresponding structure), and a “novice” on the
other half (where it only knows a minority of the structure). In the “learning test” phase, the
network is presented with new edges selected either from within the domain of expertise (that
is, from the one quarter of edges not used in pre-training) or from the outside (from the three
quarters of unused edges in the other half of nodes). The network learns new edges only if the
proximity of the corresponding nodes is above threshold.

Moreover, two (or more) edges of the reality-generating graph can be presented at once (e.g.
x-y and w-z) to allow measurement of differential learning between the “real” and “spurious”
associations. The former types reflect actual edges in the reality-generating graph (i.e. x-y and
w-z), while the latter correspond to “random” co-occurrences (x-w, x-z, y-w, and y-z).

The requirement of axonal-dendritic overlap for the formation of new connections is imple-
mented by ways of the proximity function, which itself depends on pre-acquired connectivity.
Thus, if the BIG ADO filter were in place from the beginning, no synapses would ever form in
the network. The above pre-training design, which circumvents this impasse, can be justified
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by a two-stage developmental model [18]. Early in development, neurons are still optimizing
their placements, and axonal branches undergo frequent rearrangements; in the subsequent
mature stage, experience-dependent synapse formation and pruning are still common, but
neuronal wiring is much more stable. Nevertheless, the “pre-training”model adopted here is
also consistent with non-developmental scenarios. Even in adulthood, growth processes can be
triggered by continuous repetition or by neuromodulation reflecting emotionally salience (e.g.
shock, pleasure, etc.). These conditions can explain the acquisition of prior knowledge (back-
ground information). The BIG ADO filter, in contrast, constitutes a neuroanatomically-in-
spired model of one-trial, emotionally neutral learning.

Word Association Graph
The dataset of word associations used in the first test of the BIG ADO learning rule (Fig. 2A-B)
was derived from a compilation of noun/adjective pairings in Wikipedia. In its original form, it
consisted of 32 million adjective-modified nouns (http://wiki.ims.uni-stuttgart.de/extern/
WordGraph). After identifying nouns corresponding to animals and household objects, we
skimmed infrequent adjectives and removed ambiguous terms (see S1 Text 2.1 for exact proto-
col). The resulting bipartite graph consisted of 50 animal nouns, 50 household object nouns,
285 adjectives and 2,682 edges (1,324 for animals and 1,358 for objects). Next, two networks
were pre-trained by connecting half of the noun-adjective pairs from the graph. One of the net-
works associated more edges pertaining to animal nodes (becoming an animal expert and ob-
ject novice), while the other associated more edges pertaining to object nodes (object expert,
animal novice). Moreover, the amount of specialization was also varied to mimic different lev-
els of specialization. This was achieved by varying the ratio between animals and objects
learned in pre-training. Learning was then tested on the other half of the noun-adjective pairs
using the BIG ADO rule with a proximity threshold (θ in equation 1) of 6. In the random
equivalent graphs, edges between 100 “noun” nodes and 285 “adjective” nodes were generated
stochastically by preserving both the overall noun and adjective degree distributions of the
word graph. In this “control” condition, networks were pre-trained with expertise on one arbi-
trary subset of nodes.

The “intrinsic background information” of a noun class can be quantified from the bipartite
graph with the Proximity function and Pearson’s product-moment correlation coefficients
(S1 Text 3.1). Specifically, consider the proximities of a noun with the set of all adjectives: the
correlation of these values can be then computed between any two nouns. The intrinsic back-
ground information of a noun class will be reflected by a statistically larger mean correlation
coefficient over all pairs of nouns within that class than over all pairs of nouns from two differ-
ent classes. The mean correlation was significantly greater for animal-animal than the animal-
object pairs (0.69 vs. 0.47, p<10-4), while there was no statistical difference (p>0.1) between
the mean correlations of the object-object (0.48) and object-animal (0.46) pairs (see S1 Text 3.1
for details).

BIG Learning in Watts-Strogatz Networks
To test the BIG ADO learning rule in more broadly applicable cases than noun-adjective asso-
ciations, we generated small-world graphs adapting the algorithm of Watts and Strogatz [19].
Specifically, unless otherwise noted, Watts-Strogatz graphs were initially produced with degree
20 and 10% rewiring probability. Next, a random direction was selected for 90% of the edges,
while the remaining 10% was made bidirectional. A random 20% of the nodes, along with all
their incoming edges, were then labeled as belonging to the agent’s area of expertise. In the pre-
training phase, networks were wired with a random set of edges of the graph, with the
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constraint that half of them must belong to the area of expertise, unless otherwise specified.
The resulting connectivity consisted of a sub-graph of the initial graph, whose nodes in the
area of expertise had higher average degree than those outside the agent’s expertise. In the
“grandmother cell” implementation (Fig. 3), the BIG ADO threshold was set at 1. When the
size of the graph (N) was varied to assess the robustness of the BIG ADO findings with respect
to the parameter space, the degree (d) and the number of associations (edges) used to pre-train

Fig 2. Word association with grandmother neurons. A. Adjective-noun associations in different domains of expertise: Portion of the bipartite association
graph extracted fromWikipedia based on adjective pairing frequency for animals (red) and objects (blue) nouns. Arrows represent associations that have
been learned during pre-training (solid lines) as well as those present in the bipartite graph but not used for pre-training (dotted lines). This example illustrates
greater pre-training with animal associations (“animal expert”). Consequently, this network will be more likely to acquire newly presented associations that
belong to the animal class (yellow highlight) as opposed to the object class (orange highlight). B. Background information-gated learning in the word graph:
Proportion of newly acquired associations in the bipartite association graph. Networks were pre-trained with half of the edges, varying the amount of
expertise from highly specialized (top row: 40% animal edges and 10% object edges or vice versa) tomildly specialized (middle: 30%-20% animal-object
edges or vice versa) to not specialized (bottom: 25%-25%). A third network was pre-trained with the same proportions of two arbitrary subsets of edges in a
random equivalent bipartite graph. The expert groups (left to right pairs in each row: animal, object, random) always outperformed the “novice” group (object,
animal, random). The improved learning for animals relative to object (and random) cases is due to intrinsic background information (see text).

doi:10.1371/journal.pcbi.1004155.g002
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the network (T) also varied as d = N/50 and T = N×d/4, in order to keep the fraction of associa-
tions learned during pre-training constant.

Extension of the ADO Rule to Cell Assemblies
Neural network simulations with realistic cell assemblies (Fig. 4) implemented the Zip Net
model [20], a computational enhancement of classic Associative Nets [21] that ensures optimal
Bayesian learning [22]. Briefly, learning the association between two concepts A and B

Fig 3. The cognitive value of BIG computations. A. BIG ADO in generic co-occurrence graphs: Simplified representation of theWatts-Strogatz graph-
based model. During pre-training, half of the associations the network learns (solid lines) correspond to edges terminating in 20% of the nodes (black:
“domain of expertise”). The other half is sampled from the remaining 80% of the graph (gray: novice domain). After pre-training, the ability to learn new
(dashed) associations is tested both within and outside the domain of expertise. If two or more pairs of nodes are co-activated at once, spurious associations
(dotted) could be learned across the pairs.B. BIG learning in small-world graphs: Differential ability of the pre-trained network to acquire new associations
within (72.1±2.3%) and outside (3.9±0.4%) domain of expertise. C. Differentiating real from spurious associations: To discern the ability to learn real versus
spurious associations in Watts-Strogatz graphs, pairs of new co-occurrences were presented, such as “buzzing beetle” and “buzzing grapefruit” (as if seeing/
hearing a buzzing beetle while eating a grapefruit). The former is real (it belongs to the Watts-Strogatz graph), while the latter is spurious. Almost 13% of real
associations were learned, including both those within and outside domain of expertise (black and gray lines in Fig. 3A), as opposed to less than 2% of
spurious associations (dotted line in Fig. 3A).

doi:10.1371/journal.pcbi.1004155.g003
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represented respectively by neurons a1, a2, . . ., as and b1, b2, . . ., bs, entails strengthening (or
forming) synapses between co-active neurons and weakening or eliminating those between ac-
tive and inactive neurons. Specifically, in the “incidence”matrix M with rows and columns re-
spectively representing pre- and post-synaptic neurons, the entries in columns bj’s of all ai’s
rows are increased while the remaining entries are decreasing by an appropriate amount to
keep the total synaptic input constant (S1 Text 2.3).

In the pre-training phase, the connectivity matrix is generated from the incidence matrix
simply by keeping a fixed number of synapses per neuron (those with highest weight), and set-
ting the rest to zero. During BIG ADO testing, two neurons a and b can only form a new

Fig 4. Generalization of ADO to biologically realistic mechanisms. A. BIG learning with cell-assemblies in small-world graphs of different connectivity:
Ratios between the percentages of associations learned in the novice vs. expert domain (bottom surface) and for spurious vs. real co-occurrences (top
surface) with varying graph degrees and rewiring probabilities when using cell assembly representation of Watts-Strogatz graphs. Lower rewiring
probabilities and, to some extent, higher degrees improve the ability to discriminate real from spurious co-occurrences. These conditions correspond to
highly clustered (as opposed to fully random) graphs. The ability to learn new associations within the domain of expertise remains more than double
compared to a novice domain.B. Robustness of the BIG ADOmechanism: Ratios between the percentages of associations learned in the novice vs. expert
domain with cell assembly representation of Watts-Strogatz graphs when varying (typically one at a time) several model parameters. The full ordinate scale is
used to allow comparison with panel C, but the same data are also expanded in the inset to emphasize the invariance of the results (error bars: standard
deviation). All parameter values are reported in the table legend below the plot (with default values in bold). The parameters and their abbreviations are: the
number of nodes in the Watts-Strogatz graph (N), which also implies a change in the graph degree, d (kept at 2% of N) as well as the number of pre-training
associations (corresponding to N×d/4, that is one half of the pool of available associations); the number of neurons in the network (Nn) and the cell assembly
size (S), whereas N was also varied together with S (SNn) so as to keep their ratio constant at 200; the activation threshold (AT), i.e. the fraction of neurons in
the cell assembly that need to be synchronously active in order to “identify” the node of the graph represented by that assembly; the firing threshold (FT), i.e.
the proportion of presynaptic neuron required to fire in order to activate a postsynaptic neuron; the matrix load (ML), i.e. the constant fraction of presynaptic
neurons connected to each postsynaptic neuron in the cell assembly learning model; and the proximity load (PL), i.e. the (top) fraction of axonal-dendritic
overlaps throughout the network that are considered to be potential synapses (see also S1 Text 2.4). C. Optimal conditions for one-trial learning of real but
not spurious associations: Ratios between the percentages of associations learned for spurious vs. real co-occurrences with cell assembly representation of
Watts-Strogatz graphs when varying the same model parameters as in Fig. 4B. The most tunable parameters are the firing threshold (neuronal excitability)
and the proximity load (strength of BIG ADO filter: see S1 Text 2.4).

doi:10.1371/journal.pcbi.1004155.g004
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synapse upon co-activation if they have an axonal-dendritic overlap, which is expressed as the
triple matrix product ΩΩt

Ω computed from the positive values of the incidence matrix
(S1 Text 2.4). Lastly, retrieval works as a classic dendritic sum: given a stimulus A’ represented
by neurons a’1, a’2, . . ., a’s, all the entries in the rows corresponding to the ai’s are added up for
each column, and those sums exceeding a given firing threshold correspond to activated (post-
synaptic) neurons. If enough neurons belonging to the same cell assembly B’ fire, concept B’
gets activated.

Results

Prior Knowledge Gates Learning of Word Associations by Grandmother
Neurons
We tested the BIG ADO paradigm on a bipartite association graph derived from a compilation
of 32 million noun/adjective co-occurrences in Wikipedia. We identified two classes of nouns
(animals and household objects) and pre-trained two networks to learn a subset of the noun/
adjective associations, each with “expertise”mostly in one of the two noun classes (Fig. 2A).
Specifically, one network was pre-trained with a greater proportion of animal/adjective associa-
tions than of object/adjective associations (and vice versa for the other network). BIG learning
facilitated networks to acquire new information that was related to the information already
stored. Moreover, the magnitude of this phenomenon increased with the level of specialization
between animals and objects (Fig. 2B). Note that, even in their “novice” domain of knowledge,
networks cannot be completely “naïve.” Even if the pre-trained proportion of “novice” edges is
lower than in the domain of expertise, it must still be non-zero or else no subsequent associa-
tions could be learned.

Interestingly, the effect was greater for animal expertise than for object expertise. Further-
more, more animal associations were learned when the network was pre-trained with the same
number of animal and object edges. Both of these differences can be explained by two indepen-
dent forms of background information: one intrinsic in the source data, and another dependent
on the sample used to pre-train the network. The former was eliminated by repeating the simula-
tions on random equivalent graphs (Fig. 2B: right bar pairs). Direct analysis of Pearson’s coeffi-
cients of the bipartite graph Proximity function (see Materials and Methods) confirmed that the
noun/adjective association is more specific for animals than for objects (0.69 vs. 0.48, p<10-4).

BIG Learning in Small-World Graphs: Ability to Differentiate Real from
Spurious Associations
To validate the above results against broadly applicable cases besides word associations, we
tested the BIG ADO learning rule in a general class of random small-world graphs [19] resem-
bling real-world architectures, organizations, and interactions (Fig. 3A). Networks were pre-
trained with samples of associations biased towards an arbitrary subset of nodes. As in the bi-
partite graph, the ADO filter gated subsequent learning of new associations by favoring those
pertaining to this background information (Fig. 3B). Next we investigated the ability of BIG to
differentiate between “real” and “spurious” associations. Most co-occurrences experienced in
everyday life do not reflect real associations, but rather events that happened together by
chance. For example, suppose you were eating a grapefruit while experiencing the buzzing bee-
tle described in the Introduction. Why should buzzing be associated with beetle and not with
grapefruit?

Hebbian models form both associations, relying on later experience to reinforce those that
reoccur and eliminating the others [12], e.g. upon repeatedly dissociated experiences of eating
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a grapefruit without buzz and vice versa. Strikingly, the BIG ADO filter distinguished real from
spurious associations (Fig. 3C), facilitating the ability to learn relevant co-occurrences over “oc-
casional” ones the first time around. In a simple protocol, each experience consisted of the co-
activation of two independent pairs of connected nodes in the Watts-Strogatz graph. The re-
sulting six co-occurrences correspond to two real associations (between the two connected
nodes in each of the pair) and four spurious associations (between neurons across the pairs).

Inspection of the simulation outcomes confirmed that spurious “buzzing grapefruit” co-oc-
currences were not remembered because they lacked relevant background information. In the
pre-trained network, the axon of buzzing overlaps with the dendrite of beetle (high ADO)
thanks to the already acquired buzzing-wasp, flying erratically-wasp, and flying erratically-
beetle associations. Thus, the potential association buzzing-beetle ‘passes’ the BIG ADO filter.
In contrast, buzzing and grapefruit have little if any axonal-dendritic overlap; thus, the corre-
sponding association is not formed according to the BIG ADOmechanism. The learning dif-
ferentials of both expert-over-novice networks and real-over-spurious associations increased
with the bias towards a subset of nodes in the Watts-Strogatz graph, and were observed over a
broad range of model parameters (see S1 Text 3.2 for additional results).

Generalization to Realistic Cell Assemblies
The notion of representing mental states or elementary concepts in single (“grandmother”)
neurons is appealing [23] but unrealistic [24]. Theories and experiments estimate that at least
50–200 cells take part in encoding each unit of thought [25, 26, 27]. Cell assemblies provide for
redundancy, error-correction, and larger storage capacity. We thus extended the BIG ADO
paradigm to cell assemblies. In cell assembly models, acquiring a new association between two
co-occurring events entails formation of new synapses between the neurons representing one
event and the neurons representing the other event. With the BIG ADO filter, forming synapse
between a pair of co-active neurons requires appropriate pre-existing connections similarly to
Fig. 1B, with the notable difference that the same neuron typically belongs to several
cell assemblies.

Among the first (and simplest) neural network models employing cell assemblies are Will-
shaw’s Associative Nets [21]. Simulations with the Willshaw model confirmed the BIG ADO
results with the word association graph (see S1 Text 2.3 for implementation detail and S1 Text
3.2 for analysis). However, the original Associative Nets achieve maximal storage capacity
when cell assembly size is log-proportional to the number of neurons [20]. Such limitation on
cell assembly size makes this approach unsuitable for learning realistic Watts-Strogatz graphs.
A more sophisticated variant of this model, which achieves optimal Bayesian learning [22], at-
tains excellent performance for cell assembly sizes compatible with those estimated for real
brains. This latter model (Zip Nets) enabled cell assembly implementation of the BIG ADO
mechanism with generic Watts-Strogatz graphs. In a typical configuration, the network learned
50% of novel associations within its domain of expertise, but only 9% unrelated to prior knowl-
edge. When two node pairs (sampled randomly within and outside domain of expertise) were
co-activated at once, 30% of real associations were learned vs. 7% of the spurious ones. Sam-
pling only within or outside the domain of expertise, the learning proportions for real and spu-
rious pairs were 50% and 12% or 9% and 3%, respectively.

Similar outcomes were consistently observed across a broad range of connectivity parame-
ters in the small-world graphs. In particular, a substantially higher proportion of associations
were learned within the domain of expertise than outside for any graph degree d (the average
number of edges per node) from 8 to 24 and rewiring probability up to 80% (Fig. 4A). The re-
wiring probability R defines by construction Watts-Strogatz graphs as hybrids between regular
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(R = 0%) and random graphs (R = 100%). The fraction of spurious associations learned was
substantially lower than that of real associations for degrees above 5 and rewiring probability
below 50% (Fig. 4A). This suggests that prior connectivity (ADO) provides a biologically realis-
tic neural correlate of background information and its ability to gate learning in any highly
clustered networks. In clustered networks, two nodes are more likely to be interconnected if
they are both connected to a third node. This is a common property of many types of graphs
that extends beyond Watts-Strogatz networks [28].

Robustness Analysis and Optimal Conditions
Although the adopted connectionist framework is an over-simplified model of nervous sys-
tems, this simplicity also reflects the foundational applicability of the BIG ADO learning rule.
Specifically, the described mechanism does not depend on specific choices of parameters such
as graph dimension, number of associations presented, learning threshold, and others. In par-
ticular, the main effect of axonal-dendritic overlap to selectively gate learning by background
information was consistently reproduced in every combination of parameters conducive to ad-
equate memory storage (Fig. 4B). Moreover, the discrimination between real and spurious as-
sociations with cell assemblies in small-world graphs was also largely unaffected by the choice
of numerical values. Importantly, however, this latter effect varied quantitatively as a function
of selected model parameters (Fig. 4C), such as the proximity load, which determines how to-
pologically close an axon and a dendrite must be to constitute a potential synapse (see section
2.4 of S1 Text). This is the key parameter distinguishing BIG ADO from traditional Hebbian
learning: a new synapse is formed between two neurons when they fire together if and only if a
potential synapse is already present. Thus, certain circuits might be better designed than others
to support efficient one-trial learning depending on their specific plasticity and excitability (see
S1 Text 3.2 for additional results).

Discussion
This report introduced a new biologically-motivated learning rule for neural networks that ex-
plains why it is easier to acquire knowledge when it relates to known background information
than when it is completely novel [11]. The key idea is that this “background information-
gated” (BIG) learning emerges from the necessity of neuronal axons and dendrites to be adja-
cent to each other in order to establish new synapses. Such basic geometric requirement was
explicitly recognized in Hebb’s original formulation of synaptic plasticity, yet is not usually ac-
counted for in neural network learning rules. The claim that existing structure matters for
learning is not new [29]. However, the level of abstraction of current computational models of
brain function fails to capture the details of axonal and dendritic shape.

The critical breakthrough of this work consisted of parsimoniously relating “axonal-dendritic
overlap” (ADO) to circuit connectivity by assuming optimal neuronal placement to minimize ax-
onal wiring. This corresponds to a fundamental neuroanatomical constraint: an axon must pass
close to the dendrites that are near other neurons it contacts. The topographic organization of the
mammalian cortex ensures that nearby neurons on average encode related information [30]. In-
corporating this new relationship into classic connectionist learning algorithms, we found that
networks trained in a given domain more easily acquire further knowledge in the same domain
than in others. If the proximity threshold is set to zero, the model reverts to a traditional neural
network unconditionally learning all associations. From this perspective, the BIG ADO rule
could be considered as a biological constraint on learning.

However, to our initial surprise, the morphologically-motivated constraint on structural plas-
ticity also endows neural nets with the powerful computational ability to discriminate real
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associations of events, like the sight of a lightning and the sound of the thunder, from spurious
co-occurrences, such as between the thunder and the beetle that flew by during the storm. Thus,
we surmise that the selectivity of synaptic formation implied by the ADO requirement provides
a fundamental cognitive advantage over the unconstrained “fire together, wire together” plastici-
ty rule of classic artificial neural networks. Of course the ability to associate completely unrelated
facts or events may also be useful in many circumstances. Several different models have proposed
that the hippocampus might be specialized for precisely that function, possibly leveraging its su-
perior plasticity rate [31] or adult neurogenesis [32]. Our model suggests that this ability might
also derive from the lack of topographic mapping in this structure (e.g. hippocampal area CA3).
Moreover, the profuse axonal arbors of cortical neurons may enable access to a surprisingly large
pool of intertwining dendrites through neurite outgrowth [33], perhaps providing a counter-
mechanism to balance the BIG ADO rule.

The computational advantage of the BIG ADO algorithm over alternative learning rules can
be quantified in terms of discrimination between real associations and spurious co-occurrences.
If k pairs of real associations (A1-B1, A2-B2, . . ., Ak-Bk) are presented at the same time, BIG
ADO selectively learns the correctly paired events over spuriously co-occurring ones (e.g. A1-B2,
A2-B1, etc.). A “fire-together, wire-together” rule without ADO constraint can achieve similar
selectivity by repetition. In this case, each association must be presented multiple times in order
to attain the same discrimination power displayed by BIG ADO in one-trial learning. The num-
ber of required repetitions grows with the number k of real associations presented together and
also depends on the structure of the association graph. For example, in the conditions of Fig. 3,
BIG ADO learns real associations at a rate of 6:1 relative to spurious co-occurrences upon the
first presentation. To obtain the same ratio in the absence of ADO if just five pairs are presented
together, each association has to be repeated on average four times.

Mammalian brains display greatest plasticity during development, but certain cortical re-
gions remain plastic throughout adulthood [34, 35]. Our research design is consistent with an
initial phase of maximal plasticity, followed by a ‘mature’ state of conditional plasticity. Specifi-
cally, during pre-training, all witnessed associations are learned. Clearly, the anatomical con-
straint of axonal-dendritic overlap holds in all phases of development. However, the more
prominent neuronal and axonal movements in earlier developmental stages would largely cir-
cumvent or alleviate the ADO filter. In practice, we pre-load the network directly with synaptic
connectivity equivalent to that resulting from such an initial developmental phase (represent-
ing ‘background knowledge’). Afterword, the model preferentially learns associations related to
previously acquired information. The resulting mature network not only avoids associating the
(most numerous) spurious co-occurrences, but is also optimally structured to learn the associa-
tions most relevant to the environment in which it developed. Besides providing clear evolu-
tionary advantages, these key features could also be applied in artificial intelligence and
search engines.

Background information gating explains the familiar ability to form stable memories based
on single experiences (as opposed to repetition). This process is complementary to (and as fun-
damental as) other factors known to control learning, such as valence and novelty. The pro-
posed mechanism of axonal-dendritic overlap, based on the elementary anatomical
organization of neuronal circuits, is also independent of neuromodulatory pathways likely to
underlie alternative or parallel regulation of one-trial learning. This framework can also be use-
ful to describe how semantic knowledge can be incorporated into existing knowledge. More-
over, the model offers a possible neural network correlate for the rapid memory consolidation
occurring when new information is assimilated into a pre-existing associative “schema” or
mental representation [36]. Other recent models have been proposed to explain the depen-
dence of learning on prior knowledge [37].
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The proposed BIG ADO learning rule is only conceptually related to axonal-dendritic over-
lap, as the anatomical data necessary to generate a complete model of all axons and dendrites
in a network is still unavailable (see e.g. [38]). Realistically, potential synapses might work in
synergy with additional mechanisms conducive to the same learning rule. For example, presen-
tation of individual elemental associations (buzzing wasp, flying wasp, and flying beetle) may
lead to the formation of cell assemblies representing associations between higher-order con-
cepts and their properties (“flying insect”), as previously hypothesized [39], possibly supported
by ongoing structural plasticity [40]. Moreover, axonal-dendritic overlap may provide powerful
constraints for the recruitment of individual neurons into cell assemblies. While cell assembly
selection has been proposed as the core of knowledge representation in neural systems [41], the
underlying anatomical mechanisms have so far remained elusive [26]. Thus, the proposed link
between neuronal structure and function may constitute an essential foundation for brain-
based theories of cognition.

Supporting Information
S1 Text. Much ADO About BIG Learning: Supplementary Information. The single Support-
ing Information file (S1 Text) describing the model’s underlying assumptions, detailed meth-
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(DOCX)
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