@ PLOS | si5amoms:

CrossMark

dlick for updates

G OPEN ACCESS

Citation: Lv C, Li X, Li F, Li T (2015) Energy
Landscape Reveals That the Budding Yeast Cell
Cycle Is a Robust and Adaptive Multi-stage Process.
PLoS Comput Biol 11(3): €1004156. doi:10.1371/
journal.pcbi. 1004156

Editor: Douglas Lauffenburger, Massachusetts
Institute of Technology, United States of America

Received: June 16, 2014
Accepted: January 27,2015
Published: March 20, 2015

Copyright: © 2015 Lv et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by National
Nature Science Foundation of China, grants no.
11174011, 11021463 FL, 11171009, 11421101 and
91130005, and the National Science Foundation for
Excellent Young Scholars, grant No. 11222114 TL.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Energy Landscape Reveals That the Budding
Yeast Cell Cycle Is a Robust and Adaptive
Multi-stage Process

Cheng Lv', Xiaoguang Li?, Fangting Li'*, Tiejun Li**

1 School of Physics, Peking University, Beijing, China, 2 LMAM and School of Mathematical Sciences,
Peking University, Beijing, China, 3 Center of Quantitative Biology, Peking University, Beijing, China

* |i_fangting@pku.edu.cn (LF); tieli@pku.edu.cn (LT).

Abstract

Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynam-
ics under the influence of noise is a fundamental but difficult question to answer for most eu-
karyotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic
noise, we systematically explore these issues from an energy landscape point of view by
constructing an energy landscape for the considered system based on large deviation theo-
ry. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy
barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain
the evolution of the system on this flat path by incorporating its non-gradient nature. Further-
more, we illustrate how this global landscape changes in response to external signals, ob-
serving a nice transformation of the landscapes as the excitable system approaches a limit
cycle system when nutrients are sufficient, as well as the formation of additional energy
wells when the DNA replication checkpoint is activated. By taking into account the finite vol-
ume effect, we find additional pits along the flat cycle path in the landscape associated with
the checkpoint mechanism of the cell cycle. The difference between the landscapes in-
duced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous struc-
ture of the energy landscape for our simplified model is of general interest to other cell cycle
dynamics, and the proposed methods can be applied to study similar biological systems.

Author Summary

Quantitatively understanding the dynamic behavior of the yeast cell cycle process under
noise perturbations is a fundamental problem in theoretical biology. By constructing a
global energy landscape for a simplified yeast cell-cycle regulatory network, we provide a
systematic study of this issue. Our results demonstrate that the cell cycle trajectory is
sharply confined as a canal bounded by ambient energy barriers, with the landscape adap-
tively reshaping itself in response to external signals, such as the nutrients improving and
the activation of DNA replication checkpoint in our work. After performing quantitative
analysis based on the landscape, We found that along the cell cycle trajectory, the typical
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width of the canal narrows and broadens periodically. Interestingly, this is also basically in
accordance with the force strength of the dynamics. Additionally, in places where the driv-
ing force strength is comparable to the noise level, some additional pits form that are asso-
ciated with the checkpoint mechanisms. Overall, our energy landscape study shows that
the yeast cell cycle is a robust, adaptive and multi-stage dynamical process.

Introduction

Stochasticity is an inherent property of living cells [1-6]. However, it is still difficult to quantify
the robustness and adaptivity of cellular networks, even for a small cellular network perturbed
by intrinsic random fluctuations, due to the massive cross regulations and nonlinear nature of
such biological systems. As the size of the network grows, determining how to characterize the
global stochastic dynamics of the system becomes a tough problem. “Waddington’s epigenetic
landscape,” which utilizes potential energy to pictorially illustrate the dynamics and evolution
of cellular networks, has been widely and repeatedly used for several decades [5, 7]. Some beau-
tiful efforts and frameworks aiming to quantify this landscape have been made [8-13], but in-
vestigation into typical biological models still remains to be done. Furthermore, the energy
landscape usually reshapes itself due to a variety of changes such as environmental signals [14],
cell-cell interactions [15] and the growth rate dependence of protein concentrations [16]. De-
termining how to explicitly quantify this transformation for specific systems is also a

major task.

The yeast cell cycle is an important biological process in which a cell reproduces itself
through DNA replication and mitosis events, which are intimately related to the checkpoint
mechanism [17, 18]. Recent work has revealed the dynamic regulatory mechanisms of the cell
cycle, and the cell cycle process is now considered a series of irreversible transitions from one
state to another [19-21]. The cell-cycle regulatory network must also be robust and adaptive to
external stresses and signal changes. To quantitatively characterize this robustness, and provide
a global description of the cell cycle regulatory system, some fundamental questions must be
studied. For example, how does the energy landscape reflect the robustness and successive
phases of the cell cycle? How does the landscape adaptively change in response to external sig-
nals? Is there any information that the energy landscape cannot provide? If so, does any other
supplemental description exist?

Using a simplified budding yeast cell cycle model driven by intrinsic noise, we systematically
explore the above issues from an energy landscape point of view by constructing a global quasi-
potential energy landscape for the budding yeast cell cycle model. Our results demonstrate that
the energy landscape of the cell cycle is globally attractive, and we show how the cell cycle regu-
latory network reduces fluctuations from its upstream process and enables long durations in
the transition regime. We also describe how the landscape changes in response to external sig-
nals when nutrients become sufficient and the DNA replication checkpoint is activated. We
also discuss the dynamic information provided by the non-gradient nature that the pure energy
landscape cannot explain, and provide other approaches to take into account this non-gradient
effect. In addition, we compare the difference between landscapes induced by intrinsic and ex-
trinsic noise and discuss the finite volume effect. Overall, our energy landscape study shows
that the budding yeast cell cycle is a robust, adaptive and multi-stage dynamical process.
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Methods
Models

We first assume that the DNA replication triggers the mitosis as a “domino” mechanism in the
budding yeast cell cycle. That is, once the yeast cell passes the Start checkpoint, it will proceed
through the whole cell cycle process spontaneously. Based on the key regulatory network [17]
and our previous study on budding yeast [22], the cell cycle regulatory network can be simpli-
fied and separated into G1/S, early M and late M modules, as shown in Fig. 1A. We ignore the
G2 phase for simplification. Each module has a positive feedback, and different modules are
connected with activation and repression interactions. The deterministic equations describing
this three-module yeast cell cycle network are

dx x?
o :m—klx—xy+a0, (1a)
1
dy )’
E :j2 +y2_k2y_yz+ka1x7 (1b)
2
dz k2
o :j2+—22 —kyz — kyzx + k,y, (1c)
3

where x represents the concentrations of key regulators such as cyclins Clnl, 2, CIb5, 6 and
transcriptional factors SBF and MBF in the excited G1 and S phases; y represents the concen-
trations of key regulators such as cyclins Clb1, 2 and transcriptional factor Mcm1/SFF in the
early M phase; and z represents the concentrations of key inhibitors such as Cdh1, Cdc20 and
Sic1 in the late M/G1 phase.

In this model, we assume simple forms to characterize the interactions. Thus, the first term
in each equation, the second order Hill functions, represent the positive feedback in each mod-
ule [23, 24]. The second term represents the degradation rate of each regulator, while the third
term represents the repression or inhibition interaction between different modules. The pa-
rameter g, in Equation (1a) characterizes the environmental nutrition condition [25, 26], and
ka1 x and k,, y are the trigger signals from x to y and y to z respectively. Starting from the excit-
ed G1 state, the system will finally evolve to a stable fixed point, the G1 state; if g is large
enough, the system will enter the cell cycle process continually. With a proper parameter set,
the model in Equation (1a) ensures a successive event order from DNA replication in the S
phase to mitosis in the M phase, as well as a long duration for both events in the cell cycle pro-
cess. For this work, we will simply denote the set of equations in Equation (1a) as dx/dt = b(x),
where x = (x, y, 2).

The evolution trajectory in time and state space is shown in Fig. 1B and 1C, respectively.
Here P; (x = (0, 0, ziax)) represents the G1 state—which is the globally stable state of our
model where gy = 0.001—and P, is a saddle point used to represent the excited G1 state from
which the yeast cell passes the Start checkpoint and enters the cell cycle process. The trajectory
in Fig. 1C can be separated into three parts. The first part is from the excited G1 (P,) to the S
phase (P3), where x = (X, 0, 0); the second part is from P; to the early M state before the
metaphase/anaphase transition (P,), where x = (0, 1. 0); and the third part evolves from P,
to the stable G1 state (P;). Compared with the model used in [9], our model does not rely on a
quasi-steady-state assumption related to cell mass. More details about the network and model
can be found in S1 Text and S1 Fig.
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Fig 1. The model of the three-node yeast cell cycle network. (A) The network structure of the yeast cell cycle, where x, y and z represent key regulators of
the G1/S, early M and late M modules, respectively. Different modules are connected by activation (lines end with arrow) and inhibition (line end with bar)
interactions. (B) and (C) The evolution trajectory of the yeast cell cycle process with parameter values j; =j> =j3 = 0.5, k1 =ko =kz = 0.2, k;=5.0, ks = 1.0, and
ka1 = ka2 = 0.001. The system starts from P, and evolves to P;. In (B), the time evolution of the variables x, y and z is shown with the green, red and blue

lines, respectively.

doi:10.1371/journal.pcbi.1004156.9001

Starting from the deterministic descriptions above, we now address the stochastic setup of
the system. The noise can be classified into the intrinsic and extrinsic types [1]. Here we model
the intrinsic noise through a Gillespie jump process [27], in which the strength of the noise is
determined by the reaction network structure. Denote the state of the system X = (X, Y, Z)
where each component represents the number of molecules for the corresponding specie. We
then translate each term in Equation (1a) into a chemical reaction. Taking Equation (1a) as an
example, we have four associated reactions for the four terms. The state change vector v for
each reaction channel has the form v, = v, = [1, 0, 0] and v, = v3 = [-1, 0, 0], which corre-
sponds to the plus or minus sign in the equation. Once a reaction fires, the state of the system
X would be updated to X+v. The reaction propensity function is determined by each term and
the volume size (or system size) V, where ¢ = V' characterizes the magnitude of intrinsic fluc-
tuations [28]. In Equation (1a), the four propensity functions are

2

QX) = o ) =k a0 = a(X) = a V.
We choose this form for the propensities because a(X) ~ O(V) when X ~ O(V), and the sto-
chastic process x(¢) = X(#)/V will tend to the deterministic process Equation (1a) when the vol-
ume size V tends to infinity in this scaling. Equation (1b) and (1c) can be treated similarly.
There are 12 reactions in total. The above setup is suitable for the intrinsic noise. For the extrin-
sic noise whose magnitude is independent of the considered system, we simply take the sto-
chastic model as * = b(x) + \/ew, where w is the standard temporal Gaussian white noise.
More details can be referred to S1 Text.

Algorithm

To study the robustness and adaptivity of our cell cycle model, we construct the Waddington-
type energy landscape based on the concept quasi-potential from large deviation theory [29].
For any stable steady state x, of Equation (1a), the local quasi-potential S(x; x,) with respect to
X, is defined as

T
S(x; x,) =inf inf / L(g, ¢)dt, (2)
0

>0 p(0)=x.0(T)=x
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where inf is short for infimum, which means the least upper bound of a subset. ¢ is any con-
necting path and L is called the Lagrangian [29-31]. The concrete form of L is determined by
the setup of the stochastic process defined through intrinsic or extrinsic fluctuations. In case
that the driving noise is of white noise type, L can be obtained from path integral formulation
[32]. S(x; xo) tells us the difficulty of transition from state x, to x under the noise perturbation.
The local quasi-potentials starting from different stable steady states can be suitably integrated
together to form a global quasi-potential S(x), which is exactly our proposal to rationalize the
Waddington landscape for any non-gradient system, i.e. the dynamic system whose driving
force can not be simply represented by the gradient of a potential function [29, 31].

To better understand the quasi-potential, let us consider a special case. We suppose the dy-
namics is simply a gradient system with a single-well potential driven by small noise, i.e.

i = —VU(x) + /o, (3)

where € is a small parameter, and w is the standard temporal Gaussian white noise with
Ew(t) = 0and Ew(s)w(t) = (s — ¢). It is obvious that U(x) is one correct choice for the
Waddington potential. We have the Lagrangian L(¢, ¢) = |¢ 4+ VU(¢)|*/2 and S(x) = 2U(x)
in this case, and the corresponding minimizing path satisfies the steepest ascent dynamics ¢ =
VU (¢) with the boundary condition ¢(0) = xo, ¢(T) = x, where x, is the unique potential ener-
gy minimum (see SI for details). This example shows that S(x) defined in Equation (2) gives the
desired potential in the gradient case up to a multiplicative constant. It is also instructive to
note that the quasi-potential

S(x) = —lgrol eln P(x), (4)
where P(x) o exp(—2U(x)/e) is the stationary Gibbs distribution of Equation (3). This result is
also true for general dynamic systems [29].

For the Gillespie jump processes, there is no explicit form of S(x). However, the invariant

distribution P(x) satisfies the chemical master equation

> [a(x = 3)p(x ) ~a(wr)] =0 )

and we can plug the WKB ansatz [33] P(x) o exp(—VS(x)) into Equation (5). Here the system
size V plays the role of 1/¢, and this ansatz originates from Equation (4) essentially. The leading
order term yields a Hamilton-Jacobi equation

H(x,VS(x)) =0, (6)
where the Hamiltonian has the form

H(x,p) =) _afx)(e —1)

j

for the standard Gillespie jump process. From classical mechanics, the S(x) obtained from
WKB ansatz is exactly the quasi-potential defined through Equation (2). So even in the non-
gradient case, we can still define S(x) as a generalization of the potential. That is why it is called
quasi-potential. S(x) is also a Lyapunov function of the original deterministic system [34]
Equation (1a).

The quasi-potential inherits key properties as the real potential guarantees in a gradient sys-
tem. Besides logarithmically equivalent to the invariant distribution S(x) ~ —¢ In P(x), the
mean exit time 7 that the system escapes from an attractive basin has the asymptotic form 7 o
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exp(VAS), where AS is the energy barrier height between the boundary of the basin and the sta-
ble state. The deeper the quasi-potential well is, the harder the system leaves a stable state. So
the quasi-potential energy landscape describes the robustness of a system. This is similar for
the extrinsic noise. For more properties about the quasi-potential, one may refer to [29-31]
and SI Text. In later text we will call S(x) the potential energy for simplicity.

The computation of S(x) by solving the equation H(x, VS) = 0 is not straightforward al-
though there are already powerful methods [35, 36]. Since we are interested in both the energy
landscape and the transition path, we choose to compute the energy landscape through the
gMAM method [31, 37]. The idea is to directly minimize the action functional Equation (2)
through Maupertuis principle for the space of curves (See SI for details). In our work, the con-
structed energy landscape S(x) is a function of three variables. For convenience of visualization
and analysis, we plot S(x) in two dimensional planes with a certain dimension fixed. Therefore
the global landscape is cut into different slices from various directions.

Results
Energy landscape of the yeast cell cycle network

Using the described method, we constructed the energy landscape S(x) for a budding yeast cell
cycle network. We will state our findings from the energy landscape along the evolving path,
i.e., from the excited G1 state (P,) to the final steady G1 state (P;).

We first focus on the section from P, to P;. Fig. 2A illustrates the slice of the energy land-
scape on the x-z plane where y = 0. We can see that the GI state is the global minimum on the
energy landscape, and there exists an energy barrier between P; and P, to prevent small noise
activation. Outside this potential well, the energy function S(x) along the first part of the trajec-
tory (from P, to P;) is relatively flat, while the energy cost to deviate from the cycling path is
high. Intuitively, we will call the cell cycle trajectory a “canal” to illustrate its flatness along
the path.

At the end of the first part of the cell cycle, the G1/S phase variable x gradually increases and
represses z to zero. The S phase canal is quite narrow when it evolves near the vertex P;. As the
system evolves through P;, x gradually triggers the activation of the early M phase variable y, at
which point the activated y begins to repress x. This corresponds to the S/M transition of the
yeast cell cycle and we denote it as the early M phase canal. The landscape of the S phase and S/
M transition is illustrated in Fig. 2D where z = 0. In the bottom right corner of Fig. 2D, the en-
ergy barrier between the canals of the S and early M phases greatly decreases the probability
that the system passes the S/M transition without crossing P5, hence ensuring the robustness of
the S/M transition.

More details about the formation of the early M canal and the S/M transition are shown in
Fig. 2B (the z = 0.3 plane) and 2C (the z = 0.05 plane). In Fig. 2B, the system is shown to be
temporarily restricted to a small area on the x-y plane, isolated by barriers separating it from
the G1 state and the early M canal. As z gradually decreases to 0.05, Fig. 2C shows that this re-
stricting area is still small but slowly shifts to a place with a larger x value. In addition, the early
M canal looks more apparent. When z finally falls to zero (Fig. 2D), the energy barrier between
the S canal and the early M canal disappears. Now the cell can execute DNA replication events
with a long duration across P;, after which it successively evolves to the M phase.

In the second part of the cell cycle, the system evolves through the early M flat canal to the
vertex P, over a sufficient duration for the mitosis event. When the system passes through Py, y
triggers the activation of the late M variable z, and the activated z begins to repress y. This is
the transition from the early M phase to the late M phase, corresponding to the metaphase/ana-
phase transition in yeast cell cycle process. The landscape on the x = 0 plane looks very similar

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004156 March 20, 2015 6/17
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Fig 2. Different slices of the global energy landscape of the three-variable yeast cell cycle model. (A) The landscape on the x-z plane withy =0
corresponds to the G1/S phase in the cell cycle process. (B) and (C) The landscapes on the x-y plane with z = 0.3 and z = 0.05. (D) The landscape on the x-y
plane with z = 0 corresponds to the S phase and the early M phase transition. The “G1”, “S” and “early M” in bold refer to G1 phase, S phase and early M
phase respectively.

doi:10.1371/journal.pcbi.1004156.9002

with the one on the z = 0 plane (Fig. 2D) and is shown in S6 Fig. Finally, in the third part of the
cell cycle, the activated z represses y to zero and the system evolves to a G1 stable state (P;) and
waits for another cell cycle division signal.

Non-gradient force and pseudo energy landscape

Since the main canal along the cell cycle trajectory in Equation (1a) after P, is flat, the above
energy landscape itself cannot tell us the moving direction of the system on the canal, which
impels us to investigate its non-gradient nature. From large deviation theory, we know that the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004156 March 20, 2015 7/17
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most probable cycling path under Gillespie’s stochastic jump dynamics satisfies

dx

T = V,H(x,V5) = Flx), 7)

where S(x) is the energy landscape under discussion, p = VS, and H is the Hamiltonian of the
considered system. In general, F(x) is not parallel to VS, and so we have additional non-gradi-
ent effects for the transition paths. This point is also emphasized in [8, 9]. However, if the gra-
dient force becomes zero, we have F(x) = b(x), which exactly corresponds to the dynamical
driving force in the deterministic Equation (1a) (See S1 Text for details). This is the case for the
flat landscape along the canal in our results.

In Fig. 3A, we illustrate the force strength of F(x) on the energy landscape in the z = 0 plane
as an example. Along the cell cycle trajectory, we observe that the force strength F(x) is large in
both S phase and early M phase canals, but extremely small near P; and P,. Furthermore, we
find that this tendency basically corresponds to the restriction width of the canal in the trans-
verse direction (Fig. 3B). This means that, in the S phase and early M phase canals where the
driving force is large, the cell cycle process will progress quite quickly, and hence does not re-
quire a strong restriction. As the process passes through P; and P,, however, the system evolves
more slowly (i.e. with more duration), and the driving force decreases and the canal width nar-
rows in order to restrict fluctuations in the transverse direction. Thus, the dynamic properties
around P; work as an analogous DNA replication checkpoint. Similarly, the same characteris-
tics around point P, act as an analogous M phase checkpoint. Therefore, we suggest that this
fast-slow dynamic and corresponding wide-narrow geometry of the landscape act as the dy-
namical mechanism keeping the cell cycle robust, precise and efficient.

To further visualize the non-gradient force in the flat canal, we came up with an alternate
way of constructing the energy landscape, which we will refer to as the local pseudo energy
landscape. The main idea behind this approach is to temporarily remove the globally stable
state P; from our model and only focus on the downhill flat canal after the saddle point P,.
Thus the pseudo energy landscape is only a local landscape and no longer reflects the global
stationary probability distribution (See S1 Text for details). In Fig. 3C and 3D we illustrate the
pseudo energy landscape constructed using this method. The result is a bit like combining the
original landscape and the non-gradient effect together. From Fig. 3C, we can see that the effect
of the force strength is replaced by the steepness of the canal in the tangential direction, while
the landscape in the transverse direction remains the same. We emphasize that this point is es-
sential to explain the directionality of the dynamic path along the flat canal, where we have ob-
served a phenomenological fact that the gradient of the global potential S(x) becomes zero and
the driving force b(x) gives the moving direction. In Fig. 3D we also show that the pseudo land-
scape on the z = 0.3 plane. Compared with Fig. 2B, we can see that the appearance of the S and
early M canals is more apparent in the pseudo landscape. Furthermore, there exists a barrier
between the S and early M canals (in the bottom right corner of Fig. 3D), which further guaran-
tees the complete disappearance of the specie z before the cell enters the M phase.

Energy landscape adaptively responds to external signals

In the previous results, we obtained and analyzed the energy landscape of the yeast cell cycle
model in Equation (1a) using ao = 0.001, k,; = 0.001, k., = 0.001, and so on. However, when
the external signal or stress changes, how does the energy landscape adaptively make such a
transformation?

First, let us discuss the energy landscape’s response to DNA damage in the S phase of the
yeast cell cycle. When there is DNA damage in the S phase, the DNA replication checkpoint is

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004156 March 20, 2015 8/17
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Fig 3. The effects of the non-gradient force in the yeast cell cycle trajectory. (A) The energy landscape with the force strength (gray arrows) on the x-y
plane with z = 0. The length of the arrow is positively related to the force strength. (B) The driving force strength (red dashed line) and the fluctuation strength
in the vertical direction (black line) along the cell cycle trajectory. For the x-axis, we use the natural coordinates of the cell cycle trajectory, i.e. the evolution
distance from the start point P». Inset: the evolution trajectory of the yeast cell cycle process where the letters “a”, “b” and “c” mark three points on the ODE
trajectory with a large force strength. (C) and (D) The pseudo energy landscape on the x-y plane with z=0 (C) and z= 0.3 (D). The “S” and “early M” in bold
refer to S phase and early M phase respectively.

doi:10.1371/journal.pcbi.1004156.9003

activated [38]. In the cell cycle process, the checkpoint mechanism ensures the completion of
early events before the beginning of later events so as to maintain the progression order of the
cell cycle [18]. We can decrease the parameter k,; to 0.0001 to simulate this effect (See S1 Text
for more details), with the resulting new energy landscape on the z = 0 plane shown in Fig. 4A
and 4B. The results show that the flat canal around P; now turns into a small pit, which will
keep the system in the P; state until the DNA damage is repaired. Similarly, k,, = 0.0001 can be
used to simulate the M phase checkpoint.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004156 March 20, 2015 9/17
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’ early M

0

Fig 4. The energy landscape in response to external signals. (A) and (B) The energy landscape on the z = 0 plane, where k,; = 0.0001 indicates that the
DNA replication checkpoint is activated. (B) is the bottom right corner of (A). (C) and (D) The global energy landscape projected onto the y-z plane by
choosing the potential minimum with respect to x for fixed y and z. The direction of the non-gradient force is shown as gray arrows. The energy landscape
exhibits (C) limit cycles with sufficient nutrients and (D) excitable dynamics with insufficient nutrients. The “S” and “early M” in bold refer to S phase and early
M phase respectively.

doi:10.1371/journal.pcbi.1004156.9004
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=In(P)

Secondly, the yeast cells will divide continuously when they are cultured in a rich medium
[14, 26], and we can increase g, to 0.01 to simulate this effect (see [26] and S1 Text). The result-
ing energy landscape is shown in Fig. 4C, where the global three-dimension energy landscape
is projected onto the y-z plane by choosing the potential minimum with respect to x for fixed y
and z. The results demonstrate that the system shifts from an excitable system to a stable limit
cycle system through bifurcation (g, = 0.0025) when nutrition is sufficient, and the stable G1
state disappears. As a comparison, we show a similar projected energy landscape with g, =
0.001 in Fig. 4D, where the cell cycle process is an excitable system.

Finite volume effect

The previous results are all based on the assumption that the system volume (or system size),
i.e., the copy number of considered species, goes to infinity. In other words, we only studied the
fluctuation effects for perturbations by noises that are small compared to the reaction rates b
(x) in Equation (1a). This is a reasonable assumption for most biological systems. However, if
the system nearly stagnates at some transition areas where its reaction rates are so small that
they are of the same magnitude as the noise, the previous picture does not hold. In this case,
some special phenomena will appear that do not fall into our traditional analysis.

Here we use the classical Monte Carlo simulation method to study the finite volume effect.
From Fig. 5 we can see that the landscape is generally unchanged except around two corners.
The original flat landscape with long-lasting slow dynamical behavior near the checkpoints
now turns into pits. In other words, these nearly degenerate points play the role of small poten-
tial wells along the canal. This is intuitively true because the stationary probability for each
point on this unidirectional path is approximately determined by the speed with which the sys-
tem passes across. Consequently the system transitions to having a multipeak probability dis-
tribution, where the additional peaks do not correspond to the stable points of ODEs in the
usual case. These additional peaks are also found in the cell cycle process of mammalian cells
[13]. This interesting finite volume effect is unique when our driving force strength is

B

=In(P)

y

Fig 5. The energy landscape of the yeast cell cycle network with finite volume effect. (A) on the x-y plane with z= 0 and (B) on the y-z plane with x = 0.
The moving direction of the system is shown as brown arrows. Here we use “~In(P)” to define the energy landscape of the system, where P = P(x) is the
stationary probability distribution of the system from simulation. The “G1”, “S”, “early M” and “late M” in bold refer to G1 phase, S phase, early M phase and
late M phase respectively.

doi:10.1371/journal.pcbi.1004156.9005
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comparable to the noise strength in some places. The additional pits can be treated as a “finger-
print” for a multi-stage biological processes, in which the pits act as another kind of analogous
checkpoint. We speculate that a similar phenomena also holds for the classical limit

cycle dynamics.

Intrinsic versus Extrinsic noise

So far we have only discussed the intrinsic fluctuations determined by the reaction network it-
self, and ignored the extrinsic influence from environments in which the noise strength is inde-
pendent of the network structure [39-41]. However, we also investigated the energy landscape
of our cell cycle model perturbed by extrinsic noise using a similar approach, and the result is
shown in S2 Fig. Compared with the landscape obtained in Fig. 2 and 3, the general shape of
the landscape is almost the same, but the width of the canal does not change as significantly as
the one perturbed by intrinsic noise. This result coincides with the lower insensitive fluctuation
strength in the extrinsic noise case (S2 Fig.). This point, which indicates our cell cycle model is
more tolerant with respect to intrinsic noise, can be used to help distinguish between intrinsic
randomness and any environmental perturbations of the system, especially for a multi-stage bi-
ological process that periodically changes its reaction rates in time.

Discussion

We performed a careful study of the budding yeast cell cycle process from an energy-landscape
point of view. The energy landscape of the budding yeast cell cycle is mainly comprised of two
parts on a global scale: a deep pit that holds a cell in its G1 state when the environment is not
suitable for division, and one unidirectional flat canal that performs a robust and accurate cell
cycle progress once the system is excited (as summarized in Fig. 6A). When nutrients are suffi-
cient, the original excitable system evolves into a stable limit cycle. Correspondingly, the deep
pit lifts up, and the cell cycle can proceed efficiently without waiting in the G1 state (Fig. 6B).
Once a cell meets any accident during its division, the corresponding cell cycle checkpoint is
activated. In this case, the flat canal is dug to form an additional pit, and the system is held
there until the accident is resolved (Fig. 6C). Furthermore, the super-slow dynamic stage on
the canal corresponds to small pits if we take into account the finite volume effect. Those pits
reduce the fluctuations from the cycle’s upstream processes and provides a longer stay duration
when the system passes by (Fig. 6D).

Besides the global view, the energy landscape also contains massive details of the system.
The unidirectional canal and the guardrail on both sides guarantee that each event occurs only
once and in the right order. Although the global energy landscape defined through the station-
ary probability distribution does not contain the non-gradient effect, the local pseudo energy
landscape we proposed clearly visualizes this unidirectionality brought by the non-gradient
force. Now the strength of the non-gradient force along the canal is characterized by the steep-
ness of the pseudo energy in the tangential direction. For a system perturbed by intrinsic noise,
the fluctuation restriction ability in the transverse direction of the canal is highly related to the
driving force strength at that point. However, for a system perturbed by extrinsic noise, this re-
lationship is much weaker.

In our simplified model describing the essential dynamics of the yeast cell cycle process, we
assumed the “domino” mechanism of cell cycle regulation, which is different from the previous
Tyson’s model [42] and its landscape [9]. In our model, only the G1 phase cyclins are con-
trolled by the cell mass, and the mitosis event in the M phase is triggered by the completion of
the DNA replication event. This “domino” mechanism is also found in the cell cycle regulation
of higher eukaryotic organisms [43]. With our model and new methods, we clearly identified
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Fig 6. Summary of the schematic quasi-potential energy landscape for the yeast cell cycle network. (A) When nutrient availability is poor, the system
has a global stable state shown as G1, and restrains the cell around this state. (B) When the amount of nutrients becomes sufficient, the system shifts to
having a limit cycle, the cell is released and the cell cycle is activated. (C) When the S phase or M phase checkpoint mechanism is activated, a temporal
stable state appears and holds the system there until the issue is resolved (the abbreviation of checkpoint is chk). (D) When taking finite volume effect into
account, i.e. the noise strength is of the same magnitude as its reaction rates, the area with extremely slow rates in the cell cycle process lowers to form small
pits that provide longer duration of stay when the system passes by. These new small pits play the role of metastable states. The black arrows represent the

driving force on the landscape, the blue arrows illustrate the deformation of the landscape and the orange arrows show the movement of the system under
noise perturbations.

doi:10.1371/journal.pcbi.1004156.9006

the DNA replication and M phase checkpoints in the constructed energy landscape. This land-
scape can reshape itself in response to environmental nutrients (similar and consistent results
in mammalian cell cycle [13]) and checkpoint signals adaptively. Furthermore, we proposed
the concept local pseudo energy landscape to characterize the irreversibility of the dynamic
path along the flat canal in the landscape. These points, to the authors’ knowledge, have not
been revealed in the previous studies.

Due to the curse of dimensionality, we only performed our constructions for a three-node
network model. When the problem is considered in higher dimensions, the computational cost
increases exponentially. Even if this computational cost issue is resolved, however, determining
how to save and exhibit such high-dimensional information remains a tough question. There is
still a need to develop a systematic reduction method to analyze high dimensional problems.

Even with such limitations, we believe our meticulous study of the energy landscape of the
simplified budding yeast cell cycle model is of general interest to those studying other compli-
cated cell cycle dynamics. Most of the insights we gained studying this simple model are inde-
pendent of the number of dimensions and the specific formulation of the model, and therefore
will be valuable to other systems and studies.
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Supporting Information

S1 Text. This file contains details that needed to understand the main body. It is arranged
as follows: I. The three-node Budding Yeast Cell Cycle Model, II. Stochastic Model, III. Large
Deviation Theory and the Hamiltonian, IV. Overview of the Construction of the Landscape, V.
Introduction of the gMAM, VI. Construction of the Quasi-potential energy landscape, VIL
Force Strength and Landscape Canal width, VIIL. Analysis of the Non-gradient Force, IX. Sig-
nals Regulation in the Cell Cycle model, X. Extrinsic and Intrinsic Noise, XI. Parameters Sensi-
tivity Analysis.

(PDF)

S1 Fig. The regulatory network of cell-cycle process in budding yeast. (A) The regulatory
network of key regulators in budding yeast cell-cycle process. It can be separated into G1/S,
early M and late M modules, where the nodes represent cyclins, transcriptional factors and in-
hibitors, and the green and red lines represent activation (transcription) and the inhibition, re-
spectively. (B) The essential network of yeast cell-cycle network, where X, Y and Z represent
key regulators of the G1/S, early M and late M modules respectively, different modules are con-
nected by activation and inhibition interactions. More details can be found in the main text
[44].

(EPS)

S2 Fig. The effects of extrinsic noise on the yeast cell-cycle network. (A) The quasi-potential
energy landscape under extrinsic noise perturbation, the x-y plane where z = 0. (B) The ODE
driving flux strength (black dashed line) in the ODE path and the fluctuation strength in the
vertical direction of the ODE path perturbed by intrinsic noise (red solid line) and extrinsic
noise (blue solid line). The letters ‘a’, ‘b’ and ‘c’ mark three points on the ODE trajectory with
large force strength.

(EPS)

$3 Fig. The inconformity between energy landscape and deterministic description of sys-
tem. (A) The energy landscape in x-y plane with z = 0. (B) The pseudo energy landscape on x-y
plane with z = 0. The red dashed boxes mark the energy barriers that contradict with the deter-
ministic description of system.

(EPS)

$4 Fig. Parameters sensitivity analysis of the system. Effects of parameter perturbations on
global evolution trajectory (A-K) and the depth of energy well corresponding to the stable G1
state (L). In each subfigure, we either increase (blue solid line) or decrease (red dashed line) the
value of a certain parameter by 20%. Subfigures from A to K, and the numbers on x-axis in sub-
figure (L) correspond to parameters: ji, j2, j3» k1, K2, k3, ki, kg, ka1, ka2, ag, respectively. (L) AS de-
notes the depth of energy well corresponding to the stable G1 state with wild-type parameters,
and S denotes the changes of depth after each parameter is increased or decreased.

(EPS)

S5 Fig. Cell cycle with imperfect parameter values. The evolution trajectory (A) and the ener-
gy landscape on x-y plane with z = 0 (B) with imperfect parameter values: j, = j, =j; = 0.5, k; =
ky=k; =02,k =50,k =1.0,and k,, = k,, = 0.04.

(EPS)

S6 Fig. The landscape on the y-z plane with x = 0 corresponds to the late M phase. In the sec-
ond part of the cell cycle, the system evolves through the early M flat canal to the vertex P, over
a sufficient duration for the mitosis event. When the system passes through Py, y triggers the
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activation of the late M variable z, and the activated z begins to repress y. This is the transition
from the early M phase to the late M phase. The “early M” and “late M” in bold refer to early M
phase and late M phase respectively.

(EPS)
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