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Abstract
High-throughput data generation and genome-scale stoichiometric models have greatly fa-

cilitated the comprehensive study of metabolic networks. The computation of all feasible

metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state

constraints, provides important insights into the metabolic capacities of a cell. How the fea-

sible metabolic routes emerge from the interplay between flux constraints, optimality objec-

tives, and the entire metabolic network of a cell is, however, only partially understood. We

show how optimal metabolic routes, resulting from flux balance analysis computations,

arise out of elementary flux modes, constraints, and optimization objectives. We illustrate

our findings with a genome-scale stoichiometric model of Escherichia colimetabolism. In

the case of one flux constraint, all feasible optimal flux routes can be derived from elementa-

ry flux modes alone. We found up to 120 million of such optimal elementary flux modes. We

introduce a new computational method to compute the corner points of the optimal solution

space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary

flux modes when we impose additional constraints; new optimal metabolic routes arise out

of combinations of elementary flux modes. The solution space of feasible metabolic routes

shrinks enormously when additional objectives—e.g. those related to pathway expression

costs or pathway length—are introduced. In many cases, only a single metabolic route re-

mains that is both feasible and optimal. This paper contributes to reaching a complete topo-

logical understanding of the metabolic capacity of organisms in terms of metabolic flux

routes, one that is most natural to biochemists and biotechnologists studying and

engineering metabolism.

Author Summary

Organisms depend on huge networks of molecular reactions for environmental sensing,
information integration, gene expression, and metabolism. The discovery of general
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principles of network behavior is a major ambition of systems biology and of great interest
to biotechnology and medicine. We present a computational tool that calculates all opti-
mal states of metabolism in terms of pathways, which is arguably the most intuitive and
preferred approach to characterize whole-cell metabolism. We show how the space of all
feasible flux distributions can be compactly described in terms of a unique set of minimal
and feasible pathways, given realistic stoichiometric, thermodynamic, and optimization-
objective constraints. This description clarifies the interplay between flux constraints and
optimization objectives. We explain why some fluxes are variable and cross-correlate with-
in the solution space while others do not and how multi-objective optimization shrinks
the solution space. We illustrate our findings with a toy metabolic model to explain the
main insights and apply it to a genome-scale stoichiometric model of Escherichia
colimetabolism.

Introduction
Research in biotechnology and medicine benefits from understanding the metabolic capacity
of organisms, including their sensitivities to genetic and environmental changes. Genome-scale
stoichiometric models of metabolism [1, 2] and the availability of annotated genome sequences
have greatly accelerated metabolic research. The combined use of high-throughput metabolo-
mics data, comprehensive protocols [3], and (automated) reconstruction tools [4] has resulted
in an explosion in the number and size of genome-scale stoichiometric metabolic models [5,
6]. Constraint-based modeling has become an indispensable tool to deal with these large mod-
els, used in biotechnology [7, 8] and medicine [9, 10].

The most common constraint-based modeling method is Flux Balance Analysis (FBA) [11,
12], which—given certain capacity constraints on fluxes—optimizes an objective function, e.g.
the biomass production flux [13]. The accuracy of FBA predictions depends on the availability
of realistic flux constraints, which can be derived from experimental data. Generally, there are
insufficient flux constraints to obtain a single unique solution and a large space of optimal flux
distributions results [14–16]. These alternative flux distributions give an impression of the ro-
bustness of a metabolic network [17], but not every alternative is equally favorable for the or-
ganism. In some environments organisms are strongly selected for yield, almost regardless of
the protein burden, while in other environments the protein burden has a significant impact.
The solution space can be analyzed further with secondary objectives [18–22], e.g. minimiza-
tion of the number of active fluxes [23] or the sum of absolute fluxes [24], which have been
used as proxies for maximization of the protein expression efficiency and minimization of the
protein burden, respectively.

Analyzing the solution space and optimizing secondary objectives requires adequate mathe-
matical and computations methods. Several approaches were proposed to give insight into the
geometry of the optimal solution space [14, 15, 25–28], which is mathematically represented
by a polyhedron [29]. Flux Variability Analysis (FVA) [14] and Flux Coupling Analysis (FCA)
[25] provide valuable information on the boundaries of the solution space, but do not give un-
derstanding in terms of metabolic routes. Such an understanding would be extremely helpful,
as most biologists intuitively think in terms of metabolic routes.

Characterization of the optimal solution space provides valuable insight into how our limit-
ed knowledge of constraints affects the prediction of a metabolic state of an organism. The re-
cently developed method, CoPE-FBA (Comprehensive Polyhedron Enumeration FBA) [16],
enumerates the vertices, the corner points of the optimal solution space. The number of
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vertices originates from the feasible, alternative metabolic routes through a small number of
subnetworks, consisting only of reactions with correlated flux variability (Fig. 1). This method
provides the structural insights that FVA and FCA lack, and explains the typical combinatorial
explosion of the vertices; the optimal solution space can easily have millions of vertices that
arise from independent combinations of alternative flux routes through only a few, small seg-
ments of the metabolic network. However, CoPE-FBA suffers from computational difficulties,
it is slow, and—perhaps more important—the provided solution does not yield all non-decom-
posable flux routes in the optimum, limiting the use of CoPE-FBA. For instance, it cannot be
used to assess the influence of secondary objectives on the solution space.

We aim to obtain a better understanding of the interplay between constraints, objectives,
and optimality for genome-scale stoichiometric models. We uniquely characterize the optimal
solution space by adjusting CoPE-FBA to split each reversible reaction into two irreversible re-
actions; this yields all non-decomposable flux routes in the optimum. We start by illustrating
the differences between the CoPE-FBA outcomes of metabolic models with and without revers-
ible-reaction splitting. Next, we explain the relationship between these vertices and elementary
flux modes (EFMs) with an optimal substrate-product yield. Finally, we show that secondary
objectives typically collapse the optimal solution space to a unique solution (a vertex) or to a

Fig 1. Characterization of the optimal solution space of metabolic models. The optimal solution space
can be characterized by three topological features: vertices (purple), rays (green), and linealities (blue).
Typically, optimal solution spaces of microbial genome-scale models are characterized by many vertices and
only a few linealities and rays. Linealities do not exist when reversible reaction are split. Vertices can be
described by a fixed active part (red) which is identical for each vertex and a variable part (orange), a few
CoPE-FBA subnetworks [16]. We refer to S1 Fig. for examples of rays we found in the E.coli iAF1260
genome-scale metabolic model.

doi:10.1371/journal.pcbi.1004166.g001
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small set of vertices, using the iAF1260 genome-scale model of Escherichia colimetabolism.
Enumerating all non-decomposable flux routes in the optimum requires a more efficient
computational method, which we also present in the Methods section of this work. This results
in CoPE-FBA 2.0, our tool of choice for analyzing the optimal solution space in terms of
network topology.

Results

Characterization of the optimal solution space: Illustration with a toy
model
We developed the toy network shown in Fig. 2A to illustrate: (i) the characterization of the op-
timal solution space of an FBA in terms of metabolic flux routes, (ii) that reversible-reaction
splitting guarantees finding all non-decomposable metabolic flux routes in the optimum, (iii)
the relationship between vertices and optimal-yield EFMs, and (iv) the optimization of second-
ary objectives over the optimal solution space. Our toy network consists of 18 metabolites and
reactions where the source metabolite X and sink metabolite Y are considered boundary me-
tabolites. All reactions, besides the reactions where ATP and ADP act as cofactors, are isomeri-
zation (uni-uni) reactions and reversible reactions are illustrated by two headed arrows.

For our FBAmodel, we selected maximization of the flux through reaction R18 as our objec-
tive function, Zobj. To constrain the solution space we used one inequality constraint, J1 � 2.
Throughout this work, we call this type of (inequality) constraint a restricting non-zero flux
constraint. The resulting FBA is formulated as the linear program:

Maximize Zobj ¼ J18

subject to;

NJ ¼ 0

�1 � Jr � 1 Jr 2 reversible reactions

0 � Ji � 1 Ji 2 irreversible reactions

0 � J1 � 2

ð1Þ

where NJ = 0 is the steady-state constraint with N as stoichiometric matrix and J as flux vector
(or flux pathway). Simple metabolic models can be optimized by hand, but linear programming
is required for the solution of any realistic genome-scale model. FBA optimization confirmed
that, for this set of capacity constraints, maximization of our objective function gives J18 = 1.

Characterization of the optimal solution space for a metabolic model with reversible re-
actions. Several flux pathways maximize the objective J18 = 1, i.e. our FBA model is underde-
termined. We can describe the optimal solution space with the Minkowski sum (see Equation
(4)) in terms of three mathematical objects: linealities, rays, and vertices (Fig. 1) [29, 30]. Each
of these mathematical objects relate to a topological motif in a metabolic network.

Linealities are reversible cycles or input-output pathways (boundary to boundary metabo-
lite(s), see S1 Fig. for an example) that indicate in which flux directions the optimal solution
space is unbounded. Linealities will cease to exist when we split each reversible reaction into
two irreversible reactions later. The set of reactions R2, R3, R4, i.e. {R2–R4}, form a lineality
(Fig. 2A). The reactions can take any value, but there must be a net flux of two through {R2–
R4} that converts A into B.

Rays are irreversible (thermodynamically infeasible) cycles or input-output pathways. Our
toy model does not contain a ray. If at least one of the reactions R2, R3 or R4 would have been
irreversible, {R2–R4} would have been a ray (Fig. 2A).
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Vertices are the corner points of the FBA polyhedron—the solution space of optimal flux
distributions—nd therefore they cannot be represented as a convex combination of other opti-
mal flux pathways (they are non-decomposable). Convex combinations of neighboring vertices
form the facets—“edges”—of this polyhedron. Our toy model contains four vertices termed
V1–V4 (Fig. 2B). We can use a combination of these vertices and cyclic networks to represent
every optimal flux vector.

Vertices originate from combinations of alternative flux distributions in CoPE-FBA subnet-
works, quickly leading to a combinatorial explosion [16]. In the optimum, these subnetworks
consist of reactions with correlated flux variability and have a fixed net input-output stoichi-
ometry of reactants and products. The toy model contains two subnetworks (Fig. 2C). In the
subnetwork consisting of {R6–R10}, the alternative flux distribution {R6–R8} is anti-correlated
with alternative flux distribution {R9–R10} and the reactions within these sets are positively

Fig 2. The optimal solution space of a toy model with reversible reactions.Metabolites (capital letters) are converted by reversible (two headed arrows)
and irreversible (single headed arrows) reactions to achieve the conversion of X to Y (underlined metabolites are boundary species). The forward direction of
reversible reactions is defined from left to right or from top to bottom, and a backwards flux is denoted by a minor sign (e.g. -R13 indicates conversion from K
to J). Wemaximized the flux through R18 with FBA, subject to steady-state constraints and J1 � 2, where J1 is the flux through reaction R1. The optimal
solution space is characterized by (A) one lineality of reactions {R2–R4} (red) and (B) four vertices that arise from two branches at intersections D and I: V1
(blue), V2 (red), V3 (green) and V4 (purple) (C) Two CoPE-FBA subnetworks illustrate the alternatives that create the four vertices shown in (B); in
subnetwork one (blue) these are {R6–R8} (V1 and V2) and {R9–R10} (V3 and V4), and in subnetwork two (red) {R12–R14} (V2 and V4) and {R15, -R13,
-R14} (V1 and V3).

doi:10.1371/journal.pcbi.1004166.g002
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correlated with each other (S2 Fig.). Both sets of reactions have an identical input-output rela-
tionship: D + ADP!H + ATP. We can multiply the number of alternative flux distributions
through each subnetwork to obtain the total number of vertices; both subnetworks of the toy
model have two alternative flux distributions—the lower and the upper branch—which gives a
total of four vertices (Fig. 2B).

The disadvantages of metabolic models with reversible reactions. The representation of
the network in its current form—where reversible reactions are not split into two irreversible
reactions—complicates the characterization of the optimal solution space; not all non-decom-
posable optimal pathways are vertices and the set of vertices is not unique. This set of vertices
corresponds to the minimal generating set of the optimal solution space, a well-known concept
in EFM analysis [31]. For our toy model, we enumerated all (optimal-yield) EFMs to illustrate
the difference between the set of vertices we enumerated with CoPE-FBA and the set of non-
decomposable flux pathways in the optimum.

If there is only one upper bound (as in the toy model), all non-decomposable optimal path-
ways are instances of the optimal-yield EFMs. EFM analysis showed that our toy model has
thirteen EFMs of which twelve are operational modes that produce Y with an optimal yield
(see also S3 Fig. for a more detailed analysis). Thus, for only one third of the optimal-yield
EFMs, there exists a corresponding vertex (S3B Fig.). The remaining eight EFMs do not have
corresponding vertices, because: (i) two non-decomposable optimal pathways are a convex
combination of different vertices; e.g. 1/2 V1 (EFM1) + 1/2 V2 (EFM3) = EFM2 (Fig. 3A) and
(ii) six more optimal pathways are a linear combination of vertices (or of the two convex com-
binations) and the lineality (with flux through {R3, R4} rather than {R2}). Because of these ad-
ditional non-decomposable optimal pathways, we cannot find all the possible pathways that
optimize a (secondary) objective directly from the vertex representation—we shall return to
this later.

Metabolic models usually contain many sub-optimal modes—modes with a lower yield—or
non-operational modes—modes that cannot produce any objective flux. Our toy network was
designed to not contain suboptimal operational modes. The non-operational mode is the line-
ality shown in Fig. 2A.

The EFM analysis further showed that we can describe the optimal solution space with dif-
ferent sets of vertices. For instance, CoPE-FBA gave that {R2} was part of each vertex and {R3,
R4} was only part of a lineality. We can reverse this situation by making {R2} part of the lineali-
ty and {R3, R4} part of each vertex, hence this decomposition is not unique.

Reversible-reaction splitting yields all non-decomposable flux pathways in the opti-
mum. To solve the issues with uniqueness and completeness, we exploited an existing tech-
nique in the field of EFM analysis: Splitting reversible reactions into separate forward and
backward reactions [31, 32]. In the split model, the vertices are instances of exactly the non-de-
composable pathways in the optimal state. Since all reactions are irreversible after the splitting
procedure, linealities do not exist anymore. The split toy model contains seven rays, because
each split reversible reaction forms an additional ray and two more rays from {R2–R4} in for-
ward and backward direction (see Fig. 4A). After splitting, rays no longer signify thermody-
namically-infeasible irreversible cycles. Each forward and backward reaction together forms a
new EFM, but the set of optimal-yield EFMs is identical before and after splitting (S3A and
S3D Fig.), which was also proven by Gagneur and Klamt [33].

For our toy model, each optimal-yield EFM now has a corresponding vertex (S3E Fig.), i.e.
the vertices lie on their corresponding EFMs. This means that our toy model contains now
twelve rather than four vertices. To explain the difference between the set of vertices with and
without splitting, we first focus on {R2–R4}. With splitting, the model contains vertices with
both {R2} and {R3, R4}, while without splitting vertices only contain either {R2} or {R3, R4}.
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Fig 3. Vertices correspond to optimal-yield EFMs or convex combinations of those EFMs. Vertices correspond to optimal-yield EFMs (A) if they are
restricted by one flux constraint and to a convex combination of EFMs if they are restricted by more than one flux constraint (B). Colors represent different flux
values (red = 2, orange = 1.5, green = 1, and blue = 0.5). (A) visualization of EFM1, EFM2, and EFM3 (out of the twelve optimal-yield EFMs normalized to J18
= 1). Both EFM1 and EFM3 have a corresponding vertex with and without splitting, whereas EFM2 has only with splitting a corresponding vertex. (B) taking a
convex combination of EFM1 and EFM2 or EFM1 and EFM3 (panel A) corresponds to a vertex when the constraints are J1� 2 and J15 � 0.5.

doi:10.1371/journal.pcbi.1004166.g003
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The variability in reactions {R2–R4} causes the number of vertices to double (2 × 2 × 2 vs.
2 × 2), because {R2–R4} is also a CoPE-FBA subnetwork (Fig. 4B) in the split model. The sec-
ond difference originates from the CoPE-FBA subnetwork described by {R12–R15}. The flux
distribution through {R12, R15} (see also EFM2 Fig. 3A) cannot be obtained via a convex com-
bination of alternative flux distributions and is, therefore, now also a vertex. This difference
causes the number of vertices to further increase from eight to twelve (2×2×3 vs. 2×2×2).

Additional non-zero flux constraints cause a dissimilarity between optimal-yield EFMs
and vertices. After reversible-reaction splitting, the set of optimal-yield EFMs corresponds to
the set of vertices if there is only a single non-zero restricting flux constraint (for proof see S1
Text). With more constraints this is not necessarily the case, because EFMs are based on stoi-
chiometry and thermodynamics alone, while vertices also depend on flux constraints. We illus-
trate this by discussing examples of different types of flux constraints on the sets optimal-yield
EFMs and vertices: setting a flux to zero, adding a restricting constraint, and adding a
demanding constraint.

Setting a flux to zero (e.g. an anaerobic growth condition) effectively removes a reaction
from the system. The set of optimal-yield EFMs still corresponds to the set of vertices (of
course all pathways using the removed flux, e.g. oxygen uptake, are absent). As an example, re-
moving R15 from our toy network would result in the same set of four optimal-yield EFMs
and vertices.

Fig 4. Reversible-reaction splitting guarantees finding all non-decomposable flux pathways in the optimum.Metabolites (capital letters) are
converted by irreversible reactions to achieve the conversion of X to Y (underlined metabolites are boundary species). Split reversible reactions are denoted
as R3f and R3b. Wemaximized the flux through R18 with FBA, subject to the steady-state constraint and J1 � 2. The optimal solution space is now
characterized by seven rays (A) and twelve vertices which originate from three CoPE-FBA subnetworks (B). (A) the five split reversible reactions and {R2–
R4} in forward and backward direction form together seven rays. (B) three subnetworks give rise to twelve vertices (2×2×3). The third subnetwork (red) now
has a third alternative flux distribution {R12, R15} which was without reversible-reaction splitting a convex combination of the other two flux distributions,
{R12, R13f, R14f} and {R15, R13b, R14b}.

doi:10.1371/journal.pcbi.1004166.g004
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We illustrate the effect of adding an additional restricting non-zero flux constraint (e.g. an
upper bound on oxygen uptake) in our toy model with: J15� 0.5. With this constraint, J18 = 1
cannot be achieved with EFMs that include reaction R15 (e.g. EFM2 and EFM3 shown in
Fig. 3A). The corresponding vertices are infeasible, because vertices are only defined in the op-
timal space (see also S3C and S3F Fig. for a more detailed analysis). The corner points of the
new optimal solution space are now described by a different set of vertices, i.e. still feasible ver-
tices and vertices that arose after adding the second constraint. Each newly introduced vertex
arose from an infeasible vertex and a neighboring feasible vertex. An example of such a vertex
is given in Fig. 3B, which corresponds to a convex combination of EFM1 and EFM2 or EFM1
and EFM3. In this example, the number of corner points of the optimal solution space de-
creased after adding the second flux constraint, but this is not a general outcome.

Demanding a flux through a reaction that decreases the substrate-product yield (e.g. ATP
maintenance reaction) yields different vertices. An optimal-yield EFM through the demand re-
action is then added to each vertex. The number of vertices increases if multiple optimal-yield
EFMs coexist through the flux demanding reaction (which will then form another CoPE-FBA
subnetwork).

Secondary optimization collapses the optimal solution space. In this section, we demon-
strate how secondary optimization simplifies after reversible-reaction splitting and that sec-
ondary optimization reduces the solution space to only one or a few vertices. As a secondary
optimization objective, we used minimization of the number of active fluxes—hereafter path-
way length PL; see Equation (8). Mathematically, we can write this secondary optimization as
follows:

Minimize PL

subject to;

NJ ¼ 0

J18 ¼ Zobj ¼ 1

�1 � Jr � 1 Jr 2 reversible reactions

0 � Ji � 1 Ji 2 irreversible reactions

0 � J1 � 2

ð2Þ

in which we set the output flux of the toy model to its maximal value obtained with the previ-
ous FBA, shown in Equation (1). We used mixed-integer linear programming to select the flux
pathway with the minimal PL from the optimal solution space for one (J1 � 2) and two (J1 � 2,
J15 � 0.5) restricting flux constraints, which gave a minimal PL of 11 and 12, respectively. Next,
we determined the PL for each optimal-yield EFM and vertex of the “non-split” and “split”
model (see S4 Fig. for more details).

Without splitting, the vertices are instances of a subset of all possible non-decomposable
pathways (EFMs) in the optimal state. Therefore, for the optimization of secondary objectives
in the non-splitmodel, we cannot focus solely on the vertices. We have to take into account the
whole optimal solution space—the Minkowski sum of vertices, rays, and linealities (for details
see Methods)—which is cumbersome.

Analyzing the effect of linealities and rays is counterintuitive because both linealities and
rays represent cycles that catalyze no net conversion. This makes them independent from the
chosen growth medium and objective function. However, without splitting, linealities and/or
rays can influence secondary objectives when they share reactions with one or more vertices. In
this case we can construct non-decomposable optimal flux pathways that are not vertices by
taking, for instance, a linear combination of a vertex with a connected lineality. An example is
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the lineality described by {R2–R4} (Fig. 2A). Adding {R2, R3, -R4} to one of the four vertices
gives rise to a new optimal flux pathway; one with more active reactions.

Taking a convex combination of vertices shortens PL when more active reactions become in-
active than vice versa. A reaction becomes inactive when it goes in different directions with the
same flux in alternative flux distributions. When J1 � 2 is the only constraint, a convex combi-
nation of alternative flux distributions in {R12–R15} (Fig. 2C) shortens PL by one reaction: Spe-
cifically, R13 and R14 carry flux in both alternative flux distributions whereas in different
directions. This analysis shows that the minimal PL is a convex combination of vertices V3 and
V4 (Fig. 2B). This optimal pathway becomes infeasible when we add the second flux constraint
J15 � 0.5; then, vertex V4 minimizes PL.

With splitting, we immediately obtain all possible non-decomposable pathways in the opti-
mal state; no convex combination turns active reactions inactive, because all fluxes are positive.
The shortest optimal flux pathway is always a vertex (and corresponds to an optimal-yield
EFM if it is restricted by only one non-zero flux constraint). Theoretically, multiple shortest
vertices can co-exist. The fact that only a vertex or several vertices optimize the secondary ob-
jective is a specific result for pathway length minimization (see also S5 Fig.). For instance, the
optimal solution space after minimization of the sum of absolute fluxes as secondary objective
(Equation (10)) can consist of a line or a plane, besides (multiple) single point(s).

Concluding remarks about reversible-reaction splitting. Reversible-reaction splitting
has many advantages for the characterization of the optimal solution space. We first summa-
rize those advantages before we set out to analyze a genome-scale stoichiometric model. Split-
ting of the reversible reactions leads to:

1. The vertices discovered with CoPE-FBA are all possible non-decomposable pathways in the
optimal state. For the analyses of optimal flux pathways, we can, therefore, focus solely on
vertices. These vertices can be compactly described by a set of subnetworks that describe all
the variability in non-decomposable optimal flux pathways.

2. A unique characterization of the optimal solution space.

3. Secondary optimization yields an optimal solution space consisting of one or
multiple vertices.

4. Rays no longer signify thermodynamically-infeasible irreversible cycles.

Typically, splitting yields many more vertices and rays (each split reversible reaction forms
an additional ray). We identified three different mechanisms that contribute to the increase in
vertices: (i) splitting can yield additional CoPE-FBA subnetworks that originate from rays or
linealities with a input-output relationship different from zero. An example is the lineality
given by {R02–R04} (Fig. 2A) that is a subnetwork with splitting (Fig. 4B). (ii) optimal flux
pathways that are convex combinations of vertices before splitting become vertices after split-
ting. We encountered such a case in the toy model where the convex combination of vertices
V3 and V4 resulted in an additional vertex after splitting. (iii) rays or linealities connected to
CoPE-FBA subnetworks give rise to additional vertices. Imagine for the toy network, for in-
stance, a reversible reaction that converts metabolite F into metabolite E (the reverse of reac-
tion R7). Before splitting, R7 and this newly introduced reaction form a ray. After splitting, an
additional vertex exists through this newly introduced reaction.

Enumeration of many more vertices requires more computational power, hence we devel-
oped a much more efficient method, CoPE-FBA 2.0, for enumeration of the optimal solution
space of both toy and genome-scale models, which is described in detail in the Methods section.
The enumeration requires now minutes to hours rather than days to weeks to complete.
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A real life example: Escherichia coli growing on glucose
We analyzed the realistic genome-scale stoichiometric model iAF1260 of Escherichia coli (E.
coli) metabolism [34]. By modifying the oxygen uptake constraint, we constructed three differ-
ent FBA models of iAF1260 that depict aerobic, aerobic restricted, and anaerobic growth (for
details see Methods). We set maximization of biomass production rate as the objective func-
tion. For these growth conditions, general CoPE-FBA results for both the model with and with-
out reversible-reaction splitting are shown in Table 1. With splitting we found for each growth
condition many more vertices (up to 120 × 106). Since we also used an ATP maintenance de-
mand constraint of 8.39mmol gDW−1 h−1, our vertices are not instances of EFMs. Without this
constraint, all vertices in both the aerobic and anaerobic growth condition are instances of
their corresponding EFMs (not shown). We found only a few CoPE-FBA subnetworks which
together completely reveal the variability in the vertices. Most reactions are inactive after opti-
mizing the objective function (S1 Table). In the remainder of this section, we use the results ob-
tained from the model with splitting because this yielded all non-decomposable flux pathways
in the optimum.

Gaussian and multimodal distributions of vertices after secondary optimization. We
studied the distributions of objective values of a secondary optimization over the vertices ob-
tained in the first optimization. For each vertex, we determined the pathway length PL, pathway
sum of absolute fluxes PJ, and pathway cost PC (see Methods). Similar to work done by Shlomi
et al. [10], our protein cost definition was solely based on enzyme-synthesis cost. For instance,
we did not take the protein lifetimes into account. Ignoring protein lifetimes implies that PJ
and PC are closely related; PC is taking PJ multiplied with a protein cost for each individual re-
action. In Fig. 5, we thus only show the results for PL and PC. Initially, we intuitively expected
many vertices with intermediate PL, PJ, and PC, and few with relatively low or high PL, PJ, and

Table 1. Characterization of the optimal solution space with and without reversible-reaction splitting.

Model Toy model E. coli iAF1260 model

Reversible-reaction splitting No Yes No Yes
Growth condition Aerobic

Total reactions 12 23 2374 3226

Rays 0 7 26 604

Linealities 1 0 1 0

Vertices 4 12 839.808 120.932.352

Subnetworks 2 3 6 9

Model E. coli iAF1260 model E. coli iAF1260 model

Reversible-reaction splitting No Yes No Yes
Growth condition Aerobic restricted Anaerobic

Total reactions 2374 3226 2374 3226

Rays 25 602 25 602

Linealities 1 0 1 0

Vertices 1.679.616 40.310.784 31104 1.492.992

Subnetworks 4 4 6 8

The optimal solution space is typically characterized by many vertices and a few rays and linealities. Vertices originate from a combinatorial explosion of

only a few CoPE-FBA subnetworks. Reversible-reaction splitting yields a unique characterization of this optimal solution space, but typically many more

vertices (and rays) exist. With reversible-reaction splitting, there is one additional ray in the aerobic growth condition which concerns an irreversible cycle

of oxygen.

doi:10.1371/journal.pcbi.1004166.t001
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PC. In other words, we expected a Gaussian-shaped distribution for both PL, PJ, and PC. As ex-
pected, the PL was indeed Gaussian-shaped distributed for all tested growth conditions. This is
illustrated by the dashed black lines in the top panel of Fig. 5 which correspond to a Gaussian
distribution where we used the sample mean and standard deviation as input.

In contrast, PC was clustered into distinct groups, i.e. a multimodal distribution. An accurate
determination of pathway cost is a challenge and we hypothesized that a different cost function
could show a different distribution. Therefore, we investigated four different definitions of pro-
tein cost: minimum, maximum, average, and equal (i.e. sum of absolute fluxes; PJ). When mul-
tiple proteins were associated to a particular reaction via an OR rule, the minimum, maximum
or average was taken (for more details see Methods). In all cases, we found a multimodal distri-
bution. Nonetheless, we did find an effect of the cost function; taking the “minimal” cost

Fig 5. E.coli vertex cost follows amultimodal distribution. For three growth conditions—aerobic (red, circle), aerobic restricted (purple, triangle), and
anaerobic (blue, square)—we analyzed the vertex cost (PC) and vertex length (PL) of each vertex. Each dot in the main panel represents a vertex with a
specific cost and length. Our results indicate that for E.coli the vertex length follows approximately a Gaussian-shaped distribution (dashed lines are
Gaussian distributions with sample mean and sample standard deviation). Vertex cost follows a multimodal distribution; vertices are clustered in distinct
groups with a specific cost. Due to file size limitations we only show a subset (10.000) of vertices for all conditions in the scatter plot.

doi:10.1371/journal.pcbi.1004166.g005
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function typically resulted in the largest difference between both clusters, while taking the
“equal” cost function typically resulted in the smallest difference between both clusters (S2
Table, S6 Fig.). These results show that for explaining the multimodal distribution of vertex
cost, the effect of fluxes was much more important than the effect of protein costs.

We already explained that enumeration of a model with reversible reactions does generally
not result in a unique characterization of the optimal solution space. Hence, different subsets
of all non-decomposable flux pathways in the optimum can be found. To demonstrate the pos-
sible differences, we enumerated the E.coli iAF1260 model including reversible reactions for
the same conditions of which results are shown in S7 Fig. Comparison with Fig. 5 shows that
during aerobic growth conditions only two rather than four clusters were found.

CoPE-FBA subnetworks explain differences in secondary optimization. CoPE-FBA
subnetwork analysis revealed the shape of the distributions of the length, sum of absolute
fluxes, and cost of vertices. Several different CoPE-FBA subnetworks contributed to the total
length difference and within the majority of these subnetworks we found alternative flux distri-
butions with different lengths; the length distribution within the subnetworks were uniform or
already Gaussian in shape. It is, therefore, not possible to reconstruct many vertices with a
short or long vertex length, which explains the Gaussian-shaped distribution of vertex length.

Alternatively, one (aerobic restricted and anaerobic cases) or two subnetworks (aerobic
case) explain the main differences in PJ and PC. Within these subnetworks, we found two dis-
tinct modes—a relatively cheap and a relatively expensive mode. While some of these subnet-
works were relatively large, our results show that the main cost difference in this particular
subnetwork originates from only a few metabolic reactions (S3 Table). As a consequence, we
found many vertices with a relatively low PC and many vertices with a relatively high PC—a
multimodal distribution of vertex cost. In the aerobic growth conditions, the cost difference
mainly emerged from using different electron acceptors for the NADH dehydrogenase; cheap
pathways used ubiquinone-8 and costly pathways used menaquinone-8 and/or demethylmena-
quinone-8. Interestingly, in aerobic growth conditions ubiquinone-8 is the major quinone in E.
coli [35, 36]. In anaerobic growth conditions, the cost difference mainly emerged from exploit-
ing a different strategy for the ATP-dependent conversion from PEP and F6P to DHAP, G3P,
and PYR in main carbon metabolism (S8 Fig.).

Lastly, we studied the reduction of the solution space after secondary optimization. For the
E. coli iAF1260 model with splitting, secondary optimization reduced the solution space to
only one or a few vertices (Table 2). In case of PL-minimization, only vertices can be optimal
solutions, since convex combinations increase the number of active reactions. Compared to

Table 2. Secondary optimization can reduce the optimal solution space to a unique flux distribution.

E. coli iAF1260 growth condition

Aerobic Aerobic restricted Anaerobic

min(PL) 432 36 72

min(PJ) 24 24 24

min(Pc) 1 1 1

For the E.coli iAF1260 genome-scale model, secondary optimization reduced the optimal solution space

from 1–120 million vertices to about 1–432 vertices. When we minimize pathway cost (Pc) a unique optimal

flux distribution exists, but many suboptimal flux distributions do exist (Fig. 5).

doi:10.1371/journal.pcbi.1004166.t002
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minimization of PJ and PC, the solution space after minimization of PL contained more vertices
in all of the tested growth conditions. This was expected because PL is solely based on the num-
ber of active reactions, specific flux values are not of interest. Taking these flux values into ac-
count typically results in more diverse outcomes. Hence, it is less likely to find as many vertices
with a minimal PJ. Similarly, adding different protein costs to each reactions further diversifies
these outcomes. As a result, the optimal solution space for PC-minimization resulted in a
unique flux distribution for all tested growth conditions.

Discussion
The recently developed computational method, CoPE-FBA (Comprehensive Polyhedra Enu-
meration Flux Balance Analysis) [16], offers the premise of a simplified biological understand-
ing of the optimal solution space of metabolic network models; a kind of understanding which
is not possible with other popular methods such as Flux Variability Analysis [14] and Flux
Coupling Analysis [25]. We further developed this method: Rather than enumerating the mini-
mal generating set, we used reversible-reaction splitting [31, 32] to enumerate all non-decom-
posable flux pathways in the optimum. This allows us to focus solely on the vertices for the
analysis of optimal flux pathways.

Enumerating all non-decomposable flux pathways in the optimum is a very demanding task
compared to enumerating only a (small) subset of these flux pathways; especially for
CoPE-FBA as presented by Kelk et al [16]. Therefore, we also developed an efficient computa-
tional method, CoPE-FBA 2.0, for the (unique) characterization of the optimal solution space.
We can now characterize the optimal solution space in the order of minutes for most (bacteri-
al) genome-scale models on just an ordinary computer. CoPE-FBA 2.0 is efficient because it
first determines the subnetworks and subsequently enumerates the vertices for each subnet-
work (see Methods for more details). To illustrate this, the 120 � 106 vertices enumerated for E.
coli under aerobic growth conditions originate from eight subnetworks with respectively 6, 3,
5184, 3, 2, 54, 2, 2 vertices. This means that while we determined in total only 5256 vertices
(the sum), we actually enumerated 120.932.352 vertices (the multiplication) within 15 minutes
on an ordinary computer.

The further development of CoPE-FBA facilitated in achieving a better understanding of
how optimal flux pathways resulting from FBA arise out of EFMs, use of constraints, and opti-
mality conditions. We recall that the vertices correspond to optimal-yield EFMs if there is only
a single restricting flux constraint. Both restricting and demanding flux constraints modify the
(optimal) solution space. Typically, the optimization problem remains underdetermined and
an optimal solution space will continue to exist. We can get a unique solution by adding addi-
tional constraints that concern all flux values in the model (e.g. protein cost constraints). Then,
the optimal state is an instance of an optimal-yield EFM if there is only a single restricting flux
constraint. Alternatively, the optimal state corresponds to a convex combination of optimal-
yield EFMs. For this reason, we can also use CoPE-FBA 2.0 to quickly enumerate all optimal-
yield EFMs, which can be useful because enumerating the complete set of EFMs of a genome-
scale model is a laborious undertaking [37, 38].

Other constraints that also concern all reactions, but not their flux values, such as minimal
PL, will often lead to optimal solution spaces. While these objectives have been used frequently
to find more realistic FBA outcomes [18–22], we showed that for both minimization of PL and
PC, optimal solution spaces continue to exist (Table 2). This result shows that we should be
careful drawing conclusions from predicted flux distributions after using a secondary objective.
Using CoPE-FBA with only irreversible reactions allows for a straightforward identification of
the origin of the remaining solution space. Specifically, these solution spaces originate from
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identically favorable pathways through CoPE-FBA subnetworks. Similarly, we can use these
CoPE-FBA subnetworks to directly explain the differences after secondary optimization, as we
showed for the multimodal distributions of vertex cost.

In this research, we further demonstrated the use of CoPE-FBA 2.0 for the E. coli iAF1260
genome-scale model by determining PL and PC for each enumerated vertex for different growth
conditions. We found Gaussian-shaped and multimodal distributions for PL and PC, respec-
tively. These results can be further used to deduce a hypothesis of the selection pressure if we
know the flux distribution. If the objective of E. coli would be to minimize PC (or PJ), we would
not expect E. coli to exploit the unique optimal solution since the difference between this opti-
mal solution and many suboptimal solutions is almost negligible. We do, however, expect E.
coli to exploit the “cheap” reactions that cause the bi- or multimodal distribution of vertex cost.
Interestingly, in aerobic conditions, our analysis predicted that all cheap pathways exploit ubi-
quinone-8 which is also the major electron acceptor in E. coli under these conditions [35, 36].
If the objective of E. coli would be to minimize PL, many different flux vectors give rise to an
optimal or near-optimal solution. The multitude of optimal solutions hinders the construction
of a hypothesis about PL from individual reactions. In future research we see as possible appli-
cation of our method, finding the minimal flux distance between alternative optimal flux vec-
tors in different conditions, to answer questions about how species can adapt to
changing conditions.

In conclusion, we present a better understanding of the principles of the optimal solution
space and an efficient method to enumerate all non-decomposable flux pathways in this state.
This paves the way to answer biological questions about the flexibility of organisms while grow-
ing at optimal states in a fast and straightforward manner. This work, therefore, contributes to
reaching a topological understanding of metabolic functionality in the optimum in terms of
metabolic flux pathways. In the future, the development of graphical maps [39] can further
simplify the analysis by allowing for straightforward visualization and inspection of these meta-
bolic flux pathways.

Methods

Flux balance analysis
For a metabolic network ofmmetabolites and r reactions, them × r stoichiometric coefficients
are often represented in the stoichiometric matrix N. The stoichiometric coefficient nij is posi-
tive if metabolite i is net produced in reaction j, negative if metabolite i is net consumed in reac-
tion j, and otherwise zero. The representation of a metabolic network in a stoichiometric
model is particularly useful for constraint-based modeling techniques like Flux Balance Analy-
sis (FBA). By using a linear programming approach, FBA can optimize (maximize or mini-
mize) an objective function subject to the steady-state constraint, thermodynamic constraints,
and capacity constraints:

Maximize or Minimize Zobj ¼ cTJ

subject to;

NJ ¼ 0

Jmin � J � Jmax

ð3Þ

Here, c is a vector of coefficients that represent the contribution of each flux in vector J to the
objective function Zobj. Next, NJ = 0 is the steady-state constraint. Finally, Jmin and Jmax specify
the minimal and maximal flux values for each reaction. In addition to providing a unique opti-
mal outcome of the objective function, FBA provides a corresponding optimal flux distribution

Interplay between Constraints, Objectives, and Optimality for GSSMs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004166 April 7, 2015 15 / 21



Jopt. Most FBA models are underdetermined systems, and therefore, many corresponding Jopt

exist. For more details about FBA, we refer to Orth et al. [12].

Minkowski sum
The Minkowski sum given in Equation (4) provides the description of any Jopt in terms of verti-
ces, rays, and linealities [16, 29].

Jopt ¼
Xs

k¼1

akφk þ
Xt

k¼1

bkfk þ
Xu

k¼1

gkck ð4Þ

Here, the vectors φk, fk, and ψk represent the vertices, rays, and linealities, respectively. Addi-
tionally, s, t, and u represent the upper boundaries of the sum functions indicating the number
of vertices, rays, and linealities, respectively. Furthermore, αk, βk, and γk represent the weight-
ing coefficient that satisfy the following constraints:

Ps
k¼1 ak ¼ 1, αk � 0, βk � 0, and γk can

take any value. In words, vertices can be summed by a convex combination, rays can be
summed as a conical combination, and linealities can be summed as a linear combination.

This Minkowski sum alters (Equation (5)) once we split each reversible reaction into two ir-
reversible reactions, because linealities do not exist anymore.

Jopt ¼
Xs

k¼1

akφk þ
Xt

k¼1

bkfk ð5Þ

Each split reversible reaction fulfills all conditions for a ray, thus many more rays are found
when we split each reversible reaction. Each of these additional rays is also an EFM and an ex-
treme pathway which are considered irrelevant because they only reformulate reversibility [32,
40].

CoPE-FBA subnetworks and F-modules
The set of vertices yields a flux space without futile cycles. CoPE-FBA subnetworks are defined
within this flux space and have a fixed input-output relationship, which we can write mathe-
matically as:

NAJA ¼ d 6¼ 0 ð6Þ
where A is a vector of reactions that form the subnetwork [41]. Subsequently, NA and JA are
the stoichiometric matrix and the flux vector of the subnetwork, and d is the fixed input-output
relationship of the subnetwork. We can also calculate subnetworks (modules) in a flux space
with futile cycles. These subnetworks are called F-modules and can be determined via FluxMo-
dules [42]. We can distinguish two types of F-modules:

• F-modules essential for optimality, i.e. d 6¼ 0

• F-modules not essential for optimality, i.e. d = 0

F-modules not essential for optimality are rays or linealities not connected to optimal flux
pathways. An F-module essential for optimality can be a CoPE-FBA subnetwork, a ray or line-
ality connected to optimal flux pathways, or a combination of those.

CoPE-FBA 2.0 pipeline
Kelk et al. 2012 [16] developed the CoPE-FBA pipeline developed to characterize the optimal
solution space in terms of vertices, rays, and linealities. Enumeration of genome-scale models
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without reversible-reaction splitting can take already several days with this computational
method. We developed a new pipeline, CoPE-FBA 2.0, to make this enumeration less memory
and CPU intensive. First, we preprocessed the model as also described by Kelk et al. [16]. Then,
we executed the following steps:

1. Determine F-modules and extract the fixed network. We used a Python implementation
of FluxModules to quickly determine the F-modules.

2. Determine d for each F-module. To circumvent numerical issues we used rational FBA
(QSopt_EX version 2.5.0 [43]) to determine d. FBA output was also used to set the values of
the fixed network.

3. Reconstruct F-module models. For each F-module we reconstructed a model that consisted
only of the reactions and metabolites of the F-module. We added input and output reactions
to fix d of each F-module essential for optimality in the optimal solution space. Dummy spe-
cies were added both the input and output reaction to guarantee use of both reactions.

4. Perform CoPE-FBA as described in Kelk et al. 2012 [16] for each F-module. Enumeration
on each F-module essential for optimality yielded all vertices. F-modules not essential for
optimality were enumerated to determine the total number of rays.

5. Reconstruct network vertices.Wemerged fixed parts and the enumerated vertices for
all subnetworks.

Enumerating the optimal solution space via CoPE-FBA 2.0 took minutes to hours rather
than days to weeks for the original pipeline developed by Kelk et al. 2012 [16]. The CoPE-FBA
2.0 pipeline and all data files used during these study are available for download from http://
memesa-tools.sf.net.

Rank test
In the constructed E.coli subnetworks, the input-output relationship was the only constraint.
Consequently, each enumerated subnetwork vertex should correspond to an optimal-yield
EFM of the subnetwork. We successfully used the rank test [44] to show that each enumerated
“subnetwork vertex” v is an instance of an (optimal-yield) EFM. First, we determined the zero
indices of v. Second, from the stoichiometric matrix N of the subnetwork we eliminated all col-
umns with a zero index in v to create a submatrix Nnz. Third, we used single value decomposi-
tion to determine the rank of Nnz. Last, we used the rank–nullity theorem to determine its
nullity (Equation (7)), the dimension of the right nullspace which should be one if v is an EFM.

nullity Nnz ¼ 1 ð7Þ

Theoretically, enumerated vertices of subnetworks do not have to be instances of optimal-yield
EFMs, because additional restricting flux constraints can be located inside these subnetworks.
In addition, even if all vertices of all subnetworks were instances of optimal-yield EFMs, verti-
ces describing the optimal pathways through the complete network do not have to correspond
to EFMs. This is only true if there is one restricting non-zero flux constraint and no demanding
flux constraints.

Secondary objectives
As a secondary objective, we used, in addition to pathway length (PL) and pathway sum of ab-
solute fluxes (PJ), also pathway cost (PC)—a proxy for the minimization of the ATP utilization
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in protein synthesis—to reduce the size of the solution space.

PL ¼ jfJj : Jj 6¼ 0gj ð8Þ

PJ ¼
Xr

j¼1

jJjj ð9Þ

PC ¼
Xr

j¼1

cjjJjj ð10Þ

The PL is identical to the number of flux carrying reactions, while the PC is identical to the sum
of absolute flux values multiplied with cj, the protein cost for each individual reaction. This
cost is the scaled length of the proteins that were associated to this reaction, which we used as a
proxy for all costs. In other words, cj < 1 when the associated protein length is smaller than av-
erage and vice versa. We set cj = 1 when no information about associated proteins was avail-
able. Because multiple proteins can be associated to a particular reaction via AND and OR
rules, different definitions of cj were used: maximum, average, minimum, and equal. An AND
rule corresponds to taking the sum of protein lengths, while an OR rule corresponds to taking
the maximum, average, or minimum. Using equal cost is identical to minimizing the sum of
absolute fluxes, a widely-used secondary objective. Taking the maximum, average, minimum,
or equal definition of cj did not effect the interpretation of our results.

Genome-scale models
The aerobic restricted version (maximum O2 uptake was 18.5mmol gDW−1 h−1) of iAF1260
was obtained from the BiGG database [45]. Maximum glucose uptake was set to 12.77mmol
gDW−1 h−1 and we modified the bounds on the O2 uptake reaction to create specific aerobic
(no constraint on O2 uptake) and anaerobic (exchange of O2 set to zero) conditions. In all
cases, the model required an ATP maintenance flux of 8.39mmol gDW−1 h−1. The model was
edited and prepared for enumeration using PySCeS CBMPy [46, 47]. All models are provided
as Supplementary Dataset S1. Optimization of secondary objectives (minimization of PL, PJ,
and PC) was also done with PySCeS CBMPy. We used a mixed-integer linear program to mini-
mize PL and a linear program to minimize PJ and PC.
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