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Abstract
What are the features of movement encoded by changing motor commands? Do motor

commands encode movement independently or can they be represented in a reduced set

of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge

because many muscles typically drive movement, and simultaneous electrophysiology

recordings of all motor commands are typically not available. Moreover, during a single lo-

comotor period (a stride or wingstroke) the variation in movement may have high di-

mensionality, even if only a few discrete signals activate the muscles. Here, we apply the

method of partial least squares (PLS) to extract the encoded features of movement based

on the cross-covariance of motor signals and movement. PLS simultaneously decomposes

both datasets and identifies only the variation in movement that relates to the specific mus-

cles of interest. We use this approach to explore how the main downstroke flight muscles of

an insect, the hawkmothManduca sexta, encode torque during yaw turns. We simulta-

neously record muscle activity and turning torque in tethered flying moths experiencing

wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a

single linear combination of activity) consistent with their hypothesized function of producing

a left-right power differential. Alternatively, each muscle might individually encode variation

in movement. We show that PLS feature analysis produces an efficient reduction of di-

mensionality in torque variation within a wingstroke. At first, the two muscles appear to be-

have as a synergy when we consider only their wingstroke-averaged torque. However,

when we consider the PLS features, the muscles reveal independent encoding of torque.

Using these features we can predictably reconstruct the variation in torque corresponding

to changes in muscle activation. PLS-based feature analysis provides a general two-

sided dimensionality reduction that reveals encoding in high dimensional sensory or

motor transformations.
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Author Summary

Understanding movement control is challenging because the brains of nearly all animals
send motor command signals to many muscles, and these signals produce complex move-
ments. In studying animal movement, one cannot always record all the motor commands
an animal uses or know all the ways in which movement varies in response. A combined
approach is necessary to find the relevant patterns: the changes in movement that corre-
spond to changes in the recorded motor commands. Techniques exist to identify simple
patterns in either the motor commands or the movements, but in this paper we develop an
approach that identifies patterns in both simultaneously. We use this technique to under-
stand how agile flying insects control aerial turns. The two main downstroke muscles of
moths are thought to produce turns by creating a power difference between the left and
right wings. The moth’s brain may only need to specify the difference in activation be-
tween the two muscles. We discover that moth’s brain actually has independent control
over each muscle, and this separate control increases the moth’s ability to adjust turning
within a single wingstroke. Our computational approach reveals sophisticated patterns of
movement processing even in the small nervous systems of insects.

Introduction
Control of animal movement is accomplished through the coordinated action of many parallel
motor signals activating many muscles. To understand how motor spikes are transformed into
action requires knowledge of how movement is encoded in these patterns of neuromuscular ac-
tivation. Unfortunately, we cannot reliably predict the movement resulting from a particular
motor signal simply from a muscle’s anatomy and static function (e.g. an “extensor”) [1–4].
The same pattern of activation to the same muscle, but in different dynamic contexts can even
produce turning torques in opposite directions [2]. Moreover, both motor signals (the inputs
to the motor transform) and movements (the outputs) are typically high dimensional and we
may not be able to record all relevant motor signals electrophysiologically. Understanding how
muscles work together to encode movement is therefore a computational challenge of both 1)
dimensionality and 2) incomplete representation.

High dimensionality is ubiquitous in both sensory and motor transformations. Dimension-
ality reduction techniques used in sensory neuroscience are typically one-sided, meaning that a
high dimensional stimulus is reduced to describe variation in a single spiking neuron [5]. Simi-
lar use of one-sided dimensionality reduction in the motor transformation identifies patterns
in high dimensional representations of movement encoded in the activity of individual muscles
e.g. [6]. Conversely, the dimensionality of the neural signals can be high, as is the case for many
central brain recordings, but in many experimental designs the representation of motor output
is restricted to few dimensions, or even discrete states, e.g. [7]. Developing techniques that rep-
resent high dimensional movement encoded in high dimensional neural signals remains chal-
lenging [8], yet is ever more pressing as such datasets become the norm.

The second challenge for motor encoding is one of incompleteness. Muscle synergies, pat-
terns of variation in activation across multiple muscles, are hypothesized to reduce the di-
mensionality of the motor commands and provide high level encoding of movement features
[9,10]. However, not all variation in muscle activation might affect movement dynamics (and
vice versa). If we consider all variation in a high dimensional description of movement as po-
tentially relevant, we are likely to include variation that is not encoded by the muscles we are
able to record from. This challenge exists for sensory encoding as well. Only certain features of
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a complex stimulus may be encoded by the neurons under consideration. Spike triggering is
one way to extract only relevant variation. This method conditions the stimulus on the spiking
of an individual neuron (or muscle) thereby limiting the reduced stimulus description to what
is encoded in that spike. However, we can only align to a single neuron or discrete patterns of
spiking across many neurons [5,6]. Relating activation of multiple muscles to a rich description
of movement demands a reliable way to 1) reduce dimensionality when both input and output
have multiple dimensions and 2) extract only the changes in movement that covary with the
subset of muscles recorded.

Here, we develop a feature encoding analysis based on the partial least squares (PLS) meth-
od of two-sided dimensionality reduction [11,12]. By two-sided, we mean that PLS uses varia-
tion in both input and output to reduce dimensionality, addressing the two challenges above.
Using this approach, we analyze the movement encoded in the flight muscles of the hawkmoth,
Manduca sexta, to test a muscle synergy hypothesis for flight muscle coordination [13,14].

The term “muscle synergy” has many meanings [9,10,15–20], but it is usually represented as
a set of muscles that act in a fixed proportion, or in proportions undergoing a fixed time-vary-
ing pattern [10,20]. In their most general sense, muscle synergies are linear combinations of
variables describing muscle activation that capture variation with fewer dimensions than the
complete set of variables [9]. To avoid confusion, this use of muscle synergy differs from “infor-
mation synergy” where two signals jointly provide more information than the sum of their in-
dividual contributions [21]. It is also different from the terminology of synergistic (vs.
antagonistic) muscles, which refers to muscles acting on the same joint to produce movement
in the same (vs. opposite) direction.

A variety of reasons have been posed for the existence of synergies, most notably for simpli-
fying control by reducing the number of independent motor signals an animal’s brain must
control [10]. In invertebrates some synergies exist simply due to anatomy because individual
motor neurons can innervate multiple muscles (e.g. [22]). Even when innervation is separate,
motor units can fire in very tight synchrony, acting like a simple synergy. InManduca, each of
the main downstroke muscles (dorsolongitudinal muscles or DLMs) has five discrete subunits
(Fig 1A), each innervated by a separate motor neuron (one per subunit) [13,23]. However, the
whole muscle fires as one combined motor unit because the timing of the motor neurons is
very precisely synchronized [23]. In fact, each DLM is driven by only a single muscle potential
during each wingstroke (Fig 1B; [13,14]). Activation of the DLMs therefore varies only in the
timing of the spike rather than magnitude (e.g. number of spikes). During straight flight the
timing of the left and right DLM are also very precisely synchronized (spikes occur within< 1
ms of each other), but during turning the timing is modulated over an ~8 ms window [14].

The fact that the DLMs have any potential for control has only recently been appreciated
[14,25] because this subtle timing modulation occurs over such a narrow range. Nonetheless,
such small shifts produce large changes in mechanical power output [14,26]. Prior to this dis-
covery, control of the wings was thought to be the exclusive domain of the small steering mus-
cles that trim and tension the wingstroke [13].

The question we pose here is whether the two DLMs encode independent aspects of turning
torque production or if they act as a synergy. Three reasons why these muscles could act as a
synergy are: 1) They are activated at the midpoint of a steep but monotonic region of the
power-phase curve, meaning that small changes in timing produce large, but nearly linear,
changes in power output [14,26]. Therefore the timing difference between the left and right
muscle’s spike translates into a power differential [14]. 2) Variation in the timing of activation
is also highly correlated between the DLMs, meaning that little independent variation exists
that could encode movement separately in each muscle [14]. 3) The two muscles both attach to
the same large exoskeletal plate that deforms to drive wing motions, resulting in mechanical
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Fig 1. Encoding of torque in muscle activation. Each dorsolongitudinal muscle (DLM) is composed of five separately innervated subunits. The subunits
fire simultaneously with a single muscle action potential acting as a combined motor unit [23]. Contraction of the DLMs produces the downstroke through
deformation of the thorax, which is restored by the upstroke dorsoventral muscles (DVMs) (A—only main flight muscle shown; sub-figure derived from [14]).
There are three major groups of steering muscles (axillary, basalar, and subalar) which are not shown for clarity, but lie just lateral to the DLMs and DVMs,
near the wing hinge (see [24]). DLM recordings during tethered flight (B) are parameterized by the spike timing variables (tL, tR). Activation varies in the timing
of the spike, not the number of spikes. Changes in timing can produce variation in yaw torque (C). In PLS feature analysis (D-H), we relate these motor
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coupling of their action [24]. As we will see, the synergy hypothesis is supported when we con-
sider wingstroke-averaged turning torque, but fails to describe the variation in motor features
captured by the PLS analysis.

The tractability of analyzing invertebrate motor commands combined with the ability to re-
cord turning torque affords an opportunity to test hypotheses about muscle synergies with
spike-level resolution. The coordination of the moth’s downstroke muscles is a very simple
synergy hypothesis: that one variable describing the combination of these two muscles’ activi-
ties has as much predictive power as considering the two muscles independently.Manduca
flight muscle is also a good system for assessing the PLS approach because the timing of activa-
tion of multiple muscles translates into a continuously varying, high dimensional pattern of
torque throughout the wingstroke. Our goal is to identify the few relevant dimensions of torque
that are encoded by changes in the DLMs and then to use these to assess the synergy hypothe-
sis. Even though we focus on a specific hypothesis about an insect’s flight motor program, we
use this system to show how PLS feature analysis may be generally applied to produce a data-
driven decomposition of two simultaneously measured datasets.

Materials and Methods

Experimental data
Manduca sexta is a large crepuscular hawkmoth capable of agile, maneuverable flight. It dem-
onstrates a strong visual tracking (optomotor) response to oscillating wide-field optical pat-
terns [27]. This behavior is ecologically relevant because moths must hover and feed while
visually tracking flowers’movement [28,29]. Flight in hawkmoths is powered by a left-right
pair of DLMs and a pair of upstroke muscles (the dorsoventral muscles or DVMs; Fig 1A) [24].
However, a suite of several smaller steering muscles further trim or tension the movement of
the wings, and contribute to the control of turning [13,30]. It is therefore still challenging to
isolate the turning dynamics encoded in the DLMs’ activation alone.

We flew seven moths (mixed sex) under open-loop, visually driven (i.e. optomotor) flight
conditions that produced left and right turning behaviors. The data used here are from the
same moths used previously and under conditions elaborated on in [14]. In brief, bipolar tung-
sten electrodes inserted through the scutum on the dorsal surface of each moth recorded from
the DLMs (Fig 1B). We tethered moths to a custom optical torque-meter that produced an out-
put voltage dependent on the yaw (left-right) turning torque of the animal (Fig 1C) [14]. Fol-
lowing at least a minute of warm-up shivering, moths produced full-amplitude wingstrokes
spontaneously or when we elicited flight with a light touch to the neck region. The visual stim-
ulus consisted of a sinusoidal grating of light and dark bars with a spatial frequency of 0.05 cy-
cles degree-1, oscillating sinusoidally at 1 Hz. Because wingstroke frequency is much faster (~25
Hz), this slow variation in optic flow magnitude produced individual wingstrokes spanning a
wide range of average yaw torque. We recorded electromyograms (EMGs) from the left and
right DLMs and detected spikes using simple threshold crossing. Invertebrate EMGs usually af-
ford resolution of individual muscle potentials, or spikes, whereas vertebrate recordings typi-
cally record from many motor units simultaneously, obscuring individual spikes [9,10]. Trials
were analyzed further only if the right DLM’s average spike rate exceeded 18 spikes sec-1, corre-
sponding to the lowest flight flapping frequency.

signals (theUmatrix) to the turning torque (theMmatrix) (D). The raw torque signal is calibrated to extract the within-stroke torque (E). We then spike-trigger
(dots in e; each of the first four extracted torque chunks is colored) and align the torque (D), find a reduced dimensional feature space via the partial least
squares (PLS) method (F), test if synergy models can account for this feature space (G), and reconstruct the torque waveform from the timing variables (H).

doi:10.1371/journal.pcbi.1004168.g001
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To extract the torque within each wingstroke, we had to decouple the internal dynamics of
the torquemeter from the forces applied by the animal. We modeled the torquemeter as a
forced, damped rotational oscillator.

I €�þ C _�þ �� ¼ �ðtÞ ð1Þ
where ϕ is the angle of rotation, I is the moment of inertia, C is the torsional damping coeffi-
cient, and κ is the torsional stiffness. We fit the spring, damping, and inertial parameters using
a series of calibration trials following [31].

Analytical approach & synergies
Our analytical goal was to relate a measured set of motor signals to the resulting movement, ex-
tract the relevant dimensions of variation in movement, and use this set of motor features to
test the synergy hypothesis. During periodic movement, the motor signals form a matrix U of k
timing (or phase) variables {u1, . . ., uk}, characterizing neural or muscular action potentials
(hereafter “spikes”) for each of N periods of movement (e.g. wingstrokes). During rhythmic
movement with a characteristic period T, the motor output matrix is an N x bmatrix,M, where
b is the number of samples of a set of movement variables over T.

Since the DLMs each only receive a single spike of activation per wingstroke, we defined the
N x 2, U signal matrix using the time of the left (tL) and the right (tR) muscle’s spikes relative to
the zero phase onset of each wingstroke (Fig 1B). These variables were each centered and scaled
by their variances. The N x 500,Mmovement matrix was composed of 50 ms (500 samples)
long waveforms, {τ1 .. . . τ500}, based on a typical tethered wingbeat frequency of 20 Hz and a
10 kHz sampling of torque. The ensemble of wingstrokes were centered and scaled by their
overall variance, s. Our approach to extracting motor features follows four steps (Fig 1D–1H):
1) Alignment of the torque waveforms, 2) dimensionality reduction of the movement matrix,
M, to extract a reduced basis, termed motor features, 3) synergy testing and 4) reconstruction of
the torque waveforms from the motor signals, U.

By comparing how well torque was encoded by different combinations of the motor signals,
U, we asked if these signals act as a synergy or independently encode information about move-
ment. In the independence model, the activation of each muscle {tL, tR} contributes significant-
ly to predicting torque, and these two variables (the two columns of U) cannot be reduced to a
single variable.

We pose two synergy models, constructed as different linear combinations of the motor sig-
nals. The first is based on an a priori physiological hypothesis that the timing difference Δt be-
tween the muscles’ spikes could translate directly into a power differential between the muscles
[14,25]. We refer to this as the differential synergy model. The second synergy model is entirely
data-driven: we extract the first principal component (tPCA—the PCA synergy model) of the
two motor variables {tL, tR}. This closely mirrors the existing methods of muscle synergy calcu-
lation in the literature [9]. However, we use PCA instead of the sign-dependent nonnegative
matrix factorization (NMF) technique [32] because timing can shift positively or negatively.
We call this the empirical synergy model. Finally, we test a redundancy model, in which the
variation in torque is equally well explained by only one muscle’s activation.

In summary, we use the full set of motor signals, U, and torque samples,M, to identify all
the variation in movement that cross-correlates with changes in any U variable (Fig 1F). Using
this same feature basis, we then test whether either of the synergy models can fully explain the
variation in the feature basis or if the independence model (full U) is needed (Fig 1G). This
avoids circularity because we identify the torque features contingent on U, but all the synergy
and independence models are subsets or combinations of U. We test the different synergy,
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independence, and redundancy models by how well they explain variation in the projection of
torque onto the feature basis (the PLS “scores”) and also how well the competing models per-
form in reconstruction of the entire torque waveform (Fig 1H).

Alignment of torque waveforms
We aligned the torque signal from each wingstroke in two different ways. We first produced an
alignment that did not depend on the spikes directly. We computed the Hilbert transform of
the torque signal, and filtered around the dominant 20 Hz wingstroke frequency (3–35 Hz
bandpass, 8th order Type II Chebychev). The Hilbert transform returns a periodic function
whose value estimates the phase of the original time series data and has been used for both gait
[33] and rat whisking analyses [34]. After transforming the raw voltage signal (Fig 1C) into ac-
tual torque (Fig 1E), each torque segment was aligned to the zero phase crossing of each wing-
stroke (“phase-triggered”). As an alternative, we also aligned the torque to the timing of the
right DLM’s action potential (“spike-triggered”; Fig 1E). In both alignments, the resulting
wingstrokes were assembled into the movement matrix,M (Fig 2A and 2B).

Fig 2. Motor-spike-triggered ensembles and turning deciles.We aligned the torque waveforms to either
the zero phase crossing (A) or the timing of the right DLM’s spike (B). We then divided the data into deciles
ordered by average torque. The decile averages (C, D) and the interpolated contour surfaces (below) from
two animals (“J” and “L”) show the range of torque variation within wingstrokes. Deciles are ordered from the
greatest leftward (”L”) to rightward (”R”) torque. Grey transects highlight distinctive features mentioned in the
text. Because wingstrokes are triggered on the right muscle’s spikes, we do not expect these patterns to be
left-right symmetric.

doi:10.1371/journal.pcbi.1004168.g002

PLSMotor Features Underlying Flight

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004168 April 28, 2015 7 / 23



Dimensionality reduction & feature extraction
We applied two dimensionality reduction methods to the two different waveform alignments
to determine which best captured the variations in torque that correspond to the motor timing
variables in U. We first applied standard principal component analysis (PCA) by computing
the eigendecomposition of the covariance matrix ofM alone for both the phase- and spike-trig-
gered ensembles. Note that this is different from the PCA used on the motor signals, U, to cre-
ate the empirical synergy model. We compared the one-sided PCA analysis ofM with a two-
sided, cross-covariance decomposition based on the partial least squares (PLS) method (Fig
1F). We explored how effectively these reduced descriptions of the torque output (termed
motor features) captured variation in the motor signals {tL, tR} via standard regression of the
features onto the signals.

PLS
Partial least squares regression, hereafter PLS, extracts features from one dataset of predictor
variables, here the animal’s movementM, to maximize each successive feature’s cross-covari-
ance with an arbitrarily large set of predicted variables, here the motor signals U (Table 1)
[11,12,35]. PLS regression is one of several methods based on Wold’s original Projection onto
Latent Structures [11], which are used widely in chemometrics [35]. PLS regression uses an it-
erative approach that greedily extracts features in one dataset (hereM) that maximally predict
the remaining variance in another dataset (here U). The set of features identified from PLS
therefore are not guaranteed to maximize a global statistical property of the data [36], although
each subsequent feature is optimal for that iteration. This approach has been shown to have
good predictability in empirical datasets ranging from neural imaging analyses [37], ecology
[38], geometric morphometrics [39,40], and paleontology [41]. We implement the faster Statis-
tically-Inspired Modification of PLS (SIMPLS) developed by de Jong [35] rather than the origi-
nal Non-Linear Iterative PLS (NIPALS) [11] that requires iterative optimization steps.

Because we extract features of the motor output that maximize their ability to reconstruct the
motor signals, the direction of the PLS regression is fromM toU. This also allows the number of
relevant motor output features to exceed the rank of U. The weights are the left and right singular
values (SVs) from an SVD of the cross covariance matrix ofM andU. Projecting these intoM and
U gives the loadings, which are the features and the coefficients of these projections are the scores.
The SIMPLS algorithm, applied toU andM, has the following steps:

1. Construct the cross-covariance matrix:

S0 ¼MTU: ð2Þ

Table 1. PLS regression summary.

motor signals (neuromuscular) motor output (torque)

Predictor var.! M
U  Explained var.

C, c1 Weights (SVs) R, r1
Q, q1 Loadings (features) P, p1

D, d1 Scores (coefficients) K, k1

doi:10.1371/journal.pcbi.1004168.t001
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2. Compute r1 and c1, the leading right and left singular value decompositions of S0. These are
the “weight” vectors ofM and U respectively.

3. From these weight vectors, the motor output “scores” vector k1 is computed as:

k1 ¼Mr1: ð3Þ

These scores are then normalized:

k1 ¼
k1

kk1k
: ð4Þ

4. The scores represent the amount of the leading feature represented in each wingstroke.The
motor output “loadings” vector p1, defined as:

p1 ¼MTk1; ð5Þ

is the first motor feature itself and is analogous to a principal component or eigenvector.

5. The loadings (q1) and scores (d1) of U are calculated from k1, making the analysis asymmet-
ric.

q1 ¼ UTk1; ð6Þ

d1 ¼ Uq1: ð7Þ

6. This leading feature is projected out of the current S0matrix, which is “deflated” to obtain a
new cross-covariance matrix S1:

S1 ¼ S0 � v1v1
TS0; ð8Þ

v1 ¼
p1
kp1k

: ð9Þ

This is the same as first estimating the regression coefficient b1

b1 ¼ k1
Tu1; ð10Þ

and then projecting out the newly obtained feature fromM and U:

M1 ¼M� k1p1
T ð11Þ

and

U1 ¼ U� b1k1c1
T : ð12Þ

S1 can then be reconstructed from the residualM1 and U1 matrices:

S1 ¼M1
TU1: ð13Þ

7. Steps 2–5 are iterated to pull out the next set of scores, weights, and loadings {ki, di, ri, ci, pi,
qi, vi}. However, each new vi is made orthogonal to all prior (normalized from Equation 9)
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features, V = {v1, . . ., vi-1}, using a modified Gram-Schmidt process:

vi ¼ vi � V VTvi: ð14Þ
In addition, newU scores (di) are made orthogonal to all previousM scores, K = {k1, . . ., ki-1},
so that only the independent variation explained inU is considered for each feature beyond
the first:

di ¼ di � K KTdi: ð15Þ

8. The final feature basis ofM is composed of the n features P = {p1, . . ., pn} and their scores:
K = {k1, . . ., kn} that explain significant variation in one or more of the motor commands inU.

In using cross-covariance to isolate relevant variation, PLS-based methods are similar to ca-
nonical correlation analysis (CCA) [42]. However, CCA is symmetric, uses only a single cross-
covariance decomposition, and only extracts a number of features up to the smaller of the rank
of the inputs or the rank of the outputs (here only two). In contrast, PLS is a greedy, iterative al-
gorithm that captures the unique contributions of successive features in describing the motor
signals while preserving the asymmetry through a regression step [12]. It can therefore produce
a number of features up to the number of variables describing the movement, given by the di-
mensionality ofM.

Synergy model testing
We compared the synergy and independence models first by how well the motor signals could
predict the magnitude of each feature (its score) and the mean torque produced over a wing-
stroke (Fig 1G). We quantify model performance using the predicted residual sum of squares
(PRESS). This form of leave-one-out cross-validation sequentially withholds each individual
wingstroke from the analysis and then predicts the withheld wingstroke. If the two-variable in-
dependence model has greater predictive power than the one-variable synergy or redundancy
models, then each muscle contributes significantly to the decoding of torque. If the indepen-
dence model does not significantly improve PRESS, then at least one of the reduced models are
favored. Note that the independence model cannot explain less variance than the synergy or re-
dundancy models because these two alternatives are subsets of the independence model with
one fewer free parameters. We used ANOVAs and paired tests to compare across models using
each animal as a separate observation for model testing.

Torque waveform reconstruction
In addition to comparing how well motor signals encoded the features, we also tested how
well we could reconstruct the wingstroke torques from the features (Fig 1H). The torque wave-
forms,M0, can be approximated from PLS features as a sum of the average motor output (the
spike-triggered average—MSTA) and the features weighted by their scores:

M 0 ¼MSTA þ sKPT : ð16Þ
The scaling factor, s, corrects for the original centering and scaling of theMmatrix. The final
score and loading vectors for the motor signal Umatrix, D = {d1, . . ., dn} and Q = {q1, . . ., qn}
define the dimensions of Umaximally predicted in a least squares sense by each feature, pi.
This approach is similar to reverse reconstruction of the stimulus given a set of spikes [5].

We first used the STA of all torque waveforms as a comparison for reconstruction (only the
first term of Eq. 16). To demonstrate the efficacy of wingstroke-averaged methods, we next
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considered the STA with just the average torque over the whole wingstroke,< τ>, recon-
structed from the synergy and independence models and added as a constant offset (the mean
torque models). This is the same as assuming that only wingstroke-to-wingstroke changes are
encoded in the motor signals.

We then reconstructed the torque using Equation 15, which includes the STA and the first
two motor features:

M 0 ¼MSTA þ sk1p1
T þ sk2p2

T : ð17Þ

These reconstructions are the reduced-dimension representations of each measured wing-
stroke derived from the feature analysis. Finally, we reconstructed these waveforms from the
motor signals themselves by predicting the features’ scores (k1 and k2 in Eq. 17) from the
motor signals. These reconstructions were based on using the independence, redundancy, dif-
ferential synergy, and empirical synergy representations of U to generate the k’s (via the regres-
sion equations).

As our main metric of reconstruction performance we used the RMS power of the residual
(error) torque waveform normalized to RMS of the actual waveform. We also considered the
residual, or unexplained, variance in the model, calculated as 1—r2, where r is the correlation
coefficient. RMSE is sensitive to small, but systematic deviations (e.g. offsets) whereas unex-
plained variance is sensitive to small phase shifts. Throughout the analyses we used repeated
measures ANOVAs with each animal contributing an observation for each decile of turning
and for each model (i.e. model and decile were each factors). Since we were primarily interested
in comparing to the best model (the actual two feature waveform or the independence model),
we used Hsu’s “multiple comparisons to the best” (MCB) test [43]rather than a Tukey compar-
ison of all pairs. In paired comparisons we use paired t-tests. We confirmed that non-paramet-
ric tests (Kruskal-Wallis and pairwise Wilcoxon tests) did not affect our conclusions. Statistical
tests were performed in Matlab (Mathworks, Natick, MA, USA) with Hsu’s MCB tests per-
formed in JMP (SAS Institute, Cary, NC, USA).

To test the predictive power of the reconstructions, we cross-validated the feature analysis
using 70% of each decile of the data as a training set to predict the remaining 30%. Cross-vali-
dation was repeated one thousand times. We also reconstructed each individual wingstroke’s
torque, rather than the decile averages. In this case, the maximum reconstruction performance
is likely to be limited because the motor commands from the main flight muscles should only
predict a portion of the overall variation in the wingstroke. However, the ability of these motor
commands to predict the scores (ki) of each PLS feature (pi) should remain high because these
include only variation in torque corresponding to flight muscle variation.

Results

Aligned wingstrokes reveal patterns of torque variation
We first determined whether the torque waveforms varied in more than just their mean. After
alignment via phase- or spike-triggering, we separated the resulting ensembles of wingstrokes
into deciles ordered from left to right turns by mean torque. We found substantial variation,
confirming our ability to visually induce a range of motor outputs (Fig 2C and 2D). While
mean torque varied smoothly across deciles, there were changes in shape of the wingstroke, in-
cluding phase shifts. These were stronger in some animals than in others (Fig 2D). In animal J
(Fig 2C), the amplitude of the torque around ventral wingstroke reversal (~25 ms) varied and a
secondary peak arose in the middle of the upstroke (~37 ms). In animal L (Fig 2D), a similar
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double peak formed between 50 and 80% of the wingstroke cycle and there was a prominent
phase shift. These patterns were consistent for both phase and spike-triggered ensembles.

Dimensionality reduction identifies two significant features
Our next goal was to determine the dimensions along which the torque signal covaried with
the motor signals and which of the four combinations of alignment (phase- vs. spike-trigger-
ing) and dimensionality method (PCA vs. PLS) best captured this variation. In PCA, the spike-
triggered waveforms required fewer features to reach the same explanatory power as the phase-
triggered waveforms (Fig 3A and 3B). This is presumably because the spike-triggered ensemble
contains more implicit information about the timing variables. PCA features are ranked in
order of their ability to describe variation in the motor output. This ordering does not corre-
spond to each feature’s ability to predict motor timing variables: some higher-ranked PCA

Fig 3. PLS features improve variance explained in motor commands.We extracted 10 features for each dimensionality reduction and alignment method
(PCA: A-C; PLS: D-F). We plotted the variance in each muscle timing variable (colored lines) explained by each feature from the phase- (A, B) and spike-
triggered ensembles (B, E) as well as the cumulative variance for the spike-triggered case (C, F). To determine the variance explained by random features
(dashed lines) we resampled the torque waveforms and muscle timings 1000 times. We used the 99.5% quantile as a threshold for howmuch variation could
be explained by chance from a single feature. Some higher-ranked features in the PCA analyses had significant contributions (circled) above chance. We
repeated the spike-triggered PLS analysis with Δt included in theUmatrix to ensure that statistical bias did not change the number of important features (G).
To compare across all animals (H, I), we normalized the variance explained by the cumulative variance explained when including 10 features. The box plots
indicate the proportion of this maximum explanatory power described by each successive feature (N = 7 animals; 298–620 wingstrokes per animal).

doi:10.1371/journal.pcbi.1004168.g003
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features explained more motor signal variation than lower-ranked features. Some lower-rank
PCA features also describe variability in the waveform ensemble that is not correlated with
spike timing. As a result, the cumulative sum of the variance explained by the PCA features did
not have a constant plateau (Fig 3C).

Ranking features based on how well movement,M, explains muscle activity, U, is exactly
the strength of PLS and, as expected, the PLS features are ordered such that they explain suc-
cessively more of the variance in the motor timing signals (Fig 3D–3F). The spike- and phase-
triggered alignments performed comparably under PLS decomposition (Fig 3D and 3E) pre-
sumably because the spike timing information is now incorporated in the dimensionality re-
duction. However, with spike triggering, there was smoother accumulation of variance
concentrated in the first features (Fig 3F). Including Δt along with tL and tR in the original U
matrix did not affect the number of motor features extracted from torque (Fig 3G).

The cumulative variance explained in timing variables does not reach 100% because features
iteratively maximize the cross-covariance; the procedure aims to capture variance explained by
the timing variables, not all variance in the output. The amount of variance explained also

Fig 4. Identified features support the independencemodel.We plotted the timecourse (loadings) of each
significant PLS feature (A). The decile-averaged score for each feature varied from one extreme of turning to
the other (B). We determined how well different subsets of the timing variables (the independence, synergy,
and redundancy models) predicted either the mean torque (C) or the feature scores (D, E) with a hold-one-out
PRESS statistic. The box plots represent the mean and quartiles, with whiskers encompassing all non-
outliers. Horizontal lines indicate statistically separate groups.

doi:10.1371/journal.pcbi.1004168.g004
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differs across animals. To combine all individuals, we scaled variation explained to the variance
captured with 10 features (Fig 3H and 3I). We did the same for the random features extracted
from resampling the torque for each animal. The first two features explain significantly more
variation than chance in the timing of both the left and the right muscle. While the variance
generally drops off rapidly after the first feature, the second feature was important in some ani-
mals and so we retain it. Our conclusions about synergies do not depend on the inclusion of
the second feature.

In each animal analyzed, the two PLS motor features form a low dimensional basis describ-
ing the torque or movement matrixM and vary with left-right turning. Features generally had
four periods of oscillation per wingstroke, consistent with the mean torque waveform, or spike-
triggered average (“STA”; Fig 4A). The score of the first feature correlated with the degree of
turning from left- to rightmost. The second feature’s score had a maximum at intermediate tor-
que values, corresponding to straight flight, and decreased during extreme left and right turns
(Fig 4B).

The shapes of the extracted features make sense given our understanding of the control of
flight. Varying the amplitude of the first feature has the greatest effect on torque at the begin-
ning and midpoint of the wingstroke (Fig 4A). These points correspond to ventral and dorsal
wingstroke reversals, critical moments for flight control [44]. Furthermore, the features oscil-
late at approximately four times the wingstroke frequency, which is consistent with the patterns
observed in the aerodynamics of a robotic Drosophila wing model [45].

PLSmotor features reject synergy models
Having identified PLS features that capture the variation in torque relating to variation in the
motor signals, we now use this feature basis to test for synergies (Fig 1G). We compared the
variation in the torque captured by reduced combinations of the motor signals (the synergy or
redundancy models) with that predicted by the two signals together (the independence model).
We predicted mean torque and the identified torque features through regression and cross-val-
idation (PRESS). When we predicted only the mean torque, but not the torque features, the
one-variable synergy models performed as well as the two-variable independence models
(p> 0.1; Fig 4C), supporting the interpretation that the two muscle commands act as a syner-
gy. However, when we considered either of the two PLS features, we found that the indepen-
dence model significantly outperformed the redundancy or synergy models (p< 0.05 in all
cases; Fig 4D and 4E). This was true even for the first feature alone, which indicates that our
conclusions do not rely on the iterated extraction of features—even the first feature is encoded
in both tL and tR.

Torque reconstruction improves with independently driven motor
features
Rather than just predicting the feature scores, we next addressed how well these descriptions of
the motor commands and PLS features could reconstruct the entire torque waveform. The first
two PLS features produced reconstructions of torque that closely matched the decile means
(Figs 5A, 5B and 6A), describing 95% of the variance and 70% of the residual variance after cor-
relating the STA to the waveforms (Fig 6B). If we predicted the amount of each feature (its
score) from the motor signals, the reconstruction was necessarily worse than if we used the
measured feature scores (P< 0.001; Figs 5, 7A); compare cyan and green), but the resulting re-
constructions were still significantly better than those based on mean torque alone (P< 0.003;
Fig 7A, 7B and 7D) or using the STA without any added features (P< 0.0004; Fig 6).
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Fig 5. Reconstructing the torque waveforms. Different reconstructions of the decile-averaged torque waveforms are shown for animal J (A) and animal L
(B). The full ensemble is in grey and the decile ensemble in black. The measured torque (yellow) was compared to the reconstructions based on: the two
feature projection of the measured torque (green), predicting the torque from subsets of the motor signals via the features (cyan), or by predicting the mean
torque alone and adding it as an offset to the STA (orange).

doi:10.1371/journal.pcbi.1004168.g005

Fig 6. STA and features reconstruction performance. Reconstruction error for each decile of wingstrokes averaged across all animals was quantified for
the STA and two-feature projections of the torque data using the normalized RMS error (A) and the unexplained, or residual, variance (B). The STA-alone
reconstruction uses the spike-triggered average for each individual moth as the basis for comparison. The feature-only reconstruction compares the torque
waveform constructed from the motor signals to the two feature projection of the measured waveform (rather than the full measured waveform). This
demonstrates how well the motor signals can predict the features themselves rather than the entire within-wingstroke torque. Horizontal lines above each
group of bars in (A) indicate statistically separate groups.

doi:10.1371/journal.pcbi.1004168.g006
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The PLS feature-based analysis improved reconstruction primarily by matching the shape
and phase of the torque waveform (Fig 5A and 5B). The independence model accurately recon-
structed 91% of the average torque waveform across all turning deciles (Fig 7B) and 53% of the
residual variance after accounting for the STA. Wingstrokes during more extreme turns were
less completely reconstructed (Fig 7A and 7B), but this is not surprising given that there are
other muscles involved in turning whose activity we did not record. If we restrict the recon-
struction to the torque projected into the two-feature subspace, the motor signals are even
more accurate and consistent across deciles (Fig 5).

Using the RMSE waveforms for all the deciles, we first confirmed that adding more features
beyond the first two did not improve reconstruction (Fig 7C). Reconstruction based on the in-
dependence model (using both tR and tL to predict the feature scores in Equation 16) outper-
formed both synergy models and the redundancy model in minimizing the RMS error in the

Fig 7. Comparing feature- andmean torque-based reconstructions.We compared reconstruction performance with normalized RMS (A) and
unexplained variance plots (B; N = 7 animals) as in Fig 6. Low error values indicate better performance. Horizontal lines indicate statistically separate groups.
Significant differences exist between the deciles within each distribution (repeated measures ANOVA, P < 0.0001). The RMS of the reconstructed torque
waveform with a variable number of features (0–4) is also plotted against the RMS of the measured torque waveform (C) for all the deciles of animal L.
Deviation from unity (solid black line) shows the error in the RMS reconstruction. To compare the feature-based independence model to the mean torque (D)
and the synergy models (E), we plotted the RMS error of each against the other for all deciles and all animals (N = 70 animal-deciles). Points below the unity
line indicate improved performance (smaller error) with the feature-based independence model.

doi:10.1371/journal.pcbi.1004168.g007
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torque—even when controlling for the differences across deciles (effect of model in two-factor
ANOVA with decile; P< 0.05 in all cases; Fig 7A and 7D). As before, we only rejected the syn-
ergy models when considering PLS features because when considering the mean torque alone,
the independence and synergy models were equivalent (two-factor ANOVA; P> 0.1; Fig 7A
and 7E).

To summarize reconstruction performance across all deciles into a single performance mea-
sure, we took the mean ratio between the decile RMSE of each model and the RMSE of the
two-feature reconstruction, which is the best two-dimensional reconstruction possible:

error ratio ¼< RMSEmodel=RMSE2F > : ð18Þ

This allows for paired tests across all animals and wingstrokes (Fig 8A; paired t-tests com-
paring feature-based synergy models to independence P< 0.001 in all cases; average-torque
based: P = 0.94). The conclusions held even if the most extreme left and right turning deciles

Fig 8. Cross-validation and sensitivity. To combine reconstruction performance into a single error metric
we normalized the RMS of the error for each decile (averaged across animals) to the RMSE of the two feature
reconstruction (*** indicates P<0.001 for all paired conditions). In addition to the standard reconstruction (A)
we repeated the feature extraction and model testing with Δt included in the original U matrix (B) and with the
phase-triggered rather than spike-triggered torque waveforms (C). Finally, we cross-validated (D) the
reconstructions performing 1000 replicates with 70% of the wingstrokes as a training set and 30%withheld
for a test set. Model abbreviations: 2F—two features, SΔt—differential synergy, SPC—empirical (PCA)
synergy, R—redundancy, I—independence, S< τ > mean torque differential synergy, I< τ >—mean
torque independence.

doi:10.1371/journal.pcbi.1004168.g008
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(20% of the data) were excluded from the analysis (feature based: P< 0.003; average torque
based: P = 0.7). To test if the rejection of the synergy hypothesis was due to statistical bias intro-
duced by not including a linear combination of tR and tL in the original Umatrix of motor sig-
nals, we repeated the entire analysis including Δt in U. The independence model still
outperformed synergy models in the feature based cases (Fig 8B; feature based: P< 0.0004; av-
erage torque based: P = 0.98).

One concern about using the spike-triggered ensemble is that variation in torque may itself
be phase locked. In that case, spike triggering could introduce a spike-timing dependent signal
that might bias our data. It is unlikely that variation due to changes in the muscle’s timing
would be phase locked independent of muscle timing, but to check for this bias we repeated the
feature extraction and reconstruction using the phase-triggered torque waveforms rather than
spike-triggered ensembles. The results were the same as before (Fig 8C; feature based:
P< 0.001; average torque based: P = 0.94).

Finally we challenged the models to be more predictive. First, we tested that the results were
robust to cross-validation (Fig 8D). Second, we reconstructed the torque of individual wing-
strokes rather than decile averages. RMS errors were naturally higher (Fig 9A), but the recon-
structed waveforms were highly correlated with the measured torque (Fig 9B) and the synergy
models were still rejected in feature-based analyses (paired t-test compared to independence
model; all P< 10−7).

Fig 9. Reconstructing individual wingstrokes. RMS error (A) and residual variance (B) measures of the
average performance for reconstructing individual wingstrokes show necessarily greater error, but consistent
patterns across synergy and independence models. Colors and models correspond to those of Fig 7. Data
are from reconstructing all of the individual wingstrokes from animal L (n = 298 wingstrokes) with error bars
being s.e.m.

doi:10.1371/journal.pcbi.1004168.g009
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Discussion

PLS features support independent rather than synergy encoding in the
DLMs
Only two out of 500 possible motor features were required to describe the variation in torque
encoded in changes in DLM activation during visually-induced turning (Fig 3D). Reconstruc-
tion of decile averages (Fig 7C), cross-validated predictions (Fig 8D) and individual wing-
strokes (Fig 9) are all improved by incorporating PLS features. We found that retaining the
timing of both DLM activations captured more of the variance in torque than compressing
these timing variables into a single linear combination, or synergy (Fig 4D and 4E). The inde-
pendence model also more accurately decodes within-wingstroke torque by reconstruction
(Figs 7D, 7E and 8A).

The need to retain independent variation in the DLMs' activation was only revealed using
the PLS feature basis. The synergy models are sufficient to account for the torque averaged
over the wingstroke (Figs 4C, 7D and 8). When considering turning torque only from wing-
stroke to wingstroke, the difference in timing (the differential synergy) may be sufficient to de-
scribe dynamics. However, independent variation in the two muscles is necessary to encode
within-wingstroke dynamics. This does not imply that each muscle’s activation is orthogonal.
These within-wingstroke dynamics are likely critical to flight control. A recent Floquet analysis
treating the periodic dynamics of flapping flight rather than just the wingstroke-averaged
forces demonstrated that ignoring within-wingstroke dynamics alters the stable and unstable
modes of moth flight [46].

The advantages of the PLS-based approach come in dealing with spike-resolved motor sig-
nals and in testing synergies in terms of how well motor variation is encoded rather than how
much variation in muscle activation is described. Most synergy analyses consider a large num-
ber of muscles, each described by a single, time-varying activation variable [9,10,19]. This
study connects individual spike-level encoding of movement with muscle synergy questions.
Additionally, while it is common to identify the force vectors or movements that correspond to
muscle synergies [19,47], the extraction of synergies is usually an independent dimensionality
reduction. Considering only the variation in muscle activation does not address whether or not
this variation is relevant for movement generation. Here, we decompose a high-dimensional
representation of torque to identify a relevant basis dependent on the variation in the muscles’
activity. We assess synergy performance against this basis.

Whether muscle synergies represent a general strategy to simplify control remains an open
question [10,20]. We found that a muscle representation that retains the independent timing of
both muscle activations captures more behavioral variation in torque output than three specific
synergy alternatives [14]. If recordings from more muscles were included, more complex syner-
gies might exist. For example, some of the information encoded in the timing of the left DLM
might also be shared with a steering muscle’s activity. This is always a concern with encoding
studies, which alone do not establish causality. Fortunately, in this case we do know that the
DLMs are causally involved in producing turning torque [14]. More importantly, while we can-
not say if a larger set of recordings might not express synergies, we do know that the variation
in the downstroke muscles must contribute to at least two separate synergies—they cannot be
expressed in a single linear dimension even with more muscles included.

For the present analysis, we constructed synergies from linear combinations of the motor
signals, U, as a separate step from the PLS feature identification to be consistent with prior syn-
ergy analyses [9,32]. However, PLS provides an alternative way of constructing synergies. We
obtain not only the motor features, P, but also a matrix of equal dimension Q, whose vectors,
qi, represent a non-orthogonal set of synergies for the motor signals, U (Table 1, Equation 5).
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This approach scales well as dimensionality increases and could also be advantageous for ana-
lyzing population encoding of complex sensory stimuli. In our case, reanalysis using the first
vector q1 instead of the first PC of the DLMs’ activations does not change our conclusions.

It is important to note that these methods are linear, and that our conclusions about the na-
ture of motor encoding are based on the quality of linear correlation. It is possible that nonline-
ar analyses that take into account higher-order correlations may reach different conclusions.
For example, information-based methods provide an alternative to covariance approaches that
satisfy some of these same goals. The technique of maximally informative dimensions [48]
seeks a feature basis which captures the most mutual information between input and output,
where the output typically is the occurrence of a single spike [49]. This approach can likely be
generalized to discover complex output symbols that preserve mutual information [50]. Such
techniques can handle naturalistic stimuli and minimize a priori assumptions about the statisti-
cal structure of the data, but they typically require estimating the marginal (or conditional)
probability distribution of the outputs with respect to the inputs. This is very challenging when
the dimensionality of both the input and output becomes large (although see [51]). In contrast,
PLS readily scales to a large number of inputs and outputs because it relies only on estimating
the cross-covariance structure in the data.

Motor features in the context of insect flight
That DLMs encode discernible torque variation is itself surprising because these muscles were
long thought not to have any significant role in control [13]. DLMs can cause significant turn-
ing variation because small changes in their timing produce large changes in power [14]. How-
ever, other muscles almost certainly play a role in turning as well. In particular, small steering
muscles modulate wingstroke angle (e.g. the 3rd axillary muscle) and demonstrate correlated
phases of activation [13,30,52]. The role of steering muscles is one reason why the PLS ap-
proach is critical. PLS extracts features from the movement matrix,M, only if they covary with
motor signals, U, and should ignore variation that is due to steering muscles but not encoded
in the DLMs. Therefore, while a mechanistic understanding of turning control is not yet com-
plete, our results do indicate that each DLM independently encodes information about the
optomotor response.

One reason why synergies may be present in nervous systems is to allow task control with a
smaller set of command variables [9,10]. Optomotor sensory input is bilateral, at least in flies,
because each eye possesses distinct populations of left and right directionally selective cells
[53]. However, this information could be centralized into a single descending command setting
the timing difference between the flight muscles. The fact that we reject a reduced representa-
tion for the pair of DLMs indicates that visual information can separately modify the descend-
ing commands to each of the two DLMs, in addition to its known feedback to steering muscles
[13].

PLS feature analysis captures task relevant variation when multiple
neuromuscular signals encode movement
A PLS dimensionality reduction of torque incorporates multiple, continuous variables to de-
scribe the motor signals, while PCA can only incorporate information about the timing of one
spiking event (or pattern of spikes), via spike triggering [5]. By ranking features based on the
cross-covariance, the PLS approach only captures motor variation relevant to the changing
motor signals, while to some extent excluding components that are unrelated [12,35]. These
factors account for the improved performance of PLS compared to PCA (Fig 3) and should
only improve further as the dimensionality of both the motor signals and of movement
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increases. Our analysis considering only two muscles is the minimal case in which PLS could
outperform a spike-triggered PCA. Even in this case, the abilities of PLS to deal with the chal-
lenges of multiple high dimensional datasets and incomplete representation are necessary to
discover independent encoding.

Overall, PLS-based feature analysis is a data-efficient method to extract a reduced represen-
tation of a multiple input-multiple output (MIMO) data set. Here, the approach improves
predictability of wingstroke variability and our understanding of the motor program. In con-
trast to encoding in the central nervous system [54–56] and sensory systems, there have been
few applications of dimensionality reduction approaches to encoding in the peripheral motor
system. Just as sensory encoding reveals the patterns of stimuli to which neurons respond, the
encoding of movement in the activation of multiple muscles reveals the structure of the motor
program. New approaches like PLS-based feature analysis set the stage for understanding how
the peripheral nervous system represents locomotor control.
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