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Abstract
Mathematical models are powerful tools for epidemiology and can be used to compare con-

trol actions. However, different models and model parameterizations may provide different

prediction of outcomes. In other fields of research, ensemble modeling has been used to

combine multiple projections. We explore the possibility of applying such methods to epide-

miology by adapting Bayesian techniques developed for climate forecasting. We exemplify

the implementation with single model ensembles based on different parameterizations of

the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and

compare the efficacy of different control actions. This allows us to investigate the effect

that discrepancy among projections based on different modeling assumptions has on the

ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pro-

nounced effect on the posterior estimates of quantities of interest, in particular for ensem-

bles with large discrepancy among projections. However, by using a hierarchical extension

of the method we show that prior sensitivity can be circumvented. We further extend the

method to include a priori beliefs about different modeling assumptions and demonstrate

that the effect of this can have different consequences depending on the discrepancy

among projections. We propose that the method is a promising analytical tool for ensemble

modeling of disease outbreaks.

Author Summary

Policy decisions in response to emergent disease outbreaks use simulation models to in-
form the efficiency of different control actions. However, different projections may be
made, depending on the choice of models and parameterizations. Ensemble modeling of-
fers the ability to combine multiple projections and has been used successfully within
other fields of research. A central issue in ensemble modeling is how to weight the projec-
tions when they are combined. For this purpose, we here adapt and extend a weighting
method used in climate forecasting such that it can be used for epidemiological consider-
ations. We investigate how the method performs by applying it to ensembles of projections
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for the UK foot and mouth disease outbreak in UK, 2001. We conclude that the method is
a promising analytical tool for ensemble modeling of disease outbreaks.

Introduction
Epidemiological forecasting is inherently challenging because the outcome often depends on
largely unpredictable characteristics of hosts and pathogens as well as contact structure and
pathways that mediate transmission [1]. Faced with such uncertainty, policy makers must still
make decisions with high stakes, both in terms of health and economics. For instance, global
annual malaria mortality was recently estimated at around 1.1 million [2] and to optimize con-
trol efforts, policy makers must make seasonal predictions about spatiotemporal patterns [3].
The prospect of an emergent pandemic influenza outbreak remains a global threat and emer-
gency preparedness must evaluate the costs and benefits of control measures such as border
control, closing of workplaces and/or schools as well as different vaccination strategies [4].
Livestock diseases are major concerns for both animal welfare and economics. As an example,
the United Kingdom (UK) 2001 outbreak of foot and mouth disease (FMD) involved culling of
approximately 7 million animals, either in an effort to control the disease or for welfare rea-
sons, and the total cost has been estimated at £8 billion [5]. To minimize the size and duration
of future outbreaks, various strategies for culling and vaccination must be compared [6–8]. As
a tool to address these challenging tasks, mathematical models offer the possibility to explore
different scenarios, thereby informing emergency preparedness and response to epidemics
[1,9–12].

The predictive focus of epidemiological models can either be classified as forecasting or pro-
jecting [13]. Forecasting aims at estimating what will happen and can be used for example to
predict seasonal peaks of outbreaks [3,14] or to identify geographical areas of particular con-
cern [15]. Projecting, which is the main focus of this study, instead aims at comparing different
scenarios and exploring what would happen under various assumptions of transmission, e.g.
comparing the effectiveness of different control actions [7,16–19].

Whilst analytical models clearly provide important insight into observed dynamics and a
theoretical understanding of epidemiology [20–22], there has been a shift in recent years to-
wards stochastic simulation models for predictive purposes [1]. Typically, dynamic models are
constructed and outbreaks are simulated repeatedly, thus generating predictive distributions of
outcomes [1,17,18,23]. This variability in outcomes caused by the mere stochasticity of the
transmission process includes one level of uncertainty, but still only relies on a single set of as-
sumptions about the underlying disease transmission process. However, multiple assumptions
can often be justified, leading to further uncertainty in the predictions. For instance, different
models may have different projections because of different assumptions about transmission or
because they incorporate different levels of detail. It may also be informative to explore differ-
ent projections in terms of different parameterizations of a single model, for example corre-
sponding to worst or best case scenarios. Faced with a set of projections, an important issue is
how to combine these in a manner such that they can be used to inform policy.

The issue of multiple projections is not unique to the field of epidemiology, and various tech-
niques of ensemble modeling have been used to merge projections based on different modeling
assumptions. The key concept is that rather than relying on a single set of assumptions, a range
of projections is used for predictive purposes. For instance, climate forecasting has employed en-
semble techniques to account for uncertainty about initial conditions, parameter values and
structure of the model design when predicting climate change [24,25]. Weather forecasting has
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been improved by combining the results of multiple models [26,27]. Similarly, hydrological
model ensembles have been demonstrated to increase reliability of catchment forecasting [28]
and have been used to assess the risk of flooding events [29]. Ensemble methods have also prov-
en to be a powerful decision tool for medical diagnostics [30,31] and ecological considerations
including management [32] and prediction of future species distribution [33].

Ensemble modeling has not yet been extensively used in epidemiology. However a few im-
plementations exist, commonly by feeding climate or weather ensembles into disease models.
Daszak et al. [34] coupled a set of climate projections to an environmental niche model of
Nipah virus to predict future range distribution of the virus under climate change. Similarly,
Guis et al. [35] investigated the effect of climate change on Bluetongue emergence in Europe by
simulating outbreaks under different climate change scenarios. Focusing on a shorter time
scale, Thomson et al. [3] used an ensemble of seasonal forecasts to predict the spatiotemporal
pattern of within seasonal variation in malaria incidence. These studies all used a single disease
model projection, coupled to an ensemble of climate or weather forecasts and the use of struc-
turally different epidemiological models are to our knowledge still rare. However, Smith et al.
[36] compared different malaria vaccination strategies by implementing an ensemble approach
with different alterations of a base model. Also, in order to estimate global malaria mortality,
Murray et al. [2] used weighted averages of different predictive models.

Given the success of ensemble methods in other fields, we expect that epidemiological im-
plementations will increase. For that purpose however, there is a need for methods that com-
bine multiple projections. A central issue in ensemble modeling is how to weight different
projections, and we envisage four main procedures for this. Firstly, all models can be given
equal weights. For instance, the IPCC 2001 report on climate change [37] used a set of climate
models and gave the range of probable scenarios by averaging over different models and uncer-
tainty by envelopes that included all scenarios. Gårdmark et al. [32] used seven ecological mod-
els for cod stock and argued that in order to prevent underestimation of uncertainty, weighted
model averages are not to be used and when communicating with policy makers, it is preferable
to present all included projections as well as the underlying assumptions behind them. A simi-
lar approach was also used by Smith et al. [36], who presented the prevalence of malaria under
different vaccination strategies by medians of individual models and the range of the
whole ensemble.

Secondly, expert opinions can be used to weight models. To our knowledge, no ensemble
study has implemented weights based exclusively on expert opinion, but Bayesian model aver-
aging can incorporate expert opinion as a subjective prior on model probabilities [38]. This ap-
proach relies on engaging stakeholders and communicating the underlying assumptions of
the projections.

Thirdly, models can be weighted by agreement with other models. This approach was im-
plemented by Räisänen and Palmer [39], who used cross-validation to weight climate models.
As a more informal approach to the use of model consensus, the third IPCC report excluded
two models because these predicted much higher global warming than the rest of the ensemble,
thus acting as outliers [24].

Fourthly, weights can be determined by the models’ ability to replicate data. If all models
are fitted to the same data using likelihood based methods, weights can be given directly by
Akaike or Bayesian Information Criterion (AIC or BIC) [40,41]. In the FMD context, this may
be a suitable approach if all included models are data driven kernel models that estimate pa-
rameters from outbreak data, such as those proposed by Jewell et al. [42] or Tildesley et al. [43].
However, such weighting schemes would be unfeasible when including detailed simulation
models that rely on a large number of parameters, that are determined by expert opinion or lab
experiment, such as AusSpread [44], NAADSM [45] and InterSpread Plus [46]. We propose
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that the future of ensemble modeling for epidemiology will benefit from combining structurally
different model types, and methods of weighting need to handle both kernel type models as
well as detailed simulation models.

Thus, bias assessment is often confined to the ability of models to replicate observed sum-
mary statistics of interest, in particular when the resolution of data observation is on a courser
scale than the model prediction [47]. Such methods have been developed within the field of cli-
mate forecasting. Giorgi and Mearns [48] introduced a formal framework in which model
weights were assessed based on model bias compared to observed data as well as convergence,
i.e. agreement with the model consensus. Tebaldi et al. [47] extended the approach to a Bayes-
ian framework. This approach is appealing because it provides probability distributions of
quantities of interest, hence uncertainty about the projected outcomes may be provided to poli-
cy makers. As such, it would be a suitable approach also for epidemiological predictions.

However, methods developed in one field might not be directly transferable to another.
Tebaldi et al. [47] points out that lack of data at fine scale resolution is a limiting factor for cli-
mate forecasting. Yet, at courser resolution climate researchers have access to long time series
of climate variables to assess model bias. Comparable data may be available for endemic dis-
eases, such as malaria [36] or tuberculosis [49], or seasonally recurrent outbreaks, such as influ-
enza [14] or measles [50]. However, for emerging diseases, long time series would rarely be
available, making the lack of data an even bigger issue for epidemiology.

In this methodological paper we aim to explore the potential of using ensemble methods
based on the approach presented by Tebaldi et al. [47] for epidemiological projections. The
Tebaldi et al. methodology focus on ensembles where projections are made with different mod-
els and our aim is to provide a corresponding framework for disease outbreak projections. To
investigate the potential of the framework for epidemiology, we here use variations of a single
model as a proxy for different models, thus allowing us to investigate how the methodology
performs under different levels of discrepancy among projections in the ensemble. We exem-
plify the implementation by using the UK 2001 FMD outbreak and projections modelled by
different parameterizations of the Warwick model [7,9].

In the 2001 UK FMD outbreak, livestock on all infected premises (IPs) were culled. In addi-
tion, livestock on farms that were identified to be at high risk of infection were culled as either
traditional dangerous contacts (DCs) or contiguous premises (CPs). CPs were defined as “a
category of dangerous contact where animals may have been exposed to infection on neighbor-
ing infected premises” [5,8]. We start by focusing on ensemble prediction of epidemic duration
under the control action employed during the 2001 outbreak compared with an alternative ac-
tion that excludes CP culling. We investigate sensitivity to priors and explore a hierarchical
Bayesian extension of the method to circumvent potential problems with prior sensitivity. We
also explore the potential of including subjective a priori trust in the different modeling as-
sumptions and extend the methodology further to allow incorporation of multiple epidemic
quantities, here exemplified by adding number of infected and culled farms to the analysis.
Through a simulation study, we finally explore the capacity and limitations of the proposed en-
semble method, pinpointing some important features of ensemble modeling

Materials and Methods
We apply a terminology such that control actions refers to different strategies for disease con-
trol. In the ensemble, each action is simulated under different modeling assumptions about the
underlying process, expressed as either different models or, as in the example described here,
different parameterizations of the same model. We refer to the combination of control action
and modeling assumption as a projection. Each projection is further simulated with several
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replicates, which produce different outcomes merely due to the stochasticity of simulation
models. We are also interested in how discrepancy among projections influences the perfor-
mance of the weighting method and refer to sets of different projections as different ensembles
with small and large discrepancy. A flow chart that demonstrates the relationship between dif-
ferent concepts and weighting schemes are presented in Fig 1.

TheWarwick model, control actions and ensembles
We focus on projections of FMDmade by the Warwick model [7,9]. This model was developed
in the early stages of the 2001 FMD outbreak by Keeling and coworkers to determine the po-
tential for disease spread and the impact of intervention strategies [9]. Here, we utilized a mod-
ified version of the model used in 2001, and we briefly describe relevant aspects of the Warwick
model with regard to ensemble modeling. Full details of the model can be found in [7,9]. The
rate at which an infectious farm I infects a susceptible farm J is given by:

RateIJ ¼ SusJ � TransI � KðdIJÞ ð1Þ

where

SusJ ¼ ð½Zsheep;J �ps;SSsheep þ ½Zcow;J �pc;SScowÞ ð2Þ

is the susceptibility of farm J and

TransI ¼ ð½Zsheep;I �ps;T Tsheep þ ½Zcow;I �pc;T TcowÞ ð3Þ

is the transmissibility of farm I and K(dIJ) is the distance-dependent transmission kernel, esti-
mated from contact tracing [9]. In this model Zs, I is the number of livestock species s (sheep or
cow) recorded as being on farm I, Ss and Ts measure the region and species-specific susceptibil-
ity and transmissibility, dIJ is the distance between farms I and J and K(dIJ) is the distance de-
pendent transmission kernel. The parameters, ps, S, pc, S, ps, T and pc, T, are power law
parameters that account for a non-linear increase in susceptibility and transmissibility as ani-
mal numbers on a farm increase. Previous work has indicated that a model with power laws
provides a closer fit to the 2001 data than when these powers are set to unity [43,51,52].

This version of the model has previously been parameterized to fit to the 2001 FMD outbreak
[43]. Region-specific transmissibility and susceptibility parameters (and associated power laws)
capture specific epidemiological characteristics and policy measures used in the main hot spots
of Cumbria, Devon and the Welsh and Scottish borders. The model is therefore fitted to five re-
gions: Cumbria, Devon, Wales, Scotland and the rest of England (excluding Cumbria and
Devon). A table listing all the parameter values used in this model is given in Tildesley et al. [43].

In order to obtain multiple modeling assumptions for ensemble modeling, we specified dif-
ferent transmission rates, i as

RateIJi ¼ SusJ � k1iTransI � Kðk2idIJÞ ð4Þ

where k1i and k2i are constants, specific for each modeling assumption, that scale the transmis-
sibility and the spatial kernel, respectively. k1i = k2i = 1, follow the parameterizations of Tildes-
ley et al. [43] and by decreasing or increasing these constants, we obtain parameterizations that
correspond to best or worst case expectations about the transmissibility and spatial range of
transmission. We are interested in how the level of discrepancy among modeling assumptions
influences the performance of the ensemble method and we therefore created two different en-
sembles with different k1i and k2i, as listed in Table 1. We refer to these as the large and small
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Fig 1. Overview of analyses andmethods developments. Panel A presents a conceptual flowchart, showing that modeling assumptions are combined
with control actions to simulate projections. These are then combined with observed outbreak data in the ensemble analysis. Panel B presents the methods
developments in this study, indicating that we start with the Non Hierarchical Weighting (NHW) scheme, which is most similar to the original climate
application. We then extend this to the Standard Hierarchical Weighting (SHW) scheme, and subsequently to Informative Hierarchical Weighting (IHW). We
also extend the analysis to consider multiple epidemic quantities. The dashed lines indicate combinations for which the method and the supplied algorithm
(S1 File) can be used but are not treated explicitly in the presented examples.

doi:10.1371/journal.pcbi.1004187.g001
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discrepancy ensemble, corresponding to large and small differences, respectively, in the under-
lying modeling assumptions used for projections.

DCs in our model were determined based upon both prior infection by an IP and future risk
of infection in the same way as in previous work [8]. CPs were defined as farms that share a
common boundary and were determined on an individual basis. The model was seeded with
the farms that were predicted to be infected prior to the introduction of movement restrictions
on the 23rd February. For each modeling assumption i and control action, 200 replicates were
simulated and each simulation progressed until the epidemic died out.

Adapting the Tebaldi et al. method for emerging diseases
To demonstrate concepts and explore the potential of using the Tebaldi et al. [47] approach for
epidemiological considerations we initially focus on outbreak duration. This is often consid-
ered to be the most costly aspect of FMD outbreaks due to its implication for trade [53]. In sec-
tion 2.7 we extend the methodology to multiple epidemic quantities. However, the outbreak
duration example offers transparent transition from the original climate analysis of Tebaldi
et al. [47] that considers the ensemble estimated difference between current and future mean
temperatures. In order to introduce the framework to epidemiology, we consider the difference
between the implemented and an alternative control action, attempting to show whether the
inclusion of CP culling was an appropriate choice given the conditions at the start of the out-
break. As this is a post outbreak analysis, we know the final outbreak duration of the observed
outbreak, but that is just a single realization and due to the stochastic nature of disease trans-
mission, the exact outcome may be quite variable. We also have no observed outbreak under
the alternative control action to compare with the implemented control. Under these condi-
tions, the most appropriate quantities to compare are the mean duration of a large number of
outbreaks under the two control actions, something that can only be achieved through
epidemic modeling.

We are interested in comparing projections under the implemented control action to the
observed data in order to estimate model weights. Using the Bayesian method of Tebaldi et al.
[47], weights as well as statistics of the outbreak, like duration, are considered unknown ran-
dom variables, and we denote the mean outbreak duration under the implemented and the al-
ternative control action as μ and v, respectively, corresponding to the mean current and future
temperature, respectively, for the climate application. In order to fit with the normal assump-
tions of the method, we consider log-duration in the analysis.

Table 1. Scaling constants k1i and k2i used for eachmodeling assumption i in the small and large dis-
crepancy ensemble.

Modeling assumption (i) Small discrepancy Large discrepancy

k1i k2i k1i k2i

1 1 1 1 1

2 0.95 1 0.8 1

3 1.05 1 1.2 1

4 1 0.95 1 0.8

5 0.95 0.95 0.8 0.8

6 1.05 0.95 1.2 0.8

7 1 1.05 1 1.2

8 0.95 1.05 0.8 1.2

9 1.05 1.05 1.2 1.2

doi:10.1371/journal.pcbi.1004187.t001
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Weights are expressed through precision, λ = λ1, λ2,. . ., λn, with λi denoting the precision of
modeling assumption i. The projection specific parameter xi indicates the mean of all replicates
under the implemented control action (analog of current climate) for modeling assumption i.
For the UK 2001 outbreak this included culling of IPs, DCs and CPs. The corresponding pro-
jection for the alternative control action (analog of future climate), that included culling of IPs
and DCs is denoted yi. The relationship between projections and ensemble parameters is ex-
pressed as

xieNormalðm; l�1

i Þ ð5Þ

yieNormalðnþ bðxi � mÞ; ðyliÞ�1Þ; ð6Þ

with Normal(μ,λi
-1) denoting the normal distribution with mean μ and variance λi

-1. Parameter
θ is included to allow for difference in overall precision of the modeling assumptions under im-
plemented and alternative control actions. However, since projections xi and yi are based on
simulations, it is fair to assume that modeling assumption i that has a high precision for the ob-
served control action also will do well for the unobserved action. This is incorporated by the λi
term in both Eqs 5 and 6. For the same reason, we may expect that a projection of a large xi
also corresponds to a large value for yi and thus β is included to allow for correlation between
corresponding projections for the two control actions; a projection that e.g. over-predicts dura-
tion of the outbreak for the observed control action can be expected to also over-predict the al-
ternative control action.

The analysis of Tebaldi et al. [47] also assessed bias of projections by their ability to repro-
duce observed current climate by incorporating the relationship between observed current cli-
mate x0, an unobserved true mean climate variable (μ) and the precision of natural variability
τ0 through

x0eNormalðm; t�1
0 Þ: ð7Þ

In climate modeling, it is a fair assumption that τ0 is a known, fixed parameter because it
can be assessed through historical data. That would rarely be the case for the corresponding ep-
idemic considerations, at least for emerging diseases. Using a single outbreak to evaluate bias,
we clearly have no way of assessing variability in outcomes. We therefore include τ0 as an un-
known, random variable that is estimated in the analysis as described in the following section.

To aid the interpretation and transfer from the climate to the epidemiological interpreta-
tion, we have included Table 2 that lists the variables used in the analysis.

Stochasticity and variability
Our main interest in terms of outcome under the implemented control action is μ rather than
x0. However, it is clear that in addition to the mean duration of the outbreak, the uncertainty
about the process also results in some variability in the outcomes that we need to consider. The
stochastic simulations used to generate projections provide not only a mean simulated out-
break quantity, but also a range of outcomes that projects the variability. In the absence of re-
peated outbreaks to evaluate variability of outcomes, an obvious choice would be to use this
information to inform the variability τ0. Defining the variability τi as the precision of projec-
tions under the implemented action for modeling assumptions i = 1,2,. . .,n we include a hierar-
chical structure in the analysis so that for i = 0,1,2,. . .,n

tieGammaðat; btÞ; ð8Þ

A Bayesian Ensemble Approach for Epidemiology

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004187 April 30, 2015 8 / 30



where Gamma(aτ, bτ) indicates the gamma distribution with shape parameter aτ and rate bτ
both of which are unknown parameters and are estimated in the analysis. Thus, as it would be
cumbersome to elicit a fixed prior for τ0 based on our prior expectations about variability, we
instead assume that τ0 comes from some, unknown distribution, and make use of τ1, τ2,. . ., τn
to inform what this distribution should be.

Similarly, we need to model the variability of projections under the alternative control ac-
tion, and denoting this φi we specify

φieGammaðaφ; bφÞ; i ¼ 1; 2; . . . ; n ð9Þ

The parameters aφ and bφ are conditionally independent from all other parameters in the
analysis and can be modelled separately in the Bayesian analysis. As xi, yi, τi and φi are calculat-
ed from a finite number of realization with each modeling assumption and control action,
there is some uncertainty related to this. Tebaldi et al. [47] however points out that while it is
certainly possible to construct a Bayesian model that takes this uncertainty into account, the ef-
fect is minimal if the number of replicates is large. With the R = 200 replicates preformed here,
the uncertainty of the mean will in practice have very little effect, and we have included xi, yi, τi
and φi as fixed observations.

Priors for aτ and bτ were specified as a gamma distribution with shapes Aaτ and Abτ, respec-
tively, and rates Baτ and Bbτ, respectively. Similarly, the priors for aφ and bφ, were specified as a
gamma distribution with shapes Aaφ and Abφ, respectively, and rates Baφ and Bbφ, respectively.
We explored different parameter choices for the hyperpriors and found that the results were in-
sensitive to the choice of prior for a wide range of values. In the analysis presented, we used
Aaτ = Abτ = Baτ = Bbτ = Aaϕ Abϕ = Baϕ = Bbϕ = 0.001. This corresponds to prior distributions
with a mean of one and a variance of 1000, thus allowing for a wide range of plausible values.

Bayesian model
Bayesian analysis requires the specification of prior parameters. We follow Tebaldi et al. [47]
with priors specified as uniform on the real line for μ, ν, and β, and λi~Gamma(aλ, bλ) for i =
1,2,. . ., n and θ~Gamma(aθ, bθ). We also need to specify hyperpriors for aτ and bτ, and we

Table 2. Variables in the NHW analysis with the interpretation for the original climate interpretation and the epidemiological counterpart.

Variable Climate Interpretation Epidemiological Interpretation

xi Current temperature mean for modeling
assumption i.

Mean log-duration under implemented control for modeling assumption i.

yi Future temperature mean for modeling
assumption i.

Mean log-duration under alternative control for modeling assumption i.

x0 Observed current temperature. Observed outbreak log-duration.

τ0 Precision of natural variability. Precision of variability of individual outbreaks given the observed initial conditions. *

μ Current mean temperature. * Mean outbreak duration, implemented control. *

V Future mean temperature. * Mean outbreak duration, alternative control. *

λi Precision of model i (weights). * Precision of model i (weights). *

Β Correlation between current and. future
projections. *

Correlation between implemented and alternative control projections. *

θ Ratio between precision for current and future
projections. *

Ratio between precision for implemented and alternative control projections. *

τi and φi Not included. Precision of within projection variability, calculated as the precision of individual replicates
around the mean values xi and yi.

* Asterisk indicates parameters treated as random variables and no asterisk indicate data.

doi:10.1371/journal.pcbi.1004187.t002
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implement aτ~Gamma(Aaτ, Baτ) and bτ~Gamma(Abτ, Bbτ). Denoting x = x1, x2,. . ., xn and y =
y1, y2,. . ., yn, the full posterior distribution under these priors is given by

Pðm; n; b; l; y; t0jx0; x; y; t1; t2; . . .Þ

/
Yn

i¼1

lal�1

i e�blliliy
1=2expf� li

2

�
ðxi � mÞ2 þ yðyi � n� bðxi � mÞÞ2

� )Þ ð10Þ

yay�1e�byyt1=20 exp f t02 ðx0 � mÞ2gYn

i¼0

ðtat�1
i e�bttiÞaAat�1

t e�BatatbAbt�1
t e�Bbtbt

This posterior only differs from the one defined by Tebaldi et al. in that we include τ0 as an
unknown variable and use a hierarchical structure for its prior. Using Markov Chain Monte
Carlo (MCMC) techniques as described in 2.9, we first performed the analysis with priors as
specified by Tebaldi et al. [47] where applicable, i.e. aλ = bλ = aθ = bθ = 0.001, because they
argue that this ensures that the prior contributes little to the posteriors.

However, we propose that this argument is not necessarily always valid. In particular λi
could be expected to be sensitive to priors because it is essentially only fitted to two data points,
xi and yi. Yet, based on approximations of conditional distributions, Tebaldi et al. argued that
the gamma distribution with aλ = bλ = 0.001 is appropriately vague for the analysis. For trans-
parency we here follow their approach and investigate the effect of the prior for the simplified
model where β = 0. The mean of the conditional distribution of λi is then approximated by

EðlijX0;X;YÞ ffi
al þ 1

bl þ 1
2
½ðxi � ~mÞ2 þ yðyi � ~nÞ2� ; ð11Þ

where ~m is the conditional mean of the distribution of μ, given by

~m ¼
Xn
i¼1

liXi þ t0x0

 !
=
Xn
i¼1

li þ t0

 !
ð12Þ

and ~n the corresponding value for v, given by

~n ¼
Xn
i¼1

liyi

 !
=
Xn
i¼1

li

 !
: ð13Þ

We stress that Sλi need not sum to one, as might be intuitive when using weights. As given
by Eqs 11 and 12, the mean of μ and ν only depends on the relative values of λi, but the absolute
values influence the width of the distribution, with the variance of the conditional distributions
increasing with lower absolute values of λi (Table 3).

While a low value of aλ certainly ensures little contribution to the numerator in Eq (11), it is
less evident that a low value for bλ contributes little to the denominator because if xi ! ~m and
y ! ~n, the denominator actually approaches bλ. Hence, to ensure that a low value of bλ can be
considered vague such that our posterior is informed primarily by x0, x and y, we must con-
clude that jxi � ~mj or jyi � ~nj is clearly separated from zero. However, if λi�λj for all i 6¼ j and
λi�τ0, then ~m � xi and ~n � yi and nothing in the model prevents this relationship. In fact, if
we consider the gamma prior with shape and scale parameters set to 0.001, the distribution has
most of its density near zero, however with a fat tail (yet exponentially bounded) that allows
for high values. In the current analysis, this corresponds to the prior belief that the majority of
modeling assumptions will have very low precision while a few will have very high. Under this
prior belief, it is expected that for some model i, λi�λj for all i 6¼ j. In the instance where
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instead τ0�λi for all i, then ~m � x0 and the approximation would hold, but we cannot expect
that relationship.

As we cannot a priori be sure that the choice of aλ and bλ does not influence our posterior as
long as they are arbitrarily small, we performed a prior sensitivity analysis and re-ran the analy-
sis with aλ = bλ = 0.01 and aλ = bλ = 0.0001. We could expect that the sensitivity to priors de-
pends on the difference among modeling assumptions, and we investigate this by analyzing
ensembles with little and large discrepancy between assumptions in the ensemble as given by
Table 1.

We refer to this as the Non Hierarchical Weighting (NHW) method.

Standard Hierarchical Weighting model
If we cannot ensure that the analysis is insensitive to the choice of prior, it implies that our
prior beliefs will influence how much different projections contribute to ensemble predictions
with the current method. Using prior beliefs is sometimes desirable, and in section 2.6 we con-
sider the situation where we trust some modeling assumptions more than others. However, it
would rarely be the case that we would have substantial expectations that could inform the
shape, aλ, and scale, bλ, of the prior for λ.

A potential solution might be to extend the model to include hierarchical priors such that
the prior for λi is estimated in the model rather than a priori fixed. We make a slight change to
the parameterization of the prior distribution such that

lieGammaðal; al=mlÞ; ð14Þ

i.e. specifying the distribution by its meanmλ and shape aλ, which are estimated in the model.
In that way, we move our uncertainty up a level and express our beliefs about the distribution
ofmλ and aλ, rather than λ. Usingmλ rather than bλ facilitates the specification of a prior for
the mean precision parameter that corresponds to the priors previously specified on individual
λi. This parameterization further aids the use of prior beliefs about weights in section 2.6.

While we can never be strictly uninformative in Bayesian analysis, the hierarchical prior can
allow for a wide range of plausiblemλ and aλ whereas the model presented in section 2.4 re-
quires these to be specified explicitly. This also allows for the concept of “borrowing strength”
[54], such that the distribution of each λi can be indirectly informed by all other precisions via

Table 3. Conditional distributions used for updating via Gibbs sampling for the single quantity
example.

Parameter Conditional distribution

λi Gamma al þ 1; b̂ li þ ðxi�mÞ2�yðyi�n�bðxi�mÞÞ2
2

� �
for b̂ li ¼ bl for all modeling assumptions i in the

NHW method,b̂ li ¼ al=ml for all modeling assumptions i in the SHW method and b̂ li ¼
al=m̂ li in the IHW method.

μ Normalðm�;s2
mÞ with s2

m ¼ ðPli þ yb2Pli þ t0Þ�1m� ¼ s2
mð
P

lixi � yb
P

liðyi � n� bxiÞ þ t0x0Þ
v Normalðn�; ðyPliÞ�1Þ with n� ¼

P
li ðyi�bðxi�mÞÞP

li

β Normalðb�;s2
bÞ with s2

b ¼ ðyPliðxi � mÞ2Þ�1b
� ¼ s2

by
�1Pliðyi � nÞðxi � mÞ

θ
Gamma ay þ N

2
;by þ

P
li ðyi�n�bðxi�mÞÞ2

2

� �
τ0 Gamma at þ 1=2;bt þ ðxi�mÞ2

2

� �
φ0 Gamma(aϕ, bϕ)

doi:10.1371/journal.pcbi.1004187.t003
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the hierarchical distribution. This is often beneficial in situations where individual parameters
are fitted to a small amount of data [55,56], which clearly is the case for λi here. To extend
Eq (10) to a hierarchical model, we include hyperpriors such that

aleGammaðAal;BalÞ ð15Þ

and

mleGammaðAml;BmlÞ: ð16Þ

We performed the corresponding sensitivity analysis for the hierarchical ensemble predic-
tion by applying hyperpriors Aaλ = Baλ = Amλ = Bmλ set to 0.01, 0.001 and 0.0001. We refer to
this as hierarchical sensitivity set-up one. Secondly, we performed a sensitivity analysis, hierar-
chical sensitivity set-up two, where we fixed the shape parameters Aaλ = Amλ = 0.001 and only
varied Baλ = Bmλ, again set to either 0.01, 0.001 or 0.0001.

We refer to this as model as the Standard Hierarchical Weighting (SHW) method.

Informative Hierarchical Weighting model
Using expert opinions may substantially improve predictions [57], and there are several in-
stances where incorporating prior beliefs that reflect the “trust” in different modeling assump-
tions could be useful. For instance, a policymaker might have more trust in one model type
over another, and rather than excluding the models that are considered less reliable (i.e. giving
them a priori zero weigh), it could be useful to include them, yet with less contribution to
the ensemble.

In the case considered here, where modeling assumptions represent most likely, best and
worst case in terms of parameterization, we might want to give the “most likely”modeling as-
sumption higher weight. For the analysis with fixed aλ and bλ, described in section 2.4, we
could merely elicit a different scale parameter bλ for each λi, such that modeling assumptions
with high trust are given a low value. However, with the shape parameter aλ set to a low value
(“vague” shape), the prior may have little effect on the posterior λi. Eliciting a high value of aλ
would instead result in a posterior that is merely the results of our prior beliefs and we have no
foundation for which to elicit some intermediate value.

In order to combine the hierarchical approach with informative priors, we propose a modi-
fication of the analysis presented in section 2.5, where the assumption of exchangeability is re-
laxed in the hierarchical structure with

lieGammaðal; al=m̂liÞ; ð17Þ

where m̂li ¼ wiml and wi indicates the a priori trust in modeling assumption i. With wi = kwj,
the prior distribution of λi will have a mean that is k times that of λj and from Eqs (12) and
(13) the relationship also implies that before λ is estimated (i.e. involving the data x0, x and y),
the outputs of modeling assumption i will contribute k times as much to μ and v as does as-
sumption j.

To demonstrate the effect that a priori trust in different modeling assumptions can have on
the posterior estimates, we consider the case where the best, most likely and worst case scenari-
os for each of the two varied parameters corresponds to percentile 2.5, 50 and 97.5, respectively,
of a normal distribution. Given that the density at percentiles 2.5 and 97.5 then is 0.15 of that
at the mode, we specify wi = 0.15 for i = 2, 3, 4 and 7, i.e. for modeling assumptions where one
of the varied parameters follows the most likely scenario, whereas the other one is set to either
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worst or best case. With the same rationality, we specify wi = 0.021 for i = 5, 6, 8 and 9, i.e.
modeling assumptions where both parameters follow either best or worst case expectations.

We also investigate the case where a high weight is given to a projection xi further away
from the observed data x0. Consistently, modeling assumptions i = 5 predicted the shortest du-
ration for all actions and ensembles. We therefore also performed the analysis with w5 = 1 and
w1 = 0.021, and all other weights are as above. This allows us to investigate the performance of
the informative weighting method when an outlier is up-weighted.

We refer to this method as the Informative Hierarchical Weighting (IHW) method.

Multiple epidemic quantities
In the above examples, we focused on a single epidemic quantity, allowing for transparent tran-
sition from the original Tebaldi et al. work [47] that focused on temperature. For epidemiology,
it may however be useful to consider multiple epidemic quantities. This could be done in differ-
ent ways, but here we offer a straightforward multi-quantity extension of the Bayesian model
for the single epidemic quantity, based on the supposition that the relative weights are equal
for all quantities. As such, we implement a single weighting parameter λ, shared among all
quantities. For other parameters, we use a similar notation as for the single quantity analysis,
but give many of the parameters an additional index q, indicating that the parameter is quantity
specific. We expand the Bayesian model by defining

xi;qeNormalðmq; ym;ql
�1

i Þ; ð18Þ

yi;qeNormalðnq þ bqðxi;q � mqÞ; ðyn;qliÞ�1Þ; ð19Þ

x0;qeNormalðmq; t
�1
0;qÞ; ð20Þ

where xi, q and yi, q are the mean projections of modeling assumption i for epidemic quantity q
for the implemented and alternative control action, respectively, and x0, q is the corresponding
observed value. As for the single epidemic quantity example, μqand Vqare the expected values
of quantity q, and because we cannot expect to have the same correlation between control ac-
tions for all quantities, βq is included as unique for each q. Parameters θμ, q and θv, q scales the
precision of models between actions and quantities and the parameters of the Bayesian model
are identifiable by defining θμ, 1 = 1. Similarly, we specify quantity specific parameters

ti;qeGammaðat;q; bt;qÞ; i ¼ 0; 1; 2; . . . ; n;

φi;qeGammaðaφ;q; bφ;qÞ; i ¼ 1; 2; . . . ; n:
ð21Þ

The conditional distributions for the multi-quantity extension are provided in Table 4. We
denote the total number of quantities in an analysis as Q.

Analysis of simulated outbreaks
The above examples focus on the UK 2001 FMD outbreak and show how the introduced
framework can be applied to actual outbreak data. However, a limitation to this approach is
that we are confined to investigating the behavior of the ensemble methodology for that partic-
ular outbreak. To further investigate the potential and limitations of the proposed methods, we
also performed analysis of simulated outbreak data. With simulated data, we have “true” esti-
mates of μ and v, and we want to explore the ability of the ensemble to predict these under two
different conditions; when the true values lies within the range of X and Y predicted by the
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individual models of the ensemble and when it does not. For multi-model ensembles, this cor-
responds to the situation where the true behavior of the outbreak is encapsulated within the
range of underlying assumptions of the individual models and when it is not.

Here we explore the outcome of these conditions by first simulating outbreaks with the pa-
rameterizations of modeling assumption 1 (k1 = k2 = 1), i.e. located in the center of both the
small and large discrepancy ensemble. This simulates outbreaks where the true behavior of the
outbreak is encapsulated within the range of underlying assumptions of the individual projec-
tions for both ensembles. We also simulate outbreaks with a parameterization where both k1
and k2 are set to 0.9. This produces outbreaks where the true behavior is outside of the assump-
tions of the projections for the small discrepancy ensemble, yet inside the range of the large
discrepancy ensemble.

The exact behavior of the ensemble depends on the actual realization of the individual out-
break, because the observed values x0 are different due to the stochastic disease transmission
process. We therefore apply both the small and large discrepancy ensembles to ten realizations
of each of the simulation parameterizations. We implement both the single and multiple epi-
demic quantity analysis, thus further highlighting the effect of using multiple quantities.

Computation
We use Markov Chain Monte Carlo (MCMC) techniques to obtain samples from the full pos-
terior distribution of the proposed Bayesian models (NHW, SHW and IHW). For many pa-
rameters, the conditional distribution belongs to a standard parametric family, thus allowing
for Gibbs sampling. We list these conditional distributions in Table 3 for single quantity analy-
sis and Table 4 for multiple quantities.

We also rely on Metropolis-Hastings (M-H) updates, and with the computation used for
multi-quantity analysis being a straightforward extension of that used for the single quantity,
we start by describing the update scheme for the single quantity analysis. The conditional dis-

tribution of bτ has a known form, Pðbtj . . .Þ ¼ GammaðAbt þ ðN þ 1Þat;Bbt þ
PN
i¼0

tiÞ, that

Table 4. Conditional distributions used for updating via Gibbs sampling forQ epidemic quantities.

Parameter Conditional distribution

λi
Gamma al þQ; b̂ li þ

PQ
q¼1

ym;qðxi;q�mqÞ2�yn;qðyi;q�nq�bqðxi;q�mqÞÞ2
2

 !
for b̂ li ¼ bl for all modeling

assumptions i in the NHW method,b̂ li ¼ al=ml for all modeling assumptions i in the SHW
method and b̂ li ¼ al=m̂ li in the IHW method.

μq Normalðm�;s2
mÞ with

s2
m ¼ ðPym;qli þ yn;qb

2

q

P
li þ t0;qÞ�1m� ¼ s2

mð
P

ym;qlixi;q � yn;qbq

P
liðyi;q � nq � bqxi;qÞ þ t0;qx0;qÞ

vq Normalðn�; ðyn;q

P
liÞ�1Þ with n� ¼

P
li ðyi;q�bqðxi;q�mqÞÞP

li

βq Normalðb�;s2
bÞ with s2

b ¼ ðyn;q

P
liðxi;q � mqÞ2Þ�1b

� ¼ s2
by

�1

n;q

P
liðyi;q � nqÞðxi;q � mqÞ

θμ, q for q
6¼ 1 Gamma ay þ N

2
;by þ

P
li ðxi;q�mqÞ2

2

� �
θv, q Gamma ay þ N

2
;by þ

P
li ðyi;q�nq�bqðxi;q�mqÞÞ2

2

� �
τ0, q Gamma at;q þ 1=2;bt;q þ ðxi;q�mqÞ2

2

� �
φ0, q Gamma(aϕ, q, bϕ, q)

doi:10.1371/journal.pcbi.1004187.t004
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would allow for Gibbs sampling of bτ, whereas M-H updates need to be implemented for aτ.
We however found strong correlation between the marginal posterior estimates of aτ and bτ,
and mixing was improved by performing joint M-H updates of these parameters by multivari-
ate RandomWalk (RW) proposals. Mixing can be further improved by updating parameters
on a transform that resembles a Gaussian distribution, and we therefore performed updates on
the log-transform, i.e. based on current values of aτ and bτWe proposed candidate parameters
½logða�tÞ; logðb�tÞ� fromMVN([log(aτ),log(bτ)],Sτ). Here MVN indicates the multivariate nor-
mal distribution and Sτ the covariance matrix. Candidate values are accepted with the proba-
bility

min 1;
Gammaða�t jAat;BatÞGammaðb�t jAbt;BbtÞ

QN
i¼0 Gammaðtija�t ; b�tÞ

GammaðatjAat;BatÞGammaðbtjAbt;BbtÞ
QN

i¼0 Gammaðtijat; btÞ
jJtj

 !
; ð22Þ

where jJtj ¼ a�tb
�
tðatbtÞ�1 indicates the Jacobian determinant of the log-transform.

Mixing can be improved if the covariance matrix Sτ is proportional to the covariance of the
marginal posterior of [log(aτ),log(bτ)], here indicated as F. However, this is not known prior to
the analysis. We therefore implement an optimized method of the Robbins-Monroe search
process as presented by Garthwaite et al. [58]. This estimates the covariance during the MCMC
and finds the scaling parameter ρ such that Sτ = ρF provides a chosen long term acceptance
rate, here set to 0.234 based on suggestions by Roberts et al. [59]. The method has been demon-
strated to be appropriate also for RW on transformed scales of the parameters [60].

The corresponding updates of aφ and bφ were also performed with M-H updates and we
proposed candidate parameters ½logða�φÞ; logðb�φÞ� fromMVN([log(aϕ),log(bϕ)],Sϕ). and accept-

ed them with probability

min 1;
Gammaða�φjAaφ;BaφÞGammaðb�φjAbφ;BbφÞ

QN
i¼1 Gammaðφija�φ; b�φÞ

GammaðaφjAaφ;BaφÞGammaðbφjAbφ;BbφÞ
QN

i¼1 Gammaðφijaφ; bφÞ
jJφj

 !
: ð23Þ

We used a similar approach for updates of aλ andmλ in the hierarchical methods (SHW
and IHW) and proposed ½logða�lÞ; logðm�

lÞ� fromMVN([log(aλ),log(bλ)],Sλ). Candidate pa-
rameters were accepted with probability

min
1;Gammaða�ljAal; BalÞGammaðm�

ljAbl;BblÞ
QN

i¼1 Gammaðlija�l; b̂�
liÞ

GammaðaljAal; BalÞGammaðmljAbl;BblÞ
QN

i¼1 Gammaðlijal; b̂liÞjJlj

 !
; ð24Þ

where b̂li ¼ al=ml for all modeling assumptions i in the SHWmethod and b̂li ¼ al=m̂li with
m̂li ¼ wiml in the IHWmethod. As above, we used the method of Garthwaite et al. [58] to de-
termine Sλ to obtain a long term acceptance rate of 0.234.

We also found strong correlation between μ and ν. In order to improve mixing, we repeated
the updates of these parameters five times for each iteration of the MCMC.

The same update scheme was used for the multi-quantity consideration, yet with a separate
Sτ, q, Sϕ, q and Sλ, q adaptively estimated for each quantity q.

The algorithm was implemented in MATLAB (The MathWorks, Inc., Natick, Massachu-
setts, United States) and code is available as supplementary information (S1 File).
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Results

Single quantity analysis
We start by presenting the results for the single quantity analysis, highlighting the behavior of
the method for the NHW, SHW and IHW schemes. Fig 2, panels A and B show the estimates
of outbreak duration for the two control actions for the large discrepancy ensembles using the
NHWmethod and reveals rather large prior sensitivity. Note that we plot marginal posteriors
ofM = eμ and N = ev, respectively. As such, the posteriors represent the geometric mean out-
break duration. The corresponding arithmetic mean can be calculated as eμ+1/(2τ0

) and ev+1/
(2ϕ

0
), respectively, yet we use the geometric mean as it more clearly shows the relationship with

individual projections, here presented by xi = exi and Yi = eyi, respectively. For aλ = bλ = 0.0001
(solid gray lines), the distributions are multimodal with peaks at individual model predictions,
whereas a more smooth shape is obtained for aλ = bλ = 0.01 (dashed black lines) and aλ = bλ =
0.001 (solid black line) yields an intermediate result.

With the SHWmethod, we instead obtain posteriors that are largely insensitive to the
choice of hyperprior. Fig 2, panels E and F present the result of sensitivity set-up one, showing
near identical posterior estimates when hyperparameters Aaλ, Baλ, Amλ and Bmλ are set to 0.01,

Fig 2. Ensemble prediction for the UK 2001 FMD outbreak duration.Comparing two methods of ensemble prediction of expected outbreak duration
under implemented and alternative control actions (panels A, E and B, F, respectively) as well as the corresponding duration of individual outbreaks (panels
C, G and D, H, respectively). The observed duration of the UK 2001 FMD outbreak is indicated by X0while vertical colored lines (panels A, B, E and F) and
annotations X1, X2,.., X9 and Y1, Y2,. . ., Y9 indicate the mean outbreak duration of each projection. The total bar height (panels C, D, G, H) indicate the
frequency of simulations across all projections with outbreaks ending within each 50 day interval and colors indicate the contribution of each of the
projections. Results are shown for analyses of the large discrepancy ensemble using the NHWmethod (panels A-D) and the SHWmethod (panels E-H).
Marginal posterior estimates correspond to different priors, with prior parameters aλ = bλ = 0.01 (light gray), aλ = bλ = 0.001 (black) and aλ = bλ = 0.0001
(dark gray) the NHWmethod (panels A-D) and Aaλ = Abλ = Baλ = Bbλ set to 0.01 (light gray), 0.001 (black) and 0.0001 (dark gray) for the SHWmethod
(panels E-H). Note that posterior estimates are very similar for the latter, making the lines overlap.

doi:10.1371/journal.pcbi.1004187.g002
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0.001 or 0.0001. Sensitivity set-up two produced results that were visually indistinguishable
from panels E and F and are not presented. This further indicates that the hierarchical method
is robust to the choice of hyperpriors.

Within epidemiology, there is clearly an interest in not just the expected outbreak duration,
but also other statistics such as the probability of large outbreaks occurring. We therefore con-
sider the posterior predictive distributions of individual outbreak durations under the two con-
trol actions. For the non-hierarchical model (Fig 2, panels C and D), there is an obvious effect
of the choice of prior with higher probability of long outbreaks for lower values of aλ and bλ.
For the hierarchical model (Fig 2, panels G and H), there is again little difference among poste-
riors corresponding to different priors.

When evaluating the efficiency of control actions, the difference N-M is of particular inter-
est. In the example presented here, this estimates how much longer the outbreak would have
been if culling of CPs had been excluded from the control. As shown in Fig 3, the estimates are
again sensitive to the choice of prior with the NHWmethod, yet insensitive with the SHW
method. The range of the posterior under the NHWmethod is less sensitive to the prior for the
low discrepancy ensemble (panel B) than for the large discrepancy ensemble (panel A), where
higher probability of less difference is estimated with aλ = bλ = 0.01 than for aλ = bλ = 0.0001.
However, the multimodal behavior of the NHWmethod with low values of aλ and bλ is ob-
tained also for the low discrepancy ensemble.

Fig 3. Ensemble predicted difference between control actions. Posterior predictive distributions of the
difference in outbreak duration between implemented and alternative control actions for the 2001 UK FMD
outbreak using the NHWmethod (panels A, B) and the SHWmethod (panels C, D,). Results are shown for
large (panels A, C) and small (panels B, D) discrepancy among projections in the ensemble. Marginal
posterior estimates correspond to different priors, with prior parameters aλ = bλ = 0.01 (light gray), aλ = bλ =
0.001 (black) and aλ = bλ = 0.0001 (dark gray) for the NHWmethod (panels A, B) and Aaλ = Abλ = Baλ = Bbλ
set to 0.01 (light gray), 0.001 (black) and 0.0001 (dark gray) for the SHWmethod (panels C, D). Due to high
similarity of estimates, the plots are largely overlapping for the hierarchical method.

doi:10.1371/journal.pcbi.1004187.g003
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Fig 4 demonstrates the effect that a priori beliefs about the weights have on the predicted
outbreak duration under large and small discrepancy ensembles. When using a priori higher
weights for the most likely scenarios (modeling assumption one; black dotted lines), the poste-
rior estimates are shifted and become more centered on projections of that particular modeling
assumption compared to the case where a priori weights are equal (black solid line). The out-
come of up-weighting the outlier (modeling assumption five; solid gray lines) is however differ-
ent between the two ensembles. For the small discrepancy ensemble (panels A and B), similar
results are found as for the up-weighting of the most likely scenarios; posteriors are shifted to-
wards the projection with a priori high weight. For the high discrepancy ensemble (panels C
and D), the posterior estimates of outbreak duration instead become wider for both control ac-
tions, indicating larger uncertainty about the expected duration of outbreaks.

Fig 5 shows the marginal posterior estimates of individual weights λi under different dis-
crepancy among projections and informative weighting schemes. When using a priori equal
weights, there is little difference in the estimates for the small discrepancy ensemble (top left
panel) whereas moderate differences are obtained for large discrepancy (bottom left panel).
Note that while the error bars are overlapping, the mean estimate of the most likely scenarios

Fig 4. Ensemble prediction of expected outbreak duration with the IHWmethod. Panels A and C show
ensemble estimates of mean duration for the implemented control action of the 2001 UK FMD outbreak under
small and large discrepancy ensemble, respectively. Panels B and D shows the corresponding estimates for
an alternative control action. Marginal posterior distributions indicate the expected outbreak duration
estimated by the ensemble with a priori equal weights (solid black line), up-weighting of the most likely
scenarios (i = 1; dashed black line), up-weighting of the outlier (i = 5; solid gray line). Observed outbreak
duration is indicated by X0 and predicted means under the implemented and alternative control action are
indicated by X1, X2,. . . X9 and Y1, Y2,. . ., Y9, respectively.

doi:10.1371/journal.pcbi.1004187.g004
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(modeling assumption one) is approximately 1.7 times as large as that of the outlier(modeling
assumption five), meaning that the former will contribute approximately 1.7 times as much to
the posterior means of μ and v than the latter (Eqs (12) and (13)).

When giving a priori highest weight to the most likely scenario (modeling assumption one;
middle column panels), the posterior estimate of λ1 is consistently shifted upwards, meaning
that the most likely scenarios (modeling assumption one) will contribute more to the posteriors
of μ and ν than other projections. For the up-weighting of the outlier, projections corresponding
to modeling assumption five, the same is found when there is little discrepancy among projec-
tions (lower right panel). This is however not found for the high discrepancy ensemble (top
right panel), where the main effect is that compared to equal a priori weights (top left panel),
the error bars are wider; this indicates larger uncertainty about weights and consequently about
the contribution of individual projections to the posterior estimates of outbreak durations.

Multiple quantity analysis and simulated outbreaks
The proposed multi-quantity method can be implemented with either NHW, SHW or IHW
schemes. Here we aim to illustrate the effect of using multiple quantities and focus on the SHW
scheme. Fig 6 plots the marginal posterior density of mean outbreak duration under the two
control actions as estimated for the multiple quantity analysis (solid) together with the corre-
sponding estimates for the single quantity analysis (dashed). The figure illustrates how inclu-
sion of multiple quantities in the analysis leads to tighter distributions, centered on projections
for i = 1. The multi-quantity analysis produces a probability distribution of all considered
quantities, and Fig 7 further illustrates how the marginal posterior densities are located above
zero for all three considered quantities.

To illustrate the performance of the method under different conditions, we also analyzed
simulated outbreaks. Fig 8 shows the posteriors of mean duration for outbreaks simulated with

Fig 5. Marginal posterior estimates of weighting parameters, λ. Posterior means are indicated with circles and error bars indicate 95% central credibility
intervals under a priori equal weights (left column panels), up-weighting of modeling assumption i = 1(middle column panels) and up-weighting of assumption
i = 5 (right column panels). Results are shown for small and large discrepancy ensembles in top and bottom row panels, respectively.

doi:10.1371/journal.pcbi.1004187.g005
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the k1 = k2 = 1 parameterization and applying the small (triangles) and large (circles) discrep-
ancy ensembles, represented by the median values and error bars indicating the 95% central
credibility interval. Note that individual realizations, indicated by stars, are expected to fre-
quently be outside of the credibility envelopes. Error bars are inclusive of the true mean out-
break duration (dashed lines) for all ten analyzed realizations for both the implemented and
alternative control actions. However, the credibility envelopes are tighter and medians closer to
the true value for the multi-quantity analysis. This indicates that the ensemble prediction is im-
proved by including multiple quantities.

When applying the analysis to outbreaks simulated with the k1 = k2 = 0.9 parameterization
(Fig 9), the large discrepancy ensemble error bars are still consistently inclusive of the true
value. As with Fig 8, credibility envelopes are tighter for the multi-quantity analysis. The error
bars of the small discrepancy ensemble that all rely on simulations with parameterizations with
higher k1 and k2 than the true value, are not inclusive of the true value, indicating that the
small discrepancy ensemble fails in predicting the true values of the outbreak.

Discussion
Ensemble modeling is appealing because it offers the possibility to combine multiple projec-
tions. Within weather forecasting, the approach has given more robust predictions, and we
could expect that to be the case for epidemiology as well. However, there is a need for the devel-
opment of methods describing how to combine several epidemiological projections. The aim of
this study was to investigate the possibility of using the Bayesian framework introduced by
Tebaldi et al. [47]. We find that it is a promising approach, for primarily three reasons.

Firstly, when the methodology is implemented in a hierarchical Bayesian framework, it pro-
vides an appealing interpretation of model exchangeability. Essentially, projections and their
underlying modeling assumptions are treated as random draws from a population of possible

Fig 6. Ensemble prediction of outbreak duration withQ = 1 andQ = 3. Posterior estimates of mean
outbreak duration for the implemented (Panel A) and alternative (Panel B) control action, with the dashed line
indicating the posteriors corresponding to the single quantity analysis and the solid line indicating the
corresponding posterior when number of infected and control culls are included. The figure shows the result
of the large discrepancy ensemble.

doi:10.1371/journal.pcbi.1004187.g006
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projections. By estimating the hierarchical parameters aλ andmλ jointly with individual preci-
sions (weights) λi, the characteristics of this hypothetical population are estimated. Smith et al.
[61] used a similar approach for climate ensembles and pointed out that this reduces the im-
pact of which models are included or excluded in the ensemble. That is, we should expect to
get similar results when using a different set of model assumptions if they are chosen indepen-
dently. We stress that this interpretation is more valid for multi-model ensembles, however.
Also, the term “random draws” should not be interpreted as arbitrary. Rather, the interpreta-
tion is that models should come from a population of well-informed, reasonable models. The
analysis treats the outputs of the performed simulations under different assumptions as data
(Eq 1, Table 1), and as such they are used to inform the quantities of interest (μ and v). This
may seem counterintuitive, yet it only serves as a formal means to combine the results of multi-
ple projections, and by Eqs (7) and (20), these are combined with available outbreak data.

Secondly, the framework can handle several different weighting schemes simultaneously.
The original methods introduced by Tebaldi et al. [47] used convergence and bias to assess
weights. Here, we further extend the framework such that informative priors can be included

Fig 7. Posterior estimates of difference between controls. The figure shows the marginal posterior
predictive estimates of difference in outbreak duration (Panel A), number of infected farms (Panel B) and
number of control culls (Panel C) between the implemented and alternative control action. The figure shows
the result of the large discrepancy ensemble.

doi:10.1371/journal.pcbi.1004187.g007
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to inform the weights, thus relaxing the supposition that all modeling assumptions are a priori
exchangeable. Epidemiological predictions suffer from lack of available data to assess model
bias, and we propose that expert opinions will play a larger role than in other fields of research.
With the analytical tool proposed here, a policymaker can choose to include a range of projec-
tions based on different modeling assumptions, yet give them different weights, rather than in-
cluding one or a few (given a weight of one) and excluding others (given a weight of zero).

Fig 8. Analysis of synthetic data. Triangles and circles indicate the median posterior estimates of mean
outbreak duration after analysis with the small and large discrepancy ensemble, respectively, under the
implemented (Panels A and C) and alternative (Panels B and D) control action. Results are shown for ten
realizations of synthetic data simulated with k1 = k2 = 1. The error bars indicate the 95% credibility interval,
the dashed lines the true values and the star the individual realization (expected to frequently lie outside the
predicted mean). Panels A and B show the results of single quantity analysis (only outbreak duration) and
Panels C and D the corresponding results of analyses where number of infected farms and control culls
are included.

doi:10.1371/journal.pcbi.1004187.g008
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When using different mechanistic models, subjective trust in the different models can be incor-
porated by using methods of prior elicitation based on expert opinion [38]. Importantly, our
methods can incorporate these subjective beliefs in the hierarchical framework, requiring only
the specification of the a priori relative confidence in the underlying assumptions of the projec-
tions. Definition of an individual, fixed prior would undoubtedly be cumbersome to elicit from
expert opinion; it would not be feasible to ask policymakers to define an individual gamma
prior for each modeling assumption.

Fig 9. Analysis of synthetic data. Triangles and circles indicate the median posterior estimates of mean
outbreak duration after analysis with the small and large discrepancy ensemble, respectively, under the
implemented (Panels A and C) and alternative (Panels B and D) control action. Results are shown for ten
realizations of synthetic data simulated with k1 = k2 = 0.9. The error bars indicate the 95% credibility interval,
the dashed lines the true values and the star the individual realization analyzed (expected to often lie outside
the predicted mean). Panels A and B show the results of single quantity analysis (only outbreak duration) and
Panels C and D the corresponding results of analyses where number of infected farms and control culls
are included.

doi:10.1371/journal.pcbi.1004187.g009
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Here we used ensembles based on projections of the same model with different parameteri-
zations, demonstrating the possibility to explore parameter space, yet with unequal probabili-
ties of different parameterizations. Uncertainty about parameters will be an issue for most
epidemiological models, and we propose that multi-model ensembles should incorporate pro-
jections with different models and different parameterizations. Thus, different mechanistic as-
sumptions as well as parameter uncertainty would be incorporated in the ensemble.

Thirdly, the framework produces easily interpretable probability distributions. It is impor-
tant that communication with policymakers include uncertainties about prediction rather than
just the most likely outcome [16]. In the ensemble context, these uncertainties take into ac-
count different assumptions about the transmission process. Gårdmark et al. [32] suggested
that uncertainty should be communicated with policymakers by presenting the full range of
predicted outcomes. However, that would give equal weights to all included projections and
would require that the results be communicated with a detailed description of all assumptions
made, thus allowing the policymaker to decide how much to trust each modeling assumption.
This would be a cumbersome task, particularly for detailed simulation models that rely on a
large number of parameters. We therefore argue that it is beneficial to communicate the aggre-
gated and weighted result as easily interpretable probability distributions. With further modifi-
cations of the methodology, we propose that the approach could also be used as a forecasting
tool during an outbreak, e.g. by letting xi and yi denote current and future numbers of infected
farms. In such a situation, there is a great need for rapid and clear communication of model re-
sults to aid policy decisions. The visual manner in which uncertainty is presented using proba-
bility distributions makes them easy to understand and communicate [62].

We here show that these distributions are sensitive to the choice of priors when using the
NHWmethod (Fig 2, panels A-D, Fig 3, panels A, B). However, the impact of the prior is
heavily reduced when using the hierarchical framework (Fig 2, panels E-H, Fig 3, panels C, D).
Thus, our results demonstrate that the hierarchical approach is preferred for ensemble model-
ing and using the non-hierarchical approach can lead to spurious conclusions. We argue that
this would also be the case for other fields, such as climate ensembles, but it is likely to be a larg-
er concern for epidemiology where data to modify the prior are fewer. Considering Eq (11), we
could ensure that b has little contribution to the denominator if τ0�λi for all i, ensuring that
the prior has little contribution to the posterior. For climate considerations, we envisage that
the precision of natural variability, τ0, would be large relative to each λi if bias is assessed by
comparing model simulations to long time series of climate data. For epidemiological consider-
ations, this would however rarely be the case. In the proposed method, we instead inform τ0
largely by the simulation outputs, letting the projections of the ensemble determine how vari-
able outcomes are.

Climate modeling, from which the proposed method is adapted, is primarily concerned
with differences between current and future mean climate variables [24]. Epidemiology is not
only concerned with mean projections but also with other quantities such as the probability of
very large or long outbreaks occurring. Fig 2, panels G and H illustrates the probability of a
given epidemic duration occurring for a single outbreak under the two control actions with the
preferred SHWmethod. Comparing the posterior predictive distribution to the density of
merely lumping the results of all simulations, as illustrated by the colored bars, the posterior
predictive distribution of the ensemble method has a lower probability of both very long and
short outbreaks. This is because projections of such outbreaks are down-weighted when their
bias is assessed in the analysis; the observed outbreak duration would be unlikely under the
modeling assumptions that produce these projections. Thus, ensemble methods that give equal
weights to all projections can overestimate the uncertainty about outbreaks, preventing the
models from informing appropriate policy decisions.

A Bayesian Ensemble Approach for Epidemiology

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004187 April 30, 2015 24 / 30



We have further extended the methodology to allow for informative priors on the weights.
Compared to climate models, epidemiology often has far less available data to assess model
bias. As such, expert opinion will often play a larger role within this field. Fig 4 illustrates the
behavior of the ensemble prediction under such informative priors. When up-weighting pro-
jections for i = 1, which is also likely under the observed outbreak duration, the posteriors are
shifted towards these projections and produce tighter distributions. This is also found when
up-weighting the outlier, i = 5, in the small discrepancy ensemble (Fig 4, panels A and B), in
which no projection is particularly unlikely for the observed duration. Projection x5 is however
unlikely in the large discrepancy ensemble. As a result, the effect of up-weighting the underly-
ing modeling assumptions of this projection primarily makes the distribution wider, resulting
from a larger uncertainty about individual weights (Fig 5). This is to be interpreted such that if
expert opinions a priori determine that a modeling assumption that is unlikely to predict the
observed data is better than other assumptions, the conclusions should be that there is less in-
formation in the ensemble as whole. However, when expert opinions are well informed and do
not contradict with observed data, they can lead to more precise predictions.

It should be stressed that discrepancy among projections in the ensembles should be viewed
as relative to τ0, the estimated variability in outbreak duration given the initial conditions. A cru-
cial difference between the original method applied to climate change and the epidemiological
consideration presented here is that τ0 is unknown for the latter and therefore needs to be esti-
mated. We argue that in the absence of multiple outbreaks, it is sensible to inform this by the
model simulations. Stochastic simulations are often used to estimate the range of outcomes for
non-ensemble projections [1,17,18,23], and we propose that when extending the use of models
to the ensemble context, they can be used to estimate this feature as well. We have therefore cho-
sen a Bayesian model structure where τ0 is informed largely by the within projection variability,
τ1, τ2,. . ., τn, via the Gamma(aτ, bτ) distribution in Eq (8). All projections of the implemented
control action contribute equally to this distribution in the method presented here, thus we are
giving equal weights to all modeling assumptions in terms of informing τ0. Estimation of differ-
ent weights in terms of informing τ0 based on a single outbreak, analogous to the estimation of
λ, would not be conceivable. However, if policymakers believe that some modeling assumptions
are more reliable in terms of capturing the variability of outcomes, we envisage that the Bayesian
model structure can be altered to include this. If applied to endemic disease, τ0 could be in-
formed similarly to the natural variability of temperature in climate application, and the algo-
rithm we supply is set up to handle this situation. Also, data frommultiple outbreaks could be
used to inform τ0 when available. Yet, data quality will rarely be comparable to climate data,
which highlights one of the major challenges for epidemiological modeling.

We also provide a multi-quantity extension of the Bayesian ensemble framework. Fig 5
shows that when adding number of infected and culled farms to the analysis, the marginal pos-
teriors of outbreak duration become narrower and centered on x1 and y1, i.e. the projections
based on the most likely scenario. This illustrates that predictions can be improved by incorpo-
rating multiple quantities when assessing the weights.

The main scope of this study is to introduce ensemble methods to the field of epidemiology
rather than to produce inference about the 2001 FMD outbreak. However, Fig 7 illustrates the
types of conclusions the method can provide. The three quantities we include in the multi-
quantity analysis are all of great concern to policy makers when assessing the impact of control
actions. The probability distributions represent the ensemble predicted difference in the out-
come of the outbreak if the control action had excluded culling of CPs. The distributions all
have most of the density above zeros, indicating that excluding culling of CPs would most likely
have resulted in a prolonged and larger outbreak. We should however point out that these
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results are based on a single model. To make more robust predictions, we propose that the
same type of analysis be made with projections of different models.

We also analyzed simulated data to provide a more general depiction of the performance of
the method under different conditions. Fig 8 shows the result of analysis of ten simulated out-
breaks with the parameterization in the center of the ensemble, i.e. k1 = k2 = 1. As this is in
agreement with both the small and large discrepancy ensemble, the true values (dashed lines)
consistently lie within the 95% credibility intervals. However, when using the k1 = k2 = 0.9
parameterization, the assumptions of the model used to simulate the outbreak is only inclusive
of the large discrepancy ensemble, and consequently only the large discrepancy ensemble error
bars are inclusive of the true values. Noting that we primarily use the different parameteriza-
tion as a proxy for different models, this simple simulation example illustrates some obvious
but essential points. Ensemble modeling should not be interpreted as a remedy for models
based on poor assumptions about the modeled process. It offers the ability to combine multiple
assumptions, thus integrating uncertainty with regards to this in the predictions. However, if
all models are based on similar but inaccurate assumptions, ensemble modeling will not im-
prove predictions. Intentionally making models similar to each other increases this risk and
should be avoided if the models are to be used for ensemble purposes.

Accepting these limitations, we argue that the ensemble approach will be beneficial to epide-
miological risk assessment because rather than choosing a single model for the purpose, it of-
fers the possibility to combine projections from models that make mechanistically different
assumptions about the transmission process. Thus, uncertainty with regard to this is incorpo-
rated in the predictions, which is important as projections of different models have been re-
ported to deviate [63–65]. The use of multi-model ensembles would rely on collaboration of
modeling teams, as well as overcoming confidentiality constraints in accessing outbreak data
and population demographics. The current development in FMDmodeling is seeing encourag-
ing development in that area. The Quadrilateral Epiteam [19] has compared simulation of sev-
eral outbreak scenarios in a subset of the UK demographics with five different models:
NAADSM [45], Netherlands CVI [66], InterSpreadPlus [46], AusSpread [44] and ExoDis [67].

This demonstrates that potential obstacles for multi-model ensembles can be overcome and
we envisage that epidemiology will see a shift towards multi-model ensembles to inform policy
decisions, as has been seen in climate research [24,25] and weather forecasting [26,27]. Com-
bining the results of multiple models however requires means of weighting these. We conclude
that the presented framework is a promising approach because it provides easily interpretable
probability distributions of quantities of interest. It also offers an appealing interpretation of
model exchangeability, while at the same time combining several different weighting schemes,
including a priori beliefs when such are available.

In this study, we introduced this framework by applying it to a simple question: how would
exclusion of contiguous premises culling from the control action have affected the outcome of
the UK 2001 outbreak? The aim of the study has been to introduce the methodological frame-
work to epidemiology and solve some key issues associated with this transfer, including prior
sensitivity, informing weights by expert opinion, using models to inform the variability in the
outcome of individual outbreaks and extension to consider multiple epidemic quantities. We
have purposely chosen the simple example because it allows for a straightforward transfer from
the original climate implementation, and at the same time lets us demonstrate essential con-
cepts and the potential of the framework. Models are however used to answer a range of differ-
ent questions in epidemiology, and combining multiple projections has the potential to
improve the way models are used to inform policy. We argue that the framework we introduce
here has great potential, and foresee that many of the questions addressed in epidemiological
modeling would require further developments of the Bayesian model, structured to fit with the
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specific problem. To facilitate this, we have supplied the algorithm (S1 File) and hope that it
will aid further development of ensemble methods for epidemiology.

Supporting Information
S1 File. MCMC code written in MatLab.
(ZIP)
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