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Abstract

The presence of voltage fluctuations arising from synaptic activity is a critical componentin
models of gain control, neuronal output gating, and spike rate coding. The degree to which
individual neuronal input-output functions are modulated by voltage fluctuations, however,
is not well established across different cortical areas. Additionally, the extent and mecha-
nisms of input-output modulation through fluctuations have been explored largely in simpli-
fied models of spike generation, and with limited consideration for the role of non-linear and
voltage-dependent membrane properties. To address these issues, we studied fluctuation-
based modulation of input-output responses in medial entorhinal cortical (MEC) stellate
cells of rats, which express strong sub-threshold non-linear membrane properties. Using in
vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output
responses by random voltage fluctuations in stellate cells is significantly limited. In stellate
cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages me-
diated by Na* conductance activation limits the ability of fluctuations to elicit spikes. Similar-
ly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for
the exponential term that matches stellate cell membrane properties, a low degree of fluctu-
ation-based modulation of input-output responses can be attained. These results demon-
strate that fluctuation-based modulation of input-output responses is not a universal feature
of neurons and can be significantly limited by subthreshold voltage-gated conductances.

Author Summary

The membrane voltage of neurons in vivo is dominated by noisy “background” fluctua-
tions generated by network-based synaptic activity from nearby cells. It has been speculat-
ed that membrane voltage fluctuations in neurons play an important role in scaling the
relationship between input amplitude and spike rate response. For this to be true, neuronal
spike input-output behavior must be sensitive to physiological membrane voltage fluctua-
tions. Using a combination of single cell recordings and modeling, we investigated the
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mechanisms through which voltage fluctuations modulate neuronal input-output re-
sponses. We find that neurons that express an increase in membrane input resistance with
depolarization show low levels of noise-mediated modulation of input-output responses
due, in part, to voltage trajectories that suppress the likelihood of generating a spike in re-
sponse to random current input fluctuations. Hence, non-linear membrane properties
arising from certain types of voltage-gated conductances limit noise-based modulation of
neuronal input-output responses.

Introduction

Membrane voltage in cortical neurons is dominated by fluctuations mediated by random syn-
aptic activity [1-4]. Because probabilistic threshold crossings associated with fluctuations
lower spike threshold, enabling spike response to otherwise sub-threshold inputs [5,6], it has
been hypothesized that background activity amplifies neuronal sensitivity, and in doing so per-
mits fluctuations to modify the input-output functions of neurons [7-12]. Consistent with this
hypothesis, recordings in vivo often show a large variance in interspike intervals [13,14]. Spec-
tral properties of voltage fluctuations are also correlated with different cognitive states, lending
support to the idea that fluctuations play an important role in modulating spike output [4,15-
17]. Finally, computational models suggest that neurons are sensitive to transient inputs and
modulate their input-output function in response to changes in the size of membrane voltage
fluctuations [10,18-20].

For two reasons, however, it is not clear that results of strong effects of membrane-potential
fluctuations on input-output relationships hold in general. First, data supporting a strong rela-
tionship come from only a few types of neurons [8,11,21-23]. Second, even these restricted
studies have shown significant variability in the magnitude of the effect [21,23-25]. These ob-
servations indicate a possible complex relationship between membrane voltage fluctuations
and neuronal input-output modulation. Modulation of input-output responses is likely influ-
enced by numerous factors, including sub-threshold voltage-dependent properties present in
neurons. For example, the negative slope conductance associated with Na* current, which in-
creases membrane resistance in close proximity to spike threshold [26], has been shown to re-
duce neuronal responsiveness to high frequency voltage fluctuations in model neurons [27].

To examine how non-linear membrane properties determine the degree of fluctuation-
based modulation of input-output responses in neurons, we recorded from MEC stellate cells.
These neurons express strong non-linear membrane properties at sub-threshold voltages and
are characterized by a voltage-dependent change in membrane resistance [28-30]. Like other
cortical neurons, in vivo recordings of stellate cells have established the presence of large mem-
brane voltage fluctuations that have the potential to influence input-output responses [31,32].

Using standard measures of spike output in the form of spike frequency-current and spike-
probability curves, as well as analysis of spike generation in an exponential leaky integrate-
and-fire model, we investigated the biophysical factors regulating the ability of voltage fluctua-
tions to modify stellate cell input-output measures. We find that non-linear membrane proper-
ties associated with increased membrane resistivity at sub- and peri-threshold voltages reduce
fluctuation-based modulation of input-output responses. Overall, our results indicate that fluc-
tuation-based modulation of neuronal input-output responses can be very low, with limited
scaling of spike output via changes in noise and conductance levels.
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Results

Stellate cell input-output functions are modulated weakly by membrane
voltage fluctuations

To investigate the modulation of input-output responses by membrane voltage fluctuations in
MEC stellate cells, we started by quantifying fluctuation-induced changes in commonly used
measures of neuronal input-output responses. These include the slope (gain) and rheobase of
frequency-current (f-I) and spike-probability curves. Voltage fluctuations were generated using
current-based fluctuations that were constructed using low-pass filtered white noise (see Meth-
ods). For each cell, we recorded a short trial period in which the current input fluctuation am-
plitude was adjusted to maintain a standard deviation (SD) in output voltage at rest (-75 mV,
corrected for the electrode’s junction potential) of approximately 2.5 mV (2.41 £ 0.1 mV), a
value commonly observed in vivo [33]. Controlling for the SD of voltage fluctuations was es-
sential since the intrinsic properties of neurons are voltage-dependent and a fair comparison
across different cells, conditions and models require that the SD of membrane voltage be con-
stant. Furthermore, previous work addressing similar issues has controlled fluctuation sizes in
terms of the SD of membrane voltage and used similar values [8,9,19,23,24,34,35],

For f-I curves, spike frequency was determined using only the first three inter-spike intervals
in order to avoid complications arising from the interaction between the time scale of voltage
fluctuations and spike frequency adaptation [21,23]. Gain was calculated individually for each
cell using the slope of a linear fit (r*: 0.64 to 0.96, mean: 0.89 + 0.02) to the f-I relationship,
while rheobase was measured as the current required to elicit a minimum of 3 inter-spike inter-
vals from a holding voltage of -75 mV.

As shown in Fig 1B, stellate cell f-I curves were only modestly influenced by the introduction
of membrane voltage fluctuations. The addition of fluctuations generated a small, but non-sig-
nificant, leftward shift in rheobase (Fig 1Ci; 199 + 20 pA vs. 158 + 20 pA, p =0.11, n = 20, 18).
As with rheobase, the addition of voltage fluctuations did not generate a significant reduction
in the f-I curve gain (Fig 1Cii; 0.161 + 0.10 spikes/ pA s. vs. 0.148 + 0.08 spikes/pA's, P = 0.31,
n = 20, 18). To quantify potential changes in the f-I curve more carefully, we also measured the
effects of voltage fluctuations on firing rate within discrete regions of the f-I curve (Fig 1D; low,
mid and high). Previous modeling and experimental work has shown that random voltage fluc-
tuations induce the largest increase in firing rate in the low spike rate region of the f-I curve,
near the transition between rest and firing [8-10,19,20,24]. For our data, the low region was de-
fined individually for each cell as the frequency of spike discharge at rheobase, while the mid
and high regions corresponded to current values eliciting 15 spikes/s and 25 spikes/s more
than the initial frequency, respectively. For each cell, we measured the change in firing rate
brought about by voltage fluctuations for low, mid and high current input regions relative to
the same cell’s f-I curve acquired without fluctuations. Differences in spike rate were small but
changed significantly in the low and mid regions of the f-I curve. For the low region of the f-I
curve, fluctuations induced an increase of 3.3 + 0.34 spikes/s (Fig 1D; P <0.001, n = 18), while
in the mid region, these values were 3.2 + 1.4 spikes/s (P = 0.03, n = 18).

Next, we measured the effects of voltage fluctuations on spike-probability curves. Unlike the
f-I curve, which requires repetitive spike generation at each current step size, a spike-probabili-
ty curve quantifies the probability of generating just a single spike within a given time window
(100 ms in our case, Fig 1E and 1F). In the absence of membrane voltage fluctuations, the tran-
sition from a probability of zero to one in spike discharge occurred almost always within a sin-
gle current step (Fig 1F; vertical line). For experiments without artificial voltage fluctuations,
the current amplitude associated with this transition point was defined as rheobase. The addi-
tion of voltage fluctuations smoothed the relationship between spike probabilities and current
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Fig 1. MEC stellate cell input-output relationships express a low sensitivity to membrane voltage fluctuations. (A) Representative examples of
stellate cell voltage response to 1 s long current steps with (right panel) and without (left panel) membrane voltage fluctuations. (B) Plot of average f-/
relationships under conditions outlined in A. (C) Mean leftward shifts in rheobase (i) and gain (i) in -/ curves resulting from the introduction of membrane
voltage fluctuations. (D) Change in firing rate resulting from membrane voltage fluctuations for low, mid and high spike rate regions of the f-/ relationship. For
each region, changes in firing rate were calculated using the difference in an individual cell’s firing rate resulting from the introduction of current input
fluctuations. (E) Representative examples of stellate cell voltage response to 100 ms long current steps of different amplitudes with and without membrane
voltage fluctuations. (F) Average spike-probability curve in the presence of membrane voltage fluctuations. The vertical line indicates average rheobase in
the absence of voltage fluctuations for each condition.

doi:10.1371/journal.pcbi.1004188.9001
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steps such that data points could be fit with a sigmoid function (Fig 1F; Boltzmann fit, r*
>0.96). In the presence of voltage fluctuations, rheobase was defined as the current needed to
establish a 0.2 probability (P, ) in generating a single spike, while the slope was quantified
using the “k” term in the Boltzmann function (see Methods). As shown, voltage fluctuations in-
duced a leftward shift in rheobase relative to conditions without fluctuations (Fig 1F; 56 5.6
PA, P <0.001, Student t-test, n = 20) and resulted in spike-probability curves with an average
slope of 26 + 8.4 pA (mean + s.e.m).

Opverall, modifications of stellate cell f-I curves by voltage fluctuations were small compared
to previous work in other neurons [8,9,23,24,35], with no significant modulation of f-I curve
gain across the population and relatively small changes in initial firing rate. In comparison,
past work using similarly sized voltage fluctuations has reported reductions in gain of up to
50% [8,9]. Nevertheless, stellate cells do show some degree of fluctuation-mediated modulation
of input-output responses as indicated by a shiftand smoothing of the spike-probability curve.

Stellate cells express significant non-linear membrane properties
leading up to spike threshold

Given both theoretical and experimental work supporting a strong modulatory role for mem-
brane voltage fluctuations, we were interested in what factors control and limit fluctuation-
based changes of input-output responses in stellate cells. As a potential cause for the limited
fluctuation-based modulation of input-output responses, we considered the role of non-linear
membrane properties leading up to spike threshold. In simple models, realistic spike genera-
tion dynamics have been shown to reduce the likelihood of spike response to rapid voltage fluc-
tuations [27,36]. We hypothesized that an extension of this effect over a much larger sub-
threshold voltage region than has been previously considered could significantly reduce fluctu-
ation-based modulation of input-output responses.

To first establish the presence of sub-threshold non-linear membrane properties in stellate
cells, we quantified membrane input resistance between -85 mV and -65 mV. At each holding
voltage, membrane resistance was measured in voltage-clamp using a 5 mV voltage step of 100
ms duration. Depolarizing stellate cells led to a progressive increase in steady-state membrane
input resistance (Fig 2A; one-way ANOVA, P <0.001, n = 12). Membrane resistance nearly tri-
pled over a 20 mV range, increasing from 51.8 + 3.9 MQ at -85 mV to 151.4 + 15.5 MQ at -65
mV (Fig 2A). We should note that resistance also kept increasing with additional depolariza-
tion to the extent that very small voltage steps (~ 1 mV) often elicited spikes at levels more de-
polarized than -65 mV and prevented an accurate measure of membrane resistance at these
voltage values.

Next, we analyzed average membrane voltage trajectories leading up to spike threshold. For
current inputs eliciting small changes in voltage (5 mV), the resulting voltage trajectory was fit
accurately with an exponential function and used to extract the membrane time constant near
-75mV (12.0 £ 0.9 ms, n = 19). In contrast, the membrane voltage trajectory to the first spike
(for a 50 ms first spike latency) from a holding voltage of -75 mV (~ 15 mV range) could not
be fit with an exponential function due to the more linear profile of the trajectory (Fig 2B). Sim-
ilarly, the average voltage trajectory between the trough of the afterhyperpolarization (AHP)
and spike threshold during continuous firing (~ 4 Hz) was not exponential (Fig 2C). Thus, the
voltage trajectories to spike threshold starting either from resting voltages or the trough of the
AHP were relatively linear compared to that expected from our measures of the membrane
time constant at—75 mV.

To assess how changes in spike rate relate to changes in the average voltage associated with
spike trajectories at different spike frequencies, we quantified the relationship between spike
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Fig 2. Stellate cells express non-linear membrane properties that shape the voltage trajectory leading
up to spike threshold. (A) Average steady-state input resistance as a function of membrane voltage.
Measures were taken in voltage-clamp using a 100 ms duration 5 mV step. (B) Average membrane voltage
trajectory (grey lines indicate SEM) associated with approach from rest to first spike. For comparison, the
exponential approximation using the membrane time constant measures taken at -75 mV is also shown. (C)
Average membrane voltage trajectory (grey lines indicate SEM) associated with the interspike interval. (D)
Representative example of an -V curve from a stellate cell (solid line). Line indicates fit to a power-law

function of the form shown in panel inset. Inset also shows box-plot of mean exponent (p) value for the power-
law function fit.

doi:10.1371/journal.pcbi.1004188.9g002

frequency and mean voltage (f-V). As with the f-I curves, spike rate for the f-V curve was taken
from the first three inter-spike intervals, with membrane voltage values calculated as the mean
during the same period of time. Surprisingly, we found that f-V curves were non-linear and
could be fit with a power-law function (Fig 2D; mean r* = 0.95 + 0.02, range: 0.7-0.99) using
an exponent (p) of 1.45 + 0.08 (Fig 2D; n = 19, range: 0.45-2.0, 17/19 had p values >1). Cell f-V
curves were also shallow, with an average slope across the firing range of 4.5 + 0.4 spikes/mV s
(n =19). Contrary to previous assumptions [12,37], therefore, neuronal f-V curves can express
significant power-law scaling in the absence of any fluctuation-based smoothing. In summary,
our measures of membrane resistance, voltage trajectories, and f-V curves indicate that stellate
cells express significant sub- and peri-threshold nonlinearities.

A gradual increase in membrane resistance is critical to reduced
fluctuation-based modulation of input-output responses in an eLIF model

To understand the biophysical mechanisms and consequences of a voltage-dependent mem-
brane resistance over a large region of sub-threshold voltage, we started by studying the effects
of fluctuation-based modulation of input-output behavior in a simplified model of spike gener-
ation in the form of an exponential leaky integrate-and-fire (eLIF) model [27]. This model has
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the advantage of incorporating important non-linear membrane properties associated with
spike threshold using a small set of parameters that are related to physiological measures (e.g.
voltage-dependent sub-threshold membrane resistance).

The spike slope factor (A7) in the eLIF determines the change in slope of the membrane
voltage-current (I-V) curve as membrane voltage approaches spike threshold (V—Fig 3A).
The exponential term models the increase in membrane resistance associated with an increase
in Na* conductance activation and spike generation. With small A} values, the I-V curve slope
(membrane resistance) changes abruptly as the system approaches V1 (Fig 3A). Conversely,
with large Ay values, the change in slope is more gradual. Thus, for a small Ay value (e.g. 2
mV), the I-V curve is largely linear with the exception of a small voltage range in the immediate
vicinity of V1. As Ar becomes larger, however, membrane resistance increases gradually over a
relatively large span of sub-threshold membrane voltage values. We found that a Ay value of 15
mV best matched experimental values of steady-state membrane input resistance observed in
stellate cells (Fig 3B). We should note that a value 15 mV for Ay is large compared to that im-
plemented in previous work (0.8 m V to 6 mV) using an eLIF model to study cortical neurons
[27,38,39].

We started by comparing stellate cell membrane voltage trajectories to those generated in
the eLIF model using Ar values of 2, 5 and 15 mV. For comparison, we also included a
completely passive model (i.e. standard leaky integrate-and fire model-LIF) consisting of a line-
ar conductance term (15 nS, -75 mV reversal) and an artificial threshold (-55 mV). For all
models, membrane voltage was reset (V,) to -65 mV after crossing threshold.

The eLIF model with a Arof 15 mV does a substantially better job in reproducing the more
linear approach associated with the initial approach to spiking from -75 mV (Fig 3Ci). Like-
wise, for the interspike interval voltage trajectory between the AHP trough and spike threshold
during repetitive spike discharge (~4 Hz), a Ay value of 15 mV best captures the linear trajecto-
ry leading up to spike threshold observed in stellate cells (Fig 3Cii). As Aris reduced, the volt-
age trajectories approaching spike threshold become more exponential and qualitatively more
like the passive model (Fig 3C).

Given the differences in voltage trajectories both in the initial approach to spiking and the
interspike voltage trajectories, we were interested in how mean membrane voltage scaled with
spike rate (f-V) in each of the models. For the passive model, the f-V curve is steep and has a
negative slope. In the active models, both the slope and shape changes considerably with differ-
ent Ay values. As the value of Aris increased from 2 mV to 15 mV, the f-V curve slope goes
from negative and steep to shallow and positive (Fig 3D). Furthermore, over the range of 1-60
spikes/s, the f-V curve of the eLIF using a value of A of 15 mV can be accurately fit with a
power-law function with an exponent of 1.78, which is within the range of values observed ex-
perimentally for stellate cells (Fig 3F).

To quantify the modulation of input-output responses by voltage fluctuations in the models,
we compared results in the eLIF model using Ar values of 2 mV and 15 mV. We delivered the
same current input fluctuations as in stellate cells, and maintained voltage fluctuations with a
SD of 2.5 mV at -75 mV. Previous studies have also established that increasing membrane con-
ductance via a variety of mechanisms, which include shunting inhibition, balanced synaptic
conductances or simply increasing membrane leak, facilitates modulation of the f-I curve using
similarly sized voltage fluctuations [8-10,22]. In addition, as a result of the different slopes of
the exponential terms, the eLIF models using Ay values of 2 mV and 15 mV have different
input resistance values at -75 mV (Fig 3B), a property that may account for potential differ-
ences in fluctuation-based modulation of input-output responses. For these reasons, a separate
shunt or leak conductance (g;) of 15 nS was introduced in each of the models to test the effect
of increasing membrane conductance on input-output modulation.
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doi:10.1371/journal.pcbi.1004188.9003

Fluctuation-based modulation of both the f-I and spike-probability curves are substantially
larger using a value for A7 of 2 mV than with 15 mV (Fig 4). Consistent with previous compu-
tational and experimental results [7-10], increasing membrane conductance using shunting in-
hibition increases fluctuation-induced modulation of input-output responses in both models,
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Spike-probability curves in eLIF models with Ar=15mV (i) and 2 mV (i) with or without membrane voltage
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fluctuations under baseline (black) or increased membrane conductance (gsnunt-grey). (D) Changes in firing
rate induced by membrane voltage fluctuations for low, mid and high regions of the f-/ curves for each model.
For comparison, average stellate cell values are also shown. (E) Plots of changes in rheobase (i) and sigmoid
slope factor (i) in spike-probability measures associated with the introduction of membrane voltage
fluctuations for each model.

doi:10.1371/journal.pcbi.1004188.9g004

albeit the effect is much larger when Ay =2 mV (Fig 4). With A7 =2 mV, fluctuation-induced
increases in initial spike firing rates are 23 spikes/s and 30 spikes/s under baseline and with in-
creased membrane conductance, respectively (Fig 4Bii-4D). In comparison, with Ay = 15mV,
these value are only 4.2 spikes/s and 5.8 spikes/s (Fig 4Bi-4D). Similarly, for spike-probability
curves, voltage fluctuations result in larger leftward shifts and smoothing under both conduc-
tance conditions with Ar =2 mV (Fig 4C-4E). As a result, the changes in firing rate, rheobase
and gain induced by membrane voltage fluctuations correspond more closely to those observed
in stellate cells when Aris set to 15 mV (Fig 4D and 4E).

Decreasing the Aralso leads to an increase in the gain of the f-I curve (Fig 4B). Consequent-
ly, the increase in fluctuation-induced modulation of the f-I curves with lower At values could
result from an intrinsic higher gain value that provides greater sensitivity to changes in current
input fluctuations. Prior work has established that decreasing the V, value has a divisive effect
on gain [40]. To eliminate the influence of higher gain values, therefore, we incrementally de-
creased the V, value to decrease gain when Arwas small (Fig 5A). Using this approach, we
could maintain gain approximately equal across different Ay values and test if differences in
fluctuation-induced smoothing of the f-I curve are entirely due to changes in intrinsic gain (Fig
5A and 5B). Although compensating for gain through changes in V, decreases fluctuation-
based modulation of the f-I curve, lower Ay values still result in greater smoothing and in-
creases in the initial firing rate of the f-I curve (Fig 5C).

For the sake of completeness we also quantified changes in rheobase and slope of spike
probabilities curves induced by the introduction of voltage fluctuations (Fig 5D). For these
measures the choice of V, has no impact. As shown, a gradual decrease in Ay from 15mV to 1
mV results in a gradual increase in both the ability for fluctuations to shift rheobase and
smooth the spike-probability curves (Fig 5E).

Limited fluctuation-based modulation of input-output responses can be
reproduced in a conductance-based model using Hodgkin and Huxley
formulism

Although the eLIF model using a large Ar generates a very good match to the experimental re-
sults attained in stellate cells, we were interested if a more biologically plausible model using
standard Hodgkin and Huxley (H-H) formulism could also reproduce our experimental re-
sults. For our H-H-based model, we started with a non-inactivating Na* conductance (Inap)
that generates the gradual increase in membrane input resistance at sub-threshold membrane
voltages observed in stellate cells (Fig 6A). For spiking currents, we used a standard transient
Na" current coupled with a slower K" current (see Methods). Note that the rheobase values in
the conductance-based model differed from the eLIF model because the voltage threshold for
spiking was more depolarized than for the eLIF.

As expected, reducing the magnitude of Iy, decreases the gradual increase in subthreshold
membrane input resistance (Fig 6A). Further, the reduction of Iyy,, increases the slope of the f-
V curve (Fig 6B). Consequently, the presence of I, drives the model neuron to generate an f-
V' more similar to the eLIF model using a Ay = 15 mV, while without I, the f-V curve is
more similar to when Ay =2 mV.
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Fig 5. Reducing A7 in the eLIF model gradually increases modulation of input-output responses by membrane voltage fluctuations. (A) eLIF model
f-I curve gain is reduced with more a negative V, value. (B) Comparison of f-/ curves for different Ay values with (solid lines) and without (dash lines)
membrane voltage fluctuations. Note, more negative V, values were used to maintain the same gain with smaller Ay values. (C) Changes in the initial firing
rate of f-/ curves induced by membrane voltage fluctuations for the eLIF model using A values. (D) Comparison of spike-probability curves for different Ar
values with (solid lines) and without (dash lines) membrane voltage fluctuations. (E) Plots of changes in rheobase (i) and sigmoid slope factor (ii) on spike-
probability measures associated with the introduction of membrane voltage fluctuations for eLIF models using different Ar values.

doi:10.1371/journal.pcbi.1004188.9005

To evaluate the role of sub-threshold resistance on fluctuation-based modulation, we varied
the conductance magnitude of In,p. As before, we added current input fluctuations so as to
generate voltage fluctuations with a 2.5 mV STD at -75 mV. For both f-I (Fig 6C and 6D) and
spike probability (Fig 6E and 6F) measures, the reduction of Iy, leads to a progressive increase
in the ability for membrane voltage fluctuations to modulate the input-output responses. Thus,
a standard H-H conductance-based model can reproduce experimental results and observa-
tions from the eLIF model.

Large At values reduce modulation of input-output responses through
voltage fluctuations by slowing membrane voltage

To better understand how Ay values determine the membrane voltage trajectory associated
with both the initial and interspike interval spike approach, we used phase-plane plots to ana-
lyze the eLIF model using Ar values of 2 mV and 15 mV. In the phase-plane plot representa-
tion, the dashed lines indicate the membrane derivative function (dV/dt). The farther the value
of the dashed line is from the x-axis at zero, the faster the membrane voltage changes. Through
its effect on the shape of the dV/dt line, the Ar parameter determines the rate at which mem-
brane voltage reaches spike threshold (Fig 7A and 7B). With Az = 15 mV, the dV/dt function is
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Fig 6. Reduction of persistent Na* current in an H-H formulism-based conductance model increases modulation of input-output responses by
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doi:10.1371/journal.pcbi.1004188.9g006
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doi:10.1371/journal.pcbi.1004188.9007
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shallow and generates small values, as indicated by the close proximity to the zero x-axis, for a
large portion of the trajectory leading up to spike threshold; this results in a trajectory that
changes more slowly and spends a small fraction of time in close proximity to spike threshold
(Fig 7A). Reducing A increases dV/dt values for all voltages leading up to threshold. Under
these conditions, the voltage trajectory only begins to slow in the immediate vicinity of spike
threshold and, consequently, spends a large fraction of the interspike interval in close proximi-
ty to threshold (Fig 7A and 7B; insets).

The above analysis suggests that Ar influences fluctuation-based modulation of input-out-
put functions at a given inter-spike interval value by setting the fraction of time that voltage
spends in close proximity to spike threshold. As Arbecomes smaller, voltage trajectories spend
an increasing fraction of time near the voltage for spike threshold, whereby small fluctuations
can lead to spike events very early in the evolution of the trajectory. Conversely, by linearizing
the trajectory, large Ay values limit fluctuation-induced spikes to time points later in the evolu-
tion of the voltage trajectory. To illustrate this, we quantified the probability that voltage fluctu-
ations cause a spike at different time and voltage points during a single inter-spike interval
trajectory (Fig 7C). Thus, each point along the trajectory provided initial conditions from
which to calculate the likelihood of generating a spike at that given voltage and time point.
From each of these points, we ran the models for a 50 ms period of time and calculated the
probability of spike discharge in response to voltage fluctuations (SD = 2.5 mV) within this
time period using 1000 trials (see Methods). As indicated in Fig 7C, for the majority of the in-
terval, the likelihood of generating a spike in response to voltage fluctuations is substantially
higher for A7 =2 mV than that for Ar= 15 mV. Although a value of A7 = 15 mV leads to higher
spike discharge probabilities towards the end of the interspike interval trajectory, the effect is
limited in time and occurs late in the cycle, whereby the impact on spike rate relative to the de-
terministic case is small.

The influence of Ay on the dV/dt line also changes the scaling between mean membrane
voltage and spike frequency. As indicated above, changes in Aralter the dV/dt line, with a larg-
er value of Ay generating a shallower dV/dt line. With the addition of positive (depolarizing)
current, the dV/dt line moves upwards and away from x-axis, which results in a faster voltage
trajectory (i.e. shorter interspike intervals).

When A =2 mV, the voltage trajectory approaches values near threshold (V) more quick-
ly than with Ay = 15 mV. With Ar =2 mV, the membrane derivative only slows down near the
inflection point of the dV/dt line. Consequently, as the dV/dt line shifts upwards, the mean of
the voltage trajectory remains largely unchanged because the majority of the trajectory is repre-
sented by the value near the inflection point of the dV/dt line (Fig 7E and 7F). In essence, a A
=2 mV compresses the voltage trajectory to a value approximately equal to V With Ar=15
mV, however, a shift upwards in the dV/dt line significantly accelerates the voltage variable for
a much larger fraction of the trajectory profile, especially for time points early in the trajectory
that are far from the inflection point of the dV/dt line. As a result, the mean of value of the volt-
age variable depolarizes as the applied current magnitude increases and the dV/dt line shifts
upwards (Fig 7E and 7F). By generating a shallow f-V, a large A limits the ability for a change
in voltage brought about through random fluctuations to increase spike firing rate. Conversely,
when Aris small and the f-V relationship is steep, voltage fluctuations can give rise to a large
change in spike firing rate (Fig 7D).

With large Ay values, the increase in membrane resistance, and the resulting increase in
voltage fluctuations, could potentially overcome the reduction in fluctuation-based modulation
established by a shallow f-V relationship. Although the SD of membrane voltage fluctuations is
larger in the peri-threshold region with A7 = 15 mV compared to Ay =2 mV, the difference is
small compared to the changes in the f-V relationship established by increasing the value of Ay
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doi:10.1371/journal.pcbi.1004188.9008

(Fig 8A). Thus, at the mean voltage where fluctuations first induce spiking in both models
(~-68 mV), the SD of voltage fluctuations only increases from 2.64 mV to 3.06 mV when Ar is
changed from 2 mV to 15 mV. In comparison, changes in the f-V relationship are much great-
er. With Ar=2 mV, a 60 spikes/s range occurs entirely within a 0.5 mV range, but increases to
a 10 mV range when Ay =15 mV (Fig 7D). As a result, increasing Az from 2 mV to 15 mV has
a much larger effect on the scaling of the f-V relationship than the size of membrane voltage
fluctuations. Even under conditions where the SD of membrane voltage fluctuations is in-
creased to 3.6 mV or 7.2 mV (by increasing the current-input fluctuations), values much larger
than those used with Ay = 2 mV, the modulation of the f-V and f-I relationships are still signifi-
cantly less with Ay = 15 mV than with Ar=2 mV (Fig 8B and 8C).

In summary, a large A generates voltage trajectories that spend a smaller fraction of time in
close proximity to spike threshold and whose mean changes significantly with spike frequency.
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Both characteristics are the result of a gradual increase in membrane input resistance and help
reduce modulation of input-output responses by voltage fluctuations.

Reducing voltage-dependence of membrane resistance reduces
fluctuation-based modulation of input-output curves in stellate cells

Our measures of input-resistance, voltage trajectories and analyses of the eLIF model generated
two testable hypotheses regarding the sensitivity of stellate cell spike output to voltage fluctua-
tions. Reducing the increase in input resistance associated with depolarization over the sub-
threshold region should lead to an increase in fluctuation-based modulation of input-output
responses. This manipulation is akin to reducing the value of Ar. Second, manipulations of
membrane resistance using negative and positive sloped conductances should result in a reduc-
tion and increase, respectively, in fluctuation-based modulation of input-output responses, by
manipulating the influence of the endogenous negative slope conductance and altering the
voltage trajectories associated with the approach to spike threshold.

Previous work in other neurons has established that steady-state Na* conductance, mediat-
ed either by a window current or persistent Na" conductance, can substantially increase mem-
brane resistance with depolarization [26,41]. To establish the role of Na* conductance in
determining sub-threshold input resistance in stellate cells, we used a small concentration of
TTX (10 nM) that was able to significantly alter sub-threshold membrane resistance but also
maintain the ability to generate at least one spike. Application of TTX significantly reduced the
gradual increase in input resistance across different voltages (2-way ANOVA, P <0.001,
n=12). At -65 mV, TTX reduced the input resistance from 151.4 + 15.5 MQ to 65.9 + 4.8 MQ
(Fig 9A; P <0.001) without affecting the input resistance below -70 mV (Fig 9A; P >0. 32).

Next, we assessed the effect of Na* conductance activation and a voltage-dependent increase
in input resistance on the membrane voltage trajectory leading up to a spike. Because the mem-
brane voltage trajectory to the first spike from a holding voltage of -75 mV could not be fit with
an exponential function (Fig 2B and Fig 9B), we quantified changes in the first spike voltage
trajectory by measuring the fraction of time spent above the mid-point of the trajectory. A tra-
jectory with a large fraction above the mid-point is more similar to an exponential approach.
The mid-point to threshold was calculated for each individual cell’s response to a square cur-
rent step eliciting a ~50 ms latency to first spike. In the presence of TTX, the voltage trajectory
spent a significantly larger fraction of time above the mid-point compared to control (Fig 9B;
TTX: 0.84 + 0.03 vs. control: 0.68 + 0.01, P <0.001, n = 6-18). Unfortunately, 10 nM TTX elim-
inated the ability to generate continuous spike discharge that is required for f-I curve measures.
As a consequence, we limited our analysis of cell output in the presence of TTX to spike-proba-
bility curves. As indicated, membrane voltage fluctuations were more effective at shifting the
rheobase and smoothing the spike-probability curve in the presence of TTX (Fig 9D and 9E).
The leftward shift in rheobase increased from 64.4 + 7.7 pA to 134 £ 25 pA (Fig 9Ei; paired Stu-
dent t-test, P = 0.001, n = 10), while the slope factor increased from 18.0 + 1.3 pA to 29.6 + 4.7
pA (Fig 9Eii; paired Student t-test, P = 0.02, n = 10). These results indicate that reducing the
amount of sub-threshold Na* conductance generates more exponential-like trajectories that re-
sult in increased fluctuation-based modulation of the spike-probability curves.

Manipulation of membrane conductance using dynamic clamp alters
voltage trajectories and modulation of input-output responses by voltage
fluctuations

To further investigate the role of membrane resistance and negative slope conductance in shap-
ing modulation of input-output response by voltage fluctuations, we manipulated membrane
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Fig 9. Block of voltage-dependent Na* conductance increases sensitivity to membrane voltage fluctuations in stellate cells. (A) Steady-state
membrane input resistance measures for different holding voltages under control (black squares) and with 10 nM bath applied TTX (grey circles). (B)
Example voltage traces from a stellate cell in response to a 100 ms depolarizing current step (i), as well as the average for the first 50 ms (ii) under control
(black) and with TTX (grey). Inset (Bi) shows the average fraction of time the voltage trajectory spent above the mid-point for control and under bath applied
TTX. (C) Representative examples of stellate cell voltage response to 100 ms long current steps of different amplitudes with and without membrane voltage
fluctuations under bath applied TTX. (D) Average spike-probability curves in the presence of membrane voltage fluctuations under control (black) and 10 nM
TTX (grey). Vertical lines indicate rheobase in the absence of voltage fluctuations for each condition. (E) Plots of average leftward shift (i) and sigmoid slope
factor (ii) for control (black squares) and TTX (grey circles).

doi:10.1371/journal.pcbi.1004188.9g009

resistance in stellate cells using dynamic clamp by introducing artificial negative or positive
slope conductances. In particular, we were interested in the effects of negative slope conduc-
tance since the ability for Na* conductance to increase input resistance and slow the rate of
change of membrane voltage is related to the negative slope associated with the Na* I-V rela-
tionship [26]. Hence, the introduction of an artificial negative slope conductance should fur-
ther decrease fluctuation-based modulation of input-output responses. Conversely, the
addition of a positive slope conductance should increase modulation via voltage fluctuations
by decreasing the influence of the endogenously expressed negative slope conductance.

For the negative slope conductance, we used a value of -5 nS, which was the maximum
amount that could be added without introducing instabilities and that increased membrane re-
sistance measured at -75 mV from 68.9 £8.9 MQ to 102 + 13 MQ. The positive conductance
was set to 15 nS and decreased membrane resistance to 34.1 + 2.7 MQ. For the positive conduc-
tance, values greater than 15 nS led to a loss of continuous spiking in fashion similar to what
has been reported in CA1 pyramidal cells using this manipulation [42,43]. Both the negative
and positive conductances were linear with a reversal potential of -75 mV.

As with TTX experiments, we quantified changes in the first spike voltage trajectories using
the fraction of time above the mid-point. Changes in membrane conductance had a significant
impact on the trajectory leading up to spike threshold (Fig 10A; one-way ANOVA, P <0.001,
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Fig 10. Changes in initial spike and interspike interval voltage trajectory using dynamic clamp. (A)
Average membrane voltage trajectories for initial spike approach in stellate cells under -5 nS (red), control
(black) and 15 nS of artificial membrane conductance added with dynamic clamp. Finer lines indicate sem.
(B) Plot of average fraction above mid-point for initial spike voltage trajectories using -5 nS, control and 15 nS
levels of artificial membrane conductance. (C) Average membrane voltage trajectories in stellate cells using
dynamic clamp with -5 nS (red), control (black) and 15 nS (blue) of artificial membrane conductance. (D) Plot
of average AHP half duration for the interspike interval voltage trajectories under -5 nS, control and 15 nS of
artificial membrane conductance.

doi:10.1371/journal.pcbi.1004188.9010

n = 8-18). Negative conductance decreased the fraction of time above the midpoint to
0.59 £ 0.02, while adding positive conductance increased this this value to 0.82 + 0.02 (Fig 10B;
P <0.001, Tukey’s test).

Changing membrane conductance also had a significant impact on the duration of the AHP
associated with continuous firing at ~4 Hz (Fig 10C; one-way ANOVA, P <0.001, n = 9-12).
Negative conductance led to a significant increase in the AHP half-duration (time from trough
to midpoint voltage between trough and spike threshold, Fig 10D; 98.1 + 5.3 ms, P <0.001,
Tukey’s test). Although positive conductance did not significantly alter the AHP half duration
relative to control when taking repeated measures into account, there was a decrease in mean
values (43.4 + 4.5 ms, P = 0.07, Tukey’s test). Hence, overall, changes in membrane conduc-
tance altered the duration of membrane voltage trajectories leading to spike threshold in a
form consistent with our analysis of the eLIF model.
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Fig 11. Modulation of stellate cell input-output responses with artificial changes in membrane conductance implemented using dynamic clamp.
(A) Plot of average stellate cell -/ curves using -5 ns (red), control (black) and 15 nS (blue) levels of artificial conductance, as well as in the presence and
absence membrane voltage fluctuations. (B) Plot of average gain measured using linear regression using -5 nS, control and 15 nS with (open symbols) and
without (closed symbols) membrane voltage fluctuations. (C) Change in rheobase (i) and initial spike rate (ii) in stellate cell f-/ curves resulting from the
introduction of membrane voltage fluctuations with -5 nS, control and 15 nS levels of added conductance. (D) Plot of average stellate cell spike-probability
curves under -5 ns (red), control (black) and 15 nS (blue) with and without membrane voltage fluctuations. (E) Change in rheobase (i) and sigmoid slope
factor (ji) in stellate cell spike-probability curves under -5 nS, control and 15 nS resulting from the introduction of membrane voltage fluctuations.

doi:10.1371/journal.pcbi.1004188.g011

Next, we quantified the effects of negative and positive changes in membrane conductance
on fluctuation-based modulation of stellate cell input-output curves. For each conductance
level, we compared changes in the slope and rheobase of f-I and spike probabilities curves in-
duced by the introduction of membrane voltage fluctuations. As before, membrane fluctuations
were kept at a SD of ~ 2.5 mV (-5 nS, 2.3 £ 0.1 mV, control: 2.41 + 0.1 mV; 15 nS: 2.35 + 0.01
mV, n =5, 19, 18). Analysis of f-I curves indicated that gain was significantly modulated by
changes in membrane conductance, but not by the introduction of membrane voltage fluctua-
tions (Fig 11A and 11B; 2-way ANOVA, P <0.001 for conductance, P = 0.36 for voltage fluctu-
ations). Contrary to expectations [8,9,44,45], f-I curve gain can be modulated, albeit modestly,
by changes in membrane conductance only. More importantly, stellate cells f-I curves main-
tained a low degree of fluctuation-based modulation at all three conductance levels. We should
note that eLIF model using a Ar= 15 mV, but not A7 = 2 mV, also generates a small decrease
in gain when membrane conductance is increased. This result is related to changes in mean
interspike interval membrane voltage induced by changes in conductance when Ar= 15mV,
but not Ay =2 mV.

We proceeded to measure changes in rheobase and initial firing rate associated with f-I
curves resulting from voltage fluctuations under each of the conductance conditions. Changes
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in membrane conductance significantly impacted the ability of artificial fluctuations to change
rheobase (Fig 11Ci; P <0.02, one-way ANOVA, P = 0.01, Tukey’s test). Further, voltage fluctu-
ations were not able to significantly reduce rheobase values in the presence of -5 nS conduc-
tance (Fig 11Di; one sample Student t-test, P = 0.58), while with 15 nS rheobase significantly
increased (Fig 11Di; one sample Student t-test, P <0.001). As with rheobase, changes in the ini-
tial spike firing rate were also significantly changed by membrane conductance (Fig 11Dii;

P =0.001, one-way ANOVA), with each conductance level generating significant differences in
initial spike firing rates (Fig 11Cii; P <0.01, Tukey’s test). With -5 nS conductance voltage fluc-
tuations were not able to significantly increase firing rate from zero (Fig 11Cii; one sample Stu-
dent t-test, P = 0.79), while these changes were significant under control and with 15 nS (Fig
11Cii; one sample Student t-test, P <0.001).

Fluctuation-induced changes in spike-probability curves mirrored those observed in the f-I
curves (Fig 11D and 11E). For both rheobase and slope factors, conductance had a significant
impact (Fig 11Ei and 11Eii; P <0.001, one-way ANOVA). Increasing membrane conductance
by 15 nS led to both an increase in the ability for voltage fluctuations to shift the rheobase and
smooth the spike-probability curves (Fig 11E). With a decrease in membrane conductance (-5
nS), rheobase changes and smoothing were less pronounced (Fig 11D and 11E).

Opverall, these results are consistent with our hypothesis and indicate that a slower and more
linear voltage trajectory, established by an increase in membrane resistance through a negative
slope conductance, reduces modulation of input-output response by voltage fluctuations. Ad-
ditionally, the linearization of voltage trajectories is fundamentally related to the negative slope
conductance associated with Na™ current activation. Our data show that non-linear membrane
properties shape the potential for voltage fluctuations to modulate the input-output responses
of neurons.

Discussion

Our study demonstrates results that have important implications for single-cell input-output
modulation via changes in membrane conductance and voltage fluctuations. First, stellate cell
input-output responses are modulated to a small degree by membrane voltage fluctuations
under control conditions, as well as with increased membrane conductance. Second, in both
models and stellate cells, a voltage-dependent inward current resulting from a negative slope
conductance that activates over a significant sub- and peri-threshold region is responsible for
low levels of fluctuation-mediated modulation of input-output responses. Finally, negative
slope conductance reduced fluctuation-mediated changes in input-output response via a line-
arization and slowing-down of membrane voltage trajectories that also established a shallow
and non-linear f-V curve.

Controlling neuronal spike output with membrane voltage fluctuations
and changes in membrane conductance

Membrane voltage fluctuations and changes in membrane conductance (e.g. shunting inhibi-
tion) are believed to be key factors that control neuronal input-output scaling [7-9,11,45]. A
generally accepted role of voltage fluctuations is to lower spike threshold and amplify weak in-
puts [5,6]. Thus, the size and spectral content of voltage fluctuations can be used to potentially
gate inputs, as suggested by some network models [46]. In addition, fluctuating current input
can divisively scale the f-I curve by disproportionately increasing spike firing rate near thresh-
old [5,7-10]. Moreover, under fluctuation-driven spiking, it has been shown that spike firing
rate can scale with sub-threshold membrane voltage for a meaningful portion of a cell’s dynam-
ic range [9,10]. For this reason, in the presence of significant voltage fluctuations, changes in
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the sub-threshold I-V relationship brought about through shunting inhibition, balancing excit-
atory and inhibitory conductances, or simply introducing a leak conductance are expected to
translate into a further reduction in the slope of the f-I curve. Changes in the slope of the f-I
curve are believed to be critical for setting the tuning curve of individual cells and have been
proposed to play a critical role in sensory processing, particularly in the visual system with re-
gards to setting the neuronal spike response to contrast [3,12,37,45]. Synaptic-mediated voltage
fluctuations have therefore been implicated in setting both neuronal spike threshold and the
overall scaling of the input-output relationship.

Data from cerebellar granule cells [9] and simulations from compartmental models [10] has
convincingly demonstrated that spike rate can indeed scale with sub-threshold membrane volt-
age once voltage fluctuations are added. In granule cells, for example, fluctuations permit spike
generation over a range of more than 100 spikes/s across what would otherwise be sub-thresh-
old voltage values in the absence of fluctuations. Our data, however, suggest that this scenario
is not generalizable, at least within the limits of physiological voltage fluctuations. In the case of
stellate cells and our eLIF model (Ar= 15 mV), spike frequency scaling with sub-threshold
membrane voltage is severely constrained due to a very shallow f-V relationship, which limits
the spike frequency range in which voltage fluctuations can generate spikes. Consistent with
our interpretation, granule cells have very steep f-V curves in the absence of significant mem-
brane voltage fluctuations, with a 250 spikes/s range occurring over less than 2.5 mV [9]. Simi-
larly, simulations supporting this mechanism [10] have been carried out in a compartmental
model also expressing a steep f-V relationship (80 spikes/s over ~ 2.5 mV). In contrast, stellate
cells and the eLIF model (Ar = 15 mV) generate f-V curves with slopes in the range of 4-5
spikes/mV’s. Results presented here, therefore, indicate that the characteristics of the f-V curve
and its relation to voltage trajectories leading up to spikes are crucial to understanding the de-
gree that neuronal input-output functions are modulated by voltage fluctuations.

Power-law scaling of stellate cell -V curve without voltage fluctuations

In the visual system, a power-law scaling between spike firing rate and membrane voltage of
layer IT pyramidal neurons is critical for gain control and contrast invariance [12,37]. Modeling
has shown that a power-law scaling with an exponent near 2 between spike firing rate and volt-
age can arise from the combination of an intrinsic, steep and linear f-V relationship, and
smoothing through Gaussian-distributed voltage fluctuations [3,19,34,47]. In contrast with
past assumptions, our data indicate that the -V curve is not well approximated by a steep linear
function, and that part of the non-linear scaling between spike rate and voltage can result from
intrinsic voltage-dependent membrane properties.

For the eLIF model using a Ay = 15, the gradual activation of the negative slope conductance
plays a critical role in setting the shallow, non-linear f-V curve. By activating gradually, depo-
larization results in a change of mean voltage at different spike discharge rates. This is because
the rate of change in voltage is heavily influenced by the activation of the negative slope con-
ductance. As greater amounts of the negative slope conductance are activated incrementally,
the shape and mean of the interspike-interval voltage trajectory change considerably. This is
not the case with Ar= 2 mV because the voltage trajectory at different frequencies is largely set
by the passive properties of the membrane, which result in an exponential approach that does
not experience a change in mean with increasing levels of depolarization and firing rate.

Implications for MEC network function

Stellate cells have been implicated in spatial navigation via their grid-like spatial firing fields
[48]. It is possible that the low degree of modulation of input-output responses by membrane
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voltage fluctuations in stellate cells helps maintain stable firing patterns with respect to spatial
position. By reducing the influence of rapid voltage fluctuations on firing rate and input-output
responses, stellate cell behavior likely promotes increased reliability to inputs associated direct-
ly with relevant network activity [31,32]. Consistent with this interpretation, our past work on
spike-phase locking in stellate cells demonstrated a very high degree of spike-phase locking to
slow (1-10 Hz) oscillatory inputs in the presence of random voltage fluctuations and increased
membrane conductance [49].

Role of Na™ conductance and threshold dynamics in determining input-
output modulation by voltage fluctuations

A key factor in decreasing input-output modulation by membrane voltage fluctuations in stel-
late cells is the gradual activation of Na" conductance. By slowing the approach to spike thresh-
old, the gradual activation of Na* conductance results in membrane voltage being farther from
threshold for a large fraction of the trajectory. Current injections associated with f-I curve mea-
sures lead to a graded change in mean voltage and small, incremental increases in firing rate,
resulting in a shallow f-V relationship. Both an LIF model and an eLIF model implemented
with small A7 values express linear sub-threshold membrane properties. This leads to an expo-
nential approach to threshold in which membrane voltage plateaus early and a large fraction of
time is spent near spike threshold. As a result, small changes in current input and membrane
voltage result in large changes in firing rate.

In addition to stellate cells, cortical neurons in the visual cortex [39], cerebellar Purkinje
cells [50] and striatal interneurons [51] show a gradual increase in membrane resistance with
depolarization that is mediated by Na™ current. Hence, the behavior observed in stellate cells is
likely applicable to a wide range of different neurons.

From a non-linear dynamics perspective, an increase in membrane resistance that results in
a region of negative slope conductance in the vicinity of threshold is consistent with a saddle-
node bifurcation. This bifurcation is often associated with type I characteristics present in cor-
tical pyramidal cells [52]. On the other hand, fast-firing interneurons in cortex have been clas-
sified as type II, with threshold behavior often modeled using a Hopf bifurcation and hence not
requiring an increase in membrane resistance [52,53]. Previous modeling and experimental
studies have suggested that type I behavior promotes a high sensitivity to membrane voltage
fluctuations [18,52,54]. Unfortunately, drawing a clear relationship between the degree of mod-
ulation of input-output responses by voltage fluctuations and the type of threshold bifurcation
is difficult. Our mechanism requires a graded increase in membrane resistivity over a 20 mV
range, while a determination between a saddle-node and a Hopf bifurcation is established in
the immediate vicinity of spike threshold, which is often less than 1 mV. In vivo voltage fluctu-
ations, however, can span more than a 10 mV range such that the integration behavior of a cell
over large regions of sub-threshold voltage, which are well outside the immediate vicinity of
spike threshold, become crucial to understanding how a cell reacts to voltage fluctuations. For
these reasons, we believe that either form of bifurcation and type can give rise to low or high
sensitivity in input-output responses to random voltage fluctuations.

Materials and Methods
Ethics statement

All experimental protocols were approved by the University of Utah Institutional Animal Care
and Use Committee.
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Tissue preparation

Horizontal sections of hippocampus and entorhinal cortex were prepared from 25 to 50 day-
old Long-Evans rats of either sex. All chemicals were obtained from Sigma-Aldrich (St. Louis,
MO) unless otherwise noted. After anesthetization with isoflurane and decapitation, brains
were removed and immersed in 0°C artificial cerebrospinal fluid (ACSF) solution consisting of
the following: (in mM): NaCl (125), NaHCO; (25), D-glucose (25), KCl (2), CaCl, (2),
NaH,PO, (1.25), MgCl, (1), and buffered to pH 7.4 with 95/5% O,/CO, gas. Horizontal slices
were cut to a thickness of 400 pm (Leica VT 1200, Leica Microsystems; Wetzlar, Germany).
After the cutting procedure, slices were incubated in ACSF at 30°C for 20 minutes before being
cooled to room temperature (20°C). After the incubation period, slices were moved to the stage
of an infrared differential interference contrast-equipped microscope (Axioscope 2+; Zeiss,
Oberkochen, Germany). All recordings were conducted between 32 and 34°C.

Electrophysiology

Electrodes were drawn on a horizontal puller (P97; Sutter Instruments, Novato, CA) and filled
with an intracellular solution consisting of the following (in mM): K-gluconate (120), KCI (20),
HEPES (10), diTrisPhCr (7), Na,ATP (4), MgCl, (2), Tris-GTP (0.3), EGTA (0.2) and buffered
to pH 7.3 with KOH. Final electrode resistances were between 2 and 5 MQ, with access resis-
tance values between 5 and 16 MQ. Bridge balance compensation was used for all recordings.
Seal resistance values were always greater than 1 GQ. Electrophysiological recordings were per-
formed with a current-clamp amplifier (Axoclamp 2B; Molecular Devices, Union City, CA),
and data were acquired using custom software developed in Matlab (v. 2011, Mathworks, Na-
tick, MA) utilizing the data acquisition toolbox. An estimated junction potential of 10 mV was
subtracted for data analysis. Thus, the average resting potential reported here (-75 mV) is 10
mV more hyperpolarized than those reported elsewhere for stellate cells [55,56].

Stellate cell identity was established using the following criteria: 1) presence of a hyperpolar-
ization-mediated membrane voltage sag, 2) impedance and resonance measures indicating a
steady-state input resistance at rest between 35 MQ and 80 MQ and the presence of a ~5 Hz
resonance peak determined using methods described previously [49] and 3) the location and
cell morphology under DIC-IR optics (i.e. in layer I of MEC and with a non-pyramidal cell
body shape).

For voltage clamp experiments, we held cells at each corresponding voltage (-85 to -65 mV)
and used a small step (5 mV) and measured the change in current. The ratio of the change in
voltage and current was used to measure input resistance at each corresponding
holding voltage.

For dynamic clamp experiments, the current-clamp amplifier was driven by an analog sig-
nal from an x86 personal computer running Real-Time Application Interface Linux and Real-
Time eXperimental Interface (RTXI)[57,58]. Shunting inhibition (I;,;) was implemented using
RTXI with the following equation:

Iinh = ginh(V_Einh)

For these experiments, E;,,;, and g;,,, were set to -75 mV and 15 nS, respectively. In the case of
negative conductance (Fig 10 and 11), the g;,,;, term was set to -5 nS. For all experiments, the
sample rate of the dynamic clamp was set to 10 kHz. A measured junction potential of approxi-
mately 10 mV was subtracted from all recordings. Data were collected at 10 kHz and filtered at
3 kHz. Current input fluctuations were implemented with filtered white noise using a low pass
(four= 100 Hz) filter. The current signal was constructed in the frequency domain using a fre-
quency amplitude (A(f)) scaling of A(f) = 1/(1+(f/f....)). Matlab’s ifft function was used to
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implement an inverse Fourier transform and generate the time series from signals constructed
in the frequency domain. For each cell, we recorded a short trial period in which the current
input fluctuations were adjusted to maintain a standard deviation (SD) in membrane voltage
fluctuations at rest (-75 mV) of ~2.5 mV.

For Na™ channel block, tetrodotoxin (TTX, Tocris, Bristol, UK) was bath applied at a con-
centration of 10 nM. Recordings with TTX were carried out approximately 15 minutes after
bath application of the drug.

Simulations and models

For the exponential leaky integrate-and-fire (eLIF) model [27], membrane voltage dynamics
were governed by the following differential equation:

V-V
Cii_‘t/ = L+gAre™ —g(V-E)

where C =170 pF, V= -60 mV, g; - 25nS, E; =-75mV and Ay = 15 mV (default). Note, for
the passive version of the model (i.e. standard leaky integrate-and-fire), the first g; term was set
to zero and a separate leak term was used with the same reversal potential and using a conduc-
tance value of 15 nS. This value of conductance generates a passive model with the same input
resistance as the eLIF model at -75 mV. Because of the exponential term in the eLIF, membrane
voltage diverges to infinity upon crossing V. For the eLIF simulations, membrane voltage was
reset to Vg (-65 mV) upon reaching a value of 0 mV. The passive model lacks a true threshold
phenomena, therefore an artificial threshold was set at -55 mV and membrane voltage was
reset to -65 mV after crossing this threshold value. All models were simulated in Matlab and
solved with a forward Euler method using a time step of 0.01 ms. We also tested model solu-
tions with a time step of 0.001 ms and found the same results.

For the H-H formulism-based model (Fig 6), membrane voltage was governed by the fol-
lowing equations:

av
CE =1,—gum(l —n)(V—Ey,) - gNupp(V —Ey) —gn(V—Ey) —g(V—E)

d
diz =n_—mn)/ , (K" conductance)

m=" viay , (transientNa' conductance)
<l+e -3 )

n =1 / ( w>, (K" conductance steady — state activation)

e 14e -3

p=" / (14%) (persistent Na* conductance)

where C =170 pF, 7,, = 3ms, En, =50 mV, Ex =-90 mV, E; =-80 mV, gn, = 170 nS, g = 90
nS, gnap = 150 nS and giar = 20 nS. To reduce the dimensionality of the model we used the ap-
proximation that h~I-n and that both m and p equilibriate with membrane voltage instan-
taneously due to their time constants being smaller than the membrane time constant.

As with experiments, current fluctuations were generated using filtered white noise generat-
ed using the same equation and cut-off frequency (100 Hz) as in experiments. To ensure a SD
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of 2.5 mV at a voltage of -75 mV, each model was tested with incrementally larger noise coeffi-
cients until a SD of 2.5 mV was reliably measured over a small region of coefficient values at
-75 mV over a 15 s duration. Current fluctuations were added to the DC current term (I,) in
the above equation (i.e. additive noise). To increase model membrane conductance, a separate
grterm was added using a reversal potential of -75 mV.

Analysis and statistics

All analyses were carried out in Matlab using custom software and/or built in functions. For
power-law and Boltzmann fits, we also confirmed fits in Origin 8.5 (OriginLab, Northampton,
MA). Spike times were determined using a threshold crossing for membrane voltage. Spike fre-
quency was determined using the mean inverse of the first three inter-spike intervals elicited
from one or two second current steps. Average gain values were determined by averaging the
individual slope values attained using a linear regression analysis of the f-I relationship. Rheo-
base values were calculated as the minimal current required to elicit 4 spikes from a holding
voltage of -75 mV. For illustrative purposes concerning the average f-I curves shown in Fig 1
and 8, we calibrated the starting point of the f-I curve such that each cell’s initial value was near
the average rheobase calculated for a given condition. For spike-probability curves, the current
step duration was 100 ms and each current step size was repeated 15 to 25 times, with spike-
probability defined as the number of steps that evoked spikes divided by the total number of
steps. Individual spike-probability (P(I)) curves were fit with a Boltzmann function as follows:

P(r) ="/ ( ﬂ)
1+e K
where P is the probability of spike discharge,lj,q;is the current step size value required to elicit
0.5 probability (P 5) in spike discharge and k is the slope (larger values denote a shallower
slope) of the curve. Fits were used to calculate the slope factor (k), while the rheobase for proba-
bility curves was defined as the current step size required to elicit a Py, in spike discharge.
For the f-V curve, experimental and modeling results were fit using a power-law function:

f(V) = a|lV—-V/|+b

where fis the firing rate, p is the exponent of the fit reported in the results section, a and b are
positive constants and V¢ is the minimal voltage required to elicit spike generation. Note that
the term a was bounded such that only values of 1 or greater were possible. All fits used a least-
squares method.

To quantify the effect of membrane voltage fluctuations on spike discharge in models dur-
ing continuous spiking (Fig 7C), we first considered the model cell spiking periodically in the
absence of random fluctuations (with period of ~270 ms), and defined the interval fraction as
the inter-spike interval time divided by the total period. At every given fraction of the interval,
we took the deterministic state of the model (value for voltage and all other variables) and used
it as the initial condition for a set of 1000 test simulations, each 50 ms long in which fluctua-
tions were then added. We defined probability as the number of simulations generating a spike
divided by the total number of simulations at each given interval fraction. Thus, our probability
measures how likely it is that voltage fluctuations will introduce one spike at a given phase and
provides a measure for the ability of voltage fluctuations to change the spike rate associated
with the low current region of the f-I curves.

For multiple comparisons, statistical significance was determined using either a one-way or
two-way ANOVA. For repeated measures of means, statistical difference was determined using
Tukey’s honestly significant criteria, while a Student t-test (one- or two-sample) was used for
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comparison of one or two values. Means are presented along with the standard error of the
mean (s.e.m.).
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