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Abstract

Design of proteins with desired thermal properties is important for scientific and biotechno-

logical applications. Here we developed a theoretical approach to predict the effect of muta-

tions on protein stability from non-equilibrium unfolding simulations. We establish a relative

measure based on apparent simulated melting temperatures that is independent of simula-

tion length and, under certain assumptions, proportional to equilibrium stability, and we jus-

tify this theoretical development with extensive simulations and experimental data. Using

our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a sat-

urating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and

chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, sev-

eral of which were selected for detailed computational and experimental analysis. We find a

highly significant correlation of r = 0.65–0.68 between predicted and experimentally deter-

mined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42

mutants. The correlation between energy of the native state and experimental denaturation

temperature was much weaker, indicating the important role of entropy in protein stability.

The most stabilizing point mutation was D27F, which is located in the active site of the pro-

tein, rendering it inactive. However for the rest of mutations outside of the active site we

observed a weak yet statistically significant positive correlation between thermal stability

and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining

stabilizing mutations predicted by our method, we created a highly stable catalytically active

E. coli DHFR mutant with measured denaturation temperature 7.2˚C higher than WT. Pre-

diction results for DHFR and several other proteins indicate that computational approaches

based on unfolding simulations are useful as a general technique to discover stabilizing

mutations.
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Author Summary

All-atom molecular simulations have provided valuable insight into the workings of

molecular machines and the folding and unfolding of proteins. However, commonly

employed molecular dynamics simulations suffer from a limitation in accessible time

scale, making it difficult to model large-scale unfolding events in a realistic amount of sim-

ulation time without employing unrealistically high temperatures. Here, we describe a

rapid all-atom Monte Carlo simulation approach to simulate unfolding of the essential

bacterial enzyme Dihydrofolate Reductase (DHFR) and all possible single point-mutants.

We use these simulations to predict which mutants will be more thermodynamically sta-

ble (i.e., reside more often in the native folded state vs. the unfolded state) than the wild-

type protein, and we confirm our predictions experimentally, creating several highly stable

and catalytically active mutants. Thermally stable active engineered proteins can be used

as a starting point in directed evolution experiments to evolve new functions on the back-

ground of this additional “reservoir of stability.” The stabilized enzyme may be able to

accumulate a greater number of destabilizing yet functionally important mutations before

unfolding, protease digestion, and aggregation abolish its activity.

Introduction

Protein stability is an important determinant of organismal fitness and is central to the process

of enzyme design for industrial applications [1–3]. Most proteins must be folded to carry out

their functions in vitro or in vivo. In addition, non-functional aggregation of unfolded or par-

tially-unfolded proteins can have a deleterious effect on the fitness of an organism and can

lead to protein aggregation diseases, which include Alzheimer’s and Huntington’s, in humans

[4–6]. Aggregation of poorly folded proteins can also hamper protein production for research

and technological purposes [7].

While most mutations in a natural protein are destabilizing [8,9], biological proteins are

not generally at their highest possible stability; some mutations will stabilize a protein, increas-

ing the equilibrium population of the folded state [10–12]. This stabilization can be achieved

by either slowing the rate of unfolding or speeding the rate of folding, depending on the role of

the mutated residue in the folding nucleation process [13,14]. The unfolding temperature, Tm,

at which the free energy of the folded and unfolded states coincide (ΔG = 0) serves as a com-

mon measure of protein stability. Tm is obtainable by experiment and, in theory, from simula-

tion, although current molecular dynamics simulations are limited in their ability to capture

full folding or unfolding trajectories of most proteins (except very small fast folding domains

[15]) in a tractable amount of simulation time [16].

Several computational methods to predict protein stability or changes in stability upon

mutation have been developed and tested [17–19]. However, the performance of these popular

methods is still relatively weak [20–22]. Other existing techniques to rationally design proteins

with improved stability have involved optimization of charge-charge interactions [23], satura-

tion mutagenesis of residues with high crystallographic B-factors [24], methods based on pro-

tein simulation and calculation of free energies [25–27] and comparison to homologous

proteins including the ultra-stable proteins of thermophiles [28,29]. We reasoned that better

predictions of mutant stability might be obtained by evaluating the unfolding temperature Tm

in realistic yet computationally tractable simulations of protein unfolding.

Here, we use a Monte Carlo protein unfolding approach (MCPU) with an all-atom simula-

tion method and knowledge-based potential developed earlier in our lab [16,30,31] to simulate
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unfolding and predict melting temperatures for all possible single point mutants of E. coli
Dihydrofolate Reductase (DHFR). DHFR is an essential enzyme in bacteria and higher organ-

isms, and it is an important target of antibiotics [32] and anti-cancer drugs [33,34]. Its moder-

ate size (18 kDa) makes it amenable to both simulation and experiment. As described in the

Materials and Methods section, the Monte Carlo move set consists of rotations about torsional

angles. At high temperature, the higher entropy of unfolded states overcomes the increase in

energy due to loss of favorable contacts and torsional preferences, leading to unfolding. We

experimentally determine melting temperatures and catalytic activities for several predicted

stabilizing mutants, and for mutants combining multiple stabilizing mutations. Our approach

allows us to identify several stabilized mutants of DHFR, and our prediction method marks an

improvement over existing stability predictors such as Eris [19], FoldX [17], and PopMusic

[18]. Simulations of non-DHFR proteins likewise indicated that our method is useful as a gen-

eral approach to simulate protein unfolding and select stabilizing mutations.

Results

Predicting the effects of mutations on protein stability from non-

equilibrium unfolding simulations

Ideally, protein stability for any sequence should be predicted in all-atom equilibrium simula-

tions that cover multiple folding-unfolding events to determine equilibrium populations of

various states of the protein. However, despite recent progress in ab initio simulations of pro-

tein folding [15] this goal is not attainable for proteins of realistic size and biological relevance.

Currently, non-equilibrium unfolding simulations are within reach for sufficiently large pro-

teins and the question arises whether such simulations can be used to assess mutational effects

on protein stability, which is an equilibrium property. The following analysis provides an affir-

mative answer to this question, under certain assumptions. Although the idea of obtaining

equilibrium free energy differences from non-equilibrium measurements is not new [35], and

protein stabilities have been calculated from molecular dynamics simulations using the Jar-

zynski equality, e.g., [36–38], such simulations require application of an external steering force;

in the present paper we report the use of multi-temperature Monte-Carlo unfolding simula-

tions in obtaining protein stabilities.

Assuming two-state unfolding kinetics [39–42] we can estimate the characteristic time

required to cross the unfolding free energy barrier (in fact it is the time spent in the native

state waiting for sufficient thermal fluctuation to cross the barrier) as:

tfpu ¼ t0e
DG
kT ð1Þ

where tfpu is first-passage time from the folded to the unfolded state, ΔG# is the free energy bar-

rier between the folded state and the transition state for unfolding (see Fig. 1) and τ0 is the ele-

mentary time constant. When simulation time τsim approaches tfpu unfolding events are

observed in simulation. The apparent “melting temperature”, i.e., the temperature at which

unfolding events occur in simulations, therefore depends on the simulation time τsim accord-

ing to Eq. (1):

kTapp
m ¼

DG

ln tsim
t0

� � ð2Þ

This analysis suggests that non-equilibrium first passage unfolding simulations are not suit-

able to predict the temperature at which a protein would unfold at equilibrium. However the
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effect of mutations on stability can be predicted from unfolding simulations. In order to see

this we note that the mutational effect on protein stability ΔΔG is related to the change in the

unfolding free energy barrier ΔΔG#, the difference between the WT barrier height and the

mutant barrier height, shown in Fig. 1.

DDGi ¼ ð1 � φiÞDDG
eq
i ð3Þ

where i denotes the mutated amino acid and φi is the φ-value for residue i which determines

the fraction of interactions that this residue forms in the folding/unfolding transition state

Fig 1. Two state diagram depicting the protein native state N, transition state TS, and unfolded state U. The WT energy landscape is shown in solid blue

and the mutant energy landscape in dotted blue. The difference in free energy between WT folded and unfolded states, ΔGeq, the change in this quantity upon

mutation, ΔΔGeq, and the height of the transition state barrier relative to the native state for WT (ΔG#) and mutant (DGmut) are labeled.

https://doi.org/10.1371/journal.pcbi.1004207.g001
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[40,43,44]. We therefore obtain

kDTapp
m ðiÞ ¼

ð1 � φiÞDDG
eq
i

ln tsim
t0

� � ð4Þ

where DTapp
m ðiÞ ¼ Tapp

m ðiÞ � Tapp
m ðWTÞ is the shift in apparent unfolding temperature upon a

specific mutation in the i-th residue. Introducing the relative (to WT) unfolding temperature

DTrel
m ðiÞ ¼ DTapp

m ðiÞ=T
app
m ðWTÞ we get

DTrel
m ðiÞ ¼

ð1 � φiÞDDG
eq
i

DG
ð5Þ

i.e. the mutational shift in observed unfolding temperature, normalized to the observed

unfolding temperature of the wild-type at the same simulation condition does not depend on

the simulation length, provided that the simulation is sufficiently equilibrated in the native
basin so that the rules of transition state theory apply. The analysis of extensive kinetic and

equilibrium data for multiple proteins shows that for the majority of mutations (except for a

small fraction of residues that participate in the folding nucleus) φi ≈ 0.24 with remarkable

accuracy and consistency [45]. We get therefore

DTrel
m ðiÞ ¼ 0:76

DDGeq
i

DG
ð6Þ

i.e. DTrel
m ðiÞ is independent of simulation time and proportional to the equilibrium free energy

effect of mutations, provided that simulations have equilibrated in the native basin of

attraction.

Monte Carlo protein unfolding simulation

We ran MCPU on DHFR (PDB ID: 4DFR) at a range of temperatures, to generate simulated

unfolding curves. Unfolding steps of a sample trajectory are shown in Fig. 2, and a flowchart of

the simulation method is shown in S1 Fig. The protein was subject to a brief MD energy mini-

mization, beginning from the WT crystallographic native state, followed by unfolding simula-

tions at each of 32 different temperatures using all-atom Monte-Carlo (see Materials and

Methods section). As shown in figures S2 Fig—;S4 Fig, the RMSD and total energy increased

and the number of contacts decreased as each simulation proceeded, and with increasing tem-

perature. (Here, temperature is given in arbitrary simulation units.) Plots of RMSD and con-

tact number vs. temperature showed sigmoidal behavior, with a clearly identifiable transition

temperature, and the melting temperature (Tm) could be determined by fitting to a sigmoidal

function (Fig. 3). Plots of energy vs. temperature (S5 Fig) were sigmoid-like, but with an addi-

tional rise in energy at low to intermediate temperatures, perhaps indicating pre-melting to a

dry-molten globule state with loosened side chains but native-like topology [46,47]. This devia-

tion from sigmoidal behavior becomes clearer as the simulation length is increased (S6 Fig).

Computational identification of stabilizing single point mutations

All possible single point mutations of DHFR (159 * 19 = 3,021) were simulated with the Monte

Carlo protein unfolding simulation protocol. The simulated Tm values were calculated as

described above. Of the 3,021 mutations, 523 mutations (17.3%) were predicted to have a stabi-

lizing effect according to all three metrics (energy, contacts, and RMSD), while 42.1% of muta-

tions had a destabilizing effect according to all three metrics. These predictions are in good

agreement with statistical analysis of published experimental data and FoldX predictions [8,12].
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Fig 2. A sample WT DHFR unfolding trajectory at simulation temperature 1.5 (arbitrary simulation units). In MC simulations, separation of

the C-terminal beta hairpin from the rest of the protein (steps 1,000,000 through 1,200,000) is an early event in the unfolding process.

https://doi.org/10.1371/journal.pcbi.1004207.g002
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Fig 3. WT DHFR unfolding curves from MC simulations, averaged over 2,000,000 simulation steps, with 50

replications. The Tm value was calculated based on the sigmoidal fit (solid blue line). (A) RMSD vs. simulation

temperature. (B) Number of contacts vs. simulation temperature.

https://doi.org/10.1371/journal.pcbi.1004207.g003
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The simulated Tm values evaluated using RMSD, total energy, and number of contacts are

strongly correlated, as shown in Fig. 4A. The distribution of predicted melting temperatures

(averaged over the 3 metrics) for all 3021 point mutants is shown in Fig. 4B. Next, we selected a

subset of predicted stabilizing mutations for subsequent in depth computational and experi-

mental analysis. To that end we selected the loci where multiple mutations were consistently

predicted as stabilizing. Out of this set we selected one mutation at each loci which were pre-

dicted as most stabilizing. As a result we arrived at 23 single predicted stabilizing point mutants

shown in S1 Table, which we deemed most promising for subsequent in depth computational

and experimental analysis. Furthermore, five stabilizing mutations at different sites within

DHFR, shown in Fig. 5, were combined to form the multiple mutants listed in Table 1, with the

rationale that the combination of individual stabilizing mutants often yields more stable pro-

teins, and these mutants were likewise subjected to computational and experimental analysis.

Computational test of the theoretical analysis

First we test two predictions that emerge from the theoretical analysis of unfolding simula-

tions. The first prediction is that the apparent unfolding temperature decreases as the length of

the unfolding simulation increases (Equation 4). Secondly and most importantly the muta-

tional change in relative (normalized to WT) apparent unfolding temperature is a) robust with

respect to simulation time provided that simulations have equilibrated in the native basin and

b) directly proportional to the effect of mutations on equilibrium protein stability (Equation 6).

We test these predictions using MCPU simulations and experiment.

We carried out two sets of MCPU simulations of different lengths: 2,000,000 and

20,000,000 steps for the 23 predicted stabilizing mutants, 15 mutants studied previously by

experiment [48] (the complete set of single mutants is listed in S1 Table), and the 5 stabilizing

multiple mutants combining individual mutations listed in Table 1, and compared their pre-

dicted absolute and relative simulated unfolding temperatures (Fig. 6). Indeed both predic-

tions of our theoretical analysis are confirmed, i.e., the apparent unfolding temperature

decreases with simulation time (Fig. 6A) while the relative unfolding temperature DTrel
m is

remarkably independent of simulation time (Fig. 6B). We note that due to the nature of the

energy function used in our simulations, there is no obvious mapping of simulation tempera-

ture to real absolute temperature (i.e., in Celsius or Kelvin). Conversion of simulation temper-

ature to physical temperature would require use of experimental data (e.g., WT unfolding

temperature and deviation of temperatures over all mutants) and therefore would not provide

a completely simulation- or theory-based prediction. Furthermore, as noted above, the appar-

ent absolute value of the transition temperature in the Monte-Carlo unfolding approach

depends on simulation time. Therefore, we used relative melting temperature,

DTrel
m ðiÞ ¼ DTapp

m ðiÞ=T
app
m ðWTÞ, when comparing simulation results with experimental results.

As mentioned, the simulated Tm values evaluated using RMSD, total energy, and number

of contacts are strongly correlated in our simulations as shown in Fig. 4A and S1 Table. In

what follows we define the computational unfolding temperature Tm as averaged over Tm val-

ues determined using these three criteria.

Experimental characterization of predicted mutants

We cloned, expressed, and purified the 23 single point mutants of DHFR listed in S1 Table, as

well as the multiple mutants listed in Table 1 (see Materials and Methods). The biophysical

properties of the mutants were measured and compared with WT DHFR, as shown in S2 Table.

As many studies have shown that oligomerization can alter protein stability [23,48,49], we first

tested whether mutations induce oligomerization and/or aggregation using the gel filtration
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Fig 4. Simulated Tm values, based on RMSD, Total Energy and Contact number. (A) Scatter plot of Tm (RMSD) vs. Tm

(Total energy), with Tm (contact number) represented by color (see color bar to right of plot). The green ball denotes WT and

the gold ball denotes the destabilized mutant I155A. The correlation coefficients of simulated Tm between RMSD and total

energy, RMSD and Contact number, and Contact number and total energy were 0.68, 0.79 and 0.84, respectively. (B)

Histogram of Tm values, determined by averaging the values obtained from RMSD, energy, and contact number. The vertical

red line denotes WT Tm.

https://doi.org/10.1371/journal.pcbi.1004207.g004
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method [48,50] and light scattering. The results indicated that all of the 23 mutants were mono-

meric at studied concentrations except for E154V, which appeared aggregation-prone. We

excluded E154V from the subsequent analysis.

As shown in S2 Table, all single mutants are catalytically active except for D27F. D27 is

known to be a key catalytic residue of E. coli DHFR [51].

For each mutant we obtained two measures of stability: the apparent melting temperature

determined by Differential Scanning Calorimetry (DSC) and the urea midpoint unfolding

concentration (Cm) determined by monitoring chemical denaturation by Circular Dichroism

(CD) with subsequent fitting to a two-state model (see Materials and Methods). Both measures

of stability were highly correlated, despite the fact that thermal unfolding was irreversible

(S7 Fig). Of the selected 22 single point mutations, 10 mutations were stabilizing, according to

their Tm or Cm values (S2 Table). Given that statistically most random mutations are destabi-

lizing with only a small fraction (less than 18%) stabilizing [8,12], this statistically significant

Fig 5. The 3D structure of DHFR (PDB ID 4DFR), with residues that were altered in the stabilized quintuple mutant shown in blue.

https://doi.org/10.1371/journal.pcbi.1004207.g005
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result (p = 0.002 under the null hypothesis that mutations are random) indicates that MCPU is

an effective method for selecting stability-enhancing mutations.

As expected, combinations of single stabilizing mutations led to more stable multiple

mutant variants, [24,25,52] as predicted by simulation. In particular, the stability of the quintu-

ple mutant (T68N,Q108D,T113V,E120P,S138Y) was found to be substantially higher than that

of the wild type protein (Table 1), with Tm 7.2˚C higher than WT, and Cm, the urea concentra-

tion at the mid-unfolding point, was 0.43M higher than WT. All multiple mutants were cata-

lytically active, and the quintuple mutant and triple mutant (T113V,E120P,S138Y) were found

to be more catalytically active than WT. We note that while combination of stabilizing muta-

tions generally increases stability, the effect is less than additive (S8 Fig); for instance, the quin-

tuple mutant is about 4˚C less stable than predicted under the assumption of additive ΔTm

(a 7.2˚C stability increase vs. predicted 9.6˚C).

We computationally predicted relative unfolding temperatures of 15 DHFR mutants pub-

lished earlier [48] and added these mutants to the set for analysis resulting in 42 mutants in

total. The correlation coefficient between experimental relative Tm and simulated relative Tm

for the 42 mutants was about 0.65, as shown in Fig. 7A. To address the issue that both simu-

lated Tm and DSC measurements are not strictly at equilibrium, we plotted the relation

between simulated Tm and equilibrium measurement of stability in chemical denaturation by

urea. The denaturation mid-transition urea concentration Cm and computationally deter-

mined unfolding temperature exhibit even a slightly higher correlation of r = 0.68 (Fig. 7B),

demonstrating that our non-equilibrium simulation method shows good agreement with the

equilibrium measurement of urea denaturation, as predicted by Equation 6.

We also used the dataset to evaluate the effect of the number of replications and the number

of MC steps on the performance of the method. As shown in Fig. 8A, the prediction accuracy

is sensitive to the number of replications. To achieve reliable Tm predictions, at least 20 replica-

tions should be used. However, the number of MC steps did not greatly affect prediction accu-

racy, provided simulations were run for at least ~ 200,000 steps (see Fig. 8B). In the context of

the theory developed in the earlier section: “Predicting the effects of mutations on protein sta-

bility from non-equilibrium unfolding simulations,” this initial equilibration period may allow

Table 1. The simulated and experimental results of the selected single point mutants and WT.

Mutation(s) Tm (DSC) Cm (CD) kcat kcat/Km Simulated Tm

WT 54.1 3.09 24.60 14.07 1.358 ± 0.004

T113V 58.0 3.28 13.67 10.86 1.389 ± 0.004

Q108D 55.7 3.18 24.60 10.35 1.361 ± 0.004

S138Y 55.6 3.33 24.51 9.33 1.366 ± 0.004

D116F 55.5 3.43 24.80 9.53 1.369 ± 0.004

T68N 55.5 3.26 29.36 13.32 1.367 ± 0.003

E120P 55.3 3.25 30.02 13.91 1.371 ± 0.004

T68N,Q108D,T113V,E120P,S138Y 61.3 3.52 32.63 12.20 1.400 ± 0.004

T113V,E120P,S138Y 58.5 3.49 31.13 13.10 1.384 ± 0.004

T68N,Q108D,E120P,S138Y 56.4 3.47 22.80 10.94 1.377 ± 0.003

T68N,Q108D 55.8 3.14 17.99 15.24 1.366 ± 0.003

E120P,S138Y 55.6 3.29 16.01 10.81 1.371 ± 0.004

Note: The data were averaged over 50 replications. 2,000,000 MC steps were simulated in total, and the last 1,000,000 steps were used to calculate Tm.

The units: Tm: ˚C, Cm: M, kcat: s–1, kcat/KM: s–1 μM–1

https://doi.org/10.1371/journal.pcbi.1004207.t001
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time for equilibration within the native basin, after which simulation length does not apprecia-

bly affect the consistency of results with equilibrium stability measurements.

Stability and activity do not trade-off for DHFR

It has been proposed that stability imposes a constraint on protein function leading to stabil-

ity-activity tradeoffs [53,54]. Our data, however, paints a different picture for DHFR—;of a

weak positive correlation between Tm and kcat or kcat/KM (r = 0.46, p = 0.02 and r = 0.41,

p = 0.03 respectively) with one notable outlier D27F, where the stabilizing mutation is made

right in the active site (Fig. 9). The D27F mutant has high thermal stability but, as noted above,

is not catalytically active, indicating that there is in fact a stability-activity trade-off for this

active-site residue.

Evolutionary analysis

Using an alignment of 290 bacterial DHFRs, we determined the DHFR consensus sequence

(S9 Fig). Mutation of a non-consensus residue to the consensus residue generally resulted in

protein stabilization [29]. In 4/16 of the experimentally stabilizing mutations, a residue was

changed to the consensus residue, while only 2/29 destabilizing mutations resulted from a

change to consensus. Likewise, in 18/29 destabilizing mutations, a residue was changed away

from the consensus residue, while this was true for only 5/16 of stabilizing mutations.

Simulated melting temperatures by residue

We compared the minimum and maximum simulated Tm values obtainable by mutating a sin-

gle residue to any of the 19 other amino acids (Fig. 10A). There is a weak positive correlation

between minimum and maximum melting temperatures (r = 0.30, p = 10–4). Apparently, pro-

tein loci where mutations can cause significant stabilization are statistically less susceptible to

destabilizing mutations and vice versa, which may be expected: once a residue is already at its

most stabilizing amino acid variant, the protein cannot be stabilized further by mutation. Dis-

tinct outliers correspond to the loci with the strongest stabilizing or destabilizing effects of

mutations. Interestingly, these outliers, which may represent structural weak spots in DHFR,

tend to fall on the interface connecting the C-terminal beta hairpin and the rest of the protein

(Fig. 10B). This is in fact the interface that is the first to dissociate in the Monte Carlo simula-

tions (see Fig. 2).

Comparison with other methods

We compared our computational DHFR predictions with four popular approaches to predict

the effect of a mutation on protein stability: FoldX [17], Eris [26], PopMusic [55], and SDM

[56]. (S3 Table). The MCPU performs better than these methods on DHFR mutants. PopMu-

sic shows also strong performance with highly statistically significant r = 0.55 between theory

and experiment, however the limitation of this method is that it can consider only single point

mutations. To further evaluate MCPU performance we tested it on four additional proteins

from four different SCOP structural classes: the Cro repressor protein from bacteriophage

lambda (PDB-ID 5CRO), the B. Subtilis major cold shock protein (1CSP), E. coli Thioredoxin

Fig 6. Correlation between Tm values for simulations of different lengths. WT is shown as a blue triangle and mutant I155A as a red

diamond. (A) Tm calculated from simulation RMSD, for short (2,000,000-step) and long (20,000,000-step) simulations. Simulation Tm is clearly

smaller for long simulations, in which the protein has more time to unfold. (B) Relative Tm normalized to WT, for short and long simulations.

Remarkably, the points fall nearly on the line y = x, with a correlation of 0.86, with one distinct outlier I155A.

https://doi.org/10.1371/journal.pcbi.1004207.g006
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Fig 7. Correlation between the relative simulated and experimental Tm values. (A) Plot of simulated Tm vs.

experimental Tm. The relative Tm values were calculated by normalizing to WT: (Tm(mutant)-Tm(wild type))/ Tm(wild

type). Experimental values from this study and from Bershtein et al. [48] are included. WT is shown as a blue triangle.

r = 0.65, p = 3 x 10–6. (B) Plot of simulated Tm vs. experimental Cm. r = 0.68. p = 6 x 10–7.

https://doi.org/10.1371/journal.pcbi.1004207.g007
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Fig 8. The effect of replication number and number of MC steps on simulation predictive power. (A) Correlation

between simulated Tm and experimental Tm, averaging over different numbers of replications, for the DHFR wild type

and mutants. Each protein was simulated for 2,000,000 MC steps, following MD minimization and equilibration at low

temperature. (B) Correlation between the simulated Tm and experimental Tm with different numbers of MC steps and

50 replications, for the DHFR wild type and mutants. Each protein was first simulated for the number of steps given on

the x-axis, and the next 100,000 steps were averaged in determining the simulated Tm.

https://doi.org/10.1371/journal.pcbi.1004207.g008
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(2TRX), and Gln-25 ribonuclease T1 from Aspergillus oryzae (1RN1). Our predictions were

compared with Eris and SDM. We did not compare MCPU results with FoldX and PopMusic

as these mutations were selected in the training dataset for the two methods. As shown in

Fig 9. Correlation between DHFR activity and stability. WT is shown as a blue triangle; D27F is shown as a red

diamond at zero activity. (A) Plot of kcat vs. experimental relative Tm. r = 0.46, p = 0.02 (excluding outlier D27F). (B)

Plot of kcat/Km vs. experimental relative Tm. r = 0.41, p = 0.03 (excluding outlier D27F).

https://doi.org/10.1371/journal.pcbi.1004207.g009
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Table 2, the correlation coefficient between MCPU predictions and the experimental Tm val-

ues, averaged over all proteins, is about 0.71, which is higher than that provided by Eris

(-0.05), for which predictions were quite poor for both DHFR and other proteins, and SDM

(0.63). If we consider only the binary prediction of whether a mutation is stabilizing or

Fig 10. Maximum stabilization and destabilization induced by mutations at each residue position. (A) Plot comparing

the minimum and maximum simulated Tm values, for each residue across all 19 simulated mutants. Tm is normalized to

WT, by dividing each Tm value by the simulated WT Tm = 1.489 simulation units. Outliers are circled in purple (left), green

(middle) and orange (right). (B) DHFR with outlier residues colored according to the color scheme from (A). Purple:

residues F153, W30, Y111, L156, L110. Green: residues A107, I155, L112, H114. Orange: residues A6, E154. Excluding

outlier residues, the C-terminal beta hairpin is colored yellow, and the rest of the protein is colored cyan.

https://doi.org/10.1371/journal.pcbi.1004207.g010
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destabilizing, MCPU can correctly predict 11 out of 16 mutations, while Eris and SDM cor-

rectly classify 9 and 8 mutations respectively.

Entropy of the native state is an important contributor to stability

The theoretical analysis of the unfolding simulations relates the effect of mutations on the

equilibrium between folded and unfolded states to the effect of mutations on free energy of the

folded and transition states. It is widely believed that in the low-entropy folded state energetic

factors dominate. If so that would imply that we can get an equally good correlation between

prediction and experiment by estimating the mutational effect on energy of the native state as

is the case for most empirical methods. To that end we evaluated the correlation between the

energy of the minimized (after long MC equilibration) native state and the experimental Tm

and found only a weak correlation with experimental melting temperatures (Table 2, last col-

umn), indicating that protein entropy, which is accounted for in the MCPU, in addition to

enthalpy, is important in determining protein stability.

Discussion

Estimates of protein stability using Molecular Dynamics are prohibitive for all but the smallest

protein domains. However using MCPU we were able to efficiently explore stabilities of all

possible point mutants for an essential enzyme of a typical size (159 amino acids) in a manage-

able amount of computational time (approx. one hour for every 1,000,000 MC steps).

Table 2. Simulation results on non-DHFR proteins.

SCOP Length PDB Mutant Real Tm MCPU Eris SDM Native energy

All alpha proteins 66 5CRO Y26D 54.0 0.878 −6.958 −0.690 −2044.4

66 5CRO Y26H 49.5 0.869 −3.425 −0.660 −1908.2

66 5CRO Y26L 46.0 0.868 −3.458 0.300 −1891.8

66 5CRO WT-5CRO 39.5 0.869 0.000 0.000 −1886.0

66 5CRO Y26W 37.5 0.871 −1.200 0.350 −1872.7

All beta proteins 67 1CSP A46E 48.6 1.015 1.203 0.020 −1624.9

67 1CSP E3L 62.7 1.033 2.271 −0.460 −1536.7

67 1CSP E3R 69.6 1.023 1.638 −0.650 −1878.0

67 1CSP E66L 66.4 1.042 2.510 1.320 −1568.1

67 1CSP WT-1CSP 53.6 1.022 0.000 0.000 −1596.3

Alpha and beta proteins (a/b) 109 2TRX D26I 98.0 1.135 2.847 4.290 −2478.5

109 2TRX WT-2TRX 87.0 1.107 0.000 0.000 −2558.4

109 2TRX T66L 85.0 1.124 3.540 2.180 −2552.0

109 2TRX T77V 82.0 1.124 −0.980 1.960 −2541.9

109 2TRX C35A 73.0 1.104 −14.670 −2.040 −2574.7

Alpha and beta proteins (a+b) 125 1RN1 V16A 44.5 0.887 2.033 −1.530 −1934.1

125 1RN1 V16S 36.9 0.876 3.027 −4.410 −1920.1

125 1RN1 V78S 34.6 0.878 3.870 −4.450 −1943.8

125 1RN1 V89S 29.6 0.877 3.414 −4.100 −1904.8

125 1RN1 WT-1RN1 51.5 0.899 0.000 0.000 −1929.7

Error number 5 7 8 7

Error rate 0.313 0.438 0.500 0.438

r 0.708 −0.053 0.635 −0.348

Error number and error rate describe the number and fraction of mutations not predicted in the correct direction (stabilizing vs. destabilizing)

https://doi.org/10.1371/journal.pcbi.1004207.t002
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Although the use of rapid Monte Carlo simulations reduces simulation time and allows for a

greater number of replicates, our method to predict stability effects of mutations based on

non-equilibrium unfolding simulations represents a general approach that could be modified

for use with conventional MD simulations, especially given the current rate of improvement in

simulation speed and accuracy.

Since our method involves protein unfolding simulations and not equilibrium simulations

of both folding and unfolding processes, we expect it to be especially useful for predicting

mutations that mostly affect the rate of protein unfolding as highlighted in our theoretical

analysis. Low φ-value residues, which acquire contacts with other residues late in the folding

process and lose contacts early in the unfolding process [14] constitute the majority of residues

in proteins, with φ-value roughly constant around 0.24 as noted in [45]. Combining this obser-

vation with assumptions of transition state theory, we found that for the majority of residues

(those not part of the folding nucleus [14,57] exhibiting anomalously high φ-values) the

observed simulation Tm relative to WT is proportional to the equilibrium stability change

ΔΔG, as verified by simulation and experiment. We establish that relative Tm is independent of

simulation length, demonstrating that non-equilibrium simulations can in fact be used to

quantify relative protein stability.

Many of the experimentally verified stabilizing mutations in DHFR predicted by MCPU

are found in the C-terminal beta hairpin region, which is the first to unfold in simulations,

prior to the main unfolding event encompassing the entire structure (see Fig. 2). It has been

shown that the source of ultra-stability in hyperthermophiles generally arises from slowing the

unfolding rate, rather than increasing the folding rate [28], so our method may be particularly

suitable for discovering biologically relevant stabilizing mutations. In addition, our results

might be particularly applicable to in vivo studies, where protease digestion and/or aggregation

proceed from the partially-unfolded state. We note, however, that some stabilizing residues

predicted by MCPU lie in the region of the protein that is late to unfold in simulations, includ-

ing I61V, which raises the experimental melting temperature by 1.7˚C. These mutants, along

with the destabilized outlier I155A for which relative Tm depends on simulation length

(Fig. 6), are appealing candidates for further study, as they may reflect a breakdown in the sim-

plifying assumptions of 2-state kinetic theory for proteins.

It has been hypothesized that there exists a tradeoff between enzyme activity and stability,

since certain regions of an enzyme must be sufficiently flexible to promote catalysis [53,54].

This conclusion was reached in [53,58], based on the exploration of stability effects of muta-

tions in the active site of beta-lactamase [53] and rubisco [58]. Fersht and coauthors also found

several stabilizing mutations in the active site of Barnase rendering the protein inactive [59].

While we observe a similar effect with the D27F mutation in DHFR, Fig. 9 shows that explor-

ing only mutations in the active site provides a biased view on the tradeoff between activity

and stability. Rather a vast majority of mutations throughout the protein show a qualitatively

opposite trend. The likely explanation of the distinction between an apparent tradeoff when

mutations are made in the active site and the opposite trend for mutations outside of the active

site is that “carving” an active site requires special selection of catalytic amino acids, which

could indeed have a destabilizing effect, overall. However our observation of a small positive

correlation argues against an obligate relation between global protein dynamics and activity

for DHFR, at least for the aspects of dynamics that are correlated with stability. Warshel and

colleagues reached a similar conclusion in their theoretical analysis of the role of dynamics for

DHFR and other proteins in [60]. This point has likewise been made by Bloom et al. [11], who

noted that a number of proteins have been stabilized experimentally without loss of activity,

and Taverna and Goldstein argued that marginal stability is an inherent property of proteins
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due to the high dimensionality of sequence space and not due to a requirement of reduced sta-

bility in order to generate sufficient flexibility [61].

A straightforward explanation for the weak yet statistically significant positive correlation

between activity and stability observed in our case might be that more stable proteins have

greater effective concentration of the folded (i.e. active) form. It is also important to note that a

weak yet statistically significant positive correlation between activity and stability for DHFR

can be revealed only when stabilizing mutations are included in the analysis. Our earlier study

[48] analyzed a smaller set of primarily destabilizing mutants and did not reveal any statisti-

cally significant trend (positive or negative) in the stability-activity relation for DHFR.

The development of highly-stabilized DHFR mutants through our combined in silico—;in
vitro approach opens up promising avenues for new in vivo studies. It has been postulated that

protein stability places a fundamental constraint on the evolutionary pathways available to a

protein [29,62] which has particular significance in the development of antibiotic resistance:

higher protein stability can provide the microorganism with an increased capacity to evolve to

evade antibiotic drugs [63] or, more generally, with capacity to evolve new functions [62]. We

plan to use an approach developed in our lab [48] to endogenously introduce stabilized DHFR

mutants into the bacterial chromosome and we will evaluate mutant fitness relative to wild-

type using growth rates and competition experiments. These experiments will allow us to

assess whether an evolutionary trade-off exists between stability and fitness in vivo, particularly

in the presence of antibiotics.

We plan to apply MCPU to predict stability effects of mutations in proteins other than

DHFR, in particular to develop highly stabilized mutants. Comprehensive experimental analy-

sis of fitness and/or stability effects of mutations [64] could be useful in assessing the predictive

capabilities of this method. In addition to predicting mutant stabilities, MCPU can provide

atomic-detail molecular trajectories to rationalize the stability effects of mutations; such analy-

sis is left to future study.

Materials and Methods

Monte Carlo simulations

We employed an all-atom Monte Carlo simulation program incorporating a knowledge-based

potential, described in previous publications [16,31,65]. Briefly, the energy function is a sum of

contact energy, hydrogen-bonding, torsional angle, and sidechain torsional terms, with an

additional term describing orientation of nearby aromatic residues. The move set consists of

rotations about Ï, Ï, and Ï dihedral angles, with bonds and angles held fixed. Moves are

accepted or rejected according to the Metropolis criterion.

Mutations were introduced into the protein using the program Modeller v9.2 [66]. An ini-

tial minimization was carried out in NAMD [67] for 5,000 steps, using the default minimiza-

tion algorithm and par_all27_prot_lipid.inp parameter file (without waters). An additional

minimization step was carried out by running the Monte Carlo simulation program at low

temperature (0.100 in simulation units) for 2,000,000 steps. A 2,000,000-step simulation was

then run at each of 32 temperatures, averaging over all 2,000,000 steps to obtain Energy,

RMSD, and number of contacts. These results were averaged over 50 simulations, for each

temperature. Data was then plotted and fit to a sigmoid to obtain the computationally-pre-

dicted melting temperature, for each of Energy, RMSD, and number of contacts. To assess

dependence of melting temperature on simulation length, longer simulations of 20,000,000

steps were carried out with 30 replications, averaging over the final 2,000,000 steps. For

DHFR, 1,000,000 steps took approximately one hour of simulation time, on a single CPU.
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Bioinformatics Analysis. DHFR protein sequences from 290 bacterial species were

aligned using the program MUSCLE and online server [68]. MATLAB, with the Bioinformat-

ics Toolbox, was used to create sequence logo representations and to determine the consensus

sequence.

Effect of number of replications on simulation accuracy

We evaluated the effect of the number of MC simulation replications on the prediction results.

As shown in S9 Fig, the prediction accuracy is sensitive to the number of replications, but con-

verges to a constant value after approximately 20 replications. In addition, we saw that increas-

ing the number of MC steps beyond 2,000,000 steps does not increase prediction accuracy

when the protein has been simulated with at least 20 replications, despite the fact that not all

simulations have converged by 2,000,000 steps (S2 Fig—;S4 Fig).

Simulation analysis

Sigmoidal fits were accomplished using the module “Sigmoidal, 4PL” using the software pro-

gram Prism 6. The sigmoid function has the form:

Y = Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))

Method availability

The tool is accessible from Shakhnovich lab website http://faculty.chemistry.harvard.edu/

shakhnovich/software

Site-directed protein mutagenesis of DHFR

The wild type dhfr gene was cloned in a pET24 expression vector under the inducible T7 pro-

moter, then transformed into BL21(DE3) cells [69]. Single point mutations of DHFR were

constructed based on a two-step PCR-mutagenesis strategy [70], in which the template for the

PCR is the plasmid of WT DHFR. The multiple-mutant variants of DHFR were constructed

based on the same method with the single point mutation, but the template of PCR was the

plasmid of the corresponding dhfr mutant. To verify the mutations of dhfr, DNA sequencing

was performed at the GENEWIZ Incorporation (MA, U.S.). The verified plasmids were trans-

formed into competent E. coli BL21(DE3) cells for expression.

Protein expression and purification

WT DHFR and all mutants used in this study were cloned into a pET24 expression vector and

overexpressed in the BL21(DE3) pLys E. coli strain.

A single colony of the transformed E. coli carrying the wild type or mutation dhfr was cul-

tured in Luria-Bertani liquid medium containing 50 Î¼g/mL kanamycin (LB-kana) at 30˚C

overnight, and then inoculated to fresh LB-kana (1:100 dilution) and incubated again at 30˚C.

When the OD600 of the culture reached 0.6, isopropyl Î-D-1-thiogalactopyranoside (final con-

centration, 0.4 mM) was added. Cultures were incubated for an additional 12–16 h at 25˚C.

The cells were then collected by centrifugation and disrupted by sonication. The recombinant

proteins were purified with Ni-NTA Superflow (QIAGEN, U.S.) according to the manufactur-

er’s instructions. Then, the collected protein sample was run with Superdex 75pg Column and

was desalted with the desalting Column in ÄKTA protein purification system (GE Healthcare,

U.S.). The final concentration of the purified protein was determined using the BCA protein

assay kit (PIERCE CHEMICAL, USA) or the NanoDrop instrument (GE Healthcare, U.S.).
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Enzyme kinetics

DHFR kinetic parameters were measured by the progress-curve kinetics, essentially as

described [69,71]. A Scientific stopped flow apparatus, RX.2000 Rapid kinetics system

(Applied Photophysics, UK) was used with absorbance monitoring at 340 nm, under single-

turnover conditions. NADPH was preincubated with DHFR for 5 min in syringe 1 at the tem-

perature 25˚C in a thermostated syringe compartment, and then the reaction was initiated by

rapidly mixing the contents with dihydropholate (DHF) from syringe 2. The final assay condi-

tions are 25 nM DHFR, 120 Î¼M NADPH(D), and 25 Î¼M DHF in MTEN buffer (50 mM 2-

(N-morpholino)ethanesulfonic acid, 25 mM tris(hydroxymethyl)aminomethane, 25 mM etha-

nolamine, and 100 mM sodium chloride, pH 7.6). The kinetics parameters (kcat and KM) were

derived from progress-curves analysis using Global Kinetic explorer [72].

Stability measurements

Thermal stability was characterized by differential scanning calorimetry (DSC), essentially as

described in references [69,73]. Briefly, DHFR proteins in Buffer A (10 mM potassium-phos-

phate buffer pH 7.8 supplemented with 0.2 mM EDTA and 1 mM beta-mercaptoethanol) were

subjected to a temperature increase of 1˚C/min between 20 to 90˚C (nano-DSC, TA instru-

ments, U.S.), and the evolution of heat was recorded as a differential power between reference

(buffer A) and sample (120 Î¼M protein in buffer A) cells. The resulting thermogram (after

buffer subtraction) was used to derive apparent thermal transition midpoints (Tm app). Ther-

mal unfolding appeared irreversible for all DHFR proteins tested [48], and the two state scaled

model provided in NanoAnalyze software (TA INstruments, U.S.) was used to fit the Tm app

value. The mutants constructed in this study and the ones published earlier [48] were deter-

mined with different DSC instruments with slightly different calibration leading to a small off-

set of about 2˚C for the WT DHFR for earlier published data[48].

Urea unfolding was used to measure stability of the DHFR mutants against chemical dena-

turation. Proteins (25 Î¼M in buffer A) were diluted in urea (0.2 mM increments up to a final

urea concentration between 0 and 6 M), preequilibrated overnight at 25˚C for 3 hours, and the

change in the folded fraction was monitored by a circular dichroism signal at far-uv wave-

length (221 nm) at 25˚C (J-710 spectropolarimeter, Jasco). Fitting to a two-state model was

used to derive the chemical transition midpoint (Cm).

Supporting Information

S1 Fig. The MCPU flow chart.

(TIF)

S2 Fig. The RMSDs of DHFR wild type and mutants I115A and I155T vs. Monte Carlo

step at temperatures from 0.1 to 3.2. RMSD is averaged over 50 replications.

(TIFF)

S3 Fig. The total energy of DHFR wild type and mutants I115A and I155T vs. Monte Carlo

step at temperatures from 0.1 to 3.2. Total energies are averaged over 50 replications.

(TIFF)

S4 Fig. The number of contacts for DHFR wild type and mutants I115A and I155T vs.

Monte Carlo step at temperatures from 0.1 to 3.2. Number of contacts were averaged over

50 replications.

(TIFF)
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S5 Fig. The unfolding curves of DHFR and mutants I115A and I155T. Data points are aver-

aged over the 2,000,000 step simulation and 50 separate runs.

(TIFF)

S6 Fig. Energy vs. Temperature simulated melting curve for WT DHFR and mutants

I115A and I155T, averaging over the last 2,000,000 steps of a 20,000,000- step simulation,

and 30 separate runs. The mutant melting temperatures show the same trend as in S5 Fig,

although all melting temperatures are shifted to lower values (since the protein is given more

time to unfold at each temperature), and the curve deviates more notably from a sigmoid. (A)

Overlaid data points from all three mutants. (B) Fits to a sigmoidal function (blue line), for

each of the three mutants.

(TIFF)

S7 Fig. Correlation between urea denaturation midpoint, Cm, and melting temperature

Tm, for WT and 22 mutants predicted to be stabilizing by MCPU. r = 0.81, p = 2 x 10–6.

Blue triangle denotes WT, red diamond denotes D27F.

(TIF)

S8 Fig. Protein stabilization for multiple mutants: deviation from additivity. Change in

experimental melting temperature relative to WT is predicted by summing melting tempera-

ture changes of individual mutants. This predicted ΔTm is plotted relative to the observed ΔTm

(blue circles). r = 0.80, p = 0.06. Red line denotes predicted ΔTm = observed ΔTm.

(TIFF)

S9 Fig. Sequence alignment and sequence entropy for 290 bacterial DHFRs. Sequence Logo

for the alignment, generated using the MATLAB Bioinformatics Toolbox.

(TIF)

S1 Table. The simulated Tm values of the selected single point mutations and WT DHFR.

(DOCX)

S2 Table. The experimental results for all single point mutations of DHFR.

(DOCX)

S3 Table. Stability predictions for DHFR mutants, using MCPU/other methods.

(DOCX)
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